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Abstract. Process modeling forms a core activity in many organizations
in which different entities and stakeholders interact for smooth operation
and management of enterprises. There have been few work on semanti-
cally labeling business processes using OWL-DL that formalize business
process structure and query them. However, all these methods suffer from
few limitations such as lack of a modular approach of ontology design,
no guarantee of a consistent ontology development with TBox and ABox
axioms and no provision of combining control flow relations of the main
process and its sub-processes. In this work, we propose an approach
for labeling and specifying business processes by using hybrid programs
which offers modular ontology design, consistent ontology design of each
module and unified control flow for process and its sub-processes. This
formalism of hybrid programs integrates ontology specified in OWL-DL
with SWRL (Semantic Web Rules Language) rules. Further we report on
our experimental effort on modeling industrial business processes with
this hybrid formalism. We also present a case study of an industrial
business process to illustrate our modeling approach which can aid in
business knowledge management.
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1 Introduction

Hundreds of business process models are developed by enterprises to manage
the flow of work through an organization. For a process model one needs to con-
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sider the semantics of the meta-model elements when different representations
are used, and as well as the terms that describe the model elements. The real-
ization of such a semantic modeling of processes can be achieved by extracting
ontology from process models using appropriate semantic web formalisms which
can facilitate querying and retrieving process models [12].

Several approaches have been proposed for semantic modeling of processes
and subsequent retrieval of them using keywords, or data, or process properties.
In one such approach Groener and Staab have proposed an ontology modeling
of a process capturing explicitly various hierarchical and ordering relationships
between activities in [8]. Moreover, they can query for retrieving process struc-
tures with specified control flow characteristics and modalities as well as process
traces. However, such a modeling suffers from a few drawbacks which we shall
discuss using an example of a process model below.
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Fig. 1. Different variants of a maintenance process
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A Motivation for New Modeling Framework. In Fig.1 we describe three main-
tenance processes, Maintenance Process 1 (M Processl), Maintenance Process
2 (M Process2) and Maintenance Process 3 (M Process3), with three different
characteristics. In these process diagrams there are four main activities, ‘Remove
Component (RC)’, ‘Clean Component (CC)’, ‘Replace Component (RpC)’ and
‘Install Component (IC)’. There is also a sub-process invocation activity, Inspect
Component (SPIC) - this sub-process activity can be further decomposed into
constituent activities (in Fig.2), ‘Test Component (TC)’, ‘Repair Component
(RepC)’, ‘Reuse Component (ReuC)’ and ‘Declare Fitness (DF)’. We assume
that the class (node) Activity can be instantiated with individuals in different
cases as follows, actRC (‘Remove Component’), actCC (‘Clean Component’),
actRpC' (‘Replace Component’) and actIC (‘Install Component’), actTC' (‘Test
Component’), actRepC (‘Repair Component’), actRC' (‘Reuse Component’),
actDF (‘Declare Fitness’) etc. The sub-process invocation activity is instan-
tiated as spIC (stands for ‘Inspect Component’)?.

The ontology modeling framework described in [8] would be able to model a
OWL-DL ontology out of these processes. However, this framework still requires
writing the ontology for the process as a whole. For example, using this approach
the ontology for Maintenance Process 2 (its control flow named as followed By2)
can be written as:

M Process2 = Startn = 1 followedBy2.(RC M 3 followedBy2.(CCM = 1followedBy2.(IC 1M
JfollowedBy2.End)) M 3followedBy2.(SPICM = 1followedBy2.(ICT = 1followed By2.End))).

However, for a large process writing the whole ontology in one attempt would
be tedious, especially in presence of nested gateways. To alleviate this, we aim
to capture ontology for each pattern as one module and combine them to obtain
the whole ontology. Although any piece of OWL can be easily added to any
other OWL ontology just by merging the corresponding triples it is not clear
how a OWL ontology can be designed for a single fragment of a process in the
framework of [8]. Our pattern-oriented approach of capturing OWL ontology
facilitates this. We specify each such pattern in a process as a complex OWL
concept using TBox axioms, see Tablel. Also in [8] it is not mentioned how
one can write ABox axioms so that the ontology remains consistent. For that
we design consistent ontology for each pattern by formulating ABox axioms
along with TBox axioms as shown in Table 1?2 and merge them to obtain the
consolidated ontology for the process.

Moreover, the sub-process activity ‘Inspect Component’ can be specified
using OWL-DL as below (with its control flow relation as followed By4) using
the approach of [8]:

SPIC = Start M 3followedBy4.(T'C M 3followedBy4.(((RepC M fault) U (ReuC M
nofault)) M3 followedBy4.(DF M 3followedBy4.End)))

1 Wlog we assume same individuals for all the three processes.
2 For brevity of space we specify only a couple of patterns here.



