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Abstract
Departamento de Matemática

Centro de Sistemas y Control

Doctor en Ingenieŕıa

Simulation & Control in Type 1 Diabetes

by Patricio H. Colmegna

The study of Type 1 Diabetes has grown exponentially over the years. Thus, a

huge number of scientific articles that are focused on this disease can be found. In

this thesis, two issues are mainly addressed.

Firstly, the most relevant mathematical models that describe the insulin-glucose

dynamics are analysed. Through that analysis, the main features of these models

are presented, and their advantages and disadvantages are described. Also, several

inconsistencies that appear in previous works are pointed out.

On the other hand, different control algorithms that are aimed towards maintain-

ing the glucose levels in a safe region are studied. The main challenge is to obtain a

controller that achieves safe blood glucose control, despite issues like actuator satura-

tion, measurement noise and high inter- and intra-subject variability. Due to the fact

that an artificial pancreas scheme involves glucose measurement and insulin infusion

through the subcutaneous route, there are delays that make the control problem even

more challenging. In addition, in order to minimise the patient self-management of

his/her disease, it is assumed that meals are unannounced, i.e., the controller does

not receive any warning related to meal times or meal sizes either.

Based on the latter, strategies that involve techniques like H∞, and switching of

linear parameter varying systems are proposed. For each strategy, the advantages

and drawbacks are analysed, and closed-loop performance indices are presented. Fur-

thermore, tests on the complete in silico adult cohort of the UVA/Padova metabolic

simulator, which has been accepted by the Food and Drug Administration in lieu of

animal trials, are included for validation purposes.
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Simulation & Control in Type 1 Diabetes

por Patricio H. Colmegna

El estudio de la Diabetes Tipo 1 ha crecido de manera exponencial a lo largo de los

años. Aśı, un basto número de art́ıculos cient́ıficos que se centran en esta enfermedad

pueden ser hallados. En esta tesis dos cuestiones son abordadas principalmente.

En primer lugar, los modelos matemáticos más relevantes que describen la dinámica

insulina-glucosa son analizados. A través de ese análisis, las principales caracteŕısticas

de estos modelos son presentadas, y sus ventajas y desventajas, descritas. Además,

ciertas inconsistencias presentes en la literatura son indicadas.

Por otro lado, diferentes algoritmos de control destinados a mantener la concen-

tración de glucosa dentro de ĺımites seguros son estudiados. El principal desaf́ıo es

obtener un controlador que alcance un control adecuado de glucosa en sangre, a pe-

sar de cuestiones como la saturación en la actuación, el ruido de medición y la gran

variabilidad inter e intrapaciente. Debido a que un esquema de páncreas artificial

involucra la medición de glucosa y la inyección de insulina a través de la ruta sub-

cutánea, también existen retardos temporales que hacen al problema de control aún

más desafiante. Además, con el fin de minimizar la participación del paciente en el

control de su enfermedad, se asume que no existen anuncios de comidas, es decir, que

al controlador no se le advierte ni los horarios ni la cantidad de carbohidratos de las

mismas.

En base a esto último, estrategias que involucran técnicas como H∞ y la con-

mutación de sistemas lineales de parámetros variantes son estudiadas. Para cada

estrategia, sus fortalezas y debilidades son analizadas, e ı́ndices de performance a lazo

cerrado son presentados. Además, pruebas sobre la base de datos completa de adultos

in silico del simulador metabólico de UVA/Padova, el cual es aceptado por la Food

and Drug Administration en reemplazo de pruebas en animales, son incluidas para

validar los algoritmos de control.
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Chapter 1

Introduction

1.1 Motivation

Diabetes is one of the most challenging health problems. Scientific evidence reflects an

increasing number of cases of diabetes throughout the world, a continued growth in economic

burden to both patients and health care systems worldwide, and the existence of several

complications that are associated with this disease.

An automatic blood glucose control in insulin dependent patients can improve their life

quality, reducing the extremely demanding self-management plan that they need to follow.

In addition, this solution can also reduce the health complications associated with this

disease, and therefore, the health expenditure on their treatment.

1.2 Diabetes

1.2.1 Diagnosis and Types

Diabetes is a chronic disease that represents one of the main health problems in the world.

The criteria for its diagnosis is presented in [9], and it is summarised here in Fig. 1.1.

The majority of cases of diabetes can be classified into two broad categories:

• Type 1: Although it usually appears before age 35, it can be developed at any age. It

is an autoimmune disease which is characterised by the destruction of the pancreatic

1



Chapter 1. Introduction 2

Figure 1.1: Diagnostic criteria of diabetes.

β-cells and consequently, insulin deficiency. Therefore, an insulin dependent treatment

is essential from the beginning of the disease to prevent dehydration, ketoacidosis, and

death.

• Type 2: It usually appears after age 35-40, but an increasing number of adolescents

and young adults have been developing this disease mainly due to limited physical

activity. The capacity to produce insulin does not completely disappear, but the body

increases its resistance to it. Patients with Type 2 Diabetes Mellitus (T2DM) are

usually treated with oral sulfonlyureas that increase the cell sensitivity to the insulin

produced by the pancreas. However, in some cases insulin therapy is often required to

reduce the risks of hyperglycaemia.

Nevertheless, there are other forms of diabetes that cannot be clearly classified as type

1 or type 2. For example,

• Latent Autoimmune Diabetes in the Adult (LADA): Although it is an au-

toimmune type of diabetes that is initially non-insulin-requiring, it can progress to

insulin dependency at an adult age [10].

• Monogenic forms of diabetes: The two main forms are:

– Maturity Onset Diabetes in the Young (MODY): It is a genetically based

form of diabetes characterised by impaired insulin secretion at an early age, gen-

erally before age 25 [11].
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– Neonatal Diabetes Mellitus (NDM): It occurs in the first six months of

age, and has a low incidence rate (1 in 100000-500000 newborns). There are

two forms: transient and permanent (PNMD), which involves insulin therapy

throughout patient’s life [12].

• Gestational Diabetes Mellitus (GDM): It is diagnosed during pregnancy, and

nearly 7% of all pregnancies are affected by this form of diabetes [13].

1.2.2 Statistics and Projections

The International Diabetes Federation (IDF) is an umbrella organisation that has been

promoting diabetes research since 1950. Through high-quality studies, the IDF confirms

that there is an increasing number of people with diabetes, and that the burden of diabetes

in health care costs is enormous. The main estimates that are presented in the sixth edition

of the IDF Diabetes Atlas [1] are summarised in Fig. 1.2.

Figure 1.2: Global estimates. Source: The sixth edition of the IDF Diabetes Atlas [1].

Some of the most relevant collaborative projects that aim to study the incidence and

complications of diabetes in different regions using standardised protocols are the SEARCH

for Diabetes in Youth study, the Diabetes Mondiale (DIAMOND) study and the Europe
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and Diabetes (EURODIAB) study. As recent estimates from IDF, their registries confirm

that the incidence of diabetes is increasing worldwide [14–19].

Regarding T1DM, the average annual increase in incidence in children aged ≤ 14 for the

period 1990-1999 was 2.8% [18]. In that study, which was performed by the DIAMOND

Project Group, 114 populations in 112 centres in 57 countries all over the world were anal-

ysed. The EURODIAB Study Group shows in [19] that the overall annual increase was 3.9%

in 17 European countries during 1989-2003, and it is predicted that prevalent cases aged

≤ 15 will rise by 70% in 2020. Registries obtained by the SEARCH study, which monitors

diabetes among children and young adults in the United States, present similar statistics.

For example, in [17] a 21.1% increase in T1DM was estimated for the period 2001-2009.

As mentioned above, the economic burden of diabetes is huge. Although the health ex-

penditure on diabetes is estimated in several works (see [20,21] for a survey), the difference

between the costs of type 1 and type 2 diabetes is not always distinguished. In [22], that

difference is presented, showing that indirect costs associated with T1DM in the U.S. rep-

resent over 25% of the total diabetes costs in that country. Therefore, considering that just

a 5% to 10% of individuals diagnosed with diabetes represent those with T1DM, it can be

concluded that there is a vast difference between the economic impact of both types.

1.2.3 Complications

There are several complications associated with diabetes (see Fig. 1.3). A complete de-

scription of them can be found in [23–25]. It is well-known that they are related to the

persistence of high levels of blood glucose, and that high Glycated Haemoglobin (HbA1c)

levels, as well as longer duration of diabetes, increase the risk of developing them.

Basically, diabetes complications can be divided into two major groups:

• Macrovascular complications: Coronary Heart Disease (CAD), Peripheral Vascu-

lar Disease (PVD), and cerebrovascular disease are the three major types. They are

caused predominantly by the development of atherosclerosis that either tightens or

shrinks the diameter of the large vessels, such as veins and arteries.
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• Microvascular complications: Retinopathy, nephropathy, and neuropathy (chronic

sensorimotor distal symmetric polyneuropathy and autonomic neuropathies) are the

most common types. They affect small vessels, such as capillaries.

As mentioned above, diabetes is associated with an increased risk of both macro- and

microvascular complications. For example, in [26] it is estimated that a woman of 20 to

29 years old with T1DM is 45 times more likely to die of ischaemic heart disease than a

woman of similar age without diabetes. Regarding microvascular diseases, in the Wisconsin

Epidemiologic Study of Diabetic Retinopathy, 86% of blindness was attributable to diabetic

retinopathy in the younger-onset group [27]. But fortunately, it has been shown in several

surveys that intensive diabetes treatment has beneficial effects on the risk of both compli-

cations. For example, in [28] it is shown that intensive therapy reduces the early stages of

microvascular complications by 35–76% compared with conventional therapy. In addition,

intensive treatment reduces the risk of any cardiovascular disease event by 42% according

to [29].

1.2.4 Physiological Regulation of Blood Glucose Levels

The energy obtained via the oxidation of carbohydrates, fats and proteins is used to trans-

form Adenosine Diphosphate (ADP) into Adenosine Triphosphate (ATP). ATP is known as

the molecular unit of currency, because it is used in muscle contraction, protein and DNA

synthesis, and in every physiological process that needs energy. The production of ATP

involves different mechanisms such as glycolysis, the Krebs cycle, dehydrogenation, decar-

boxylation, and the chemiosmotic mechanism. For each molecule of glucose, 38 molecules of

ATP are generated as a result of the previous processes, giving a total efficiency of energy

transfer of 66%.

In order to achieve good energy balance, the blood concentration of different molecules

that are used as energy source has to be regulated. In normal subjects, that process is

mainly performed by the pancreas, which is an organ located in the abdomen, and has the

following functions:

• Contributes to maintain glucose homeostasis via the secretion of hormones from the

islets of Langerhans (endocrine function).
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Figure 1.3: The main health complications associated with diabetes.

• Digestion as it releases pancreatic juices from the acinar cells into the duodenum

(exocrine function).

The pancreas has approximately one million islets of Langerhans of diameter 0.3 mm that

are organised around small capillaries into which they release different hormones. Each islet

is made up of β-, α-, δ-, and PP-cells that release insulin and amylin, glucagon, somatostatin

and pancreatic polypeptide, respectively. Although the endocrine component represents just

1% of the total mass of the pancreas, it has an essential role in regulating the blood glucose.

The most important hormones are insulin and glucagon. While insulin lowers blood glucose

concentration, glucagon has the opposite effect. A schematic of the feedback control of the

blood glucose level is depicted in Fig. 1.4.
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After meals, blood glucose concentration increases, and as a consequence, the secretion

of insulin starts to increase as well. The stimulation of insulin secretion begins via the

release of the incretin hormones Glucagon-like Peptide-1 (GLP-1) and Glucose-dependent

Insulinotropic Peptide (GIP) from the L-cells of the small intestine [30, 31]. However, the

main effect on insulin secretory response is produced by the glucose-sensing mechanism of

pancreatic β-cells [32]. Glucose transport into β-cells is facilitated by high capacity, low

affinity Glucose Transporter-2 (GLUT-2) [33]. Once glucose molecules are inside the cell,

they are used to produce ATP by cellular respiration. ATP inhibits the activity of ATP-

dependent K+ channels, inducing plasma membrane depolarisation. Consequently, voltage-

dependent Ca2+ channels are opened, letting calcium enter into the cell, and triggering

exocytosis of insulin granules.

On the other hand, glucose is transported into α-cells by low-capacity/high-affinity

glucose transporters called Glucose Transporter-1 (GLUT-1). At low glucose levels, the

ATP/ADP ratio is low as well. As a result of the moderate activity of ATP-dependent K+

channels, T-type Ca2+ channels are opened, depolarising the plasma membrane, and acti-

vating N-type Ca2+ channels. Finally, the entrance of calcium stimulates glucagon granule

exocytosis [34].

The main effects of both insulin and glucagon are presented in Table 1.1. As shown in

that table, they have opposite effects on the blood glucose level and nutrient metabolism.

Insulin enhances glucose uptake in peripheral tissues by the expression of glucose trans-

porters from intracellular membrane compartments to the cell surface [35]. In addition, it

stimulates glucose storage as glycogen (glycogenesis) in the liver. By contrast, glucagon

promotes gluconeogenesis that is the synthesis of glucose from amino and fatty acids, and

glycogenolysis that is the breakdown of glycogen to glucose. Due to the fact that the most

important actions of insulin and glucagon occur in the liver, the latter has a major role in

glucose homeostasis, reducing glucose level fluctuations. In summary, while insulin induces

an anabolic state, stimulating glucose disappearance, glucagon promotes a catabolic state,

stimulating glucose appearance. As a result of this counterregulatory response, hypo- and

hyperglycaemia rarely occur in normal subjects.

Although insulin and glucagon are the most important hormones, there are others that

are also involved in blood glucose regulation. For example:
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Figure 1.4: Glucose homeostasis.

• Amylin, which is cosecreted with insulin by pancreatic β-cells, suppresses glucagon

secretion and regulates gastric emptying [36].

• Somatostatin, which is secreted by pancreatic δ-cells, inhibits insulin and glucagon

secretion [37].

• Growth hormone, cortisol, norepinephrine and epinephrine increase blood glucose con-

centration by, for example, decreasing glucose uptake.
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Insulin Glucagon

Increases glucose uptake and metabolism by
insulin-sensitive cells.

Stimulates gluconeogenesis and glycogenolysis.

Promotes glycogenesis in skeletal muscle and
liver.

Inhibits glycogenesis and glycolysis.

Inhibits glucose production via glycogenolysis
and gluconeogenesis.

Promotes lipolysis that increases non-esterified
fatty acids and glycerol from adipocytes.

Promotes lipogenesis and therefore, triglyceride
synthesis and storage.

Increases amino acid transport into hepatocytes
for gluconeogenesis.

Increases amino acid transport into cells, and
synthesis of new proteins.

Promotes hepatic ketogenesis.

Inhibits glucagon secretion from pancreatic α-
cells.

Stimulates insulin secretion from pancreatic β-
cells.

Table 1.1: Insulin and glucagon effects on glycaemia and nutrient metabolism.

1.2.5 Diabetes Management: An Overview

Diabetes detection and treatment is a long-standing objective. A timeline that includes

some important events in the evolution of diabetes management is depicted in Fig. 1.5.

It is believed that the first documented sign of this condition is presented in an Egyptian

papyrus that dates from around 1550 BC. That papyrus, which is also known as the Ebers

papyrus in honour of its discoverer, the Egyptologist and novelist Georg Moritz Ebers,

mentions people with urine disorders [38]. Since then, more accurate clinical descriptions

have been performed, allowing great progress in detecting the disease. One of the first

attempts to identify people with diabetes was performed by Tomas Willis, who noted that

the urine of people with diabetes was sweet. From that point onwards, various chemical tests

were developed, such as the reagent strip presented by Jules Maumené, which turned into

black colour when sugar was presented in urine [39]. However, there was not any successful

long-term treatment until the discovery of insulin in 1921 by Frederick Banting and his

research group at the University of Toronto. The benefits of such a discovery soon arose,

because Leonard Thompson, aged 14, became the first person to be successfully treated with

insulin injections the very next year.

The early insulins came from bovine and porcine pancreata, and therefore, they had
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       The symptoms of diabetes are mentioned in the Ebers Papyrus.
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Apollonius of Memphis introduces the term diabetes, meaning  to pass
through.

Aretaeus of Cappadocia provides a clinical description of diabetes in On the 
Causes and Indications of Acute and Chronic Diseases.

Jules Maumené develops the first urine test strip.

 Leonard Thompson is the first person to be treated with insulin. 

Novo Nordisk introduces protamine insuline.

Eli Lilly and Company introduces glucagon to treat severe hypoglycaemia.

 University of Minnesota surgeons perform the first cadaver pancreas 
 transplant.

AutoSyringe Inc begins to market the first wearable insulin pump that was 
developed by Dean Kamen in 1973.     
The HbA1c measurement is introduced as an index of the quality of 
glycaemic control.

 Bergman and Cobelli present the Minimal Model of Glucose Kinetics.

MediSense launches the first biosensor system, the ExacTech.
Human insulin production by genetically altered bacteria is approved by the 
FDA.

One of the first control algorithms was presented in 1991 by Fisher.

Eli Lilly and Company introduces Lispro.

Minimed shows the feasibility of automated blood glucose control via 
the s.c.-s.c. route.
The Artificial Pancreas Project is launched by JDRF.

The European Union launches the AP@home project.
The feasibility of bihormonal closed-loop pancreas is presented 
by Firas El-Khatib, et al.
The DREAM project is established.

