
Piet: a GIS-OLAP Implementation

Ariel Escribano
Universidad de Buenos Aires

Ciudad Universitaria PI,
Bs.As., Argentina

aescribano@dc.uba.ar

Leticia I. Gomez
Ins tituto Tec n ólogic o de

Buenos Aires
Av. E. Madero 399
Bs.As., Argentina

lgomez@itba.edu.ar

Bart Kuijpers
University of Hasselt,

Departement WNI
Gebouw D, B-3590

Diepenbeek, Belgium

bart.kuijpers@uhasselt.be

Alejandro A. Vaisman
Universidad de Buenos Aires

Ciudad Universitaria PI,
Bs.As., Argentina

avaisman@dc.uba.ar

ABSTRACT
Data aggregation in Geographic Information Systems (GIS)
is a desirable feature, although only marginally present in
commercial systems, which also fail to provide integration
between GIS and OLAP (On Line Analytical Processing).
With this in mind, we have developed Piet, a system that
makes use of a novel query processing technique: first, a
process called sub-polygonization decomposes each thematic
layer in a GIS, into open convex polygons; then, another pro-
cess computes and stores in a database the overlay of those
layers for later use by a query processor. We describe the
implementation of Piet, and provide experimental evidence
that overlay precomputation can outperform GIS systems
that employ indexing schemes based on R-trees.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial Databases and
GIS; H.4.2 [Information Systems Applications]: Deci-
sion Support

General Terms
Experimentation, Performance

Keywords
GIS, OLAP, View Materialization

1. INTRODUCTION
Geographic Information Systems (GIS) have been exten-

sively used in various application domains, ranging from eco-
nomical, ecological and demographic analysis, to city and

route planning [15]. In GIS, geometric objects within a map
are organized in thematic layers where spatial objects may
also be annotated with numerical or categorical information.
Typical queries in GIS ask for geometric objects that satisfy
some condition, or, involve the aggregation of geographic
measures (i.e. area, length). To evaluate queries efficiently,
index structures for geometric objects are used, like some
variation of R-tree [1]. Novel techniques like aR-trees [11]
have also been proposed for dealing with aggregate data. Al-
though it is usual in GIS practice to store non-spatial data in
the thematic layers, when aggregation becomes important, it
would be advisable to organize the non-spatial GIS data in a
data warehouse. OLAP (On Line Analytical Processing) [8]
comprises a set of tools and algorithms for querying mul-
tidimensional databases containing large amounts of data,
usually called data warehouses, organized as sets of facts
and dimension hierarchies. Efficient evaluation of OLAP
queries requires, more often than not, the use of some kind
of precomputation [5].

Our work is aimed at integrating these two different worlds
in a single framework [2, 9]. In this way, we will be able to
evaluate a query like “total income in provinces crossed by at
least one river”, and navigate the results in the usual OLAP
way. After an overview of the data model(Section 2), we
describe the implementation of Piet, a system (named af-
ter the Dutch painter Piet Mondrian) that accomplishes the
goals mentioned above (Section 3) 1. Piet integrates open
source GIS and OLAP technologies, introducing the con-
cept of overlay precomputation, that makes use of a novel
technique denoted common sub-polygonization, which de-
composes each thematic layer into open convex polygons.
We discuss scalability and error management (Section 4).
Finally, we report experimental results over real-world maps
(Section 5) which show that overlay precomputation can
outperform other well-known query optimization techniques.

Running Example. Throughout the paper we will be using
a real-world map of Belgium, consisting of five layers, con-
taining geographic information about rivers, regions, provinces,

1
Documentation and a demo can be found at

http://piet.exp.dc.uba.ar/piet/

73

Figure 1: Running example: a map of Belgium

districts and cities. Additionally, the maps contain demo-
graphic and economic information. The rivers are repre-
sented as polylines, the cities as points, and the other layers
as polygons. Figure 1 shows the map including a layer con-
taining the definition of two regions of interest for a query
(see Section 5). The maps were obtained from the spatial
library of the GIS Center 2. There is also a data warehouse
with information about stores and sales for different regions
of Belgium.

1.1 Related Work
In general, the information in a GIS application is di-

vided over several thematic layers. The information in each
layer consists of purely spatial data on the one hand that
is combined with classical alpha-numeric attribute data on
the other hand (usually stored in a relational database).
For spatial data representation we will use (like most cur-
rent GIS do) the vector model [10]. Here, infinite sets of
points in space are represented as finite geometric struc-
tures, or geometries. More concretely, vector data within
a layer consists of a finite number of tuples of the form
(geometry, attributes), where a geometry can be a point,
a polyline or a polygon. There are several possible data
structures to actually store these geometries [19].

