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Abstract—We show that 2D-decorated silicon nanowires
exhibit a strong frequency dependence of the real (Kerr) and
imaginary (two-photon absorption) nonlinear coefficients. In
this setting, we demonstrate that the usual extension of the
nonlinear Schrödinger equation used to model propagation
in this type of waveguides is rendered inadequate. Hence, we
introduce a new modeling framework to tackle the frequency
dependence of the nonlinear coefficients in 2D-decorated
nanowires, and present an example of its application to the
relevant case of supercontinuum generation in graphene- and
graphene-oxide decorated silicon nanowires.

Index Terms—Decorated nanowires, nonlinear optical
pulse propagation

I. INTRODUCTION

DECORATED nanowires have recently attracted the
attention of researchers in nonlinear optics due

to their large nonlinear coefficient [1]. As an example,
graphene-decorated silicon nanowires, also referred to as
graphene-on-silicon (GOS) nanowires, have been shown
to exhibit a 10x increase of the nonlinear coefficient in
the telecommunication band [2]–[4]. Furthermore, the
compatibility with CMOS fabrication technologies [5],
the wide transparency window of the silicon core in
the mid-infrared range (1.1 − 8.0 µm) [6], and the large
nonlinear coefficient altogether make GOS nanowires a
compelling option for nonlinear integrated devices [1].
A relevant application of such devices is in the gener-
ation of supercontinuum (SC), oftentimes referred to as
‘white light’, a nonlinear process whereby a narrowband
input pulse undergoes an extreme spectral broaden-
ing [7]. When such broad spectra are considered, the
frequency dependence of the nonlinear Kerr coefficient,
γKerr, becomes of utmost importance. In particular, the
effect of self-steepening (SS), related to the slope of
the frequency dependence of γKerr and responsible for
the optical shock of ultrashort pulses [8] and the time-
shift of optical solitons [9], among other manifestations,
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comes into play [10]–[12]. Further, two-photon absorp-
tion (TPA) is yet another nonlinear process of singular
relevance in silicon nanowires [13], [14]. Although there
are potential applications of TPA in the near- and mid-
infrared [15]–[17], it usually represents a hindrance as it
limits the spectral width of the generated supercontin-
uum [18]–[20]. The influence of TPA is usually modeled
by introducing a complex-valued nonlinear coefficient
γ = γKerr + iγTPA such that the imaginary part, γTPA =
βTPA/2Aeff , accounts for two-photon absorption [15],
[21], where βTPA is the TPA coefficient and Aeff is the
effective mode area of the nanowire.

It must be emphasized that even though several me-
dia exhibit strong frequency-dependent Kerr and TPA
profiles [22], this dependence is oftentimes modeled by
a simple linear relation γ(Ω) = γ0(1 + sΩ/ω0), where
Ω is the deviation from a central frequency ω0 and s
is the SS parameter. Furthermore, s is customarily set
to unity probably due to the fact that it is the only
value which guarantees the conservation of the num-
ber of photons in the nonlinear Schrödinger equation
(NLSE) [23]. In this work, however, we make apparent
the inadequacy of assuming s = 1 in 2D-decorated
nanowires, and thus a severe limitation of the NLSE
when applied to the modeling of pulse propagation in
this type of waveguides. For this reason, in Ref. [24]
we introduced a new modeling equation, named the
photon-conserving nonlinear Schrödinger equation (pc-
NLSE) which, based on a quantum mechanical picture of
the various nonlinear optical processes, guarantees strict
conservation of the number of photons for any arbitrary
frequency-dependent γKerr. Moreover, the NLSE also
exhibits problems when extended to include TPA by
introducing a complex-valued nonlinear coefficient in
straightforward fashion. Indeed, it can be shown that
such an approach does not correctly model the cross-TPA
of two co-propagating continuous waves (see Appendix
B). This fact has led to the introduction of different
modeling strategies. In particular, we extended the pc-
NLSE to account for TPA in Ref. [25]. When modeling
2D-decorated nanowires, however, new challenges arise.
While equations introduced in Refs. [24], [25] assume a
homogeneous waveguide, decorated nanowires present
very dissimilar optical properties in different regions of
the cross section.