Tomas Willis notices the sweet taste of the urine of people with diabetes. 

Frederick Banting, Charles Best, John Macleod and James Collip contribute 
in the discovery of insulin.

Eli Lilly and Company begins commercial production of insulin.

Becton Dickinson and Company begins production of a standardised insulin 
syringe.

Kadish develops the first closed-loop control of blood glucose, using intravenous
glucose measurement and infusion of insulin and glucose.

The Ames Company introduces the first blood glucose test strip, the Dextrostix.

Tom Clemens introduces the first blood glucose meter, which is called The 
Ames Reflectance Meter.

The first commercial artificial pancreas, the Biostator, is presented.

Intensive insulin therapy starts to be used to treat people with type 1 diabetes.

Novo Nordisk introduces the first manufactured pen for the administration of 
insulin, the Novopen.

The DCCT shows the importance of good glycemic control.

Minimed introduces its CGM system.

The FDA accepts the UVA/Padova T1DM simulator in lieu of animal trials 
in the development of an artificial pancreas.

The FDA releases final guidance for artificial pancreas device systems.

Figure 1.5: Evolution of diabetes detection and treatment.

several limitations, such as immunological reactions, lipodystrophy1, and a short duration

of action. In order to develop slower-acting insulins, protamine was added to the insulin

molecule along with zinc, allowing the introduction of the first protamine insulin by Novo

Nordisk in 1936. This insulin form was later modified to form crystals of protamine and

insulin, producing the well-known intermediate-acting Neutral Protamine Hagedorn (NPH)

insulin. A step further was achieved when recombinant DNA technology started to be used

for human insulin production. This technique, which was approved by the Food and Drug

Administration (FDA) in 1982, made it possible to insert the human insulin gene into a

bacterial plasmid to produce (regular) human insulin. Then, scientists were able to change

1Lipodystrophy is the result of insulin stimulation of fat cell growth.
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the onset, peak and duration of insulin action by modifying the structure of the insulin

molecule, obtaining rapid- and long-acting insulins. Thus, physiologic insulin patterns,

which are characterised by continuous basal release with superimposed surges of insulin

after meals [24], could be mimicked more closely by insulin therapy using Multiple Daily

Injections (MDI). Different insulin preparations and regimens are presented in Fig. 1.6 and

Table 1.2.

After recognising several limitations in the use of urine testing as diabetes monitoring,

scientists were focused on developing different blood glucose meters. The latter ones can be

classified as follows [39].

• First generation meters: They were characterised by the use of dry reagents. The

first strip (the Dextrostix), which utilised the glucose oxidase/peroxidase reaction to

change its colour depending on the blood glucose value, was introduced by the Ames

Company in 1964 [40].
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Figure 1.6: Insulin preparations and regimens using MDI. B, breakfast; L, lunch; S, snack;
D, dinner; BT, bedtime.
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T1 T2

Two injections of short- or rapid-acting insulin

mixed with intermediate-acting insulin.

Three injections of rapid-acting insulin mixed

with intermediate-acting insulin.

Pros: Few number of insulin injections. Pros: Improves glycaemic control between

lunch and late dinner.

Cons: Difficulty in achieving good glycaemic

control (possible nocturnal hypoglycaemia), and

limited flexibility to changes in meals and exer-

cise.

Cons: Difficulty in achieving good glycaemic

control.

T3 T4

Three mixed insulin injections before meals, and

one injection of intermediate-acting insulin at

bedtime.

Rapid-acting insulin injections before meals,

and one injection of intermediate-acting insulin

at bedtime.

Pros: Improves glycaemic control during the

night.

Pros: Improves glycaemic control during meals.

Cons: Demands one more insulin injection than

T2.

Cons: Possible lack of insulin during the last

hours before the next meal.

T5 T6

Rapid-acting insulin injections before meals,

and two injections of intermediate-acting insulin

at breakfast and bedtime.

Rapid-acting insulin injections before meals

combined with injections of long-acting basal in-

sulin every 12 (detemir) or 24 (glargine) h.

Pros: Improves glycaemic control during the

afternoon.

Pros: Offers flexibility in meals, and mimics

normal insulin secretion.

Cons: Possible lack of insulin during the last

hours before dinner. A third NPH injection at

lunch may be necessary.

Table 1.2: Insulin regimens using MDI.

• Second generation meters: A modified sampling method to reduce the operator

participation was one of the main adjustments included in these monitors. The One-

Touch meter, which was launched in 1987, was the first device to have these features.

• Third generation meters: An amperometric enzyme method was employed to pro-

duce a current proportional to the blood glucose concentration, giving rise to the

ExacTech, which was introduced in 1987 by MediSense.
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In 1976 the HbA1c measurement was introduced as a marker for monitoring the glycaemic

control in patients with diabetes [41]. Although it is still widely accepted in clinical practice

and research, it only reflects blood glucose average with a temporal resolution of approxi-

mately 2-3 months. The latter means that only long-term changes can be detected, ignoring

rapid blood glucose variations, such as hypoglycaemic episodes [42].

Blood glucose meters appeared as a solution to that problem. Therefore, they have been

continuously evolving in size, functionality, and accuracy in order to be in accordance with

recommendations made by the American Diabetes Association (ADA). These improve-

ments allowed for frequent (5 readings per day) and accurate blood glucose measurements,

introducing the Self-monitoring of Blood Glucose (SMBG) as a key element in diabetes

management [43].

TRANSMITTER

SENSOR

INTERSTITIAL FLUID

BLOOD VESSEL

SKIN

Figure 1.7: Measuring glucose levels in the interstitial fluid.

A major change came with the emergence of CGM devices in the 1990s. They include

a glucose sensor, a transmitter attached to the sensor, and a receiver. The tiny sensor is

inserted under the skin (see Fig. 1.7), and measures the glucose level in the interstitial

fluid by means of the glucose oxidase enzyme. After a chain chemical reaction, an electrical

signal is generated, and then relayed wirelessly to the receiver in order to display the result

approximately every 5 min.

The main disadvantage of this system is that glucose is measured in the interstitium.

Therefore, there is an inherent time lag due to glucose diffusion from blood to the interstitial

compartment that cannot be eliminated, although a few calibrations with capillary glucose

are needed each day. Despite those drawbacks, several works enhance the benefits of CGM

in improving metabolic control [44, 45], and new generations of CGMs are rapidly evolving

to achieve more reliable glucose measurements.

Insulin delivery devices have experienced several changes since the appearance of the first

reusable needles and large glass syringes [46]. Most of those changes have been caused by
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various adverse issues associated with the use of syringes, such as social and psychological

problems. However, it was not until 1976 that the first wearable insulin pump was introduced

by Dean Kamen, giving rise to the Continuous Subcutaneous Insulin Infusion (CSII) therapy

[47]. Regarding MDI, it underwent a significant change with the launch of the first insulin

pen in 1985. Since then, both CSII pumps and insulin pens have been increasing their

accuracy, and including new features. These improvements not only have enhanced patients’

quality of life, but also their adherence to Insulin Intensive Therapy (IIT) regimens, which in

accordance with the Diabetes Control and Complications (DCCT) and the United Kingdom

Prospective Diabetes Study (UKPDS) have beneficial effects on diabetes management [48–

50]. However, there is no such thing as a free lunch, and IIT is also associated with an

increased risk of hypoglycaemia [51].

Implantable pumps into the peritoneal cavity represent another suitable alternative for

delivering insulin [52–54]. Their use leads to more physiological plasma insulin profiles,

reducing hypoglycaemic events, and restoring glucagon response to hypoglycaemia and ex-

ercise [55, 56]. Despite these benefits, they are not widely used because they are invasive

and expensive. CSII devices are also costly, but they are far less invasive than implantable

pumps. Therefore, both CSII and MDI are still the main options for IIT.

Due to the fact that a T1DM patient is dependent on insulin injections and self-monitoring

of blood glucose throughout his/her life, the self-management of this disease is extremely

demanding and does not reliably lead to effective glycaemic control. Consequently, the prob-

lem of automatically controlling the blood glucose level in T1DM patients is a long standing

problem [57–61]. Since the first closed-loop results [62–64], the feasibility of different routes

of glucose sensing and insulin infusion have been tested. Although each system has pros

and cons [65], the minimally invasive subcutaneous-subcutaneous route is the most widely

used nowadays. Thus, an artificial pancreas consists of a CSII pump, a CGM and a control

algorithm which closes the loop (see Fig. 1.8). In order to develop fully automated devices,

different systems that allow the communication between the components have been imple-

mented for clinical trials [66–68]. Some examples of currently available CGMs and CSII

pumps are presented in Table 1.3.
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CGM CSII pump

Model Manufacturer Model Manufacturer

FreeStyle Navigatorr Abbott Diabetes Care Paradigm 522/722 Medtronic

Dexcom G4 Dexcom Accu-Chekr combo Roche Diagnostics

Guardianr REAL-Time Medtronic OneTouchr Pingr Animas Corporation

EnliteTM Medtronic DANA Diabecare IISG Sooil Development

Amigor Nipro Diagnostics

OmniPodr Insulet

T-Slim Tandem Diabetes Care

Table 1.3: Currently available CGMs and CSII pumps.

A few models based upon Ordinary Differential Equations (ODE) have been used for

simulation and control design purposes [5,58,69–71]. Among the initial ones we can mention

Sorensen’s 19th order model [2] and Bergman’s 3rd order model [72, 73]. A remarkable

event regarding simulation models came with the acceptance of the UVA/Padova metabolic

simulator by FDA in lieu of animals trials [74,75].

One of the first control algorithms was presented in 1991 by Fisher [76] and was based

on [73]. Since then, a variety of MPC strategies and Proportional Integral Derivative (PID)

controllers have been extensively tested both in silico and also in clinical trials [8, 77–82].

Furthermore, other control techniques like adaptive control [83], LPV control [84], H∞
control [85–87] and even fuzzy logic theory [88,89] have also been considered. However, both

LPV and also H∞ control have not been tested in clinical trials yet. Regarding bihormonal

approaches, the feasibility of safe blood glucose control with subcutaneous delivery of both

insulin and glucagon has been demonstrated in several works [90–92]. In addition, the use

of pramlintide to delay gastric emptying and reduce the magnitude of postprandial blood

glucose excursions has also been studied [93].

Many of these works have been conducted as part of international projects. Some of

these projects are the Artificial Pancreas Project (APP) launched by the Juvenile Diabetes

Research Foundation (JDRF) in 2005, the AP@Home Consortium launched by the European

Commission in 2010, and the Diabetes wiREless Artificial Pancreas ConsortiuM (DREAM)

that was established by 3 diabetes centres in Slovenia, Germany and Israel in 2010.
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Figure 1.8: Closed-loop insulin delivery system.

1.3 Objetives

This thesis aims to design glucose controllers for T1DM, using techniques that are not widely

employed in this area. In particular, a special focus is put on the following aspects:

• State of the art: Reporting the main advances regarding the development of an arti-

ficial pancreas, and analysing the limitations that are involved in its implementation.

• Simulation models: Comparing the three main models, and presenting their advan-

tages and disadvantages for controller design and simulation purposes.

• Controller design: Synthesising controllers using H∞ and LPV techniques.

• In silico validation: Rigorously testing the proposed control strategies on the com-

plete in silico adult cohort of the UVA/Padova metabolic simulator, which has been

accepted by the FDA in lieu of animal trials.

1.4 Contributions

Some results that appear in this thesis have been presented previously in the following

publications:
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Conference Articles

1. Colmegna P., Sánchez Peña R., “Insulin Dependent Diabetes Mellitus Control”, in

Actas XIV Reunión de Trabajo en Procesamiento de la Información y Control, Oro

Verde, Entre Ŕıos, 2011, pp. 13-7. Selected for special issue of Latin American Applied

Research.

2. Colmegna P., Sánchez Peña R., “Simulators of Diabetes Mellitus Dynamics”, in Actas

XXIII Congreso Argentino de Control Automático, Buenos Aires, 2012.

3. Colmegna P., Sánchez Peña R., “Personalized Glucose Control Based on Patient Iden-

tification”, in Actas XV Reunión de Trabajo en Procesamiento de la Información y

Control, San Carlos de Bariloche, Ŕıo Negro, 2013, pp. 397-402.

4. Colmegna P., Sánchez Peña R., “Linear Parameter-Varying Control to Minimize Risks

in Type 1 Diabetes”, 19th IFAC World Congress, Cape Town, South Africa, 2014, pp.

9523-7.

Journal Articles

1. Colmegna P. and Sánchez Peña R., “Insulin Dependent Diabetes Mellitus Control”,

Latin American Applied Research, vol. 43, no. 3, pp. 243-8, 2013.

2. Colmegna P. and Sánchez Peña R., “Analysis of three T1DM simulation models

for evaluating robust closed-loop controllers”, Computer Methods and Programs in

Biomedicine, vol. 113, no. 1, pp. 371-82, 2014.

3. Sánchez Peña R., Colmegna P. and Bianchi F., “Unfalsified control based on the

H∞ controller parameterisation”, International Journal of Systems Science, 2014, doi:

10.1080/00207721.2013.879251.

4. Colmegna P., Sánchez Peña R., Gondhalekar R., Dassau E. and F. Doyle III, “Reduc-

ing Risks in Type 1 Diabetes Using H∞ control”, IEEE Transactions on Biomedical

Engineering, 2014, doi: 10.1109/TBME.2014.2336772.

There is also a paper in preparation (Colmegna P., Sánchez Peña R., Gondhalekar R.,

Dassau E. and F. Doyle III, “Switched LPV Glucose Control in Type 1 Diabetes”, IEEE

Transactions on Biomedical Engineering) related to the contents presented in Chapter 5.
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Conference Poster

1. Colmegna P. and Sánchez Peña R., “Time-Varying Controllers for Type 1 Diabetes”,

6th International Conference on Advanced Technologies & Treatments for Diabetes,

Paris, 2013.

The paper “Unfalsified control based on the H∞ controller parameterisation” represents

the theoretical framework to continue the works [84, 94]. In that sense, an approach to

that framework is presented in the aforementioned conference poster. However, the unfal-

sified control concept was not further studied in this research, because the difficulty of its

implementation for the management of blood glucose levels in T1DM patients when some

practical issues, such as CGM noise, were included.

1.5 Organisation

This thesis is organised as follows. In Chapter 2, the three main models that describe

the glucose-insulin behaviour are presented, pointing out several errors that appear in the

literature. In addition, a comparison of those models from the control point of view is

included. In Chapter 3, the problem of closing the loop is addressed. For that purpose,

closed-loop controllers that regulate the blood glucose concentration are designed via H∞
control theory, considering different sources of uncertainty. In the following chapters, the

UVA/Padova metabolic simulator is selected to design and test the controllers, due to the

fact that the complete version of that simulator has been accepted by the FDA in lieu of

animal trials. In Chapter 4, a control scheme that is composed of an H∞ controller, an

Insulin Feedback Loop (IFL), and a Safety Mechanism (SM) is designed, and later tested

on the complete in silico adult cohort of the UVA/Padova metabolic simulator. In order to

replace the action of the IFL and the SM, a switching robust LPV controller that includes

a hyperglycaemia detection algorithm is designed in Chapter 5. As in Chapter 4, tests on

the complete UVA/Padova metabolic simulator are performed. Final conclusions and future

work are presented in Chapter 6.



Chapter 2

Simulation Models in Type 1

Diabetes

2.1 Motivation

In order to design an automatic controller that may connect a glucose monitor and an

insulin pump, a model of the underlying dynamics is generally necessary. To verify the

effectiveness of the controller before clinical tests, several in silico evaluations should be

performed. To this end, a more elaborate dynamic model which includes not only the

glucose-insulin behaviour, but also many other practical issues (insulin pump constraints,

glucose monitor errors, interstitial-plasma delays) should be implemented as a simulator.

As mentioned previously in Chapter 1, a few models based on ODE have been used for

simulation and control design purposes. Many of them are instrumental for patient analysis,

like the AIDA freeware available at http://www.2aida.org/aida/intro.htm [95], while

others are also used for automatic controller design and testing.

The objective of this chapter is to compare the three main models which are used in

controller (closed-loop) testing: Sorensen’s 19th. order model [2], the model developed by

the Universities of Virginia and Padova (UVA/Padova) [74] and the Cambridge model [8].

The two latter ones have been implemented in the form of simulators as well. As a byproduct

of this research, several errors in the literature have been found, and are pointed out in order

to help the practitioner when programming these models [96].

19
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to thank Dr. Wilinska, who answered all my questions so patiently.

2.2 Sorensen’s Model

Sorensen’s mathematical model is an explanatory physiological mechanism of the glucose

metabolism and its regulation by insulin and glucagon in a normal average man. It considers

that three models interact: glucose, insulin and glucagon. With respect to the glucose and

insulin models, the body is divided into six compartments: brain, representing the central

nervous system; lungs; gut; kidneys; and muscular skeleton and adipose tissue (periphery).

As for the glucagon model, a simple one-compartment is employed. As shown in Fig. 2.1,

each compartment is composed of three well-mixed spaces1: blood capillary, fed by the

arterial blood and evacuated by the venous one; interstitial; and intracellular.

CAPILLARY BLOOD SPACE

INTERSTITIAL FLUID SPACE

INTRACELLULAR SPACE

®

®

®

®

capillary wall
transport

cell membrane
transport

arterial inflow venous outflow

Figure 2.1: Representation of a generic compartment. Adapted from [2].