Although some authors have pointed out the benefits of
combining GIS and OLAP, not much work has been done
in this field. Vega López et al [18] presented a compre-
hensive survey on spatiotemporal aggregation that includes
a section on spatial aggregation. Rivest et al. [16] intro-
duced the concept of SOLAP (standing for Spatial OLAP),
and described the desirable features and operators a SO-
LAP system should have, without giving a formal model for
this. Han et al. [3] used OLAP techniques for materializ-
ing selected spatial objects, and proposed a so-called Spatial
Data Cube. This model only supports aggregation of such
spatial objects. Pedersen and Tryfona [13] proposed pre-
aggregation of spatial facts. First, they pre-process these
facts, computing their disjoint parts in order to be able to
aggregate them later, given that pre-aggregation works if
the spatial properties of the objects are distributive over
some aggregate function. However, this proposal ignores
the geometry, and only addresses polygons. Thus, queries
like “Give me the total population of cities crossed by a
river” would not be supported. No experimental results are

2
http://giscenter-sl.isu.edu

provided either. Extending this model, Jensen et al. [7] pro-
posed a multidimensional data model for mobile services.
This model omits considering the geometry, limiting the set
of queries that can be addressed. With a different approach,
Rao et al [14] combine OLAP and GIS for querying so-called
spatial data warehouses, using R-Trees for accessing data in
fact tables. The data warehouse is then evaluated in the
usual OLAP way. The only geometries studied in this pro-
posal are points, a quite unrealistic assumption in a real
GIS environment. Other proposals in the area of indexing
spatial and spatio-temporal data warehouses [11] combine
indexing with pre-aggregation, resulting in a structure de-
noted Aggregation R-tree (aR-tree), which annotates each
MBR (Minimal Bounding Rectangle) with the value of the
aggregate function for all the objects that are enclosed by
it. We implemented an aR-tree for experimentation (see
Section 5).

In summary, the discussion above shows that the prob-
lem of integrating spatial and warehousing information in a
single framework is still in its infancy.

2. DATA MODEL OVERVIEW
The implementation we present in this work is based in

the data model introduced in [2, 9]. There, the authors
proposed a model where spatial and non-spatial data are
integrated in a single framework. The model defines a GIS
dimension composed of a set of graphs, each one describing
a set of geometries in a thematic layer. A GIS dimension
is considered, as usual, as composed of a schema and in-
stances. Figure 2 shows the schema of a GIS dimension: the
bottom level of each hierarchy, denoted the Algebraic part,
contains the infinite points in a layer, and could be described
by means of linear algebraic equalities and inequalities [12].
Above this part there is the Geometric part, that stores the
identifiers of the geometric elements of GIS and is used to
solve the geometric part of a query (e.g., find the polylines
in a river representation). Each point in the Algebraic part
may correspond to one or more elements in the Geometric
part (e.g., if more than one polylines intersect with each
other). Thus, at the GIS dimension instance level we will
have rollup relations (denoted rgeom1→geom2

L). For instance,

rPoint→Pg
Lcity

(x, y, pg1) says that, in a layer Lcity, a point (x, y)

corresponds to a polygon identified by pg1 in the Geometric
part. We will see that the mechanism used for precomputa-
tion of the overlayed layers in the map, will take us back to
the concept of rollup function, where a point (x,y) will cor-
respond to exactly one geometry identifier. Finally, there
is the OLAP part for storing non-spatial data. This part
contains the conventional OLAP structures, as defined in
[6]. The levels in the geometric part are associated to the

OLAP part via a function, denoted αdimLevel→geom
L,D . For in-

stance, αriverId→gr
Lr ,Rivers associates information about a river in

the OLAP part (riverId) in a dimension Rivers, to the iden-
tifier of a polyline (gr) in a layer containing rivers (Lr) in
the Geometric part.

Example 1. Figure 2 shows a GIS dimension schema,
where we defined three layers, for rivers, cities, and provinces,
respectively. The schema is composed of three graphs; the
graph for rivers, for instance, contains edges saying that
a point (x, y) in the algebraic part relates to line identi-
fiers in the geometric part, and that in the same portion

74

point point point

line

node

polyline

All All All

Geometric part

Algebraic part

Lr (rivers)

polygon

All

OLAP part

Lc (cities) Lp (provinces)

districts

provinces

All

river

OLAP part

Figure 2: An example of a GIS dimension Schema

all

x1,y1

x2,y2

x3,y3

x4,y4

l1
l2

pl1

Layer Lr

α
Lr

point,line

line,polyline

r

r
Lr

Lr

Schelde

(Schelde)
river,polilyne

Figure 3: A GIS dimension instance for Figure 2.

of the dimension, lines relate to polyline identifiers. In the
OLAP part we have two dimensions, representing districts
and rivers, associated to the corresponding graphs, as the
figure shows. For example, a river identifier at the bottom
layer of the dimension representing rivers in the OLAP part,
is mapped to the polyline level in the geometric part in the
graph representing the structure of the rivers layer.