All in all, we come across three problems that need
to be coped with when modeling nonlinear propagation
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in decorated nanowires. First, it is necessary to deal
with media with disparate optical properties; second, the
frequency dependence of the corresponding nonlinear
coefficients has to be adequately accounted for; and
third, two-photon absorption must be included into the
model in a physical meaningful manner. In this paper
we put forth an approach that addresses all these three
problems, and present examples of its application to
silicon nanowires decorated with thin layers of graphene
and graphene oxide (GO).

The remaining of the work is organized as follows:
In Section II we put forth a new modeling equation for
decorated waveguides. In Section III we calculate the
nonlinear coefficient for different decorating media of
varying thickness. In Section IV we show an example
of SC generation using the proposed model. Finally,
Section V summarizes our conclusions.

II. MODELING EQUATION

Our starting point is an extension of the photon-
conserving nonlinear Schrödinger equation [24]. The
details of the derivation, although not overly difficult,
are presented in Appendix A. The resulting modeling
equation can be written as

∂zÃΩ = −αeff

2
ÃΩ+iβ(ω)ÃΩ + i

ωζω
2
F
(
C∗t B

2
t

)
+

i
ωζ∗ω

2
F
(
B∗tC

2
t

)
− ωηωF

(
|Dt|2Dt

)
,

(1)

where ÃΩ = Ã(z,Ω) = F(A) is the Fourier transform of
the complex envelope of the electric field At = A(z, t),
normalized so |A|2 is the optical power, ω = ω0 + Ω is
the optical frequency of the Fourier component Ω, αeff

is the effective linear loss, and β(ω) is the dispersion
profile. ζω and ηω are related to the Kerr and TPA
coefficients, respectively, through ζω = 4

√
γKerr
ω /ω and

ηω = 4
√
γTPA
ω /ω. The remaining fields, Bt, Ct, and Dt,

are defined in the frequency domain by B̃Ω = ζωÃΩ,
C̃Ω = ζ∗ωÃΩ, and D̃Ω = ηωÃΩ. Finally, the nonlinear
coefficient can be calculated as [26]

γ(ω) =
ω

c

∫∫
n2(x, y)|F (ω, x, y)|4 dx dy(∫∫
|F (ω, x, y)|2 dx dy

)2 , (2)

where F (ω, x, y) ∝ n(x, y)S(ω, x, y), n(x, y) is the lin-
ear refractive index, and S(ω, x, y) is the frequency-
dependent mode distribution. We define the coefficient
n2 as n2 = n2 + icβTPA/2ω0 where n2 and βTPA are the
nonlinear refractive index and the two-photon absorp-
tion coefficient, respectively. It must be noted that (1),
which we shall also call pcNLSE, reduces to the usual
NLSE whenever βTPA = 0, γ(ω) is linear, and s = 1.

Observe that (1) does not include the effect of three-
photon absorption (3PA), but it can be readily included
by following the approach described in Appendix A.
Likewise, the delayed Raman response can also be

Fig. 1. Proposed waveguide: (Top) mode distribution and (bottom)
dispersion D(λ) of a silicon nanowire lying over a silicon-dioxide
substrate. White lines separate different materials , and yellow lines
indicate the 2D-decoration layer.

included into the pcNLSE as shown in Ref. [27]. Fi-
nally, the effects of free-carrier absorption (FCA), free-
carrier dispersion (FCD), and saturable absorption can
be neglected when dealing with ultrashort (femtosecond)
pulses [20], [28], [29].

In what follows we will focus our attention on a
2D-decorated silicon nanowire. Since TPA in silicon is
relevant up to∼ 2.2 µm [30] and three-photon absorption
(3PA) becomes relevant from 2.2 to 3.3 µm [31], we will
restrict our analysis to spectral content up to ∼ 2.2 µm.
Note also that Raman scattering can be neglected in
silicon nanowires [20], [28], [32].