Table 1. A pattern-oriented modeling of maintenance process 2

Patterns TBox axioms ABox axioms

M Process2 = Start Start(startl), Task(actRC'),
= 1followedBy2.Crc followedBy2(startl, actRC')

Crc = Task M (IfollowedBy2. |Task(actCC'), SubProcess(spIC),
Cecc) M (3followedBy2.M followedBy2(actRC,CC)
Csprc)M = 2 followed By2 followedBy2(actRC, spIC)

| cen
| Component

] e |
Component |

[ gt

Component

It is evident that the M Process2 and InstallComponent share different
workflow relations followedBy2 and followedBy4 respectively. In [8] the authors
do not mention any way of combining workflows for a main process and its con-
stituent sub-processes. Our modeling framework is able to combine the control
flow for the process and its sub-processes by using SWRL rules. For example,
we can define a control flow relation followedBy at the main process level and
specify that the a task in Maintenance Process 2 is followed by the next task in
sub-process ‘Install Component’ by use of the following rule:

followedBy(?x,?z) <« Process(?p), Node(?z), SubProcess1(?sp), followedBy2(?z, ?sp),
beginsWithl(?sp, ?s), Start(?s), Node(?z), followed By4(?s, ?7z)

Contributions. In this work, we adopt the framework of hybrid programs which
integrates OWL-DL ontology with SWRL rules, to model and specify busi-
ness processes. We adhere to a decidable fragment of SWRL rules a la DL-
safe rules [15] to make querying and other reasoning tasks decidable in this
framework. Not only we are able to model the control flow of the process cap-
turing hierarchical and ordering relationships between nodes for querying, we
also advocate an explicit modular design of process ontology that helps build-
ing the ontology in stages. We also adequately model ABox axioms to maintain
the consistency at each stage of the creation of ontology. This kind of consistent
and modular ontology design can facilitate efficient process modeling in different
industrial applications and business knowledge management.

The paper is organized as follows. In Sect.2 we briefly describe the main
notions of a business process. Process models are formalized using OWL-DL with
SWRL rules in Sect. 3. We study patterns for querying and retrieving processes



in Sect. 4. In Sect. 5 we describe an implementation of our framework and narrate
our experimental effort. A case study of an industrial business process modeling
in this formalism is described in Sect.6. The discussion on related work is in
Sect. 7. Finally we conclude in Sect. 8.

2 A Primer on Business Process

In this paper we work with Business Process Diagrams (BPD) captured using
standard Business Process Modeling Notation (BPMN), which consist of nodes
and control flow relation linking two nodes. A node can be a task (also called
an activity here), an event, a fork (AND-split), a choice (XOR-split), a syn-
chronizer (AND-join), and a merge (XOR-join) gateway. In a BPD, there are
start events (also called start nodes) denoting the beginning of a process, and
end events (also called end nodes) denoting the end of a process. A start activity
is an activity which follows a start node. An activity is called a sink activity
(or end activity) if it is immediately followed by an end event. We do not take
into consideration message passing, timer events etc. in our model. A process
can reside within another process. In this case, the former is called a sub-process
invocation activity or simply sub-process. A business process is well-formed if it
has exactly one start node with no incoming edges and one outgoing edge from
it, there is only one incoming edge to a task and exactly one outgoing edge from
a task, each fork and choice has exactly one incoming edge and at least two out-
going edges, each synchronizer and merge has at least two incoming edges and
exactly one outgoing edge, every node is on a path from the start node to some
end node, and there exists at least one task in between two gateways (this is
to avoid triviality). Also we can safely assume that an end event is immediately
preceded by a task, in absence of which we can introduce a dummy /silent task
(which does not do anything). From now on without loss of generality, we shall
consider only well-formed business processes.

The semantics of control elements of a business process are similar to that of
work-flows discussed in [14]. There are two typical control flow related errors that
can take place in processes: deadlock and lack of synchronization. A deadlock
implies that the process will never terminate. A lack of synchronization allows
multiple instances of the same task to occur in a process. A business process
is sound if it does not produce deadlock and lack of synchronization. There are
standard techniques to check the soundness of processes, for example see [4]. For
this work, we consider only sound processes.

3 Formalizing Business Processes in OWL

We shall extract OWL-DL ontologies out of business processes in a constructive
manner using OWL-DL [1,18] in conjunction with SWRL rules [16]. The satisfi-
ability of OWL-DL in conjunction with SWRL is undecidable [15] as the latter
is not DL-safe. It can be made decidable by adding a non-DL atom of the form
O(?z) in the body of a rule for every variable 7z appearing in it and adding a



fact O(a) for every individual a to the list of ABox axioms. In our case it would
be possible to turn all the rules that we use into DL-safe rules.

3.1 Process Vocabulary

For extracting ontology out of arbitrary business processes we decompose the
diagram into atomic patterns (originally introduced by Van der Aalst et al.
for workflow diagrams in [20]) and generate an independent OWL concept for
each of the patterns. Then using equivalence (and substitution) the concepts
are merged to get the complex concept for the whole diagram in a modular
fashion. The complex concept is generated in a top-down fashion from the model
starting from the start activity of the diagram to an end activity. Our method
is motivated by a construction of CSP? process from a business process [17] and
conversion UML models to CSP expressions [2].