Figure 3 shows a portion of a GIS dimension instance
for the rivers layer Lr in the dimension schema of Figure
2. We can see that an instance of a GIS dimension in the
OLAP part is associated (via an α function) to the poly-
line pl1, which corresponds to the Schelde river, in Antwerp.
For clarity, we only show four different points at the point
level {(x1, y1), . . . , (x4, y4)}. There is a relation rpoint,line

Lr

containing the association of points to the lines in the line
level. Analogously, there is also a relation rline,polyline

Lr
, be-

tween the line and polyline levels, in the same layer. ��
Elements in the geometric part can be associated with

facts, each fact being quantified by one or more measures,
not necessarily a numeric value. Besides the GIS fact tables,
there may also be classical fact tables in the OLAP part,
defined in terms of the dimension schemas. For instance,
instead of storing the population associated to a polygon
identifier, as in Example 2, the same information may reside
in a data warehouse, with schema (state, Population).

Geometric Aggregation. Based on the data model de-
scribed above, the notion of geometric aggregation was de-
fined. However, general geometric aggregation queries are
hard to evaluate, because they require the computation of a
double integral representing the area where some condition
is satisfied. Thus, Piet addresses a class of queries denoted
summable, of the form:

�
g∈S h(g), where h is a function

(represented, for instance, by a fact table), and the sum is
performed over all the identifiers of the objects that satisfy

a condition. For example, the query “total population of
the cities crossed by the river “Schelde” reads:

Q ≡
�

gid∈C

ftpop(gid, Lc).

C = {gid | (∃x)(∃y)(∃pl1)(∃c ∈ dom(Ci))

(α
Ri→Pl
Lr,Rivers(‘Schelde’) = (pl1) ∧ r

Pt→Pl
Lr

(x, y, pl1) ∧
αCi→Pg

Lc,Districts(c) = gid ∧ rPt→Pg
Lc

(x, y, gid))}.

The meaning of the query is: αRi→Pl
Lr ,Rivers(‘Schelde’) maps

the identifier of the Schelde river to a polyline in layer Lr

(representing rivers). The relation rPt→Pl
Lr

(x, y, pl1) contains
the mapping between the points and the polylines represent-
ing the rivers that satisfy the condition. The other functions
are analogous. Thus, the identifiers of the geometric ele-
ments that satisfy both conditions can be retrieved, and the
sum of ftpop (which represents the population associated to
a polygon gid) over these objects can be performed.

Overlay Precomputation. Many interesting queries in GIS
require computing intersections, unions, etc., of objects that
are in different layers. Hereto, their overlay has to be com-
puted. For the summable queries defined above, on-the-fly
computation of the sets “C” containing all those cities would
be costly, mainly because most of the time we will need to go
down to the Algebraic part of the system, and compute the
intersection between the geometries (e.g., states and rivers,
cities and airports). Piet implements a different strategy,
consisting in three steps: (a) partitioning each layer in sub-
geoemetries, according to the carrier lines defined by the
geometries in each layer (see below); this allows to detect
which geographic regions are common to the layers involved;
(b) precomputing the overlay operation; (c) evaluating the
queries using the layer containing all the precomputed sub-
geometries . We will show in Section 5 that this strategy
can be an efficient alternative for query evaluation.

To conclude this section, we will give some definitions. We
will work within a bounding box B × B in �2 , where B is a
closed interval of �, as it is usual in GIS practice.

Definition 1 (The carrier set of a layer). The
carrier set Cpl of a polyline pl = (p0, p1, . . . , p(l−1), pl) con-
sists of all lines that share infinitely many points with the
polyline, together with the two lines through p0 and pl, and
perpendicular to the segments (p0, p1) and (p(l−1), pl), re-
spectively. Analogously, the carrier set Cpg of a polygon pg
is the set of all lines that share infinitely many points with
the boundary of the polygon. Finally, the carrier set Cp of a
point p consists of the horizontal and the vertical lines in-
tersecting in the point. The carrier set of a layer L is defined
as CL = Cpl

�
Cpg

�
Cp. ��

Figure 4 illustrates the carrier sets of a point, a polyline
and a polygon. The carrier set of a layer induces a partition
of the plane into open convex polygons, open line segments
and points. Thus, the rollup relations r will turn into func-
tions (given that no two points can map to the same open
convex polygon). Given CL and a bounding box, we denote
the convex polygonization of L, the set of open convex poly-
gons, open line segments and points, induced by CL, that
are strictly inside the bounding box. Given two layers L1

75

Figure 4: The carrier sets of a point, a polyline and
a polygon are the dotted lines.

and L2, and their carrier sets CL1 and CL2 , the common sub-
polygonization of L1 according to L2, denoted CSP(L1, L2) is
a refinement of the convex polygonization of L1, computed
by partitioning each open convex polygon and each open
line segment in it along the carriers of CL2 . This can be
generalized for more than two layers.

The reader may wonder, at this point, why do we use the
carrier lines to divide the map in zones using the bound-
aries of the geometries involved. The reason is that using
the sub-polygonization instead of dividing the map into ar-
bitrary rectangles in order to approximate the original shape
of a geometry increases the number of sub-geometries (i.e.,
rectangles) required to minimize errors. This idea is similar
to Riemann’s Integral Approximation [17].