We modeled a 660-by-250 nm silicon nanowire ly-
ing over a silicon dioxide substrate and obtained the
propagating transverse electric modes using the finite-
difference time-domain (FDTD) algorithm [33]. Figure 1
(top) schematizes the waveguide and shows the mode
distribution. Yellow lines represent the 2D-layer decora-
tion surrounding the waveguide. The bottom panel in
Fig. 1 shows the corresponding dispersion profile. We
verified that this profile is essentially independent of
the decorating material as long as its thickness, Λ, is
considerable smaller than the transverse dimensions of
the waveguide. This observation agrees with the very
small fraction of mode overlap reported in the litera-
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Fig. 2. Supercontinuum generation modeled with the NLSE (solid
line) and with the pcNLSE (dashed-doted line), (top) neglecting and
(bottom) including linear and nonlinear losses.

ture [34]. Furthermore, the obtained dispersion profile
agrees well with that in Ref. [4] where a silicon nanowire
of similar dimensions was decorated with a single layer
of graphene.

In order to fully comprehend the need for a complete
modeling framework, in Fig. 2 we compare results of
simulations of SC generation based on the nonlinear
Schrödinger equation and the pcNLSE ((1)). Consistent
with experimental parameters from Ref. [4], the input is
a 438-W 20-fs half-width sech pulse at λ0 = 1560 nm
which propagates along a 15 µm-long GOS nanowire
decorated with a graphene monolayer (Λ ≈ 0.35 nm).
The dispersion profile is that shown in the botton panel
of Fig. 1. For the sake of clearness, results in Fig. 2
assume a linear dependence for the Kerr nonlinearity,
γKerr(Ω) = γKerr

0 (1+sΩ/ω0), with γKerr
0 ≈ 1150 W−1m−1;

the SS parameter is set to s = −1 in order to better reveal
the differences between the two modeling equations.
With the goal of properly studying the photon-number
(∝
∫ +∞

0
|Ã|2/(h̄ω)dω) evolution, linear and nonlinear ab-

sorption are neglected in the top panel. Although proper
modeling of propagation in decorated waveguides must
include linear and nonlinear absorption, their effect con-
ceals a basic shortcoming of the NLSE when applied to
such systems, as made evident in the top panel of Fig. 2,

Fig. 3. (Top) Nonlinear coefficient and (bottom) SS parameter vs.
thickness of the graphene-decorated nanowire, Λ, at 1560 nm (solid
line) and 2500 nm (dashed line). The vertical dashed line marks the
thickness of a single graphene layer. Lines connecting data points are
a guide to the eye.

where the evolution of the photon number is shown
neglecting absorption effects. Observe that the NLSE
predicts an unphysical increase in the number of photons
while the pcNLSE strictly preserves it along propagation
(top right panel). It is important to point out that this
severe problem encountered when modeling with the
NLSE is concealed when the effects of linear absorption,
α, and TPA are considered. The bottom panel of Fig. 2
depicts this situation, where α = 0.052 dB/µm [4] and
γTPA(Ω) = γTPA

0 (1 + sΩ/ω0), with γTPA
0 ≈ 156 W−1m−1

and s = −1. Most interestingly, the two equations still
predict different results for the output SC. Also, we
observe that TPA severely limits the output spectral
width [35], [36].

III. CALCULATION OF THE NONLINEAR PARAMETER

Next, using (2) and the computed mode profile we
calculated the Kerr nonlinearity and the self-steepening
parameter as a function of the thickness of the decora-
tion layer, and for relevant 2D-media such as graphene
(Fig. 3) and graphene oxide (GO) (Fig. 4). The linear and
nonlinear refractive indices, and linear and two-photon
absorption coefficients for each medium are taken from
the literature and presented in Appendix C. It is also
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Fig. 4. (Top) Nonlinear coefficient and (bottom) SS parameter vs.
thickness of the graphene-oxide-decorated nanowire, Λ, at 1560 nm
(solid line) and 2500 nm (dashed line). The vertical dashed line marks
the thickness of a single graphene-oxide layer. Lines connecting data
points are a guide to the eye.

important to point out that numerical integration of (2)
requires a high resolution in the calculation of F (ω, x, y)
in order to properly account for the thin decorating layer;
however, such required resolution impairs the imple-
mentation of the FDTD algorithm. As a consequence,
the mode is obtained with high resolution by means of
a standard interpolation method of the low-resolution
F (ω, x, y) calculated with the FDTD.