Below is the description of vocabulary for processes. There is a base class
Process representing the Business Process Diagram in question. ConceptTask
stands for a complex concept representing a pattern of a task, it will have sub-
concepts ConceptTaskA, ConceptTaskB corresponding to tasks A, B respec-
tively and so on. Nodes are represented by the class Node. It has subclasses, T'ask
for a task, Start for a start node, End for a final node and J for a synchronizer.
The control flow relation is modeled by the role followedBy which is defined
on nodes. For composing different sub-process diagrams the role followedBy
for each diagrams may be denoted with a subscript (e.g., followedByi), (where
followedByi T followedBy). Thus we may use followedByl for denoting the
control flow for the sub-process at its first level embedding in the process,
followedBy0 for the control flow relation for the main process etc. Finally the
role followedBy is defined to denote the control flow relation of whole process.
The transitive role followedByTran is a super role of followedBy. We use the
role contains with Process as domain and Node as range to denote that a pro-
cess contains certain nodes. Further, there is a role containedIn with Node as
domain and Process as range to denote that a node is contained in a certain
process. There is also a role beginsWith which indicates that a process begins
with a certain start node, similarly the role endsWith says that a process ends
with an end node. Table 2 describes the roles used for building the process ontol-
ogy. Similar conventions using suffix like the role followedBy for these roles,
can be introduced when we deal with sub-processes. Lastly, we also consider a
datatype role pairWith on Task and is string valued. This is used to capture
the conditions on the outgoing edges of a XOR-split which can assume mutually
exclusive values.

3.2 Modeling Basic Control Flow Patterns in OWL-DL

We consider basic control flow patterns [20] of a business process (see Fig. 3(a)),
and translate them to OWL-DL complex concepts preserving the graphical struc-
ture of the process diagrams. This is done using a modular approach in which

3 CSP here stands for Communicating Sequential Process.



Table 2. The roles used for building the process ontology (using ABox axioms)

Role Type of properties | Description

followedBy(nodel, task2) Object Node nodel is followed by task
task2

beginsWith(processl, start2) | Object The Business Process processl
starts with start node
start2

endsWith(processl, end3) Object The Business Process processl
ends with end node end3

contains(processl, task2) Object The Business Process processl
contains a task node
task2

containedIn(task3, process2) | Object A task node task3 occurs in the
Business Process
process2

pairsWith(task4, “yes)” Datatype Instantiated Task task4 is

associated with the condition
denoted by the string “yes” on
an XOR-split outgoing edge

each pattern is modeled as an OWL concept (which can be thought of a mod-
ule). These concepts are then suitably merged to obtain the final ontology. The
atomic patterns used for process ontology are shown in Fig. 3(b). Below we sup-
ply the TBox axioms for each pattern. Later we shall provide corresponding
ABox axioms.

Start Event: As mentioned earlier, a Start activity is defined for the corre-
sponding start event in the process. The expression Cy denotes the complex
concept for the whole process (this is also called concept Process). The concept
expression for the pattern in Fig. 3(a) is modeled as a conjunction of Start class
and the existential restriction of concept class for activity A with followedBy
role. This convention will be followed throughout for generating concept expres-
sions for other patterns of a business process.

Co = (Start M= 1followedBy.C4).

Sequential Activities: In Fig.3(a)(b) task A is followed by task B. Let Ca
denote the concept associated with the task node A*. We assume that concept
C4 is equivalent to the task class T'ask and a following existentially quantified
concept Cpg.

Ca= (Task N =1followedBy.Cg).

4 Denoted with a small rectangle.
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End Activity: In particular, for the pattern shown in Fig.3(a)(c) the process
terminates with an end node® which is preceded by a task F. We capture this
as,

Cr = (Task N =1 followedBy.End).

Parallel Split (AND-split): To ensure that the parallel concepts originating
at an AND-split are synchronized (see Fig. 3(a)(d)) we use an axiom that states
there exist multiple follower sequences, which are captured in terms of an inter-
section of sequences. In the conjunct we also use a cardinality constraint role to
denote the number of outgoing edges out of the AND-split.

Ca =Task M (3followedBy.Cg) N (3followedBy.Cc) M (= 2.followedBy).

Synchronizer (AND-join): The behavioral property of the synchronizer states
that it can be executed only after the end of the execution of all the input
activities. For example, in Fig. 3(a)(e) A can be executed only after both B and
C' are executed. We define another class for AND-join (subclass of node Node),
denoted as J (stands for Join class).

Cp = Task 1 = 1.followedBy.(J M = 1.followedBy.Cx).
Co = Task N = 1.followedBy.(J M = 1.followedBy.Ca).

5 Denoted with a shaded circle inscribed within another circle.



Exclusive Choice (XOR-split): This operator becomes enabled when the
input activity is executed and subsequently, one of the output activities is trig-
gered (see Fig.3(a)(f)). The conditions associated with the choice are captured
on the destination nodes of the split gateways as string values for the data type
property pairsWith. Below the symbol “ --” denotes other appropriate concepts
appearing in the conjuncts for the concepts Cp and Cc¢.