The glucose and insulin model schemes are presented in Figs. 2.2 and 2.3, respectively.

Note that the number of spaces of each compartment can be reduced to two or to one,

depending on the permeability of both the cell membrane and the capillary wall.

In order to obtain a mathematical representation, a mass balance is performed in each

physiological compartment, including any metabolic source and sink which add or remove

mass. Regarding metabolic processes, they are represented by hyperbolic tangent functions

which are fitted to clinical data. As a consequence, twelve nonlinear ODE are obtained for

1The solute concentration is assumed to be uniform.
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the glucose (three associated with non-dimensional variables) and glucagon dynamics, and

seven linear ones for the insulin. It is important to note that the linearity in the insulin model

is obtained when T1DM is considered, i.e. when the pancreatic insulin release rate (ΓPIR)

is set to zero. This assumption not only induces linearity, but also decouples the insulin

dynamics from the others. In addition, normal basal state concentrations are assumed to

create a patient that is effectively controlled through the use of intravenous insulin delivery

(ΓIV I).

The equations for the glucose dynamics are:

ĠCB =
(
GCH −GCB

) qB
vCB
−
(
GCB −GTB

) vTB
TBv

C
B

(2.1)

ĠTB =
(
GCB −GTB

) 1

TB
− ΓBU

vTB
(2.2)

ĠCH =
(
GCBqB +GCL qL +GCKqK +GCP qP −GCHqH − ΓRBCU

) 1

vCH
(2.3)

ĠCS =
(
GCH −GCS

) qS
vCS

+
Γmeal

vCS
− ΓSU

vCS
(2.4)

ĠCL =
(
GCHqA +GCS qS −GCL qL

) 1

vCL
+

ΓHGP

vCL
− ΓHGU

vCL
(2.5)

ĠCK =
(
GCH −GCK

) qK
vCK
− ΓKE

vCK
(2.6)

ĠCP =
(
GCH −GCP

) qP
vCP

+
(
GTP −GCP

) vTP
TGP v

C
P

(2.7)

ĠTP =
(
GCP −GTP

) 1

TGP
− ΓPGU

vTP
. (2.8)

Equations for insulin dynamics are:

İCB =
(
ICH − ICB

) QB
V CB

(2.9)

İCH =
(
ICBQB + ICLQL + ICKQK + ICP QP − ICHQH + ΓIV I

) 1

V CH
(2.10)

İCS =
(
ICH − ICS

) QS
V CS

(2.11)

İCL =
(
ICHQA + ICS QS − ICLQL

) 1

V CL
+

ΓPIR

V CL
− ΓLC

V CL
(2.12)

İCK =
(
ICH − ICK

) QK
V CK
− ΓKC

V CK
(2.13)

İCP =
(
ICH − ICP

) QP
V CP

+
(
ITP − ICP

) V TP
T IPV

C
P

(2.14)

İTP =
(
ICP − ITP

) 1

T IP
+

ΓSIA

V TP
− ΓPC

V TP
(2.15)

and the remaining four equations of Sorensen’s model are given by:

Ṅ = (ΓPNR −N)
FPNC

VN
(2.16)

ȦIHGP =
1

25

{
1.2088− 1.138 tanh

[
1.1669

(
ICL

21.43
− 0.8885

)]
−AIHGP

}
(2.17)

ȦNHGP =
1

65

[
2.7 tanh (0.388N)− 1

2
−ANHGP

]
(2.18)
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Figure 2.2: Block diagram of Sorensen’s glucose model. Adapted from [2].

ȦIHGU =
1

25

[
2 tanh

(
0.549

ICL
21.43

)
−AIHGU

]
. (2.19)

The Γi parameters which appear in the equations are as follows: ΓBU = 70, ΓRBCU = 10,

ΓSU = 20, ΓPIR = 0, ΓLC = FLC

(
ICHQA + ICS QS + ΓPIR

)
and

ΓHGU = 20AIHGU

{
5.6648 + 5.6589 tanh

[
2.4375

(
GCL
101
− 1.48

)]}
(2.20)

ΓHGP = 155AIHGP [2.7 tanh (0.388N)−ANHGP ]×
{

1.425− 1.406 tanh

[
0.1699

(
GCL
101
− 0.4969

)]}
(2.21)

ΓPGU =
35GTP
86.81

{
7.035 + 6.51623 tanh

[
0.33827

(
ITP

5.304
− 5.82113

)]}
ΓPNR =

{
1.3102− 0.61016 tanh

[
1.0571

(
ICH

15.15
− 0.46981

)]}
×
{

2.9285− 2.095 tanh

[
4.18

(
GCH

91.89
− 0.6191

)]}
(2.22)
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Figure 2.3: Block diagram of Sorensen’s insulin model. The red and green blocks represent
the inputs that are removed and included, respectively, from the normal model to create a

T1DM one. Adapted from [2].

ΓPC =
ITP

1−FPC
QPFPC

− T I
P

V T
P

(2.23)

ΓKC = FKCI
C
HQK (2.24)

ΓKE =


71
{
1 + tanh

[
0.11

(
GCK − 460

)]}
if GC

K < 460mg
dl

0.872GCK − 330 if GC
K ≥ 460mg

dl

(2.25)

The indices and the model variable and parameter notation in the above equations, which

are the same used in [87, 97], are presented in Tables 2.1 and 2.2, respectively. Parameters

values are given in Table 2.3.
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Indices

A: Hepatic artery. B: Brain. BU: Brain uptake.
C: Capillary space. G: Glucose. H: Heart and lungs.
HGP: Hepatic glucose produc-
tion.

HGU: Hepatic glucose uptake. I: Insulin.

IHGP: Insulin effect on HGP. IHGU: Insulin effect on HGU. IVI: Intravenous insulin infusion.
K: Kidney. KC: Kidney clearance. KE: Kidney excretion.
L: Liver. LC: Liver clearance. N: Glucagon.
NHGP: Glucagon effect on HGP. P: Periphery (muscle/adipose

tissue).
PC: Peripheral clearance.

PC: Peripheral clearance. PGU: Peripheral glucose uptake. PIR: Pancreatic insulin release.
PNC: Pancreatic glucagon clear-
ance.

PNR: Pancreatic glucagon re-
lease.

RBCU: Red blood cell uptake.

S: Gut. SIA: Insulin absorption into
blood stream from subcutaneous
depot.

SU: Gut uptake.

T: Tissue.

Table 2.1: Indices used in Sorensen’s model.

Variable/Parameter Unit

A: Auxiliary equation state. dimensionless
F: Fractional clearance. I, dimensionless; N, [L/min]
G: Glucose concentration. [mg/dl]
I: Insulin concentration. [mU/l]
N: Glucagon concentration (normalised). dimensionless
Q: Vascular plasma flow rate. [L/min]
q: Vascular blood flow rate. [dl/min]
T: Transcapillary diffusion time constant. [min]
V: Volume. [l]
v: Volume. [dl]
Γ: Metabolic source or sink rate G, [mg/min]; I, [mU/min]; N, dimensionless

Table 2.2: Variables and parameters used in Sorensen’s model.

Glucose Insulin Glucagon and Γ
[dL] [dL/min] [min] [L] [L/min] [min] [L] [L/min] dimensionless

vCB = 3.5 qB = 5.9 TB = 2.1 V C
B = 0.26 QB = 0.45 T IP = 20 VN = 9.93 FPNC = 0.91 FLC = 0.4

vTB = 4.5 qH = 43.7 TGP = 5.0 V C
H = 0.99 QH = 3.12 FKC = 0.3

vCH = 13.8 qA = 2.5 V C
S = 0.94 QA = 0.18 FPC = 0.15

vCL = 25.1 qL = 12.6 V C
L = 1.14 QL = 0.90

vCS = 11.2 qS = 10.1 V C
K = 0.51 QS = 0.72

vCK = 6.6 qK = 10.1 V C
P = 0.74 QK = 0.72

vCP = 10.4 qP = 15.1 V T
P = 6.74 QP = 1.05

vTP = 67.4

Table 2.3: Parameter values for Sorensen’s model.

The glucose absorption model is presented in the original work [2] in Section IV. However,

in this analysis, it is considered that Γmeal is defined by the model introduced in [95], which is

used by several other authors [87,97–99], as well as in the AIDA simulator. Model equations
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Figure 2.4: Lehmann and Deutsch’s glucose absorption model. Adapted from [3].

are as follows:

q̇gut(t) = −kabsqgut(t) +Gempt(t) (2.26)

Γmeal(t) = kabsqgut(t) (2.27)

Tmax = [D − Vmax(Tup + Tdown)]/Vmax (2.28)

Gempt(t) =



Vmax
Tup

t, t < Tup

Vmax, Tup ≤ t < Tup + Tmax

Vmax − Vmax
Tdown

(t− Tup − Tmax), Tup + Tmax ≤ t < Tup + Tmax + Tdown

0, otherwise

(2.29)

where qgut is the amount of glucose in the intestine, kabs is the rate constant for glucose

absorption from the gut, Gempt is the rate of gastric emptying, Vmax is the maximum velocity

of gastric emptying, D is the ingested glucose dose in mg, and Tmax, Tup and Tdown are the

duration of staying, rising, and dropping periods of Gempt, respectively. A schematic of this

model is depicted in Fig. 2.4, and parameters values are presented in Table 2.4. Thus, this

model assumes that gastric emptying is a trapezoidal time-limited signal with a maximum of

360 mg/min, which inputs a first order filter 1/(60s+ 1) in order to represent the intestinal

absorption. This results in signal Γmeal illustrated in Fig. 2.5 with Tup = Tdown = 15 min.

Parameter Value

kabs 1/60 min−1

Tup and Tdown

{
30 min (default) ifD ≥ 103 mg

2D/Vmax otherwise

Vmax 360 mg/min

Table 2.4: Parameter values for Lehmann and Deutsch’s glucose absorption model.
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Figure 2.5: Glucose emptying as a function of time.

A close analysis of the dynamic equations indicates several inconsistencies with respect

to the models presented in previous works (see also [85, 96]). For example in [98], variable

AIHGU is confused with AIHGP in Eqn. (2.21). In the same work, there are no parenthesis

in Eqn. (2.17) and there are numerical differences in Eqn. (2.25). Also in Eqn. (2.23) the

denominator should read
T IP
V TP

instead of 1
T IPV

T
P

. These last three errors are also present in [87].

In Eqn. (2.15) of [86], instead of V C
P we find V T

P , which does not allow its simplification. All

these can always be interpreted as typing errors. Nevertheless, there is a common error in

all of these works and also in [71] which concerns equation (2.24). The variable which should

be there is not ICK , but ICH instead. This error already appears in the original work [2] in the

section where the complete model is presented (pages 213-222), but the correct variable can

be identified through the analysis of page 134 over ΓKC , where the article [100] is referenced.

The latter can be also ratified by the programming instructions of the model in [2] on page

535.

2.3 UVA/Padova’s Model/Simulator

This model is presented in [6] and describes the relation between plasma glucose and insulin

concentrations, and glucose and insulin fluxes. To this end, it divides the body into two

subsystems: glucose and insulin, each divided into two compartments. The parameter

adjustment is based on experiments over 204 normal subjects in order to obtain a non-

diabetic model (a T2DM model is also obtained with another database).
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Figure 2.6: Scheme of the UVA/Padova glucose-insulin system. The green and blue blocks
represent the unit processes that has been included and modified, respectively, regarding

the system presented in [4]. Adapted from [5].

The Glucose Insulin Model (GIM) simulator [4], which has been developed by researchers

of the universities of Virginia and Padova, adapts the previous non-diabetic model in order to

simulate a type 1 diabetic subject which includes a model of subcutaneous insulin kinetics,

and a higher endogenous glucose production as shown in Fig. 2.6. The complete model

equations used in GIM are as follows.

Glucose subsystem (Fig. 2.7):

Ġp(t) = EGP (t) +Ra(t)− Uii(t)− E(t)− k1Gp(t) + k2Gt(t) (2.30)

Ġt(t) = −Uid(t) + k1Gp(t)− k2Gt(t) (2.31)

G(t) =
Gp(t)

VG
(2.32)

EGP (t) = kp1 − kp2Gp(t)− kp3Id(t) (2.33)

Uii(t) = Fcns (2.34)

Uid(t) =
Vm(X)Gt(t)

Km0 +Gt(t)
(2.35)

E(t) =

ke1 [Gp(t)− ke2] , Gp(t) > ke2

0, Gp(t) ≤ ke2
(2.36)

Insulin subsystem (Fig. 2.8):

İ`(t) = − (m1 +m3) I`(t) +m2Ip(t) (2.37)

İp(t) = −(m2 +m4)Ip(t) +m1I`(t) +Ri(t) (2.38)

I(t) =
Ip(t)

VI
(2.39)
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Figure 2.7: Block diagram of the UVA/Padova glucose model. Adapted from [6].

m3 =
HEbm1

1−HEb
(2.40)

İ1(t) = −ki (I1 − I) (t) (2.41)

İd(t) = −ki (Id − I1) (t) (2.42)

Vm0 =
(EGPb − Fcns)(Km0 +Gtb)

Gtb
(2.43)

Vm(X) = Vm0 + VmxX(t) (2.44)

Ẋ(t) = −p2UX(t) + p2U [I(t)− Ib] (2.45)

İsc1 = −(kd + ka1)Isc1(t) + IIR(t) (2.46)

İsc2 = kdIsc1(t)− ka2Isc2(t) (2.47)

Ri(t) = ka1Isc1(t) + ka2Isc2(t). (2.48)

Il Ip

m1

m2

Liver m3 Peripherym4

Degradation

Rate of Appearance
Ri

Figure 2.8: Block diagram of the UVA/Padova insulin model. Adapted from [6].
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Note that suffix b denotes basal state. The model notation is reported in Table 2.5.

Variable/Parameter Unit

Gp: Glucose mass in plasma and rapidly equilibrating tissues. [mg/kg]
Gt: Glucose mass in slowly equilibrating tissues. [mg/kg]
G: Plasma glucose concentration. [mg/dl]
EGP : Endogenous glucose production. [mg/kg/min]
kp1: Extrapolated EGP at zero glucose and insulin. [mg/kg/min]
kp2: Liver glucose effectiveness.

[
min−1

]
kp3: Parameter governing amplitude of insulin action on the liver. [mg/kg/min] per [pmol/l]
Ra: Glucose rate of appearance in plasma. [mg/kg/min]
E: Renal excretion. [mg/kg/min]
ke1: Glomerular filtration rate.

[
min−1

]
ke2: Renal threshold of glucose. [mg/kg]
Uii and Uid: Insulin independent and dependent glucose utilisa-
tions.

[mg/kg/min]

Vm(X): Parameter from the Michaelis Menten equation. [mg/kg/min]
Km0: Parameter from the Michaelis Menten equation. [mg/kg]
p2U : Rate constant of insulin action on the peripheral glucose
utilisation.

[
min−1

]
Fcns: Glucose uptake by the brain and erythrocytes. [mg/kg/min]
k1 and k2: Rate parameters.

[
min−1

]
VG: Distribution volume of glucose. [dl/kg]
Ip: Insulin mass in plasma [pmol/kg]
Il: Insulin mass in liver. [pmol/kg]
I: Plasma insulin concentration. [pmol/l]
VI : Distribution volume of insulin. [l/kg]
HE: Hepatic extraction of insulin. dimensionless
m1, m2, m3 and m4: Rate parameters min−1

Id: Delayed insulin signal. [pmol/l]
I1: Insulin signal associated with Id. [pmol/l]
ki: Rate parameter accounting for delay between insulin signal
and insulin action.

[
min−1

]
Ri: Rate of appearance of insulin in plasma. [pmol/kg/min]
kd, ka1 and ka2: Rate parameters accounting for subcutaneous
insulin kinetics.

[
min−1

]
X: Insulin in the interstitial fluid. [pmol/l]

Table 2.5: Variables and parameters used in the UVA/Padova glucose-insulin system.

The glucose absorption model is presented in [3]. As shown in Fig. 2.9, it consists of

three compartments, two for the stomach, and the other for the gut. The key feature of

this model is that the gastric emptying rate (kempt) is described more realistically, because

it depends nonlinearly on the amount of glucose in the stomach (Qsto) as shown in the

following equations:

Qsto(t) = Qsto1(t) +Qsto2(t) (2.49)

Q̇sto1(t) = −kgriQsto1(t) +Dδ(t) (2.50)

Q̇sto2(t) = −kempt(Qsto)Qsto2(t) + kgriQsto1(t) (2.51)

Q̇gut(t) = −kabsQgut(t) + kempt(Qsto)Qsto2(t) (2.52)

kempt(Qsto) = kmin +
kmax − kmin

2
{tanh [α (Qsto − bD)]− tanh [β (Qsto − cD)] + 2} (2.53)

α =
5

2D(1− b) , β =
5

2Dc
(2.54)

Ra(t) =
fkabsQgut

BW
. (2.55)
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Figure 2.9: Block diagram of the UVA/Padova glucose absorption model. Adapted from
[3].

Variable/Parameter Unit

Qsto: Total amount of glucose in the stomach. [mg]
Qsto1: Amount of glucose in the stomach (solid phase). [mg]
Qsto2: Amount of glucose in the stomach (triturated phase). [mg]
D: Ingested glucose dose. [mg]
kgri: Rate of grinding.