Results for the Kerr nonlinear coefficient and the SS
parameter are shown in Figs. 3 (graphene) and 4 (GO),
and for two different relevant wavelengths: one in the
telecommunication band (1560 nm, solid-line) and the
other in the mid IR (2500 nm, dashed-line). It is worth
mentioning that the obtained nonlinear coefficient for
graphene is in good agreement with that reported in
Ref. [4]. Note that Λ = 0 corresponds to an undecorated
waveguide and that the frequency dependence of the
nonlinear coefficients comes from the mode effective
area, Aeff , as both n2 and βTPA are assumed to be
frequency independent. It can be observed that the
Kerr coefficient increases with the decoration thickness
for graphene and GO due to the increasing weight of
these layers in the numerator of Eq. (2) [34]. This fact
can be easily understood if, for the sake of argument,

Fig. 5. Supercontinuum generation in nanowires. Top panels show
the Kerr (left) and TPA (right) nonlinear coefficients vs. wavelength
for a silicon nanowire (solid line), a graphene- (dashed line) and a
graphene-oxide-decorated nanowire (dashed-dotted line).

we neglect two-photon absorption and assume that the
linear refractive index is constant and the same for both
the waveguide and the 2D layer. Then, we can re-write
Eq. (2) as

γ(ω) =
ω

cAeff

[
εnDL

2 + (1− ε)nWG
2

]
, (3)

where nDL
2 and nWG

2 are the nonlinear refractive indices
of the decorating layer and the waveguide, respectively,
and

ε =

∫∫
RDL

|S|4 dxdy∫∫
|S|4 dxdy

, (4)

with RDL the region corresponding to the decorating
medium. As the number of layers increases, the region
RDL is enlarged and ε increases; as nDL

2 � nWG
2 this

results in an increase of γ(ω). If we now take into account
the different refractive indices, a similar result still fol-
lows due to the fact that nDL

2 /nWG
2 � nDL/nWG, where

nDL and nWG are the linear indices of the decorating
layer and the waveguide, respectively. We must note that
we have tacitly assumed that nDL

2 does not change as
more layers are stacked. This fact has been observed to
hold when considering a few layers (see, e.g., Refs. [37]
and [38]).
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The effective linear absorption of the decorated
waveguide, αeff , increases linearly with the number of
decoration layers, a situation analogous to that of γ(ω).

The self-steepening parameter, on the contrary, re-
mains nearly constant with Λ, a fact that might be
related to the large weight of the zeroth-order nonlinear
coefficient and the small thickness of the 2D decoration.
It must be emphasized that large positive values of
the self-steepening parameter are found for all three
decorations in the mid IR, and even negative values
of the SS parameter are found for graphene in the
telecommunication band. Since all these values differ
significantly from unity, the inadequacy of applying
the NLSE to model optical pulse propagation in 2D-
decorated nanowires becomes apparent. Indeed, observe
that the NLSE-photon-conserving condition, s = 1, is
only found in the undecorated waveguide and in the
near infrared at 1560 nm.

Appendix D shows detailed guidelines for the appli-
cation of the proposed method.

IV. RESULTS

As an example of the application of the proposed
modeling framework, let us focus on the supercontin-
uum generation in a silicon nanowire either undecorated
or with a Λ ≈ 1.1 nm decoration of graphene (∼ 3
layers [39]) or graphene oxide (∼ 1 layer [40]). The
waveguide cross-section is that in Fig. 1 and its length
is 150 µm. The frequency-dependent γKerr and γTPA,
computed according to (2) as in Figs. 3-4, are shown in
the top panels of Fig. 5. Once again, the observed strong
frequency dependence requires an adequate modeling
equation such as (1). The bottom panel shows the output
spectra when the input pulse is the same as that in
Fig. 2. As it might be expected, the higher nonlinear-
ity in the graphene-decorated waveguide leads to a
much wider output spectrum as compared to the GO-
decorated and the undecorated silicon waveguides. It is
also interesting to observe that, even though the increase
in the nonlinear Kerr coefficient is not as significant as in
the case of graphene, the obtained output spectrum for
the GO-decorated nanowire is still broader than that in
the undecorated silicon nanowire. This is an important
observation since TPA limits the attainable SC spectral
width in long graphene-decorated nanowires, but TPA is
substantially alleviated with the use of GO decoration,
allowing for longer nanowires. We must note that the
NLSE predicts wider spectra than those observed in
Fig. 5.