Ca=Task N (=1followedBy.(Cp U C¢))
Cp = Task N dpairsWith“xzsd : string” M- - -
Cco = Task M ApairsWith“zsd : string” M - - -

Exclusive Merge (XOR-join): If one of the incoming edges is executed, an
XOR-merge is enabled leading to the execution of an appropriate activity on its
outgoing edge, see Fig. 3(a)(g).

Cp = Task M =1.followedBy.Cx
Coc = Task 1 =1.followedBy.Ca

Iteration of Activities. Each loop is assumed to contain a choice and a join,
this is to avoid interminable looping. Thus a loop may be executed a certain
number of times depending on the exit condition. Such a process can be specified
by breaking it into patterns and writing the concepts accordingly. Consider an
example of a loop in Fig.4(a). Here the process begins with task A. Then tasks
B and C' can occur in a loop if the condition at the split gateway is false. If
the condition evaluates to true then activity D occurs which marks the end of
the process. Notice there is a choice gateway after B which splits into C' and
D, and there is a merge gateway which joins A and C to produce B. Then we
write concepts corresponding to these gateways as formulated before. This may
lead to cyclic terminology which need not be definitorial [1]. However, we can
argue that this terminology will have an interpretation which is a fixpoint and
hence will have a model. The cycle (due to the loop) in the dependency graph
of this terminology contains zero negative arc and so, it will have a fix point
interpretation [1].

Co = (Start M = 1followedBy.C,)

Ca = (Task N = 1followedBy.Cp)

Cp =Task N (= 1followedBy.(Cc U Cp))

Co = Task N dpairsWith“zsd : string” M = 1followedBy.Cp
Cp = Task M ApairsWith“zsd : string” M = 1 followedBy.End



Sub-process Invocation Activities. A process may have a sub-process invo-
cation activity which denotes another process. In Fig. 4(b), the original process
P begins with the activity A which is followed by a sub-process invocation activ-
ity SP, which in turn, is followed by another activity B. Further in SP activity
C' is preceded by a start node and is followed by an end node. We write some
of the axioms and rules which model this process. The last two rules link the
control flow relation of the original process with that of the sub-process. These
start and end activities of the main process and its sub-process will be disjoint
from each other.

Process = (Start M = 1followedBy0.C4); SubProcessl = (Start M = 1followedByl.Cc)
Ca = (Task M = 1followedBy0.Csp);Csp = (SubProcessl M = 1followed By0.Cp)
Cp = (Task M =1 followedBy0.End);Cc = (Task M =1 followedByl.End)
SubProcessl C Process; followedBy0 C followedBy; followedByl C followedBy
Process C JfollowedBy0.Node.SubProcessl C 3 followedByl.Node

Process C Jcontains0.Node.SubProcessl C Jcontainsl.Node

Process C beginsWith0.Start.SubProcessl C JbeginsWithl.Start

Process C JendsWith0.End; SubProcessl C JendsWithl.End

followedBy(?z, ?z) <« Process(?p), Node(?z), contains0(?p, 7x), SubProcess1(?sp),
followedBy0(?x, ?sp), beginsWith1(?sp, ?s), Start(?s), Node(?z), containsl(?sp, ?z),
followedBy1(?s,7z)

followedBy(?x, ?z) < Process(?p), SubProcess1(?sp), Node(?x), containsl(?sp, 7z),
endsWithl(?sp, ?e), End(?e), followed Byl(?x, ?e), Node(?z), contains0(?p, 7z),
followedBy0(?sp, 7z).

We add few more axioms in the process ontology some of which are bor-
rowed from [8]; they are listed in Table 3. Here L denotes contradiction, akin to
owl:Nothing.

The above set of axioms constitute the TBox axioms for the ontology created
corresponding to any business process. The process diagram itself serves as the
meta-model for the process from which those (TBox) axioms are to be extracted,
whereas the specific process model would lead to the generation of ABox axioms.
We consider the process patterns in Fig. 3(a) and list sample ABox axioms cor-
responding to those basic patterns in Table4. In this way we can construct the
ontology for a business process which can be shown to be consistent by taking
induction on the structure of the process and showing that ontology (TBox and
ABox axioms) corresponding to each pattern is consistent, a formal argument of
which is left out for a future work.
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Fig. 4. Other patterns for business processes

Table 3. Axiomatization for business process diagrams

Statement

OWL-DL axioms

Start and End activities and Task are subclasses |Start, End, Task C Node

of class node

An AND-join is a subclass of class node Join C Node

followedByTran is the super role of followedByi C followedBy, and

followedBy followedBy C followedByTran (i =0,1,...)