3. PIET IMPLEMENTATION

System Architecture. The architecture is divided into three
modules. The first module (called raw data setup) gathers
information and stores the acquired data in a data ware-
house and a map (geometric data, with possibly some re-
lationship with the OLAP part). The whole process of
gathering and storing information is performed using a data
loader component. The second module (denoted precalcu-
lated data generator) allows the storage and execution of
precomputed data. Its main component processes raw data
and generates (off-line) the following information: (a) Pre-
computed data: containing the sub-geometries generated in
the sub-poligonization step, fact values associated to those
sub-geometries (conforming a GIS dimension), and overlay
precalculated information for the original geometric compo-
nents of the map; (b) Metadata: describing the data struc-
tures of the data warehouse, the maps, and their association;
(c) GIS-OLAP relations: containing the information needed
to associate geometric components and warehouse data (e.g.,
a point in the map can be related with a store identifier in
the data warehouse). The third module (query processor)
allows running four kinds of queries (see Section 5): geomet-
ric, geometric aggregation, OLAP and GIS-OLAP queries,
based on the raw and the precalculated data generated in
the previous steps.

Implementation Details. Our framework was developed
using PostgreSQL 8.2.3 database3 with Postgis 1.2 spatial
extensions4. The source code was developed with Java 1.5.
The geometric functions used belong to the JTS library.
The Web Plug-in run under Tomcat-Apache 5.5 WebServer.

3
http://www.postgresql.org

4
http://postgis.refractions.net

The stand-alone plug-in runs under Jump 1.25. For OLAP
queries we used Mondrian6 and the MDX query language,
an industry OLAP standard7. We will explain some of these
components as we progress in the paper.

There are two interfaces for running queries in Piet: Piet-
Jump, which provides a Graphical User Interface (GUI) for
displaying maps and running geometric queries, and Piet-
Web, which allows running GISOLAP-QL queries (described
below). A component called Piet-Schema contains a set of
metadata definitions, used by different modules of the sys-
tem. These definitions include: the storage location of the
geometric components and their associated measures, the
sub-geometries corresponding to the sub-polygonization of
all the layers in a map, and the relationships between the
geometric components and the OLAP information used to
answer integrated GIS and OLAP queries. Metadata are
stored in XML documents containing three kinds of ele-
ments: Sub/polygonization, Layer, and Measure. We omit
the description of these documents due to space limitations.

Sub-polygonization. As we explained above, the common
sub-poligonization of a layer requires the computation of
the overlay of the thematic layers, using the carrier lines of
Definition 1. These carrier lines induce points, linestrings,
and polygons, common to the layers involved. After produc-
ing the carrier lines, the procedure continues by intersecting
pairs of carrier lines, and obtains the set of sub-nodes associ-
ated to each of these lines, using each pair of sub-nodes on a
carrier line to create a so-called sub-line. Finally, a method
called Polygonizer generates the convex sub-polygons using
these sub-lines. The procedure used for creating sub-lines
prevents either duplicates or lines too similar to each other,
as well as lines not belonging to a polygon.

Overlay Precomputation. The original geometries in dif-
ferent layers overlap if they have in common one of the fol-
lowing: points, sub-lines of the carrierset (generated by the
intersection of the carrier lines), or sub-polygons (the open
convex polygons generated by the sub-lines). The following
algorithm sketches the overlay computation (we used self-
descriptive function names for the sake of brevity).
1. listLayers = determineListOfLayersInvolvedInTheQuery()

2. geoComponents = determineListOfGeometries(listLayers)

3. carrierlines = generateCarrierLines(geoComponents)

4. subgeometries = generateSubgeometriesPropagateFacts(carrierlines)

5. calculatePreoverlay(subgeometries)

In step 4, the original geometric components are divided
into points, sub-lines and sub-polygons due to the over-
lay. At the same time, the associated numeric fact values
are propagated proportionally to the area or length of the
original one. This information is stored in a table called
Subpolygonization. Step 5 computes the original geomet-
ric objects that have sub-parts in common, and stores their
identifiers in a table called Preoverlay. This table also
stores the identifiers of the common sub-geometries.

Note that geometric queries that do not require fact ag-
gregation (e.g.,“total number of regions crossed by rivers”)
can be answered using just the Subpolygonization table

5
http://www.jump-project.org

6
http://mondrian.sourceforge.net

7
http://msdn.microsoft.com

76

(this fact is reflected in our experimental results). More
complex kinds of queries also require the information stored
in the Preoverlay. For example, “total number of employ-
ees working in agricultural activities in regions crossed by
rivers”. In this case, the Preoverlay table is used first to
find the common sub-geometries for the layers containing
regions and rivers; after this, Sub-polygonization is used
to find the values of the proportional facts previously com-
puted. Finally, for aggregate queries with geometric con-
straints in the OLAP environment, Preoverlay is used to
find the geometry id’s of the original layers, which are later
used to access the layer table and the corresponding OLAP
dimension values.