V. CONCLUSIONS

In conclusion, we have introduced a new modeling
framework that adequately deals with the frequency
dependence of Kerr and TPA nonlinearities in decorated
media, such as GOS nanowires, with an arbitrary thick-
ness of the decoration layer. We have made apparent the

n0 n2 [m2/W] βTPA [m/W] References
Si 3.45 4.2 × 10−18 8 × 10−12 [4]
SiO2 1.45 3 × 10−20 0 [8]
Graphene 3.65 10−13 10−7 [4]
GO 1.90 1.38 × 10−14 0 [34], [41]

TABLE I
VALUES OF LINEAR AND NONLINEAR REFRACTIVE INDICES, AND

TWO-PHOTON ABSORPTION COEFFICIENTS USED IN THE SIMULATIONS.

need for such a modeling framework by explicitly calcu-
lating the mentioned wavelength-dependence in a typi-
cal silicon waveguide decorated with relevant 2D-media
such as graphene and graphene oxide. Furthermore, we
showed that usual extensions of the NLSE to model
optical propagation in this type of waveguides are ren-
dered inadequate as the self-steepening parameter can
depart considerably from the NLSE photon-conserving
condition. We believe that the model introduced in this
work puts forth a powerful tool to model nonlinear
propagation in cases of interest in applied integrated
photonics.

APPENDIX A
INCLUSION OF THE TPA CONTRIBUTION INTO THE

PROPAGATION EQUATION

We depart from a simple quantum theory for the
propagation of optical pulses developed in Ref. [42]. Fol-
lowing an approach similar to that in Lai and Haus [43],
it can be shown that the standard generalized nonlinear
Schrödinger equation (for real γ(ω)) can be derived from
the quantum master equation

∂ρ

∂z
= i
[
ĤKerr + ĤR, ρ

]
(5)

+

∫ (
L̂R(ω̄)ρL̂†R(ω̄)− 1

2

{
ρ, L̂†R(ω̄)L̂R(ω̄)

})
dω̄,

(6)

where ρ is the density matrix representing the quantum
state of the electromagnetic field, ĤKerr is the four-wave
mixing operator associated with the Kerr effect, ĤR is the
four-wave mixing operator associated with the real part
of the Raman response, and L̂R(ω̄) is the Lindbladian
operator corresponding to the creation of a phonon of
frequency ω̄. A detailed description of these operators
is presented in Refs. [24], [27]. In particular, Ref. [27]
shows that, in the classical limit, this approach leads to
a photon-conserving generalized nonlinear Schrödinger
equation (pcGNLSE) which ensures strict conservation
of the photon number for any arbitrary frequency-
dependent nonlinear profile, and which can be solved
by the same tried and trusted numerical algorithms
used for the standard generalized nonlinear Schrödinger
equation. Note, however, that Eq. (1) in this work does
not include the Raman contribution as it can be neglected
in silicon nanowires.

In order to account for two-photon absorption (TPA),
a new term must be added to the right-hand side of (6).
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For the sake of clarity, let us focus only on this new term
and write

∂ρ

∂z
=

∫ (
L̂TPA(ω̄)ρL̂†TPA(ω̄) (7)

−1

2

{
ρ, L̂†TPA(ω̄)L̂TPA(ω̄)

})
dω̄, (8)

where the Lindbladian operator L̂TPA(ω̄) represents the
two-photon absorption corresponding to an electron en-
ergy jump of 2h̄ω̄, and is defined as

L̂TPA(ω̄) =

∫
D̂ω̄+µD̂ω̄−µ dµ, (9)

D̂ω = fωÂω. (10)

Âω is a field operator related to the photon annihilation
operator âω by Âω =

√
h̄ωâω (see Ref. [42]), and fω is a

function to be determined.
The mean value evolution of the field operator Âω is

given by

∂ 〈Âω〉
∂z

=
1

2

∫ 〈[
L̂†TPA(ω̄), Âω

]
L̂TPA(ω̄) (11)

−L̂†TPA(ω̄)
[
Âω, L̂TPA(ω̄)

]〉
dω̄. (12)