Start Activity has no predecessor (Node M YcontainedIn.Process N =
1followedBy.Start) C L

End Activity has no follower (End M = 1followedBy.Node) C L

A Process contains some nodes Process C Jecontains.Node

A Process begins with a start node Process C= lbeginsWith.Start

A Process ends on an end node Process C JendsWith.End

contains and con

reciprocal relation

tainedIn shares a containedIn(?y, ?x) «— contains(?x, 7y)

contains(?z, 7y) <« containedIn(?y, ?x)

Table 4. ABox axioms for basic patterns

Basic patterns

ABox axioms

Start event

Process(processl), Start(startS), Task(taskA), followedBy(startS, taskA),

contains(processl, startS), containedIn(startS, processl) etc

Sequential
activities

Task(taskA), Task(taskB), followedBy(taskA, taskB) etc.

End event

End(endS), Task(taskF), followedBy(taskF, endS) etc.

Parallel split

Task(taskA), Task(taskB), Task(taskC),
followedBy(taskA, taskB), followedBy(taskA, taskC)

Synchronizer

Task(taskA), Task(taskB), Task(taskC), Join(joinl), followedBy(taskB, taskA),
followedBy(taskC, taskA), followedBy(taskB, joinl), followedBy(taskC, joinl)

Exclusive choice

Task(taskA), Task(taskB), Task(taskC), followedBy(taskA,taskB),
followedBy(taskA, taskB), pairsWith(taskB, “yes’’), pairsWith(taskC, “no’")

Exclusive merge

Task(taskA), Task(taskB), Task(taskC),
followedBy(taskB, taskA), followedBy(taskC, taskA)




4 Semantic Query Patterns for Querying and Retrieving
Processes

We now specify a few requirements on the process models shown in Fig.1 to
query them and retrieve process information. These queries will be posed using
DL query on three processes, M Processl (Maintenance Process 1), M Process2
(Maintenance Process 2) and M Process3 (Maintenance Process 3).

4.1 Querying Processes

We show how we capture requirements for an individual process using the pro-
posed ontology modeling. In particular, we consider Maintenance Process 1.
Below Req will stand for requirement and Spec will denote the corresponding
specification of the requirement.

— Reql Cleaning component is preceded by removing component.

Specl: Start M (IfollowedByTran(value“actRC"” M Ifollowed ByTran
value“actCC”)).

— Req2 Repairing component is always followed by installing the component.
Spec2: StartM3followed ByTran(value“act Rep” M3 followed ByTran value
“actIC”)

N—-3followed ByTran(value“act Rep” MA followed ByTran value“actX”
Ndif ferentFrom(actX, actIC)).

— Req3 Installing component can mark the end to the maintenance process.

Spec3: Start M 3 followed ByTran(value“actIC” M3 followed By.End).

4.2 Querying for Process Retrieval

We use three different query patterns with respect to the control flow of the
process [8] to retrieve processes. The first pattern is about the execution order.
The second pattern is used to query a process for modality. The third pattern is
related to terminology which facilitates merging flow relations from the original
process and its sub-process. The Query input depicts a process description.
Result prints out the relevant processes (as individuals). We use DL queries for
querying using concept subsumption as inference.

Pattern for Execution Order. A query related to execution pattern is described
below.

Query: Which processes do execute Inspect Component after Remove Com-
ponent?

{P = Start N Ifollowed ByTran.(value“act RC” M3 followed ByTran.value
“actIC”)}

Result: {MProcessl, MProcess2, MProcess3}

The result contains all processes that execute Inspect Component after
Remove Component with an arbitrary number of activities between them.



Pattern for Process Modality. This pattern deals with queries which refers to
the modality of the processes as described below.

Query: Which process does offer Replace Component?
{P = Jcontains. value“actRC” }

Result: {MProcess3}
The query will search for the processes that are related to Replace Component
via the contains role. Only the MProcess3 has the Replace Component Task.

Pattern for Process Terminology. By using this pattern one can query details
about the original process and its constituent sub-process using terminological
knowledge.

Query: Which processes execute Declare fitness before Install Component?
{P = Start N IfollowedByTran.(value“act DF” M3 followed ByTran.value
“actIC”)}

Result: {MProcessl, MProcess2, MProcess3}

As Declare Fitness is related to Install Component using the merged con-
trol flow relation of the original process and the sub-process (captured using
SWRL rules), we can query processes with different levels of process hierarchy.
Query: Which process does allow the execution of Clean Component and
Test Component in an interleaving manner?

{P = StartN ((3followed ByTran.(value“actCC” M3 followed ByTran.value
“actTC”)

U(3followed ByTran.(value “actTC” M3 followed ByTran.value“actCC” )}
Result: {MProcess2}

The process obtained thus allows an interleaving of the execution of Clean
Component and Test Component.

5 Experimental Results

In this section we describe our implementation efforts. Also we report on the
experiments that we perform on industrial process models.

5.1 Implementation

We implement our framework using Java and OWL API. At the front end we
use a BPM modeler for capturing business process models. For this purpose
we use Camunda® which is an open source platform for workflow and business
process management. Camunda Modeler provides a desktop application for edit-
ing BPMN process diagrams (using BPMN 2.0) which comes with a graphical
user interface. Moreover, a business process drawn in Camunda can be exported
as an xml file. We have written a translator in Java that can parse the xml

5 Available at https://camunda.org/.
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file, generate basic patterns out of the process and create OWL ontology with
SWRL rules for each of them using OWL API which are subsequently merged.
The OWL ontology can be uploaded on Protégé framework for viewing. A Java
implementation with some example processes can be found in “https://github.
com/gsilvatici/DiagramOntologyParser”.