Query Language. We devised a query language that com-
bines, in a single expression, GIS and OLAP statements.
Queries can be submitted to Piet in two ways: using the
Piet-Jump interface, or through a query language, denoted
GISOLAP-QL. A GISOLAP-QL query is of the form: GIS-
Query | OLAP-Query. The pipe (“|”) separates two query
sections: a GIS query and an OLAP query. The OLAP
section of the query applies to the OLAP part of the data
model (namely, the data warehouse) and is written in MDX.
The GIS part has the typical SELECT FROM WHERE SQL form,
except for a separator (“;”) at the end of each clause:
SELECT list of layers and/or measures;

FROM Piet-Schema;

WHERE conjunctions/disjuntions of geometric operations;

The SELECT clause contains a list of layers and/or mea-
sures, defined in the corresponding Piet-Schema of the FROM

clause. The WHERE clause consists of conjunctions and/or
disjunctions of geometric operations applied over elements
in the layers involved. The expression also includes the kind
of sub-geometry used to perform the operation. The syn-
tax for an operation is of the form operation name(list of
layer members, sub-geometry). The accepted values for sub-
geometry are “Point”, “LineString” and “Polygon”8 . Note
that this syntax actually implements the first-order language
commented in Section 2: the GIS part obtains the objects
that satisfy the condition “C”, and the OLAP part performs
the aggregation over these objects.

Example 2. Consider the query “Unit Sales, Store Cost
and Store Sales for products and promotion media offered
by stores only in provinces crossed by rivers”.
SELECT layer.bel prov;

FROM PietSchema;

WHERE

intersection(layer.bel river,layer.bel prov,subplevel.linestring); |
select [Measures].[Unit Sales], [Measures].[Store Cost],

[Measures].[Store Sales]

ON columns, ([Promotion Media].[All Media], [Product].[All Prod-

ucts]) ON rows from [Sales]

The GIS-Query returns the provinces intersected by rivers.
The OLAP section of the query uses the measures in the data
warehouse in the OLAP part (Unit Sales, Store Cost, Store
Sales), in order to answer the query. The dimensions are
Promotion Media and Product. The hierarchy for the Store
dimension defined in the Piet-Schema is: store → city →
province → Country → All. Let us suppose, for simplicity,
that the GIS part of the query, returns three identifiers from

8
For instance, when computing store branches close to rivers, we

would use linestring and point

82 through 84, corresponding to the provinces of Antwerpen,
Liege and Luxembourg. These identifiers correspond to their
ids in the OLAP part of the model, stored in a Piet mapping
table. Then, an MDX sub-expression is produced for each
region, by means of traversing the different dimension levels
(starting from All down to province). ��

4. SCALABILITY AND ERROR HANDLING

Scalability. Usually, the layers of real-world maps contain
a large number of geometric objects with irregularities like
holes, bays or gulfs. In this scenario, the amount of lines gen-
erated may be huge. As long as the complexity of objects
increases, the number of carrier lines and the interaction be-
tween them (i.e., the intersection points), will increase ac-
cordingly, introducing several problems mainly because the
carrier lines will usually go beyond the geographic area of
influence of the object that generated them, producing ir-
relevant partitions that increase the computational cost of
the algorithms presented in Section 3. For example, a line
generated in Brussels is unlikely to have any relevant im-
pact on Liege. As a consequence, we improved the naive
approach, and implemented a technique, denoted “grid par-
tition”. This technique divides the map in N×M rectangles
(where N and M are two integer parameters) and the origi-
nal geometric objects in the different layers are allocated to
these rectangles. Each rectangle is treated individually (i.e.,
the algorithm described above will be applied to each parti-
tion), and the carrier lines generated by the objects in each
rectangle do not go beyond such rectangle. This reduces
in several orders of magnitude the number of carrier lines
generated, and the size of the database. In our running ex-
ample we have divided the original map (and the geometries
in each layer) in 200 rectangles (a grid of 10 x 20 horizontal
and vertical subdivisions, respectively). Now consider, for
example, Figure 1. We can see that there is a large part
of the map that is within the bounding box but not in the
country. Using the grid subdivision, this zone will contain
no carrier lines (i.e., the grid rectangles in this region will
be empty). With the naive approach, this zone of the map
would have been affected, producing carrier lines outside
the area of interest. Also note that the different density of
carrier lines within each rectangle will be different. There-
fore, less dense rectangles can be computed very efficiently.
Moreover, if available, the algorithm could be run in a paral-
lelized environment. Finally, in the particular case where a
few partitions generate a number of carrier lines significantly
higher than the rest, they could be further partitioned, like
in the well-known divide and conquer technique. Thus, in
the case that some zone of the map would change over time
(v.g., the surge of new countries or provinces), we can take
advantage of the rectangle sub-division, and only recompute
the sub-poligonization of the affected rectangles. The for-
mer means that selecting the appropriate size of the grid is
an iterative task, and that the number of rectangles depends
on the complexity of the map.