[
min−1

]
kabs: Rate of intestinal absorption.

[
min−1

]
kempt: Rate of gastric emptying.

[
min−1

]
kmax: Maximum rate of gastric emptying.

[
min−1

]
kmin: Minimum rate of gastric emptying.

[
min−1

]
b: Percentage of the dose for which kempt decreases to (kmax − kmin)/2. dimensionless
c: Percentage of the dose for which kempt is back to (kmax − kmin)/2. dimensionless
f : Fraction of the intestinal absorption which appears in plasma. dimensionless
BW : Body weight. [kg]

Table 2.6: Variables and parameters used in the UVA/Padova glucose absorption model.

In Eqn. 2.50, δ(t) is the impulse function in order to set an initial condition D. The

complete definition of variables is presented in Table 2.6.

The UVA/Padova metabolic simulator v2.10, which is based on the previous model, is

presented in [74]. It is equipped with 300 in silico2 patients (100 adults, 100 adolescents, 100

children) whose parameters have been randomly generated, and as mentioned in Chapter 1,

it is accepted by the FDA in lieu of animal trials. Its distributed version can be obtained

2A in silico patient denotes a synthetic subject which has been designed by combining different parameters
in the simulator.
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Figure 2.10: Scheme of the new UVA/Padova glucose-insulin system. The green and blue
blocks represent the unit processes that has been included and modified, respectively, with

respect to the system presented in [6]. Adapted from [7].

through the Epsilon Group, enhanced by models of insulin pumps and glucose monitors, both

considered subcutaneous. The aforementioned distributed version has a reduced cohort of

30 in silico patients (10 adults, 10 adolescents, 10 children).

One of the main problems of this model is in describing glucose kinetics during hypogly-

caemic events. Therefore, a new version of the UVA/Padova metabolic simulator (version

3.2 for future reference) has been developed [7]. As shown in Fig. 2.10, it includes various

improvements with respect to the previous one that can be summarised as follows.

• It incorporates the following one-compartment model that accounts for the glucagon

counterregulatory response:

Ḣ(t) = nH(t) + SRH(t) (2.56)

SRH(t) = SRsH(t) + SRdH(t) (2.57)
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˙SR
s
H(t) =


−ρ
[
SRsH(t)−max

(
σ2 [Gth −G(t)] + SRbH , 0

)]
ifG(t) ≥ Gb

−ρ
[
SRsH(t)−max

(
σ [Gth −G(t)]

I(t) + 1
+ SRbH , 0

)]
ifG(t) < Gb

(2.58)

SRdH(t) = δ ·max

(
−dG(t)

dt
, 0

)
(2.59)

where H(t) is the plasma glucagon concentration, SRH(t) is the glucagon secretion,

n is the clearance rate, 1/ρ is the delay between static glucagon secretion and plasma

glucose, Gth is a given glucose threshold, σ and σ2 denote the alpha-cell responsivity

to the glucose level, and δ, the alpha-cell responsivity to the glucose rate of change.

• It modifies Eqn. 2.33 to include the effect of glucagon on EGP :

EGP (t) = kp1 − kp2Gp(t)− kp3Id(t) + ψXH(t) (2.60)

ẊH(t) = −kHXH(t) + kHmax [(H(t)−Hb), 0] (2.61)

where XH(t) is the delayed glucagon action on EGP , ψ is the liver responsivity to

glucagon, and 1/kH is the delay between glucagon concentration and action.

• It reformulates Eqn. 2.35 in order to reflect how insulin action increases when blood

glucose decreases under a certain threshold:

Uid(t) =
[Vm0 + VmxX(t)(1 + r1 · risk)]Gt(t)

Km0 +Gt(t)
(2.62)

risk =


0 ifG ≥ Gb

10[f(G)]2 ifGth ≤ G < Gb

10[f(Gth)]2 ifG < Gth

(2.63)

f(G) = log

(
G

Gb

)r2
(2.64)

with r1 and r2 model parameters. This modification is of great importance from

a control standpoint, because it makes the new in silico patients more sensitive to

insulin, and therefore, more difficult to control.

• It includes the following two-compartment model for subcutaneous glucagon transport:

Ḣsc1(t) = −(kh1 + kh2)Hsc1(t) +Hinf (t) (2.65)

Ḣsc2(t) = kh1Hsc1(t)− kh3Hsc2(t) (2.66)

RaH(t) = kh3Hsc2(t) (2.67)

where Hsc1 and Hsc2 are the glucagon concentrations in the first and second compart-

ment, respectively, kh1, kh2, and kh3 are rate parameters, and Hinf is the glucagon

infusion rate. Although stable glucagon formulation does not currently exist [101],

there is some progress with respect to that issue [102,103].
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• It considers the duration of T1DM to generate its new subject cohort. In addition, it

presents more realistic patients’ parameters, and a priori clinical information.

This updated version with the full FDA-accepted cohort of 300 patients will be considered

in the next chapters for validation purposes.

2.4 Cambridge’s Model/Simulator

This model has been developed by the group directed by Prof. Hovorka in Cambridge

(see [8, 104,105]). It is focused on the effect of insulin in glucose distribution, disposal, and

endogenous production, with subcutaneous insulin delivery and CGM. To this end, and as

shown in Fig. 2.11, it has five submodels that describe the glucose kinetics in T1DM as

follows.

GUT ABSORPTION

INSULIN ACTION

INSULIN ABSORPTION

AND KINETICS

Meal

GLUCOSE KINETICS

SUBCUTANEOUS
GLUCOSE KINETICS

S.C. Insulin

Plasma Glucose

S.C. Glucose

Figure 2.11: Block diagram of Cambridge’s model. Adapted from [8].

Insulin action submodel (see Fig. 2.12):

ẋ1(t) = −kb1x1(t) + SIT kb1I(t) (2.68)

ẋ2(t) = −kb2x2(t) + SIDkb2I(t) (2.69)

ẋ3(t) = −kb3x3(t) + SIEkb3I(t) (2.70)

with SIT =
ka1

kb1
, SID =

ka2

kb2
, and SIE =

ka3

kb3
the insulin sensitivities for transport, disposal,

and endogenous production, respectively.
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Figure 2.12: Block diagram of Cambridge’s glucose-insulin system. Adapted from [8].

Glucose submodel (see Fig. 2.12):

Q̇1(t) = −
[

F c01
VGG(t)

+ x1(t)

]
Q1(t) + k12Q2(t)− FR + EGP (t) + UG(t) (2.71)

Q̇2(t) = x1(t)Q1(t)− [k12 + x2(t)]Q2(t) (2.72)

y(t) = G(t) =
Q1(t)

VG
(2.73)

EGP (t) =

EGP0 [1− x3(t)] , EGP ≥ 0

0 EGP < 0
(2.74)

F c01 =
F s01G

G+ 1
(2.75)

FR(t) =

Rcl (G−Rthr)VG, G ≥ Rthr

0 G < Rthr

(2.76)
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with F s01 = F01
0.85 .

Gut absorption submodel (see Fig. 2.13):

Ġ1(t) = −G1(t)

tmax
+Bio ·D(t) (2.77)

Ġ2(t) =
G1(t)

tmax
− G2(t)

tmax
(2.78)

UG =
G2(t)

tmax
(2.79)

tmax =

tmax ceil, UG > UG ceil

tmax UG ≤ UG ceil

(2.80)

with tmax ceil = G2
UG ceil

.

G1 G2

D

1/tmax 1/tmax

Plasma

Figure 2.13: Block diagram of Cambridge’s absorption model. Adapted from [8].

Interstitial glucose submodel (see Fig. 2.14):

Ċ(t) = ka int(G− C)(t). (2.81)

G C
ka int ka int

Figure 2.14: Block diagram of Cambridge’s interstitial glucose model. Adapted from [8].

Subcutaneous insulin absorption/kinetics submodel (see Fig. 2.15):

Ṡ1(t) = u(t)− kaS1(t) (2.82)

Ṡ2(t) = kaS1(t)− kaS2(t) (2.83)

İ(t) =
kaS2(t)

V1
− keI(t). (2.84)
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Figure 2.15: Block diagram of Cambridge’s subcutaneous insulin model. Adapted from
[8].

A detailed description of variables and parameters is given in Table 2.7.

There was a change in notation between [8] and [104], where parameters ka1,2,3 and kb1,2,3

have been reversed. In [105], however, there is an error in Fig. 1, where ka1,2,3 and kb1,2,3

should be swapped around. On the other hand, if one calculates ka1,2,3 with the information

presented in Table 1 of [104], the values obtained differ from the ones listed in Table 1

of [105]. In accordance with Dr. Wilinska’s opinion about this issue, there might be an

error in Table 1 of [104], where ka1,2,3 should replace kb1,2,3. In addition, equations (2.68),

(2.69) and (2.70) are inconsistent in [8]. The activation rate constants ka1,2,3 which multiply

the states xi(t) should be replaced with the corresponding deactivation rate constants kb1,2,3.

Finally, also in that work, Eqn. (2.74) appears with a plus sign instead of a minus sign when

compared to the same equation in the simulator description document.

In contrast to the other simulators, this one includes a submodel of physical exercise by

a single parameter from a log-normal distribution, representing a drop in plasma concentra-

tion. The simulator environment has a virtual population of 18 subjects with T1DM, and

considers the subcutaneous glucose measurement and insulin pump delivery errors. These

virtual subjects were validated with clinical studies in [8]. These were carried out with

an identical closed-loop control algorithm (MPC), and similar results were obtained. The

educational version of this simulator has only 6 virtual subjects. A subset of the individual

parameters has been estimated from experimental data collected in subjects with T1DM,

and others have been drawn from informed probability distributions. An important issue
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Variable/Parameter Unit

Q1 and Q2: Masses of glucose in accessible and non-
accessible compartment.

[mmol]

k12: Transfer rate constant from the non-accessible to the
accessible compartment.

[min−1]

VG: Distribution volume of glucose in the accessible com-
partment.

[L]

UG: Gut absorption rate. [mmol/min]
FC01: Total non-insulin dependent glucose flux. [mmol/min]
FR: Renal glucose clearance. [mmol/L/min]
G: Measured glucose concentration. [mmol/L]
EGP0: Endogenous glucose production extrapolated to the
zero insulin concentration.

[mmol/min]

I: Plasma insulin concentration. [mU/l]
x1, x2 and x3: Remote effect of insulin on glucose distribu-
tion, disposal and EGP , respectively.

x1, x2, [min−1]; x3, dimensionless

ka1, ka2 and ka3: Activation rate constants. ka1, ka2, [min−2 per mU/l]; ka3, [min−1 per mU/l]
kb1, kb2 and kb3: Deactivation rate constants. [min−1]
UI : Insulin mass in plasma. [mU]
ke: Elimination rate constant for plasma insulin. [min−1]
Rthr: Glucose threshold. [mmol/l]
VI : Volume of distribution of plasma insulin. [l]
Rcl: Renal clearance constant. [min−1]
S1 and S2: Insulin masses in the accessible and non-
accessible compartments.

[mU]

UG ceil: Maximum glucose flux from the gut. [mmol/kg/min]
u: Administration of rapid-acting insulin. [mU/min]
ka: Insulin absorption rate constant. [min−1]
G1 and G2: Glucose masses in the accessible and non-
accessible compartments.

[mmol]

tmax: Time to maximum appearance rate of glucose in the
accessible compartment.

[min]

D(t): Amount of carbohydrates ingested. [mmol/min]
Bio: Carbohydrate bioavability of the meal. dimensionless
C: Glucose concentration in the subcutaneous tissue. [mmol/l]
ka int: Transfer rate constant. [min−1]

Table 2.7: Variables and parameters used in Cambridge’s model.

concerns the concept of synthetic subject. It represents the inter-subject variability when

a unique set of parameters is assigned to each individual, and the intra-subject variability

when certain parameters are considered to be time-varying.

2.5 Model/Simulator Comparisons

Here, some pros and cons from the different models/simulators are presented in terms of

their uncontrolled (open-loop) behaviour and are summarised in Table 2.8.

Sorensen’s model was one of the first complete compartmental dynamics which presented

the notion of an average patient that could be tuned parametrically. It allows an immedi-

ate transformation from a normal to a controlled T1DM patient by eliminating the ΓPIR



Chapter 2. Simulation Models in Type 1 Diabetes 38

factor associated with the insulin released from the pancreas. Nevertheless, it has several

drawbacks. It contemplates only intravenous insulin, eliminating the significant delay in the

injection of this hormone, which is of great importance from a subcutaneous control stand-

point. Although in [2] the model capacity for predicting diabetic metabolic abnormalities is

proved, it is also acknowledged that an individualised parameter adjustment is desirable. An

attempt to compensate for the lack of inter-subject variability is made in [87], through the

variation of some physiological parameters. Nevertheless, these parameter variations were

synthesised through the T1DM model, in the absence of data from real T1DM patients.

The GIM model is also compartmental, and represents an average patient that may be

tuned parametrically [4]. Still, in contrast with Sorensen’s model, this one solves the inter-

subject variability problem through a large cohort of in silico subjects [74]. It includes a

glucose absorption model which has several advantages with respect to the one presented

in [95] (see [3]). It also adds models of CGM and subcutaneous insulin delivery, which allow

more realistic simulations. Furthermore, this system has been accepted by the FDA as a

substitute to animal trials in the pre-clinical testing of closed-loop control strategies. The

validity of the UVA/Padova simulation environment is presented in [80], where the design

of the control algorithm employed for the clinical trials was entirely developed using this

simulator. The drawback with respect to Sorensen’s model is that in [74], the glucagon

has not been considered. However, this has been overcome with the incorporation of the

glucagon kinetics, secretion and action models in [7].

From Cambridge’s model, the following may be concluded. It is a simulation environment

designed specifically to support the development of closed-loop insulin delivery systems in

T1DM, whereas in [6] an average T2DM is also obtained. The software allows for a com-

prehensive assessment of an individual, as well as the population in silico study results.

The validity of population-based predictions generated by this simulation environment was

demonstrated by comparison with a clinical study in young subjects with T1DM in an

overnight evaluation (see [8]). Two advantages with respect to the UVA/Padova model are:

the intra-subject variability is induced by adopting time-varying parameters, and a physical

exercise model is included. The drawback is that the glucagon has not been considered. Fi-

nally, the hormonal effects of epinephrine, growth hormone and cortisol have been neglected

in all these models.
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Model/Simulator Pros Cons

Sorensen XImmediate transformation of a
normal to a controlled T1DM pa-
tient.

XInsulin injection is intravenous.

XConsiders glucagon dynamics. XInter and intra-subject variability
are not taken into account.

UVA/Padova XIncludes inter-subject variability. XIntra-subject variability is not in-
cluded (under investigation).

XHas a large cohort of virtual sub-
jects.

XGlucagon secretion depends on
plasma insulin instead of the insulin
level in the alpha cells.

XAn average T2DM patient has
also been obtained through this
model.
XHas a reliable glucose absorption
model.
XAdds models of CGM and CSII
pumps (specific brands).
XIt is accepted by the FDA.

Cambridge XHas a cohort of in silico patients
validated with a clinical study.

XGlucagon dynamics are not con-
sidered.

XIncludes intra-subject variability,
and a physical exercise model.

XIts glucose absorption model is
oversimplified.

XAdds general models of CGM and
CSII pumps.

Table 2.8: Pros and cons of the three models/simulators.

2.6 Conclusion

Comparisons are always difficult and no single answer is possible. Besides the differences

between the simulation environments pointed out in Section 2.5, attention should be paid

to all of the following issues:

• Model uncertainty (dynamics, intra- and inter-patient).

• Nonlinear phenomena.

• Time delays, actuator saturation, measurement noise.

• Real-time implementation.

These items need to be achieved, and in that sense, the inter- and intra-patient variability

cannot be represented adequately in all of these models, except for Cambridge’s model.

On the other hand, the FDA acceptance, which skips animal testing, is only possible for
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the complete UVA/Padova simulator. Sorensen’s model has as a unique advantage over

Cambridge’s model: the inclusion of glucagon, which could be relevant in future control

approaches. Finally, although both the UVA/Padova simulator, as well as Cambridge’s

simulator, are implemented in Matlabr (The Mathworks, Natick, MA), the last one is slower

from a computational point of view, due to the fact that many text files are generated in

the process.



Chapter 3

Robust Control For Blood Glucose

Regulation

3.1 Motivation

The problem of automatically controlling the blood glucose level in patients with T1DM has

been approached in different ways using different models (see [71] for a survey). Solutions

go from PID control [77,106] to heuristic fuzzy-logic procedures or parametric-programming

[107]. One of the main challenges associated with this problem is that T1DM models present

significant sources of uncertainty which are worth considering. In that sense, Robust Control

Theory has been applied in [86,87,96], centred on the uncertainty issue. Also, a LPV model

has been derived in [98] based on Sorensen’s model, and controlled by an H∞ Linear Time

Invariant (LTI) controller in [97, 99]. In addition, due to the nature of the dynamics in

all models, MPC [8, 108–110], nonlinear control design methods [105], LPV and Unfalsified

Control (UC) [84,94] have also been implemented.

This chapter is devoted to the application of the three T1DM models presented in Chap-

ter 2 to the synthesis of H∞ controllers. To this end, firstly, a continuous-time design for

Sorensen’s model is introduced in order to carry on with the work presented in [84]. Then,

focus is put on discrete H∞ methods to test the main characteristics of all the aforemen-

tioned models. Hence, three sources of uncertainty (nonlinearities, inter- and intra-patient

variations) are considered. The first is interpreted as model variations among different lin-

earisation points, while the second, among different subjects. The intra-patient variability

41
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considers the time-varying behaviour within a certain subject. All the four items mentioned

in Section 2.6 will be included in the closed-loop simulation tests.