Substitution of (9) into (12) leads to

∂ 〈Âω〉
∂z

= −h̄ωf∗ω
∫∫
〈D̂†2ω̄−ωD̂ω̄+µD̂ω̄−µ〉 dµ dω̄

= −h̄ω
∫∫

f∗ωf
∗
2ω̄−ωfω̄+µfω̄−µ 〈Â†2ω̄−ωÂω̄+µÂω̄−µ〉 dµ dω̄,

(13)

where we used the fact that [âω, â
†
ω′ ] = δ(ω − ω′). In the

classical limit, this last equation reads

∂Ãω
∂z

= −h̄ωf∗ω
∫∫

D̃∗2ω̄−ωD̃ω̄+µD̃ω̄−µ dµ dω̄

= −h̄ω
∫∫

f∗ωf
∗
2ω̄−ωfω̄+µfω̄−µÃ

∗
2ω̄−ωÃω̄+µÃω̄−µ dµ dω̄,

(14)

with D̃ω = fωÃω .
In order to determine fω , let us focus on the simple

case of a continuous wave (CW)

Ãω(z) = 2πδ(ω − ω0)
√
P0(z), (15)

where P0 is the optical power and ω0 is the CW fre-
quency. By introducing (15) in (14), we find that the
evolution of the optical power is described by

∂P0

∂z
= −8π2h̄ω0|fω0

|2P 2
0 . (16)

The intensity of the CW can be calculated as I0 =
P0/Aeff(ω0), where Aeff is the effective area of the waveg-
uide (see, e.g., Chapter 2 in Ref. [8]). The evolution of
the intensity is thus given by

∂I0
∂z

= −8π2h̄ω0Aeff(ω0)|fω0 |2I2
0 . (17)

This equation must agree with the basic phenomeno-
logical description of TPA based on the effective loss
coefficient, βTPA

eff = 2γTPA
ω Aeff(ω), and the equation

∂I0
∂z

= −βTPA
eff I2

0 . (18)

Comparison of (17) and (18) leads to

fω = 4

√
βTPA

eff

8π2h̄ωAeff(ω)
. (19)

For the sake of notation clarity, let us introduce ηω =
4
√
γTPA
ω /ω. By replacing (19) in (14), we obtain

∂Ãω
∂z

= −ωηωF
[
|Dt|2Dt

]
, (20)

where Dt = F−1[D̃ω] and Dω = ηωÃω . Finally, the right-
hand side of Eq. (20) is the TPA contribution added to
the pcNLSE in Eq. (1).

A comment is due on the relation of this modeling
framework to our previous work in Ref. [25]. Indeed,
the definition of the Linbladian operator in (9), describ-
ing the TPA process in terms of photon annihilation
operators is similar to an analogous one in Ref. [25].
However, in the context of 2D-decorated nanowires we
assumed that, for the spectral region of interest, βTPA

eff is
essentially independent of the wavelength and changes
in γTPA

ω are introduced by the frequency-dependence of
the transverse mode distribution. This assumption leads
to a simpler propagation equation than that introduced
in our earlier work. Furthermore, in this paper we
account for the disparities in the nonlinear coefficients
of the different materials in the waveguide.

APPENDIX B
CROSS-TPA OF TWO CONTINUOUS WAVES

Propagation in nonlinear waveguides is usually mod-
eled with the standard nonlinear Schrödinger equation
(NLSE) [8],

∂ÃΩ

∂z
= iβ(ω)ÃΩ + iγ(ω)F

(
|At|2At

)
, (21)

which describes the evolution of the normalized complex
envelope of the electric field At = A(z, t), and where
ÃΩ = Ã(z,Ω) = F(A) is its Fourier transform, |A|2 the
optical power, ω = ω0 + Ω the optical frequency of the
Fourier component Ω, ω0 the envelope central frequency,
and β(ω) and γ(ω) are the dispersion and nonlinear
profiles, respectively. It is straightforward to show that,
under the NLSE, the evolution of photon fluxes of two
co-propagating continuous waves of frequencies ω1 and
ω2 is given{

∂zΦ1 = −h̄ω1γ
TPA
ω1

Φ2
1 − 2h̄ω2γ

TPA
ω1

Φ1Φ2

∂zΦ2 = −h̄ω2γ
TPA
ω2

Φ2
2 − 2h̄ω1γ

TPA
ω2

Φ1Φ2,
(22)

where Φj = |Ã(ωj)|2/h̄ωj . Note that (22) is obtained
by neglecting all other frequencies resulting from four-
wave mixing interactions between ω1 and ω2. Note also
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that this evolution is not in agreement with the expected
behavior of a TPA process, as the cross-terms containing
Φ1Φ2 should be identical in order to correctly account
for photon absorption due to the cross-TPA between the
two CWs.