Error Handling. During data precalculation, finite numeric
representation problems affect the calculation of intersection
points between carrier lines. Two cases arise: (a) intersec-
tion of a pair of carrier lines; (b) intersection of more than
two carrier lines. Let us denote these carrierlines Li, i =

77

1, ..n. In the first case, for carrier lines L1 and L2, it could
be the case (due to the lack of robustness of the intersection
algorithm provided by JTS) that P1 (generated by inter-
secting L1 and L2,) is different (with a very small differ-
ence) from P2 (generated by intersecting L2 and L1). Thus,
we extended the JTS library using two data structures: a
vector containing the carrier lines and a list of intersection
points (cuts) with other carrier lines that are generated dur-
ing the process. When calculating the intersection between
two lines L1 and L2, a point P1 is generated and stored both
in the L1 and L2 cut lists. Therefore, it is not necessary to
calculate the intersection of L2 with L1, as this intersection
will be already in the list of L1, saving processing time and
solving the robustness problem. In case (b), it may occur
that carrier lines L1, L2 and L3 intersect in points P1, P2 and
P3, very close to each other (but not exactly the same point,
because of finite representation problems or inaccuracies in
the map definition). If we use these points in the polygo-
nization algorithm, the functions provided by JTS will fail
to create sub-polygons related with those points. To solve
this problem our carrier line representation checks, before
adding a new cut in the cut list, if there is already a similar
(very near) cut as the one it is trying to add to the list. If
that is the case, the existing point is also added to the other
carrier line that generates the cut. The function below ver-
ifies the similarity between a pair of points. The variable
error must be defined by the analyst.
boolean isSimilarPoint(Point p1, Point p2,error) {
if |p1.x − p2.x| < error and |p1.y − p2.y| < error then result=true

otherwise result = false.

5. EXPERIMENTAL EVALUATION
In this section we present the results of our experimental

evaluation of Piet over different sets of four kinds of queries.
We show different kind of queries, and we ran all of them
using the sub-polygonization strategy. We compare the re-
sults against other indexing techniques, and show that the
common sub-polygonization appears as a competitive alter-
native to other well-established methods, contrary to what
has been believed so far [4]. We ran our tests on a ded-
icated IBM 3400x server equipped with a dual-core Intel-
Xeon processor, at a clock speed of 1.66 GHz. The total
free RAM memory was 4.0 Gb, and there was a 250Gb disk
drive. We used the maps described in Section 1, i.e., five
layers of a Belgium map containing information of rivers,
cities, districts, provinces and regions. We defined a grid
that partitions the bounding box in 20 x 10 rectangles for
computing the sub-polygonization. Five kinds of experi-
ments were performed, measuring average execution time:
(a) sub-polygonization; (b) geometric queries without ag-
gregation (GIS queries); (c) geometric aggregation queries;
(d) geometric aggregation queries including a query region;
(e) full GISOLAP-QL queries.

Sub-polygonization. Table 1 shows average execution times
for the sub-polygonization process for the 200 rectangles.
We report the average execution times for any combination
of layers (i.e., average time for overlaying any two layers,
any three layers, etc.). Table 2 shows the total execution
times for all combinations of layers (i.e., all 2-layer combi-
nations, all 3-layer combinations, etc.). This corresponds
to a full materialization. Note that all these processes are
supposed to be run off-line. Table 3 reports the maximum,

minimum, and average number of sub-geometries in the grid
squares (for the overlay of the five layers). We compared the
sizes of the database before and after computing the sub-
polygonization: the initial size of the database is 80 Mb.
After the precomputation of the overlay of the four layers,
the database occupies 950 Mega Bytes. Notice that this in-
cludes the 31 layer combinations with no compression of any
kind, i.e., the worst possible case. We also remark that half
of this size corresponds to 6 overlay combinations. Thus, a
partial materialization strategy (along the lines of [5]) can
be applied, if needed, with limited cost in performance.

Number of Layers Average Execution Time

5 5 hours 48 minutes 25.1910 seconds
4 1 hour 55 minutes 20.6170 seconds
3 0 hour 43 minutes 54.9380 seconds
2 0 hour 13 minutes 55.0870 seconds

Table 1: Average sub-polygonization times

Number of Layers Total Execution Time

5 5 hours 48 minutes 25.1910 seconds
4 9 hours 36 minutes 43.0850 seconds
3 7 hours 19 minutes 9.37500 seconds
2 2 hours 19 minutes 10.8690 seconds

Table 2: Total sub-polygonization times

Pure Geometric Queries. For tests of type (b), we se-
lected four geometric queries that compute the intersection
between different combinations of layers, without aggrega-
tion. The queries were evaluated over the entire map (i.e.,
no query region was specified). The queries were: (a) Q1:
Districts crossed by at least one river ; (b) Q2: Districts
and the cities within them; (c) Q3: Districts and the cities
within them only for districts crossed by at least one river ;
(d) Q4: Districts crossed by al least five rivers. We first
ran the queries generated by Piet against the PostgreSQL
database. We then ran equivalent queries with PostGIS,
which uses an R-tree implemented using GiST (Generalized
index Search Tree). All the layers are indexed. Finally, we
ran the postGIS queries without indexing. PostGIS queries
have been optimized analyzing the generated query plans.
All Piet tables have been indexed over attributes that par-
ticipate in a join or in a selection. In all cases, queries were
executed without the overhead of the graphic interface. All
the queries were ran 10 times, and we report the average
execution time.