3.2 Continuous-TimeH∞ Control Applied To Sorensen’s Model

3.2.1 Controller Design

As shown in Section 2.2, this model has two inputs: Γmeal (meal disturbance) and ΓIV I

(insulin infusion). In order to consider subcutaneous glucose measurements, GTP is defined

as the output signal. The linearisation is performed by gridding ΓIV I from 0 to 35 mU/min,

assuming no disturbance (Γmeal = 0 mg/min), which moves the steady state value of GTP

from 183 to 46 mg/dl, respectively. The Bode plots of this grid are represented in Fig. 3.1.

The normoglycaemic condition, which defines the nominal model, is associated with a

concentration of GTP ' 87 mg/dl, produced when the insulin infusion is 22 mU/min. The

similarities between the different plots denote their low level of nonlinearity. It allows

representing the nominal system as an LTI model, which can be reduced from 19 to 6 states

with no major impact (see Fig. 3.2). The modelling error is covered by additive uncertainty

(G−Gr). The difference between all previous curves and the reduced order nominal model

is represented in Fig. 3.3. There, the uncertainty weight W∆(s) covers all additive errors at

all frequencies. Note that this model order reduction is based on a balanced and truncated
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Figure 3.1: Bode plots of Sorensen’s model at different linearisation points.
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Figure 3.2: Bode diagrams of the nominal model (continuous line) and the reduced-order
model (dashed line).

state-space realisation of the original LTI model, whose precision is measured in terms of

its Hankel singular values.
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Figure 3.3: Additive uncertainty (continuous line) and uncertainty weight (dashed line).

A brief explanation of the analysis and design methodology follows (see [111,112]). The

set

G 4= {G = Gr + ∆W∆, ‖∆‖ < 1} (3.1)

known as the additive uncertainty model set, represents the physical phenomena. This
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−

Figure 3.4: Standard feedback loop.

dynamical description, instead of a single model, may include nonlinearities, high order

unknown phenomena, and time delays. Here, Gr(s) is the reduced-order nominal model, and

W∆(s) represents the variation of model uncertainty with frequency. Nominal performance

(NP) is defined as the weighted tracking error of the nominal model Gr(s) measured in terms

of its signal energy, for all perturbations d in a set measured accordingly (see Fig. 3.4):

‖z2‖2 < γ for all ‖d‖2 < 1. (3.2)

Robust stability (RS) is the (internal) stability1 of all possible closed-loops which combine

a single controller K(s) with all elements of set G. Finally, Robust performance (RP) is

defined as the validity of condition (3.2) for all elements of set G. Standard robust control

results guarantee that these conditions are equivalent to:

NP ⇐⇒ 1

γ
‖Wp(s)S(s)‖∞ < 1 (3.3)

RS ⇐⇒ 1

γ
‖W∆(s)K(s)S(s)‖∞ < 1 (3.4)

RP ⇐⇒ 1

γ
µ∆{Tzd(w)} < 1 ∀ω (3.5)

where S(s) = (I +GK)−1 is the sensitivity function, µ∆(·) is the structured singular value,

Tzd(s) the transfer matrix between d and z = [z1; z2] in Fig. 3.4, and γ is a scalable variable.

A sufficient condition to guarantee RP is the so called mixed-sensitivity condition, which

can be used for controller design:

min

γ such that

∥∥∥∥∥∥
 Wp(s)S(s)

W∆(s)K(s)S(s)

∥∥∥∥∥∥
∞

< γ

 . (3.6)

1Internal stability of a closed-loop interconnection is equivalent to the input/output (I/O) stability of all
possible I/O transfer functions in the loop.



Chapter 3. Robust Control For Blood Glucose Regulation 45

The performance weight Wp(s) is selected in order to have a small steady state tracking

error to follow the reference, almost like an integrator. The reference is based on the response

of an average normal patient to a 100 g glucose disturbance at t = 0. This response can be

represented as the impulse response of a second order system [86]:

Pref (s) =
Kw2

n

s2 + 2wnξs+ w2
n

(3.7)

with K = 3900, wn = 0.02 and ξ = 0.7.

The design is performed via theH∞ optimal control method using Linear Matrix Inequal-

ity (LMI) optimisation and considering the following performance and uncertainty weights,

respectively:

Wp(s) =
0.1667s+ 0.05

s+ 0.0025
(3.8)

W∆(s) = 10−4 × 0.1976s3 + 1.779s2 + 4.743s+ 3.953

s3 + 0.2125s2 + 0.0125s+ 0.000125
. (3.9)

The controller designed has order 10, and is reduced to order 8 also based on a balanced

truncated method. The optimal performance/robustness value is γ = 0.9038. Robust

stability and performance and nominal performance necessary and sufficient conditions are

represented in Fig. 3.5, based on equations (3.3)–(3.5).
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Figure 3.5: Robust stability (dashed line) and nominal (continuous line) and robust
performance (dotted line) conditions.
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Concerning the practical limitation of the insulin pumps of 100 mU/min, W∆ can also be

considered as a weight to bound the control signal. As illustrated in the following section,

no further adjustments were necessary in order to limit the insulin injection to the previous

bound.

3.2.2 Results

For the simulations, a meal disturbance which contains 100 g carbohydrate is considered,

and the Lehmann and Deutsch’s model presented in Section 2.2 is used to describe the

rate of gastric emptying Γmeal (see Fig. 2.5). Since there is no simulator for Sorensen’s

model, one was developed in Matlabr. In addition, noise was included as random errors

in the measurement of the glucose concentration, with a band limited value of 5 mg/dl.

The time response of the closed-loop system with measurement noise, injected insulin levels

bounded by 100 mU/min, the meal disturbance of 100 g of glucose, and the delay in glucose

measurements (the insulin injection is intravenous here), can be seen in Fig. 3.6.

The control action shows that there was no saturation of the pump, which tends to a

steady state value of 22 mU/min. This is due to the fact that the reference steady state

is approximately 87 mg/dl. A fact that was also considered when simulating was that the

reference is related to the blood concentration while the output is the interstitial glucose

concentration. Therefore, a 5 min delay was added to the reference in order to assimilate this

behaviour. This value was taken from the computed delay in these two values in Sorensen’s

model.

To close, it can be noted that the output remains in a safe region. The glucose peak

is considerably lower than 180 mg/dl and even lower, under similar analysis conditions, to

the results obtained in [84, 86]. In fact, the difference between the reference and the actual

output is below 13 mg/dl.

3.3 Discrete-Time H∞ Control Applied To T1DM Models

Here, discrete-time H∞ controllers are synthesised to test the main characteristics of all the

T1DM models presented in Section 2. The objective is to compare them in practical scenarios

which include: model uncertainty, time variance, nonlinearities, glucose measurement noise,
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Figure 3.6: Closed-loop response for Sorensen’s averange patient. Above: GC
P (t) (con-

tinuous line), GT
P (t) (dotted line), and the reference signal (dashed line). Below: Insulin

infusion rate.

delays between subcutaneous and plasma levels, pump saturation, and real-time controller

implementation. Because the glucose concentration is measured in mg/dl in Sorensen’s

model and the UVA/Padova simulator, and in mmol/l2 in the Cambridge model, in this

chapter, the glucose concentration will be expressed in mmol/l for comparison purposes.

3.3.1 Sorensen’s Model

The nonlinear model is linearised at nine different interstitial glucose concentrations which

range from 2.56 to 10.17 mmol/`. As mentioned previously, the low level of nonlinearity

21 mmol/l = 18 mg/dl.
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allows the representation of the system as a nominal LTI model plus uncertainty. Fur-

thermore, the nominal model can be reduced from 19 to 6 states with no major impact.

A discrete H∞ controller is designed based on a mixed-sensitivity performance objective

defined as:

min

γ such that

∥∥∥∥∥∥
 Wp(z)S(z)

W∆(z)K(z)S(z)

∥∥∥∥∥∥
∞

< γ

 (3.10)

where S(z) = (I+GK)−1 is the sensitivity function, Wp(z) and W∆(z) are the performance

and additive uncertainty weights, respectively, and K(z) is the controller. Note that this is

the discrete-time version of the performance objective presented in Eqn. 3.6.

The design is performed via the H∞ optimal control method using the loop-shifting

formulae of [113], considering the following weights:

Wp(z) =
0.015z + 0.015

z − 0.999990
(3.11)

W∆(z) =
0.0002494z3 + 0.0001069z2 + 8.882× 10−16z − 2.22× 10−16

z3 − 2.797z2 + 2.606z − 0.8084
. (3.12)

The controller, which provides stability and performance at all different working points, op-

erates with a sampling time of 1 min and has order 10 with a γ = 0.9683. In this simulation,

the reference signal is generated as in Section 3.2, starting from an initial concentration value

of 4.85 mmol/`. The results of two glucose intakes of 100 g each without insulin infusion

(open-loop) and with the controller in place (closed-loop) are depicted in Fig. 3.7.

3.3.2 UVA/Padova’s Simulator

The database of the GIM and the distribution version of the UVA/Padova (v2.10) simulators

were used to obtain a discrete H∞ robust controller which could handle three different

patients with T1DM. One of the patients was the average one proposed in [4]. These three

models were linearised around the glucose level of 5.1 mmol/`. The same design technique

used in Sorensen’s model was used here, but considering the following weights:

Wp(z) =
0.001075z + 0.001075

z − 0.999970
(3.13)

W∆(z) =
0.000127z2 + 0.000244z + 0.0001172

z2 − 1.993z + 0.993
. (3.14)

Also, the same sampling time and measurement noise as in Sorensen’s model were used3,
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Figure 3.7: Above: Uncontrolled simulation in Sorensen’s model. Below: Closed-loop
simulation of Sorensen’s model with the discrete H∞ controller. The continuous (red) line
is the plasma glucose concentration, the (green) squares are glucose measurements, the
(blue) continuous line is the insulin injection rate, the dash (green) lines are the desired
glucose range (3.9 to 8 mmol/`), the dashed (magenta) line indicates the hypoglycaemia

level (3 mmol/`), and the light blue line the severe hypoglycaemia level (2 mmol/`).

and an insulin pump saturation of 30 U/h (OmniPod) was included. The designed controller

has order 16 and is reduced to order 6 with a γ = 2.5359.

In Figs. 3.8, 3.9, and 3.10, the open- and closed-loop responses with two glucose pertur-

bations of 100 g each for all three patients are depicted. In the controlled simulations, the

3The author wanted to compare the controlled simulations with similar measurement error characteristics.
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Figure 3.8: Average adult of the UVA/Padova simulator. Above: Uncontrolled simula-
tion. Below: Closed-loop simulation with the discrete H∞ controller. The line indications

are the same as the ones in Fig. 3.7.

evolution of the average normal patient was used as a reference, according to the parameters

presented in [6].

3.3.3 Cambridge’s Simulator

As mentioned in Section 2, the advantage of this simulator is the intra-patient variability

representation by considering time-varying parameters. Hence, the strategy here is a lineari-

sation of the nonlinear dynamics at different sampling times but with a constant interstitial
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Figure 3.9: Adult #5 of the UVA/Padova simulator. Above: Uncontrolled simulation.
Below: Closed-loop simulation with the discrete H∞ controller. The line indications are

the same as the ones in Fig. 3.7.

glucose concentration. The first virtual subject (there are six in the Simulator Educational

Version) at {0, 60, 120} minutes and a concentration of 5.10 mmol/` were considered. The

parameter variation in this simulator is periodic, hence parameters at 0 and 180 min are

repeated.

Based on these 3 models, and after repeating the procedure followed in the previous

designs, a discrete H∞ controller is obtained which guarantees stability and performance.

In this case, the design is achieved using LMI optimisation [114] and considers the following
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Figure 3.10: Adult #10 of the UVA/Padova simulator. Above: Uncontrolled simulation.
Below: Closed-loop simulation with the discrete H∞ controller. The line indications are

the same as the ones in Fig. 3.7.

weights:

Wp(z) =
0.00475z + 0.00475

z − 0.999990
(3.15)

W∆(z) =
3.177× 10−6z2 + 6.354× 10−6z + 3.177× 10−6

z2 − 1.994z + 0.9935
. (3.16)

A controller of order 11 is obtained and is reduced to order 9 with a γ = 1. As a

consequence, it allows, after an ingestion, the average plasma glucose level to return to a
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Figure 3.11: Subject #1 of Cambridge’s simulator. Above: Uncontrolled simulation.
Below: Closed-loop simulation with the discrete H∞ controller. The line indications are

the same as the ones in Fig. 3.7.

constant and safe value. In Fig. 3.11, the simulated uncontrolled and controlled responses for

Subject #1 after two glucose intakes of 100 g each are represented. The controlled (closed-

loop) response for the same patient with the MPC controller proposed in the simulator is

depicted in Fig. 3.12.

All simulations are based on the following conditions:

• No bolus is applied previous to food ingestion.

• The sampling time and controller application interval is 1 min.

• Glucose measurements and insulin injection are both subcutaneous.
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Figure 3.12: Simulation of Cambridge’s model with their proposed MPC. The line indi-
cations are the same as the ones in Fig. 3.7.

• The Coefficient of Variation (CV) of the error in the continuous insulin injection for

the calibration and for the glucose measurement errors are all 5%.

The closed-loop simulations show that the MPC signal is not enough to guarantee a good

performance by itself. For this reason, a pre-meal insulin bolus is used in these cases. The

aim of this research is to obtain a control signal without any correction bolus, hence the

H∞ controller seems to be better than MPC in this case.

3.4 Conclusion

In this chapter, the design and simulation of closed-loop controlled patients have been in-

strumental as an application of the previous model/simulator analysis presented in Chapter

2. As for (robust) control issues, here the uncertainty has been represented by nonlinearities,

inter- and intra-patient variations, the latter as a time-varying behaviour. For these three

sources of uncertainty and with different discrete H∞ robust controllers applied to three dif-

ferent simulations, a satisfactory answer has been achieved. Nevertheless, the most accurate

control seems to be achieved by Sorensen’s model. This is because the interstitial-plasma

delay in the control signal and the inter- and intra-subject variability are not included.

Therefore, and as Figs. 3.8–3.10, and 3.11 indicate, more realistic scenarios induce a more
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difficult problem, and hence less performance. Also, it tends to be harder when a single con-

troller is used to control a group of T1DM patients. In a real situation, all three sources of

uncertainty mentioned above should be considered simultaneously. In that case, most prob-

ably a robust LTI controller such as the one designed here would not be enough. Therefore,

an exploration of different approaches will be presented in the following chapters.





Chapter 4

A Time-Varying Approach Based

On The H∞ Control Design

4.1 Motivation

In any artificial pancreas scheme based on subcutaneous insulin delivery and/or glucose

measurement, there is great difficulty in dealing with the long actuation/sensing delays, and

also the large inter- and intra-patient variability. Due to the fact that the system is highly

uncertain and time-varying, it is clear that some tuning to patient-specific characteristics is

necessary to achieve high closed-loop performance [115].

One way to tune or adapt to a particular patient would be to perform an in-depth a

priori identification procedure [116], although the complexity of such a procedure, and the

time required to perform it, are likely to render such individualisation infeasible in practice.

Fortunately, recent results seem to be very promising as for model identification from CGM

data (see [117]). Nevertheless, a general model structure could be adapted to a particular

patient by using certain a priori clinical information that is easily obtainable, e.g., the

patient’s Total Daily Insulin (TDI) amount. Here, only adult patients are considered to

present the first results of this algorithm, because a lack of efficacy in adults could lead to

dismissal of possible therapies that could benefit children, the highest-risk population [23].

In this chapter a control model is synthesised by performing system identification on the

ten adult in-silico subjects of the UVA/Padova simulator. A third order model was chosen,

and the model gain is personalised by means of the subjects’ TDI. That personalised model,

57
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whose parameters lack physiological meaning because so-called black-box procedures were

used to identify the model, is employed to synthesise an H∞ controller by solving a mixed-

sensitivity problem. TheH∞ control, which to my knowledge has never before been tested on

the complete adult cohort of the UVA/Padova metabolic simulator, represents an alternative

approach to other well known control algorithms. This technique provides a good balance

between insulin dosing and glucose tracking, by a practical, low order controller.

In order to achieve safe hypoglycaemia control, an IFL has been added to adequately

regulate an estimate of the patient’s Insulin on Board (IOB). In addition, a SM is used to

perform better control based on a prediction, over a 20 minute horizon, of future glucose

levels. Auxiliary modules that modify insulin dosing when safety alarms are detected have

been applied in several papers, demonstrating their importance in achieving safe blood

glucose control [118–122].

4.2 Model Identification & Patient Tuning

As shown in Chapter 2, several models that describe the glucose-insulin dynamics have been

developed [2, 6, 8]. However, the model parameters typically have physiological significance

and cannot easily be estimated in real patients. In addition, for control synthesis a simple,

low-order model is frequently more desirable than a complex, sophisticated model [123].

Therefore, a low-order control-relevant model is identified using a black-box approach, and

subsequently adjusted based solely on a priori patient data, as in [124]. The procedure is

described next.