5.2 Experiments and Evaluation

Dataset. For experimental purposes we consider a total of 29 different industrial
process models. These processes are modeled on Infosys in-house requirements
modeling tool called InFlux Requirements Studio (RS).7. Influx RS has a process
modeling editor interface which uses BPMN for capturing processes and produces
xmi (a kind of xml) output files for these processes. We consider these xmi files
produced from processes modeled on InFlux and translate them into OWL using
our algorithm. These process models contain tasks, exclusive gateway, parallel
gateways, loops and sub-processes. We create a KB for evaluating the process
retrieval by using process multipliers on original processes.

Methodology. For the evaluation we use the HemriT 1.3.8.413 reasoner in Java
1.8 running on a computer with 3.2, 4-core GHz CPU and 16 GB RAM. We
create four knowledge bases with different sizes (with processes chosen with
replacement) on which process retrieval is evaluated. The first KB contains 9, the
second 15, and the third 20 and fourth contains 29 process models. The Protege
5.2 framework (with HemriT 1.3.8.413) is used for querying and reasoning. For
each of the KBs, the evaluation consists of 10 to 20 queries similar to the queries
illustrated in Sect. 4.

Result. We present our evaluation result concerning process retrieval in Table 5.
KB size refers to the number of processes and their constituent sub-processes. By
KB node size we mean the number of nodes (activities, gateways and events) of
the processes comprising the KB. The quantity sub-process per process denotes
the (average and maximum) number of sub-processes in each process in the KB.
We also capture the number of axioms and rules present in each KB. We show
the (average and maximum) retrieval time (in milliseconds (ms)) for both simple
and complex queries. Simple queries include only one activity or a negated activ-
ity. Complex queries consist of multiple (at least three) activities. The average
retrieval time for concept satisfiability is also shown. By concept satisfiability®
we mean checking the consistency of the conjunction of the complex concepts for
a process with all other relevant axioms like class hierarchy, object property hier-
archy, datatype property hierarchy, class assertions, object property assertions
and the like.

7 InFlux process models have created high impact on Infosys business by bringing in
formalism and repeatability into the process of translation of business objectives into
IT solutions.

8 This is like consistency checking of the whole ontology created on Protégé.
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Table 5. Result on process retrieval

No. | KB KB node | Sub-process KB KB Simple query | Complex Concept sat
size |size per axioms |rules |time [msec] query time [msec]
process size time [msec]
Avg | Max Avg | Max Avg | Max Avg
1 20 151 2 3 1746 179 4390 4482 4201 4270 6806
2 20 143 3 5 1632 183 5820 6020 5750 5826 | 18909
3 29 214 2 3 2498 258 6721 6851 6515 6684 |20310
4 29 217 3 5 5442 261 12213 [12773 | 12228 | 12307 |42322

The performance evaluation has the following outcomes. The number of sub-
processes in a process makes considerable difference in query retrieval and con-
cept satisfiability time, as evidenced by the 3rd and 4th KB. Both these KBs
have the same process size of 29, but the average number of sub-processes per
process in 3rd KB is higher than that in 4th KB, so much so, the retrieval time
of queries differs by almost 100% for them. The 1st and the 2nd KB show com-
parable performances. However, the 1st KB though having larger KB node size,
shows lower retrieval time for simple and as well as complex queries. It seems
the retrieval time is also greatly influenced by the number of sub-processes per
process in the KB as mentioned before. This is because the number of rules in
the KB increases with the increase in the number of sub-processes (every sub-
process generates two lengthy SWRL rules). It is interesting to note that except
for the 2nd KB, the retrieval time for both kinds of queries goes up with an
increase in KB node size.

The retrieval time for queries is directly proportional to KB size. As indicated
for all the KBs, the retrieval time for queries is more than 50% high for a KB with
29 processes than the KB with 20 processes, while the number of sub-process per
process remains almost constant. Also the number of sub-processes per process
seems to affect the concept satisfiability time a lot. For the same KB size of 1st
and 2nd KBs, concept satisfiability time increases by three times for the latter.
Similar trend is shown in 3rd and 4th KBs, the concept satisfiability time for
4th KB is two times more than 3rd KB.

The evaluation realizes the following qualitative results. (1) Processes from
the KB are subsumed by the more general query processes using the roles
followedBy and followedByTran. (2) The presence of unique activities inside
a process lends an advantage on the use of the contains role, as using it with
along the followedBy role leads to a more expressive query. (3) The retrieval
of processes with queries that use activities occurring inside sub-processes are
made possible by the use of SWRL rules that links the control flow relation of
the original process with that of its sub-processes at different levels of hierarchy.