A similar analysis departing from (20) leads to{
∂zΦ1 = −h̄ω1γ

TPA
ω1

Φ2
1 − 2κXTPAΦ1Φ2

∂zΦ2 = −h̄ω2γ
TPA
ω2

Φ2
2 − 2κXTPAΦ1Φ2,

(23)

where κXTPA = h̄
√
ω1γTPA

ω1
ω2γTPA

ω2
. Unlike (22), cross-

TPA terms in (23) are identical, as expected, providing
support to the physical validity of our approach.

APPENDIX C
SIMULATION PARAMETERS

The effective linear absorption coefficients used the in
simulations are αeff = 1.19 × 104 [4], 1.19 × 102 [34],
[41], and 0.8 m−1 [44] for graphene, graphene oxide, and
silicon, respectively. The linear and nonlinear refractive
indices, and the two-photon absorption coefficients are
summarized in Table I. Note that it is customary to
define an equivalent nonlinear refractive index for a
single layer of graphene [38], [39]. Moreover, since the
third-order susceptibility of stacked layers of graphene
has been shown to scale linearly with the number of
layers, n2 can be considered to be roughly independent
of the thickness of the 2D-decoration [45], an assump-
tion we also make when modeling the graphene-oxide
decoration.

APPENDIX D
GUIDELINES FOR THE APPLICATION OF THE PROPOSED

METHOD

In Section II, we model propagation in 2D-decorated
waveguides following three steps:

1) The quasi-TE modes of the waveguide are com-
puted by using a Finite-Difference Time-Domain
(FDTD) algorithm. The 2D decorating layer does
not need to be taken into account in this step.

2) γ(ω) is calculated by means of Eq. (2), thus properly
accounting for the influence of the 2D layer on the
nonlinear coefficient.

3) Eq. (1) is used to model propagation in the deco-
rated waveguide. This equation can be solved by
widely tried and trusted numerical algorithms such
as the split-step Fourier [46].
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[29] N. Vermeulen, D. Castelló-Lurbe, M. Khoder, I. Pasternak, A. Kra-
jewska, T. Ciuk, W. Strupinski, J. Cheng, H. Thienpont, and
J. Van Erps, “Graphene’s nonlinear-optical physics revealed
through exponentially growing self-phase modulation,” Nature
communications, vol. 9, no. 1, pp. 1–9, 2018.

[30] E. W. Van Stryland, M. Woodall, H. Vanherzeele, and M. Soileau,
“Energy band-gap dependence of two-photon absorption,” Optics
Letters, vol. 10, no. 10, pp. 490–492, 1985.

[31] S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon
absorption in silicon for 2300–3300 nm,” Applied Physics Letters,
vol. 93, no. 13, p. 131102, 2008.

[32] N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-
Bedoya, A. Read, P. Atanackovic, S. G. Duvall, S. Palomba et al.,
“Midinfrared supercontinuum generation from 2 to 6 µm in a
silicon nanowire,” Optica, vol. 2, no. 9, pp. 797–802, 2015.

[33] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopou-
los, and S. G. Johnson, “Meep: A flexible free-software package
for electromagnetic simulations by the fdtd method,” Computer
Physics Communications, vol. 181, no. 3, pp. 687–702, 2010.

[34] Y. Qu, J. Wu, Y. Yang, Y. Zhang, Y. Liang, H. El Dirani,
R. Crochemore, P. Demongodin, C. Sciancalepore, C. Grillet et al.,
“Enhanced four-wave mixing in silicon nitride waveguides inte-
grated with 2d layered graphene oxide films,” Advanced Optical
Materials, p. 2001048, 2020.
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