For each in-silico adult of the distribution version of the T1DM simulator, a linear model

of the transfer characteristics from the insulin delivery (pmol/min/kg) to the deviation

from a particular glucose concentration (mg/dl) is identified. Three different interstitial

glucose concentrations1 are considered here: 90, 120 and 150 mg/dl to capture the frequency

response at different operating points. Hence, three linear models are obtained for each

patient.

The identification process for a particular glucose concentration is as follows. First,

the basal insulin (Ib) that produces the particular glucose concentration at steady state is

obtained. Then, Ib is added to a sinusoidal insulin sweep. Over 12 h, and with a sampling

1The simulator has access to that particular variable without the CGM measurement noise.
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Figure 4.1: Bode diagram of all 10 virtual adult patients at three different glucose levels
(thin lines) and G0(z).

time of Ts = 10 min, this signal is infused through a CSII pump, and the glucose deviation

is captured.

Third-order models were obtained in all 30 cases using subspace identification algo-

rithms [125], [126]. Considering these models, the following discrete-time transfer function

is defined:

G0(z) = − c0z
−3

(1− z−1p1)(1− z−1p2)(1− z−1p3)
(4.1)

where c0 = 0.132 and the poles are: p1 = 0.965, p2 = 0.95 and p3 = 0.93. Figure 4.1 depicts

the Bode diagrams of G0(z) and all identified models. The gain of G0(z) is intentionally

overestimated, and its phase is purposefully chosen lower than the phase of all identified

models, in order to obtain robust controllers as in [124]. From previous experience, a
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controller based on this nominal model could be too conservative and consequently may

lead to poor performance. In order to limit this conservatism, an individualised transfer

function G0,j(z) is defined:

G0,j(z) = − crjz
−3

(1− z−1p1)(1− z−1p2)(1− z−1p3)
. (4.2)

Here, as in [124], rj = 1800/TDIj is based on the 1800 rule (see [127]) and represents

the gain, which adapts to the patient’s TDI, where the TDI of the patient with index j is

denoted by TDIj , and

c =
60

100
(1− p3)(1− p2)(1− p1)Ts (4.3)

is a constant that scales units. Therefore, crj is adapted to each patient instead of using

the constant value c0.

4.3 Controller Design

The glucose controller consists of 3 parts:

1. an H∞ controller;

2. a SM;

3. an IFL.

- nr

−

e
- KSM,j -

usm

IFL
u
- Adult #j -

gr
�SM

σ

�
�
�	

��	

6

Figure 4.2: Block diagram of the closed-loop.

A schematic of the closed-loop system, considering one adult from the simulator database,

is depicted in Fig. 4.2, in which KSM,j is the H∞ controller modified by the SM, g is the
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measured glucose concentration, usm is the control signal proposed by KSM,j , u is the insulin

input that is finally commanded to the CSII pump, r and e are, respectively, the reference

and error signals, and σ is a switching signal, which is defined in Section 4.3.2.

4.3.1 H∞ Controller

H∞ has proven to be a practical controller synthesis approach when using LTI plant models.

The low order robust controller characterised by H∞ naturally performs an effective tradeoff

between the strength of control action and the tracking error. This compromise is known as

the mixed-sensitivity problem and the optimal solution in terms of the lowest gain between

the input disturbance and the output errors is achieved by this optimal control procedure.

Consider Adult #j from the simulator database and let G0,j(z) be its nominal model. A

discrete H∞ controller Kj is synthesised solving a mixed-sensitivity problem with a perfor-

mance objective as the one defined in Eqn. 3.10:

min

γ such that

∥∥∥∥∥∥
 Wp(z)S0,j(z)

W∆,j(z)Kj(z)S0,j(z)

∥∥∥∥∥∥
∞

< γ

 . (4.4)

Here, S0,j(z) = (1 +G0,j(z)Kj(z))
−1 is the sensitivity function, Wp(z) and W∆,j(z) are the

performance and control weights, respectively, and the sample-period is 10 min.

To reduce the risk of hypoglycaemia, W∆,j(z) resembles a derivative in order to penalise

fast changes in the insulin delivery. Regarding Wp(z), it is chosen to be close to an integrator,

i.e., large at low frequencies, to induce fast tracking of the safe blood glucose levels.

In all cases, Wp(z) and W∆,j(z) are as follows:

Wp(z) =
0.01434z − 0.01365

z − 0.9993
(4.5)

W∆,j(z) = ISj ×
0.001992(z − 1)

z − 0.992
(4.6)

where ISj is the individualised gain based on the subject’s sensitivity to insulin, which is

related to the following a priori clinical information:

• the average TDI regimen, in units of insulin;
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• the Correction Factor (CF), which is the maximum drop in mg/dl per unit of insulin;

• the Carbohydrate Ratio (CR), which is used to compute the meal bolus as a function

of the meal size.

IS values greater than unity are desired for patients with high insulin sensitivity, in order

to increase the weighting on the control signal, and thereby reduce the amount of insulin

infused. In general:

↓ TDI and ↑ {CF, CR} ⇒ ↑ insulin sensitivity ⇒ IS > 1

and vice versa. It means that low TDI and high CF and CR are likely related to patients

with high insulin sensitivity and therefore, IS should be defined greater than unity, and vice

versa. In order to quantify the effect of CR and CF, we define Cav = αCR + βCF, with

α ≥ 0, β ≥ 0, and α + β = 1. Units of α and β are [U/g] and [UdL/mg], respectively.

Here, the solution is obtained choosing α = 0.5 U/g, and β = 0.5 UdL/mg. However, if

one coefficient (CR or CF) needs to be emphasised because it is more important or accurate

than the other, then α and β can be selected with different weightings.

The TDI and the Cav of an adult from the simulator database, should be selected as the

reference values: TDIr, Cavr and ISr = 1. Due to the fact that both the patient’s model

and also its design weight W∆,j(z) both depend on its a priori TDIj , any adult from the

database can be selected as the reference. Without loss of generality, patient #9 has been

considered as a starting point. Finally, for Adult #j the ISj is calculated as follows:

ISj =
TDIr

TDIj

Cavj

Cavr
. (4.7)

Therefore, if Adult #j is likely to be more sensitive to insulin than Adult #9, ISj will

be greater than unity, otherwise it will be less than unity.

4.3.2 Safety Mechanism

In order to reduce the risk of hypoglycaemia and hyperglycaemia, a SM is included to modify

the H∞ controller output (uK). As shown in Fig. 4.3, the SM is composed of a Decision

Algorithm (DA) and 2 prediction strategies:
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• Linear Extrapolation (E) to predict future glucose levels considering the last 3 glucose

measurements;

• Kalman Filtering (F) to predict the levels, rates of change, and acceleration, of future

glucose concentrations.

rg

-

- F

E

ĝF

ĝE

-

-
DA -

σ

Figure 4.3: Block diagram of the SM including the decision (DA) and prediction (E and
F) algorithms.

Any one prediction strategy has disadvantages compared to others, and a safety module

based on only one single strategy would suffer from these weaknesses as a consequence. In

this work the use of parallel prediction strategies E and F, in conjunction with a DA, allows

us to exploit the strengths of the individual algorithms, to better predict dangerous future

glucose scenarios and thereby to create a more robust system [128].

Both E and F have a sample-period of 10 min and a forecasting horizon of 20 min. In [128]

a similar approach is presented, but considering a greater number of prediction algorithms

and a different DA. Here, the SM process can be described as follows.

• At every sampling time k, the glucose is measured (g) and the prediction algorithms

estimate the future glucose level (ĝ). According to the following 4 regions:

– Region λ1: ĝ < 90 mg/dl

– Region λ2: 90 ≤ ĝ ≤ 110 mg/dl

– Region λ3: 110 < ĝ ≤ 220 mg/dl

– Region λ4: ĝ > 220 mg/dl

the DA defines the variables

ni,p,k =


1 if ĝp,k ε Region λi

0 otherwise
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∀ i ε {1, ..., 4} and p ε {E,F}. The variable ĝp,k represents the estimated glucose value

at step k + 2 (twenty minutes later) by the prediction algorithm p as predicted at

actual step k.

• Finally, the switching signal σ is defined in the following Matlab-like code.

if n1,F ≥ 1 && n1,E ≥ 1 || g < 90 mg/dl

σ = 1;

elseif n2 ≥ n3 && n2 > 0

σ = 2;

elseif n3 ≥ n4 && n3 > 0

σ = 3;

else

σ = 4;

end

usm = ρσuK;

where ni =
∑

p,m ni,p,m, ni,p =
∑

m ni,p,m, ρ1 = 0, ρ2 = 0.5, ρ3 = 1, ρ4 = 1.25 and

m = {k − 2, k − 1, k}.

Therefore, if low glucose values are predicted, the insulin delivery is either suspended or

attenuated. On the other hand, if high glucose values are predicted, the insulin delivery

proposed by the H∞ controller is increased.

4.3.3 Insulin Feedback Loop

The main risks of insulin therapy are an overdose of insulin and a high level of IOB in the

body. An estimate of IOB is made and employed to prevent insulin stacking due to frequent

insulin boluses. Therefore, an IFL as shown in Fig. 4.4 is included at the KSM,j output

to inhibit the insulin infusion when the plasma insulin concentration is estimated to be

excessive [121,122]. The SIM block is the Subcutaneous Insulin Model presented in Section

2.3 and employs the mean population values for all its parameters. The model is discretised

with a sample-period of 10 min and it is used to estimate the plasma insulin relative to

the basal conditions. The parameter µ is
ζ(Ipe−Ipb)

Ipb
, where Ipe and Ipb are the estimated

current and basal plasma insulin levels, respectively, and ζ is a tuning gain, fixed to 7.5
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for all subjects according to the magnitude of the signals involved and the desired closed-

loop performance. Its selection depends on the compromise between having a slow (high

ζ) or a more aggressive and fast (low ζ) response, after verifying the closed-loop stability.

Consequently, if the estimated insulin concentration is higher than its nominal value the

control signal is reduced by an amount proportional to that difference.

-
e

KSM,j

�
�	

�
�	

-
usm n
−

�SIM�

HH
H

��
� µ

6

-
u

Figure 4.4: Block diagram of KSM,j and the IFL.

4.4 Results

The complete UVA/Padova T1DM simulator, which is accepted by the FDA in lieu of

animal trials in the development of an artificial pancreas [74], is used to test the closed-loop

performance.

Simulations are performed for all 101 in silico adults (one is an average patient), consid-

ering unannounced meals, a CSII pump, CGM as sensor, and two different protocols, which

are presented in Table 4.1. Protocol #1 includes three meals per day, while protocol #2 is

used to evaluate the safety of the algorithm when long fasting periods appear. In addition,

in both protocols the simulation starts in the fasting state of each subject, and the basal

insulin is infused during the first 4 hours. Then, the glucose controller takes over the insulin

delivery considering a constant setpoint. A postprandial period (PP) is defined as the 5

hour time interval following the start of a meal, and night (N) is defined as the period from

00:00 to 7:00 AM.

Breakfast 1 Lunch 1 Dinner 1 Breakfast 2 Lunch 2 Dinner 2 Breakfast 3 Lunch 3 Dinner 3
Time gCHO Time gCHO Time gCHO Time gCHO Time gCHO Time gCHO Time gCHO Time gCHO Time gCHO

#1 7 AM 50 2 PM 60 8 PM 50 6 AM 50 1 PM 70 7 PM 50 7 AM 50 1 PM 65 9 PM 55
#2 7 AM 50 - - 8 PM 60 - - 12 PM 55 9 PM 50 7 AM 50 2 PM 55 8 PM 50

Table 4.1: Protocol #1 and #2. Here gCHO stands for grams of carbohydrates.
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IIR = 1.315 U/h

IIR = 1.35 U/h

Figure 4.5: Simulation of CGM noise (above) and subject’s sensitivity to insulin (below).

There are various issues that the glucose controller has to manage. Simulation examples

of the high measurement noise and subject’s sensitivity to insulin are depicted in Fig. 4.5.

In order to represent the latter, Adult #7 of the T1DM simulator is considered. As shown

in the aforementioned figure, when the insulin infusion rate is 1.315 U/h, the blood glucose

level tends to 90 mg/dl. On the other hand, when the insulin infusion rate is 1.35 U/h,

the blood glucose level decreases below 70 mg/dl. Note that, the difference between the

two infusion rates is 0.035 U/h, while an insulet Omnipod has a 0.05 U/h increment. This

means that small errors in the infusion rate may lead to hypoglycaemic events.

The glucose responses to protocol #1 are depicted in Fig. 4.6, employing differing colors

to differentiate between risky and safe situations. Note that the glucose graph is mainly

green and the insulin graph blue, which means that glucose levels are mostly near the safe

values, and that the insulin injection is generally low.
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Figure 4.6: Closed-loop responses for the 101 in silico adults to protocol #1. Above:
Blood glucose [mg/dl]. Below: Insulin [U/h].

The average time responses to both protocols are depicted in Fig. 4.7. As shown in

that figure, large insulin spikes appear after meals. Then, the insulin infused is reduced and

thereafter, a constant amount of insulin is administered on average.

The CVGA and the average results for both protocols are presented in Fig. 4.8 and

Table 4.2, respectively. In Table 4.2 the overall (O), PP and N time intervals are analysed

separately. Because of the high measurement noise2, a reduced closed-loop bandwidth has

2In [74] it is anticipated that the real sensor errors would tend to be smaller during controlled inpatient
clinical trials.
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Figure 4.7: Average closed-loop responses for the 101 in silico adults to protocol #1
(above) and to protocol #2 (below). The mean ±1 STD values are represented by vertical

bars, every 30 minutes.

been proposed. Therefore, higher blood glucose peaks appear during the first day of trial

due to the lack of insulin. Consequently, and furthermore because each day of the protocol

has similarly sized meals, both the CVGA plot, as well as the average results, related to

protocol #1 are computed based on the results of the third day. The average time response

to that day is depicted in Fig. 4.9. On the other hand, the CVGA plot and the average

results related to protocol #2 are obtained considering the data from the second day, to

include its long fasting period.

As shown in Table 4.2, for both protocols the proposed controller achieves meal glucose
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Protocol #1 #2

Mean BG [mg/dl]

O 148 154

PP 176 177

N 116 135

Max BG [mg/dl]

O 226 220

PP 229 224

N 142 183

Min BG [mg/dl]

O 96 108

PP 108 114

N 100 107

% time in [70 180] mg/dl

O 75.9 75.5

PP 54.2 54.4

N 99.5 91.4

% time > 300 mg/dl

O 0.1 0.0

PP 0.3 0.1

N 0.0 0.0

% time > 180 mg/dl

O 24.0 24.5

PP 45.8 45.6

N 0.4 8.6

% time < 70 mg/dl

O 0.1 0.0

PP 0.0 0.0

N 0.0 0.0

LBGI 0.1 0.0

HBGI 4.3 4.6

TDI [U] 30.8 29.3

Table 4.2: Average results for the 101 adults to protocol #1 and #2.
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Figure 4.8: CVGA of all the 101 closed-loop responses to protocol #1 (circles) and
protocol #2 (stars).
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Figure 4.9: Average closed-loop response for the 101 in silico adults to the third day of
protocol #1. The mean ±1 STD values are represented by vertical bars, every 30 minutes.

values that are less than, or equal to, 154 mg/dl, which is in accordance with recommenda-

tions made by the ADA [9]. Therefore, due to the fact that hypoglycaemia occurs only for

one subject, we conclude that safe hyperglycaemic control has been achieved.

Although meals are unannounced and there is not any particular adjustment for any

patient, besides the automatic one at the controller design stage, a minimal High BG Index

(HBGI < 5.0) and a minimal Low BG Index (LBGI < 1.1) were achieved in both protocols.
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Figure 4.10: Average cumulative time in range to protocol #1 (left) and #2 (right). The
mean ±1 STD values are represented by the filled areas.
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Figure 4.11: Above: Average IFL signal for the 101 in silico adults to the third day of
protocol #1. The mean ± 1 STD bar is plotted every 30 minutes. Below: The mean minus
one STD value of the 101 closed-loop night response to protocol #1 with (continuous line)

and without (dashed line) the SM.

In order to reflect how the IFL helps to avoid postprandial hypoglycaemia, the IFL signal

obtained considering the last day of protocol #1 is depicted in Fig. 4.11. As was mentioned

above, a large insulin spike appears after a meal. Consequently, as uifl starts to increase the

insulin infused u = usm−uifl starts to be reduced. This process avoids insulin overdosing, and

therefore mitigates postprandial hypoglycaemia. The usefulness of the SM is also reflected

in Fig. 4.11. For protocol #1, the mean minus one STD value obtained every 30 minutes for

all 101 adults, both with and without the SM, are compared. As illustrated, the SM assists

the algorithm in preventing low glucose outcomes. For how long each value of σ is selected

is represented in Fig. 4.12. According to this figure, the algorithm settles on σ = 3, the

unscaled H∞ controller, more than 70% of the time in both protocols. The last situation

is also reflected in Table 4.2 and Fig. 4.10 in which the percentages of time in the range
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Figure 4.12: Percentage of time each value of σ is selected. Left: protocol #1. Right:
protocol #2.