Limitations. Our experimentation is restricted in scope due to KB size. This
is because, for KB with more than 40 process models, concept satisfiability for
most of the cases does not terminate. This is mainly due to the number of rules
that are present in the KB (and of course, consistency checking and querying in
OWL-DL is NEXPTime complete [15]). This is confirmed by the fact that con-



sistency checking without SWRL rules in the KB leads to appreciable decrease
in time. It is obvious that use of SWRL degrades the performance of querying
and consistency checking. However, from Fig. 5 we can see that consistency (con-
cept satisfiability) checking time is only about 45000 ms more for KB with no
rules compared to KB with rules in limit. Also the former rises appreciably in
comparison to the latter when the KB size is close to 20.

6 Business Process Modeling as Part of Knowledge
Management: A Case Study

As the business centers are

becoming more process-oriented Consistency checking time
they have started to adopt
process modeling methods and
tools to effectively manage the
complexity of these systems.
This has led to the development
of integrated business process
modeling tools which are capa- 0 ol e B
ble of delivering valuable busi- —

ness objectives. Each BPM soft-
ware application is made of a
combination of several compo-
nents: process modeling and design, process monitoring, process operation
(automation and integration) and technology platforms and interfaces. Although
each of these components is important for selecting a BPM tool the ability to
model process and maintain process repository would be the most important
yardstick for choosing such tools. Even if modeling tools adequately support the
modeling and enactment of business processes, they still do not provide much
support for knowledge-related activities. By proper ontology modeling of pro-
cesses it will be possible to extract existing knowledge that can be made explicit
to the user. This is the reason we consider a case study of a business process
and follow a step-by-step approach of extracting OWL+SWRL ontology that
explicitly integrates knowledge management activities into the business process
environment.

Figure 6 represents an example of business process in a banking domain
(related to opening of a savings account) arising in an IT application scenario.
This is an abridged version of a process model in Infosys business process repos-
itory. In this process the bank receives request (A) for opening an account from
a client. The bank then obtains client information (B) and selects service (C).
Getting client information reduces to getting driver’s license (D) and analyzing
customer relationship (E) whereas select service forks into record information
(F) and submit deposit (G). After analyzing customer relation and recording
information, document is prepared (H) followed by preparing for account open-
ing (I). For final phase of account opening, a review process is scheduled (J)

g
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§
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Time jnms
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Fig. 5. Consistency checking time for KBs with
and without rules
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Fig. 6. An example of a bank account opening process

which follows account status review (K) and ID verification (O). Finally there
is a decision where either a request is rejected (M), or an account is opened
successfully (N), or missing data is sought (L) for. Note that the activities are
marked using capital letters in parentheses corresponding to the activities in the
diagram. We shall divide this process modeling effort into the following steps, -
sub-process identification, vocabulary fixing, concept hierarchy design, pattern
identification, pattern to ontology creation, axiom listing and ontology merging.

Sub-process identification. One needs to identify all the sub-processes as
each sub-process will be characterized by a separate control flow relation.
So, if there are n processes then we should have assigned n control flow
relations, followedByl,..., followedByn. If a sub-process is embedded in
another sub-process then we use another subscript, for example, if a sub-
process with control flow relation followedBy2 contains another sub-process
then the control flow of the latter will be denoted by followedBy21, and so
forth. However, this particular process does not contain any sub-process, and
hence can be modeled by a single control flow relation followedBy and its
transitive closure.

Vocabulary fixing. Once the control flow relation associated with each sub-
process and the main control flow relation with the original process are
decided one needs to identify a naming convention for all the nodes in the
process. Activities are provided with named individuals, for example, task
A will be represented as an individual actA, task B as actB etc. Similarly,
start and end nodes are instantiated as startl,endl,... etc. Each join node
is also associated with an individual like joinl, ... etc. The naming convention
is that join nodes are marked from left to right in the figure with the word
‘join’ appended with appropriate natural numbers. The naming convention
for roles will be as described in Sect. 3.1. For ease of notation we may adopt
the unique name assumption which states that different names always refer



to different entities in the world, although it is not a requirement in OWL
modeling.

Concept hierarchy design. In most of the cases the concept hierarchy in
Fig. 3(b) is adopted.

Pattern identification. It is known that a well-formed process can be decom-
posed into atomic patterns as proposed by Van der Aalst et.al in [20]. Hence
we can identify those patterns (as depicted in Fig.3(a)) in the process con-
sidered.

Pattern to ontology creation. Once a business process is associated with well-
designated patterns one can start writing ontology for each of these patterns.
For some of these patterns we specify TBox axioms as below. Also for these
patterns we list the ABox axioms in Table 6.

Axiom listing. Some extra axioms like the ones in Table 3 are also added. For
sub-processes similar axioms need to be listed specific to each of them.

Ontology merging. Finally, the ontology specified in the last two steps are
merged. By construction the created ontology as argued in Sect. 3.2, will be
consistent.