Figure 5 shows the execution times for the set of geometric
queries. We can see that Piet clearly outperforms postGIS
with or without R-tree indexing. The differences range from
approximately ten times (for Q4) to ninety times (for Q2),
in favor of Piet. The sizes of the query results are 40, 583,
562, and 5 tuples, for Q1 through Q4, respectively. We
can see that query Q1 only needs to find districts that have
sub-geometries in common (linestrings) with rivers; thus,
only one pre-computed table, which contains sub-geometries
shared by this two layers, needs to be queried. A similar sit-
uation occurs in the case of Q2. Analogously, Q3 only needs
to know about districts that have sub-geometries in common
(points) with cities and which contains sub-geometries in
common (linestrings) with rivers. Therefore, it only queries
two pre-computed tables. Q4 behaves in a similar way.

78

Subgeometry Max Min Average
of Carrier Lines per rectangle 99 4 28

of Points per rectangle
(carrier lines intersection within a rectangle) 2617 4 361

of Segment Lines per rectangle
(segment of carrier lines within a rectangle) 5136 4 694

of Polygons per rectangle 2518 1 335

Table 3: Number of sub-geometries in the grid.

Figure 5: Execution time for geometric queries.

Geometric Aggregation Queries. For tests of type (c), we
selected four geometric aggregation queries that compute ag-
gregations over the result of some geometric condition which
involves the intersection between different combinations of
layers. These queries are: (a) Q5: List each region with
the total number of rivers that crossed it ; (b) Q6: List each
region with the total number of rivers that crossed it, only
for regions that contains at least 20 cities; (c) Q7: List each
district with the total number of rivers that crossed it and
the total number of cities that it contains; (d) Q8: For each
region show the total length of the part of rivers which inter-
sects it, only for regions with at least an area under cereal
cultivation equal or higher than 1000 Km2. Note that query
Q8 does not only require the pre-overlay table which binds
together the layers involved, but also the sub-pologonization
table. Figure 6 shows the results. We can see that, again,
Piet clearly outperforms postGIS with or without R-tree in-
dexing. The differences range from approximately five times
(for Q8) to ninety times (for Q6), in favor of Piet.

Geometric Aggregation Queries including a query re-
gion. For the experiment (d), we ran the following three
queries, and added two different query regions (shown in
Figure 1). The results are depicted in Figures 7 and 8. We
denote query regions #1 and #2 the large and small re-
gions in Figure 1, respectively. The queries are: (a) Q9:
List each region with the total number of rivers that crossed
it, considering only the part of the river that lies within the
query region; (b) Q10: For each district show the total num-
ber of cities, for cities within the query region; Q11: For
each region show the total length of the part of each river
which intersects it, for regions with at least an area under
cereal cultivation ≥ 1000Km2, considering only the part of
the river that lies within the query region.

Figures 7 and 8 show that, when a query is restricted to a
region Piet still performs better than R-tree spatial index-
ing, although the differences are not significant. Note that,
except for Q10, the difference in performance increases for

Figure 6: Execution time for geometric aggregation.

Figure 7: Geometric aggregation - query region 1.

smaller query regions. Obviously, here Piet is affected by
the on-the-fly computation of the intersection between the
query region and the precomputed overlay. An optimization
algorithm was used in Piet: only the rectangles in the grid
affected by the query region were considered for comput-
ing the intersection (indexing the latter with an R-Tree did
not yield a significant improvement). As the region turns
smaller, there is a lower number of tuples involved in the
computation, and the performance of Piet turns better.
Aggregation R-Trees. We implemented the aggregation R-
tree (aR-tree) [11], an R-tree variation that stores not only
the MBRs of different geometries but also the value of some
aggregation function for all objects that are enclosed by the
MBR. We ran geometric aggregation queries, with or with-
out a query region. We report the results obtained running
geometric aggregation queries: (a) Q12: Maximum area un-
der cereal cultivation, only for regions crossed by rivers, and
(b) Q13: Maximum area under cereal cultivation, for regions
crossed by rivers(using query region #1). Table 4 shows the
results. We can see that Piet still performs better that Post-
GIS using R-tree, and also better than aR-tree.

GISOLAP-QL Queries. We ran GISOLAP-QL queries,
that integrate GIS and OLAP in a very simple way. First the
system computes the identifiers of the geometries that verify
the geometric queries (i.e., the part before the ’|’), and then
passes this information on to the MDX expression, which is
then merged with the geometric information, producing the
final MDX query. Times for computing the SQL-like part
were similar to the already reported ones. Time of generat-
ing the complete MDX expression is negligible.

79

Figure 8: Geometric aggregation - query region 2.

Query PostGIS with
spatial indexing
(ms)

aR-tree
(ms)

Piet (ms)

Q12 47.997 45.25 14.669
Q13 474.35 470.02 345.26

Table 4: Piet vs. aR-tree and R-tree.