[70, 180] mg/dl are presented. This is a desirable situation, because the selection of this

control implies that the glucose values tend to remain in a safe region. Hence, according

to the results obtained, it could be concluded that a safe hyper- and hypoglycaemia blood

glucose control has been achieved. Because the UVA/Padova metabolic simulator does not

include intra-patient variations, that scenario could not be tested. However, the PA has

proved robust to large inter-patient variations. In addition, parameter ISj could also be

modified to a controller that is either more, or less, aggressive, depending on whether the

subject’s sensitivity to insulin changed drastically over time. Finally, results for the standard

open-loop basal-bolus treatment, with boluses delivered at the time of meal ingestion, are
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Figure 4.13: CVGA of all the 101 closed-loop responses to protocol #1. (Circles) PA.
(Stars) OBT overestimating the bolus sizes by 30%.
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Control Strategy PA 70% of OB OBT 130% of OB

Mean BG [mg/dl]

O 148 144 127 110

PP 176 165 143 125

N 116 119 109 99

Max BG [mg/dl]

O 226 199 175 162

PP 229 202 178 164

N 142 129 117 115

Min BG [mg/dl]

O 96 115 99 73

PP 108 119 105 80

N 100 115 101 76

% time in [70 180] mg/dl

O 75.9 86.5 95.9 92.2

PP 54.2 73.6 91.8 94.6

N 99.5 100 100 91.2

% time > 300 mg/dl

O 0.1 0.0 0.0 0.0

PP 0.3 0.0 0.0 0.0

N 0.0 0.0 0.0 0.0

% time > 180 mg/dl

O 24.0 13.5 4.1 1.9

PP 45.8 26.5 8.2 3.7

N 0.4 0.0 0.0 0.0

% time < 70 mg/dl

O 0.1 0.0 0.0 5.9

PP 0.0 0.0 0.0 1.7

N 0.0 0.0 0.0 8.8

Table 4.3: Comparison between the average results for the 101 adults to protocol #1
obtained with the PA, with an OBT, with a 30% underestimated OBT, and with a 30%

overestimated OBT.

presented in Table 4.3 for comparison. As expected, because the PA considers unannounced

meals, better performance is obtained with an OBT. However, in practice the meal is

sometimes wrongly estimated, and as a result the bolus size is not appropriate. In order

to illustrate the risk of that situation, the CVGA obtained with the PA and with a 30%

overestimated OBT is presented in Fig. 4.13.

4.5 Conclusion

A controller structure is designed focused on hyper– and hypoglycaemia protection. The

system identification is based on the 10 subject cohort, in order to mimic a reduced spectrum

of information present for controller design, and to design a controller that is suitably safe.

The robustH∞ controller is synthesised via a mixed-sensitivity problem with weights focused

on maintaining the glucose level near to the reference value while being cautious with the

insulin injection. The IFL is intended as a postprandial hypoglycaemia risk reduction based
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on the IOB estimation. Finally, the SM considers an estimation of future glucose levels

in order to maintain the patient’s glucose concentration in a safe region. The method is

practical because it only uses a priori patient information that is easily obtainable, and

works for both different patients and unannounced meals. For validation purposes, the full

cohort of the 101 subject simulator was employed to rigorously test the proposed control

strategy, showing good performance and minimal hyper– and hypoglycaemia risks.



Chapter 5

Switched LPV Glucose Control in

Type 1 Diabetes

5.1 Motivation

In the previous chapter, a robust H∞ controller with a so-called SM and IFL was developed

to reduce the risks of hyper- and hypoglycemia in T1DM [129]. A time-varying controller

that reproduces this H∞ control structure, but in an LPV framework, was presented in [130]

and achieved similar results. Here, I continue to pursue the LPV controller framework. The

contribution of this chapter is to consider a switched LPV controller that switches between

a selection of multiple LPV controllers that have been designed for slightly different tasks.

Specifically, the possibility of switching between only two LPV controllers is investigated,

where one controller is dedicated to dealing with large and persistent hyperglycemic ex-

cursions, e.g., as occur after a meal, and the second controller is responsible for glucose

control at all other times. The proposed strategy results in a controller that is conservative

most of the time but switches into an “aggressive” mode when the need arises. In this

chapter the “need” is based purely on CGM feedback, with no need of meal announcement,

via an estimator that detects persistent high glucose values. This is akin to the proposal

of [131]. However, the notion of switched LPV control can be expanded to other cases,

e.g., for the controller to be triggered into a “meal” mode by means of an auxiliary meal-

detection algorithm [132,133], or by user notification. In this work simulation scenarios with

only unannounced meals are investigated, as this is, in some sense, the most difficult case

75
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with respect to correcting hyperglycemia and preventing controller-induced hypoglycemia.

Simulations are performed using the FDA accepted UVA/Padova metabolic simulator [134].

This chapter focuses on switching to improve the controller’s response with respect to

hyperglycemia. However, the proposed switching strategy is inherently flexible, and exten-

sible to a variety of other scenarios also, e.g., in order to deal strategically with exercise.

Analogously as with meal-related hyperglycemia, the proposed switching framework would

allow to design to handle hypoglycemia that typically follows exercise, by strategically in-

cluding modes, e.g., where exercise is inferred from CGM trends, or through an auxiliary

exercise detection mechanism, or by user input. However, the exercise component is not

explicitly investigated in this chapter, because the FDA accepted UVA/Padova simulator

currently has no means of simulating a person’s exercise response.

The outcome produces comparable or improved results with respect to previous works,

and a very flexible procedure that opens the possibility of taking into account, at the design

stage, unannounced meals and/or patients’ physical exercise.

5.2 Main Results

Two LPV controllers are designed for each in silico Adult #j of the complete UVA/Padova

simulator: Ki,j with i ∈ {1, 2}. Controller K1,j is designed to control most of the time,

while K2,j is applied only when high and rising glucose values are estimated, e.g., after a

meal. Because this strategy can estimate decreasing glucose values as well, perturbations like

physical exercise may be detected and managed by another controller that was purposefully

designed for such situations.

5.2.1 Patient design model

The model structure presented in Section 4 is considered here to design both K1,j and K2,j .

The main advantage of such a model structure is that it can be personalized based solely on

a priori clinical information that can easily be obtained with high accuracy. Therefore, for

each in silico Adult #j, the following individualized discrete-time transfer function Gi,j(z)
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from the insulin delivery input to the glucose concentration output is defined:

Gi,j(z) = − Ficrjz
−3

(1− z−1p1)(1− z−1p2)(1− z−1p3)
, (5.1)

where Fi is a design factor (unitless) defined in (5.2) and (5.3), rj = 1800/TDIj , which

is based on the 1800 rule [127], adapts the model’s gain to the TDI of Adult #j (TDIj),

p1 = 0.965, p2 = 0.95 and p3 = 0.93 are the poles, and c is a constant that scales units and

sets the correct gain. The factor Fi is defined as follows:

F1 =


F ?1 if F ?1 < 2

2 otherwise

(5.2)

F2 =


0.7F1 if F1 < 1

F1 if F1 > 2

(0.3F1 + 0.4)F1 otherwise

(5.3)

where:

F ?1 =



M/Mj if Mj < M and CRj < CR

CRj/CR if Mj > M and CRj > CR

M · CRj/
(
Mj · CR

)
if Mj < M and CRj > CR

1 otherwise

(5.4)

with Mj and CRj the body weight and the carbohydrate ratio, respectively, of Adult #j,

and with M and CR, the mean population values based on the 10 virtual adult patients

of the distribution version of the UVA/Padova simulator. This more cautious decision has

been made in order not to over-design with respect to the complete simulator. Instead,

the TDI is readily and accurately obtainable from subjects, hence in that case, the value is

based on the complete cohort of adults.

The factor F1 is defined to make a finer adjustment to the model’s gain, including the

effect of both M and CR. Thus, patients with low M and high CR are associated with an

F1 value greater than unity, and therefore, with a more conservative model. On the other
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Figure 5.1: Augmented model for controller design.

hand, F2 is intentionally smaller than F1 in order to obtain a more aggressive control law

when high and rising glucose levels are detected. However, according to the definition of F2,

the more sensitive to insulin the patient, the more conservative the model, and, therefore,

the less aggressive the control law. For example, if F1 > 2, the model’s gain is not reduced

to design K2,j .

5.2.2 Controller Design

Here, the Matlab Robust Control ToolboxTM was used to compute the controllers. Because

that toolbox provides a solution only to the continuous-time LPV control synthesis problem,

the discrete-time plant model Gi,j(z) is converted to the continuous-time plant model Gi,j(s)

at the design stage. However, the desired control system operates in discrete-time, therefore

the derived continuous-time control law is converted to a discrete-time control law later,

prior to implementation.

The augmented continuous-time model for controller design is depicted in Fig. 5.1, where:

Pi,j(s) =


0 1

1 −Gi,j(s)
1 −Gi,j(s)

 , (5.5)

r and e are, respectively, the reference and error signals, u is the control action, and Wu,i

and Wp,i(s) are the design weights. As shown in Fig. 5.1, two parameters have been in-

cluded in each augmented model in order to adapt the controller during the closed-loop

implementation. The time-varying parameters are θ1(t) = 110 mg/dl
g(t) and θ2(t) =

ipe(t)
ipb

. The
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first parameter is real-time measurable and depends on the glucose level g(t) measured by

the CGM. The second parameter depends on [ipe(t), ipb], which are the estimated current

and basal plasma insulin levels, respectively. The estimation is performed through the sub-

cutaneous insulin model proposed in [4], considering its mean population values. In the case

of ipe(t), the input to the model is the current injected insulin, and in the case of ipb, the

basal insulin dosage. Note that ipb can be obtained off-line, before the simulation.

In order to design both LPV controllers, the performance and actuator weights, which

are closely related to the ones presented in Chapter 4, are defined as follows:

Wp,i(s) = α
sT1 + 1

sT2 +Ai
, (5.6)

Wu,i =:


 0 1

− 1
R2

2
− 2
R2

 0

1


[θ1(t)+θ2(t)]R1,i

2R2
2

[
0 1

]
0

 (5.7)

=:

 Au,i Bu,i

Cu,i(t) 0



with T1 = 200, T2 = 105/7, Ai = {8, 7}, α = 3, R1,i = {1/4, 1/8} and R2 = 104/18. Here

Cu,i(t) is linear in the time-varying parameters, therefore, as they increase, Wu,i forces a less

aggressive control. According to these parameters, both design weights related to K2,j are

defined slightly less conservatively than those related to K1,j . The weight Wp,i(s) is chosen

to be a low-pass filter to induce fast tracking of the safe blood glucose levels. On the other

hand, note that in the case of time invariant θ1(t) = θ1(0) = θ10 and θ2(t) = θ2(0) = θ20

∀t ∈ [0,∞), then:

Wu,i(s) = (θ10 + θ20)
sR1,i

2 (R2s+ 1)2 (5.8)

is LTI and resembles a derivative at low frequencies. Therefore, it helps to penalize fast

changes in the insulin delivery. In addition, the model is strictly proper, in order to have

the closed-loop system affine in the time-varying parameters.

The parameter θ(t) = [θ1(t), θ2(t)]T is constrained to lie within the rectangular sets

P1 = [0.2, 5]× [0, 8] and P2 = [0.2, 1]× [0, 8] for K1,j and K2,j , respectively, according to the

expected values of g(t) and ipe(t). Therefore, both sets P1 and P2, which are depicted in
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Figure 5.2: Glucose-insulin regions P1 and P2.

Fig. 5.2, have v = 4 vertices. An increase in θ1(t) due to a low glucose level and/or in θ2(t)

due to a high level of IOB will reduce fast and aggressive increases in insulin injection.

Because the augmented open-loop model matrices (see Fig. 5.1 and Eqns. (5.6) and (5.7))

depend affinely on the parameter θ(t) = [θ1(t), θ2(t)]T , and that the parameter regions are

convex polytopes with a finite number of vertices (see Fig. 5.2), the optimization problem

related to the LPV controller synthesis can be stated in terms of a finite number of Linear

Matrix Inequalities (LMIs). Specifically, for each LPV controller, the problem is solved in

terms of 2v+ 1 LMIs, i.e., a common Single Quadratic Lyapunov Function (SQLF) for each

set of v = 4 vertices. Note that the vertex controllers can be synthesized off-line.

During the implementation phase, the two LPV controllers for i = 1, 2 can be computed

as follows:

Ki,j [θ(t)] =
v∑
`=1

η`(t)Ki,j(θi,`) (5.9)

with

θ(t) =

v∑
`=1

η`(t)θi,` and

v∑
`=1

η`(t) = 1, (5.10)
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where η`(t) ≥ 0 ∀t ∈ [0,∞) are the polytopic coordinates of the measured parameter θ(t),

and θi,` are the vertices of Pi.

One of the problems of the LPV control is known as the “fast poles” problem. By “freez-

ing” any point in the parameter variation set, the resulting LTI model usually presents a

small number of poles with a small (i.e., large negative) real part [135, 136]. Fast poles

lead to problems from the practical point of view, e.g., integration and/or implementation

becomes difficult with these fast dynamics. The approach utilized to deal with these dif-

ficulties is LPV pole placement [136]. Through LMI constraints, the objective of the LPV

pole placement is to keep the poles of each LTI closed-loop system, resulting from holding

the parameter fixed at each point of the parameter variation set, in a prescribed region

of the complex plane. Therefore, in order to solve numerical issues in the implementation

and/or simulation, for each LPV controller, the (continuous-time) closed-loop poles are con-

strained to the region D =
{
q ∈ C : − 2π

100 < Re(q) < 0
}

, i.e., at least ten times slower than

the controller sampling time Ts = 10 min.

Before implementation, each polytopic LPV controller is converted to a representation

which is affine in the time-varying parameters. Finally, a trapezoidal LPV state-space

discretization is applied at the implementation stage (see pp. 143-169, [137]).

5.2.3 Stability and Performance Analysis

Note that the design was performed by computing a SQLF for each controller. In order

to guarantee closed-loop stability and performance under arbitrary switching amongst con-

trollers, a common SQLF is sought for both LPV controllers [138].

The block diagram of the closed-loop is depicted in Fig 5.3, where:

Lj =


0 Wu,i

Wp,i −Wp,iG1,j

1 −G1,j

 . (5.11)

Only G1,j(s) is considered in the analysis, because it represents the “real” transfer-

function (G2,j(s) is a fictitious system) and therefore, describes the patient’s glucose-insulin

dynamics more accurately.
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Figure 5.3: Feedback interconnection of plant and controller.

To proceed, the following arguments will be used:

• The dependence of the state space matrices of both LPV controllers on the parameter

θ(t) is affine.

• From Eqn. (5.7), only the output matrix Cu,i of Wu,i is a function of θ(t).

Therefore, considering that:

Wu,i ≡

 Au,i Bu,i

Cu,i(θ(t)) 0

 (5.12)

Wp,i ≡

 Ap,i Bp,i

Cp,i Dp,i

 (5.13)

and

G1,j ≡

 Ag,j Bg,j

Cg,j 0

 (5.14)

then

Lj ≡


Al,j Bl,j,1 Bl,j,2

Cl,j,1(θ(t)) Dl,j,11 Dl,j,12

Cl,j,2 Dl,j,21 Dl,j,22

 (5.15)
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where

Al,j =


Ag,j 0 0

0 Au,i 0

−Bp,iCg,j 0 Ap,i

 (5.16)

Bl,j =
[
Bl,j,1 Bl,j,2

]
=


0 Bg,j

0 Bu,i

Bp,i 0

 (5.17)

Cl,j(θ(t)) =

Cl,j,1(θ(t))

Cl,j,2

 =


0 Cu,i(θ(t)) 0

−Dp,iCg,j 0 Cp,i

−Cg,j 0 0

 (5.18)

and

Dl,j =

Dl,j,11 Dl,j,12

Dl,j,21 Dl,j,22

 =


0 0

Dp,i 0

1 0

 . (5.19)

Hence, the closed-loop system matrices of the feedback interconnection between Lj(s)

and the controllers Ki,j as indicated in Fig. 5.3 are given by:

Ai,j =

Al,j +Bl,j,2DK,i,j(θ(t))Cl,j,2 Bl,j,2CK,i,j(θ(t))

BK,i,j(θ(t))Cl,j,2 AK,i,j(θ(t))

 (5.20)

Bi,j =

Bl,j,1 + Cl,j,2DK,i,j(θ(t))Dl,j,21

BK,i,j(θ(t))Dl,j,21

 (5.21)

Ci,j =
[
Cl,j,1(θ(t)) +Dl,j,12DK,i,j(θ(t))Cl,j,2 Dl,j,12CK,i,j(θ(t))

]
(5.22)

and

Di,j =
[
Dl,j,11 +Dl,j,12DK,i,j(θ(t))Dl,j,21

]
. (5.23)

As a consequence, after tedious but straightforward algebra, the linear fractional inter-

connection between Lj(s) and the controllers Ki,j as depicted in Fig. 5.3 produce closed-loop

state space matrices that are also affine in the parameter θ(t). Therefore, each affine LPV
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system can be completely defined by the vertex systems [139], i.e., the images of the v ver-

tices that make up each parameter set Pi, with i = 1, 2. In this way, the problem consists

in seeking, for each Adult #j, a symmetric and positive-definite matrix Xj ∈ Rn×n, with

n the number of closed-loop states, that satisfies the following 2v + 1 LMIs:


ATi,j,`Xj +XjAi,j,` XjBi,j,` CTi,j,`

BT
i,j,`Xj −γjI DT

i,j,`

Ci,j,` Di,j,` −γjI

 < 0 (5.24)

Xj > 0 (5.25)

for ` = 1, ..., v and i = 1, 2. Here (A,B,C,D)i,j,` is the tuple of the model’s closed-loop

matrices that result from the feedback interconnection of Lj(s) and Ki,j evaluated at vertex

θi,`.