Table 6. A partial specification of ontology for the business process in Fig. 6

Patterns TBox axioms ABox axioms
Start node followed Co = (Start N = Start(startl), Task(actA),
by task A 1followedBy.Cp) followedBy(startl, actA)
Task A is split into Ca =Task N Task(actB), Task(actC),
two parallel branches |(3followedBy.Cg) M |followedBy(actA, actB),
containing tasks B (3followedBy.Cc) M| followedBy(actA, actC)
and C respectively (= 2. followedBy)
Task B is split into Cp =Task M Task(actD), Task(actE),
two parallel branches |(3followedBy.Cp) M |followedBy(actB, actD),
containing tasks D (3followedBy.Cg) M|followedBy(actB, actE)
and E respectively (= 2. followedBy)
Tasks E and F get Cp = Taskn = Task(actH), Join(joinl),
synchronized into task|1.followedBy.(J M =|followedBy(actE, actH),
H 1.followedBy.Cp), followedBy(actF, actH),
Cp = followedBy(actE, joinl),
Task M = followedBy(actF, joinl)
1. followedBy.(J M =
1.followedBy.Cpg)
Task N is followed by [Cny = (Task N = Task(actN), End(endl),
end node 1 followedBy.End) |followedBy(actN,endl)

In this way, one can create ontology for each process in a repository and merge
those ontologies to create useful organizational knowledge repository. As nowa-
days, most of the organizations are involved in the projects related to business
process management this work could facilitate adopting an integrated business
process and knowledge management centric approach. Such a modeling frame-
work should encourage the development of integrated BPM and Knowledge man-
agement software tools that should enable the transformation of business process
models into knowledge repository.



7 Related Work

There are some existing research work on annotating business processes using
semantic web formalisms. Business processes have been tagged with semantic
labels as a part of knowledge base with a view to formalize business process
structure, business domains, and a set of criteria describing correct semantic
marking in [5]. In another work [6], the authors propose semantic web language
OWL to formalize business process diagrams, and automatically verify sets of
constraints on them, that deal with knowledge about the domain and process
structure. There have been earlier attempts to model processes and retrieve pro-
cess structures. Sequences arising in a business process have been modeled in [10].
Processes are retrieved using process information and annotation in [23]. Process
reuse has been advocated in [7] by using DL-based process models, but complex
control flow is not captured. In [9], the authors build on these approaches of
process modeling, and attempt to analyze requirements for modeling and query-
ing process models. They also present a pattern-oriented approach for process
modeling and information retrieval. For this purpose they specify the execution
order of a process in OWL and also express the modality and process activi-
ties and structures in the same formalism. In a recent work [11] Kafer and Harth
design an ontology for representing workflows over components with Read-Write
Linked Data interfaces and give an operational semantics to the ontology via a
rule language, however they do not deal with explicit business process models.
As mentioned before, our work offers some advantage over this work as it allows
a modular design of process models and combines control flows of an original
process and constituent sub-processes using SWRL rules.

These semantic annotation techniques of business processes lead to the pos-
sibility of semantic validation, i.e., whether the tasks in business processes are
consistent with respect to each other in the underlying framework of semantic
annotation. Such issues are investigated in [22], where the authors introduce a
formalism for business processes, which combines concepts from work flow with
that from AI. A rule-based method for modeling processes and workflows has
been proposed in [13], where the authors introduce an extended Event-Condition-
Action (ECA) notation for refining business rules, and perform a consistent
decomposition of business processes. Cicekli and Cickeli have used event calcu-
lus, a kind of logic programming formalism for specification and execution of
workflows in [3]. They express control flow graph of a work flow specification
as a set of logical formulas. Using a similar framework of Constraint Logic Pro-
gramming the authors propose a method for representing and reasoning about
business processes from both the workflow and data perspective [19]. However
most of these techniques lead to undecidable reasoning problem.

Let us also contrast our OWL modeling of business processes with possible
modeling of the same with OWL-S [21]. OWL-S is one of the first attempts to
present an OWL ontology for semantic modeling of processes. OWL-S differen-
tiates between atomic and composite processes. Our modeling technique does
not require such a differentiation. OWL-S Sequence allows arbitrary processes
as components. As a result, the semantics of a sequence of two splits is unclear



and unintuitive. Suppose a split A has components Aq,..., A, and split B has
components By, ..., B,. When A and B are composed in a sequence such that A
is followed by B, it may still happen that a B; is finished before an A;. Our mod-
eling technique requires the first component to be a start event. OWL-S process
model proposes a complicated way for modeling input and output parameters
with OWL. We do not model input and output parameters of activities in our
approach.

8 Conclusion

In this work we provide a formalization of business processes in OWL-DL with
SWRL rules for modeling and retrieving purposes. Our modeling technique offers
some advantages over the existing repertoire by the way of offering a modular
approach of modeling, linking control flow relations of a process and its sub-
process using rules and providing a consistent way of modeling ontologies. The
framework can be successfully integrated with different applications involving
requirement engineering, business process information systems etc. In future
we would like to design a natural language query interface for querying business
processes in this framework. Sentences expressed in a controlled subset of natural
language will be used as query languages on the user interface which will be
converted to SQWRL queries at the back end for information retrieval.
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