Discussion. We can conclude that (a) Piet clearly outper-
forms R-Trees for queries performed over an entire map (i.e.,
that do not require on-the fly intersection between a query
region and the sub-polygonization), either for queries involv-
ing aggregation or not; (b) When a query region is present,
indexing methods and overlay precomputation deliver sim-
ilar performance; (c) As a general rule, the performance of
overlay precomputation improves as the query region turns
smaller. (d) Piet always delivered execution times compati-
ble with user needs; (e) The cost of integrating GIS results
and OLAP navigation capabilities through the GISOLAP-
QL query language is negligible; (f) The main benefit of
aR-trees come from pruning tree traversal when a region is
completely included in a MBR. In this case, they do not
need to reach the leaves of the index tree, because the val-
ues associated to all the geometries enclosed by the MBR
have been aggregated. Otherwise, the aR-tree must reach
the leaves, as standard R-trees do. In spite of this, for very
large maps and large query regions, aR-trees have the po-
tential to outperform the other techniques. (g) The class of
geometric queries that clearly benefits from overlay precom-
putation can be easily identified by a query processor, and
added to any existing GIS system straightforwardly.

6. FUTURE WORK
The implementation presented in this paper provides an

efficient and smooth integration between OLAP and spatial
data, not present in commercial GIS systems. In addition,
our experiments showed that there is an important class of
geometric queries (aggregate or not) that can benefit from
precomputing the overlay of the thematic layers in a GIS.

We are currently working to augment Piet with spatio-
temporal capabilities, specifically in the field of moving ob-
ject data, that can be naturally added to this framework.

Acknowledgements This work has been partially funded
by the European Union under the FP6-IST-FET programme,
Project n. FP6-14915, the Research Foundation Flanders
(FWO-Vlaanderen), ProjectG.0344.05., and the Scientific
Agency of Argentina, Project PICT n. 21350.

7. REFERENCES

[1] A. Gutman. R-trees: A dynamic index structure for
spatial searching. In Proceedings of SIGMOD’84,
pages 47–57, 1984.

[2] S. Haesevoets, B. Kuijpers, and A. Vaisman. Spatial
aggregation: Data model and implementation. In
Submitted for revew, 2007.

[3] J. Han, N. Stefanovic, and K. Koperski. Selective
materialization: An efficient method for spatial data
cube construction. In Proceedings of PAKDD’98,
pages 144–158, 1998.

[4] J. Han and M. Kamber. Data Mining, Concepts and
Techniques. Morgan Kaufmann Publishers, 2001.

[5] V. Harinarayan, A. Rajaraman, and J. Ullman.
Implementing data cubes efficiently. In Proceedings of
SIGMOD’96, pages 205 – 216, Montreal, Canada,
1996.

[6] C. Hurtado, A.O. Mendelzon, and A. Vaisman.
Maintaining data cubes under dimension updates. In
Proceedings of IEEE/ICDE’99, pages 346–355, 1999.

[7] C.S. Jensen, A. Kligys, T.B Pedersen, and I. Timko.
Multidimensional data modeling for location-based
services. VLDB Journal 13(1), pages 1–21, 2004.

[8] R. Kimball and M. Ross. The Data Warehouse
Toolkit: The Complete Guide to Dimensional
Modeling, 2nd. Ed. J.Wiley and Sons, Inc, 2002.

[9] B. Kuijpers and Alejandro Vaisman. A data model for
moving objects supporting aggregation. In Proceedings
of STDM’07, Istambul, Turkey, 2007.

[10] G. Kuper and M. Scholl. Geographic information
systems. In J. Paredaens, G. Kuper, and L. Libkin,
editors, Constraint databases, chapter 12, pages
175–198. Springer-Verlag, 2000.

[11] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao.
Efficient OLAP operations in spatial data warehouses.
In Proceedings of SSTD’01, pages 443 – 459, 2001.

[12] J. Paredaens, G. Kuper, and L. Libkin, editors.
Constraint databases. Springer-Verlag, 2000.

[13] T.B Pedersen and N. Tryfona. Pre-aggregation in
spatial data warehouses. Proceedings of SSTD’01,
pages 460–480, 2001.

[14] F. Rao, L. Zang, X. Yu, Y. Li, and Y. Chen. Spatial
hierarchy and OLAP-favored search in spatial data
warehouse. In Proceedings of DOLAP’03, pages 48–55,
Louisiana, USA, 2003.

[15] P. Rigaux, M. Scholl, and A. Voisard. Spatial
Databases. Morgan Kaufmann, 2002.

[16] S. Rivest, Y. Bédard, and P. Marchand. Modeling
multidimensional spatio-temporal data warehouses in
a context of evolving specifications. Geomatica, 55
(4), 2001.

[17] G. Shilov, B. Gurevich. Integral, Measure, and
Derivative: A Unified Approach. Richard A.
Silverman, trans. Dover Publications, 1978.

[18] I. Vega López, R. Snodgrass, and B. Moon.
Spatiotemporal aggregate computation: A survey.
IEEE Transactions on Knowledge and Data
Engineering 17(2), 2005.

[19] M. F. Worboys. GIS: A Computing Perspective.
Taylor&Francis, 1995.

80

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