By solving one such set of 2v + 1 LMIs for each patient, the existence of such matrices

proved switching stability and performance in all cases. Due to the fact that a more restric-

tive condition is sought with respect to the design stage, the performance index γ is 30%

higher on average for all patients. In any case, this is only a necessary condition, because the

final test is performed on the complete adult cohort of the UVA/Padova metabolic simulator

in Section 5.3.

5.2.4 Switching Signal

As mentioned above, K2,j is applied only when high and rising glucose values are detected,

e.g., after a meal. The block diagram associated with the generation of the switching signal

that commands which LPV controller is selected is depicted in Fig. 5.4. The glucose

measured by the CGM is filtered by a Noise-Spike Filter (NSF), setting to 3 mg/dl/min the

maximum allowable glucose Rate of Change (ROC) [140]. Then, gf(t) is filtered by a fourth-

order Savitzky-Golay Filter (SGF) [141] to estimate the glucose ROC denoted by ˆ̇g(t). If

gf(t) is higher than 110 mg/dl, and if the last three estimated glucose ROC values are higher

than 1.2 mg/dl/min or the last two are higher than 1.4 mg/dl/min, the signal hd(t), which

is zero by default, is set to unity by the Hyperglycemia Detector (HD) block. When the

latter condition is no longer met, hd(t) is reset to zero. Because of the high measurement

noise, some unrealistic hyperglycemic conditions may be detected, and in order to reduce

the number of such false positive detections within a short period of time, it is considered
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that hd(t) can be set to unity only if the time period from the last falling edge to the new

detection is longer than 30 min.

-
g

NSF -
gf

SGF -
ˆ̇g

-

-
HD -

hd
SSG -

σ

Figure 5.4: Block diagram of the switching signal algorithm. NSF: Noise-spike Filter;
SGF: Savitzky-Golay Filter; HD: Hyperglycemia Detector, and SSG: Switching Signal Gen-

erator.

The evolution of the index i that indicates which controller Ki,j is applied, is described

by a continuous-time function σ(t) ∈ {1, 2}. The variables gf(t), ˆ̇g(t), and hd(t) are inputs

to the Switching Signal Generator (SSG) block to define σ(t) as follows. The sampling time

after hd(t) is set to unity, σ(t) is set to two when ˆ̇g(t) ≥ 1 mg/dl/min. Thus, if σ(t) = 2,

K2,j is selected until ˆ̇g(t) < 1 mg/dl/min, consequently guaranteeing that θ(t) ∈ P2 while

σ(t) = 2.

5.3 Results

All in silico adults of the complete UVA/Padova metabolic simulator are considered for

simulations, using CGM as the sensor, a generic CSII pump, and with unannounced meals.

The two protocols (see Table 4.1), and the same simulation and analysis conditions used

in Chapter 4 are employed for controller performance comparison. Note that protocol #1

has a fairly high meal content, whereas protocol #2 has fasting periods. Thus:

• The fasting state of each subject is assumed at the start of the simulation.

• Open-loop control that infuses the basal insulin is applied during the first 4 hours.

After that, the switched LPV controller takes over the insulin delivery until the end

of the simulation, with a constant setpoint of 110 mg/dl.

• A postprandial period (PP) and night (N) are defined as the 5 hour time interval

following the start of a meal, and the period from midnight to 7:00 AM, respectively.

In Chapter 4, both the CVGA plot [142], as well as the average results, are computed
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Figure 5.5: Average closed-loop responses for all the in silico adults (complete UVA/-
Padova simulator) to protocol #1 (above) and to protocol #2 (below). The thick lines
are the mean values, and the boundaries of the filled areas are the mean ±1 STD values.
The filled yellow and green regions represent the 70-180 mg/dl and 80-140 mg/dl ranges,

respectively.

based on the results of the third day for protocol #1, and based on the data from

the second day for protocol #2. Therefore, to facilitate a direct comparison with the

control strategy proposed in Chapter 4, here, the same analysis strategy to interpret

the results is adopted.

During the implementation phase, the control action u(t) added to the basal insulin ib = Ib,j

is delivered by the CSII pump. In order to avoid dangerous scenarios, when σ(t) = 1, gf(t) <
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130 mg/dl and ˆ̇g(t) < −0.3 mg/dl/min, the basal insulin is reduced 25%, i.e., ib = 0.75Ib,j .

Based on the small gain theorem [143], the latter does not affect the closed-loop stability.

The average time responses to both protocols are depicted in Fig. 5.5. In order to show

how the switching system works, an individual closed-loop response to protocol #1 is pre-

sented in Fig. 5.6. As shown in that figure, when K2,j is selected (σ(t) = 2), insulin delivery

σ=2 σ=2 σ=2σ=1 σ=1 σ=1 σ=1
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Figure 5.6: Switching LPV system functioning. Above: The blue line is the insulin
infusion rate (right axis), the red line is the blood glucose (left axis), and the points are the

CGM measurements. Below: Variation of θ1(t) (red line) and θ2(t) (blue line).
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Figure 5.7: Closed-loop response for Adult #8, showing noisy CGM signal. The contin-
uous line is the blood glucose concentration, and the noisy points are the glucose measure-

ments via simulated CGM.
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experiences spikes, reducing postprandial glucose levels. The delay between meal ingestion

and controller switching is mainly related to the long sensing delays.

It is well-known that high measurement noise appears when CGM is used as the sensor.

Despite the noisy CGM signal as depicted in Fig. 5.7, the controller manages to maintain

the blood glucose at a safe level.

The CVGA plots and the average results related to both protocols are presented in Fig.

5.8 and Table 5.1, respectively. Results for the H∞ approach presented in Chapter 4 are

Protocol #1 Protocol #2

Control Strategy Switched-LPV H∞ Switched-LPV H∞

Mean BG [mg/dl]

O 134 148 134 154

PP 162 176 159 177

N 101 116 114 135

Max BG [mg/dl]

O 220 226 207 220

PP 223 229 213 224

N 113 142 153 183

Min BG [mg/dl]

O 90 96 96 108

PP 98 108 103 114

N 92 100 98 107

% time in [70 180] mg/dl

O 83.3 75.9 86.7 75.5

PP 67.5 54.2 71.2 54.4

N 99.4 99.5 99.3 91.4

% time > 300 mg/dl

O 0.0 0.1 0.0 0.0

PP 0.1 0.3 0.0 0.1

N 0.0 0.0 0.0 0.0

% time > 180 mg/dl

O 16.5 24.0 13.3 24.5

PP 32.5 45.8 28.8 45.6

N 0.0 0.4 0.7 8.6

% time < 70 mg/dl

O 0.2 0.1 0.0 0.0

PP 0.0 0.0 0.0 0.0

N 0.6 0.0 0.1 0.0

% CVGA zone inclusion

A 0 0 6.9 2.0

B 93.1 96.0 91.1 95.0

C 0.0 2.0 0.0 3.0

D 6.9 2.0 2.0 0.0

E 0.0 0.0 0.0 0.0

LBGI 0.3 0.1 0.1 0.0

HBGI 3.0 4.3 2.6 4.6

TDI [U] 34.5 30.8 32.2 29.3

Table 5.1: Comparison between the average results for all the adults (complete UVA/-
Padova simulator) to protocol #1 and #2 obtained with the switched-LPV control, and
with the H∞ strategy proposed in the previous chapter. The overall (O), and the PP and

N time intervals defined previously are analysed separately.
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Figure 5.8: CVGA plots of the closed-loop responses of all in silico subjects (complete
UVA/Padova simulator) for the proposed switched-LPV control (stars) and the previous
H∞ approach (circles) with respect to protocol #1 (above) and protocol #2 (below). The
CVGA categories represent different levels of glucose control, as follows: accurate (A-zone),
benign deviation into hypo/hyperglycemia (lower/upper B-zones), benign control (B-zone),
overcorrection of hypo/hyperglycemia (upper/lower C-zone), failure to manage hypo/hy-

perglycemia (lower/upper D-zone), and erroneous control (E-zone).

also included in Fig. 5.8 and Table 5.1 for comparison. Note that the risk of hyperglycemia

is substantially reduced, obtaining a HBGI < 3 with this control strategy. For example, the

mean blood glucose is about 15 mg/dl lower, and the percentage of time in the range [70,

180] mg/dl is approximately 25% higher with this approach than with the H∞ one. As a

result of this more aggressive tuning, the CVGA plots are shifted to the right but the risk of

hypoglycemia is scarcely increased, achieving a minimal Low Blood Glucose Index (LBGI

< 1.1). In addition, a more aggressive control action also increases the TDI but again, with

no significant increase in the risk of hypoglycemia.

The variation of θ(t) = [θ1(t), θ2(t)]T is depicted in Fig. 5.9. Note that there is an orange
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Figure 5.9: Variation of θ1(t) and θ2(t) parameters for all the in silico adults (complete
UVA/Padova simulator) to protocol #1 (left) and to protocol #2 (right).

narrow stripe around θ1(t) = 1 and 0 ≤ θ2(t) ≤ 1, because θ2(0) = 0, but this subsequently

increases until the estimated plasma insulin converges to its steady-state value. As shown

in Fig. 5.9, both parameters evolve within a safe region. This means that when the blood

glucose level decreases (θ1(t) increases), the plasma insulin level decreases (θ2(t) decreases),

avoiding an overdose of insulin. On the other hand, when the blood glucose level increases

(θ1(t) decreases), so does the plasma insulin level (θ2(t) increases), reducing in this way

the risk of hyperglycemia. Consequently, dangerous scenarios like low blood glucose values

and high plasma insulin levels or vice versa do not occur with this switched LPV approach.

Furthermore, the darkest area, which represents the region where both parameters spend

the highest percentage of time, is (θ1, θ2) ' (1, 1). This means that glucose values are

usually around the setpoint (110 mg/dl) without high levels of IOB, despite perturbations

like unannounced meals.

Although for the design stage both parameters are included in a rectangular region that

is larger than the region where the actual time-varying parameters evolve, this conservative

choice is necessary in order to have stability and performance guarantees when this is not

the case, e.g. due to a large measurement error.

5.3.1 Additional In Silico Tests

In order to test the switched LPV controller in other scenarios, the following additional

protocols have been considered.
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5.3.1.1 Small-Meal Protocol Study

Breakfast 1 Lunch 1 Dinner 1 Breakfast 2 Lunch 2 Dinner 2
Time gCHO Time gCHO Time gCHO Time gCHO Time gCHO Time gCHO

7 AM 40 g 2 PM 30 g 8 PM 40 g 7 AM 35 g 1 PM 30 g 9 PM 40 g

Table 5.2: Protocol #3.
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Figure 5.10: Average closed-loop responses for the 101 in silico adults to protocol #3.
The thick lines are the mean values, and the boundaries of the filled areas are the mean
±1 STD values. The filled yellow and green regions represent the 70-180 mg/dl and 80-140

mg/dl ranges, respectively.
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Figure 5.11: CVGA of all the 101
closed-loop responses to protocol #3.
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Figure 5.12: Average cumulative time
in range to protocol #3. The mean ±1
STD values are represented by the filled

area.

Mean BG Max BG Min BG % in [70 180] % > 180 % < 70 LBGI HBGI TDI

136 192 102 94.0 6.0 0.0 0.0 2.1 31.2

Table 5.3: Average results for the 101 adults to protocol #3.
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5.3.1.2 Fasting Study
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Figure 5.13: Average closed-loop responses for the 101 in silico adults to fasting study.
The thick lines are the mean values, and the boundaries of the filled areas are the mean
±1 STD values. The filled yellow and green regions represent the 70-180 mg/dl and 80-140

mg/dl ranges, respectively.
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Figure 5.14: CVGA of all the 101
closed-loop responses to fasting study.
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Figure 5.15: Average cumulative time
in range to fasting study. The mean ±1
STD values are represented by the filled

area.

Mean BG Max BG Min BG % in [70 180] % > 180 % < 70 LBGI HBGI TDI [U]

120 127 110 100.0 0.0 0.0 0.02 0.23 27.2

Table 5.4: Average results for the 101 adults to fasting study.
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The closed-loop response for Adult #34 fell into the Lower C-zone, because a large glucose

spike due to CGM noise is measured during the simulation as depicted in Fig. 5.16.
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Figure 5.16: Closed-loop response for Adult #34. The continuous line is the blood glucose
concentration, and the points are the glucose measurements.

5.4 Conclusions

A general switched-LPV controller was designed in order to minimize risks of hyper- and

hypoglycemia. This control structure naturally accommodates the time-varying/nonlinear

dynamics and intra-patient uncertainty. The controller is based on a model tuned with

the patient a priori information in order to cover the inter-patient uncertainty. Finally, a

hyperglycemia estimator is used to predict perturbations, e.g., risky postprandial periods.

The outcome is an improvement on previous results. The key feature is the possibility

of taking into account, at the design stage, important perturbations: unannounced meals

and/or patient’s physical exercise. Here, the first situation has been explored, due to the

fact that the UVA/Padova simulator has no physical exercise model. Nevertheless, the same

procedure could be applied to the latter situation by either estimating a negative ROC in

glucose levels, or through a real-time measurement, e.g., increase in cardiac rhythm.





Chapter 6

Conclusion and Future Work

In this thesis, an overview of the state of the art of diabetes management has been pre-

sented in Chapter 1. New technologies applied to the development of minimally invasive

subcutaneous insulin infusion and glucose measurement devices have made it possible for

researchers to introduce the idea of an artificial pancreas. In this way, a CGM that measures

glucose values in the interstitial fluid can be connected to a CSII pump through a control

algorithm that decides how much insulin the patient needs.

Models that describe the insulin-glucose dynamics in T1DM patients are important in

order to design different control algorithms. Therefore, an analysis of the three main models

which are used in controller testing (Sorensen, UVA/Padova and Cambridge) has been

presented in Chapter 2. There, some pros and cons from the aforementioned models, as well

as several errors in the literature, have been pointed out. Besides the differences between

the simulation environments, attention should be paid to all of the following issues:

• Model uncertainty (dynamics, intra- and inter-patient).

• Nonlinear phenomena.

• Time delays, actuator saturation, measurement noise.

• Real-time implementation.

These items need to be achieved, and therefore, an approach to H∞ control for blood

glucose regulation in T1DM has been presented in Chapter 3. However, as mentioned in

that chapter, when all the previous items are considered simultaneously with unannounced
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meals, robust controllers such as the ones designed there would not achieve high closed-loop

performance. In that sense, a control scheme composed of an H∞ robust controller, an IFL,

and a SM has been introduced in Chapter 4. A general model structure that is adapted to

a particular patient by using certain a priori clinical information that is easily obtainable

is used to synthesise the H∞ controller. In that way, the large inter-patient variability has

been addressed, avoiding an in-depth a priori identification procedure that may be infeasible

in practice. As for the IFL and the SM, they have been added to maintain the patient’s

glucose concentration in a safe region based on estimations of the IOB and future glucose

levels, respectively.

An improvement of the latter approach has been presented in Chapter 5. In that chap-

ter, a switched LPV glucose controller has been designed to take into account at the design

stage important perturbations such as unannounced meals and/or patient’s physical exer-

cise. The time-varying model is used to replace the SM and the IFL. The LPV control has

the advantage of proven stability and robustness guarantees based on Lyapunov theory and

on-line tuning which takes care of inter-patient variability, and hypo– and hyperglycaemic

situations. On the other hand, the inclusion of a real-time estimation, which takes into ac-

count perturbations without the need of announcements, enables the selection of a controller

that can be specifically designed for that situation. Thus, an elegant and efficient way of

minimising patient’s risks has been obtained and later successfully tested on the complete

in silico adult cohort of the UVA/Padova metabolic simulator.

A summary of how some issues associated with the blood glucose level control in T1DM

patients can be addressed is given in Table 6.1.

Challenges (unannounced meals) Approaches

Intra-patient variations, nonlinear/time-varying
dynamics.

Nonlinear/time-varying controller.

Inter-patient uncertainty. Patient tuning.

Subcutaneous-intravenous delays in CGM and
insulin infusion.

Prediction.

Table 6.1: Problem challenges and possible approaches.
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Regarding the future work, it can be summarised as follows.

• Test the algorithms on the in silico adolescents and children of the UVA/Padova sim-

ulator. Children are the highest-risk population, and therefore, a particular treatment

might be necessary.

• Design and test bihormonal controllers. This is possible due to the fact that the

glucagon counterregulatory response has been included in the UVA/Padova metabolic

simulator. As for the use of other hormones, pramlintide may be a suitable option

to reduce postprandial blood glucose excursions which are higher when unannounced

meals are considered. This will anticipate the time when technology allows a stable

deposit of these hormones.

• Cooperate in the development of protocols for clinical trials that should be later re-

viewed by an ethical committee.

• Start clinical tests to prove the feasibility of closed-loop blood glucose control using

the algorithms presented in this work.

In order to achieve the latter two items, work in collaboration with Dr. León Litwak

and physicians from the Hospital Italiano in Argentina, and with researchers from the Uni-

versidad Nacional de La Plata (UNLP) and from the UCSB has been initiated. As for the

hardware needed to perform the clinical trials, contact has been established with Medtronic

through the UCSB, and financial support may be obtained from Cellex and Nuria Founda-

tions.
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