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Abstract

In this paper, the numerical treatment of magnetic loss of NiZn, MnZn, Ni2Y, and NiZnCu ferrite and their composites, by using 
Krameres–Kronig relations, is investigated. The complex magnetic permeability spectra for ferromagnetic materials have been studied. 
Due to the principle of causality and time independence in the relation between magnetic induction B and magnetic field H, the real and 
the imaginary part of the complex magnetic permeability are mutually dependent, and the correlation is given by the Krameres–Kronig 
equations. Through them, it is possible to measure the real component of the complex magnetic permeability, assuming the real 
component is given, and by the Hilbert transform, the imaginary part of the magnetic permeability can be calculated. Magnetic circuit 
model has been studied theoretically, focusing on the model’s poles in the complex plane to verify the principle of causality and the 
temporary independence.
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1. Introduction

The electromagnetic theory can be used to describe the
macroscopic properties of matter, these electromagnetic
fields may be characterized by four vectors: electric field E,
magnetic flux density B, electric flux density D, and
magnetic field H, which at ordinary points satisfy
Maxwell’s equations [1].

If the physical properties of the sample can be considered
linear, homogeneous, and isotropic, the relation between
vectors B and H are called magnetic permeability m:

B ¼ mH. (1)

Also, an important parameter in magnetic materials is the
magnetic susceptibility w, which relates the magnetization
vector M with the magnetic field vector H:

M ¼ wH. (2)
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Magnetic permeability m and magnetic susceptibility w are
also related to each other by [1]

m ¼ 1þ w. (3)

Actually, magnetic materials in sinusoidal fields have
magnetic losses and these can be expressed taking m and
w as complex parameters [2]:

m ¼ m0 þ jm00, (4)

w ¼ w0 þ jw00. (5)

The magnetic permeability m0 and the loss factor m00 of the
magnetic materials are relevant factors to design devices
like inductors, transformers, and wave absorbers for
microwaves, among others. Therefore, it is advisable to
investigate the behavior of the magnetic materials as a
function of the frequency [3,4].
In the frequency range from RF to microwaves, the

permeability spectra of ferrite material can be characterized
by the different magnetizing mechanisms, domain-wall
motion and gyromagnetic spin rotation [11–13].
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Fig. 1. Integration path used in Eq. (12).
So, magnetic susceptibility w can be expressed as the
contribution of two terms, gyromagnetic spin (ws), and
domain wall (wd) [5,6]:

w ¼ wd þ ws, (6)

mr ¼ 1þ wd þ ws. (7)

Domain wall process can be studied with an equation of
motion in which the pressure (k�H) is equated to the sum
of the three terms:

me
d2z

dt
þ b

dz

dt
þ dz ¼ kH, (8)

where me is the effective mass, b is the damping factor,
and d the elasticity factor, while k is a proportionality
factor.

The relation between z, the spatial coordinate, and the
magnetic dipolar moment is m=pz, where p is the intensity
of magnetic pole, and M=Nm, where N is the number of
particles [7,8].

Assuming that the magnetic field has harmonic
excitation, the full solution of the above equation
of motion gives the characteristic behavior of suscepti-
bility [8]:

wd ¼
o2

dwd0
o2

d � o2 � job
, (9)

where od is the resonance frequency of domain-wall
(o2

d ¼ d=m) and wd0 is the static magnetic susceptibility
(wd0 ¼ k�p/d).

Gyromagnetic spin contribution can be studied with a
magnetodynamic equation [3]:

dM

dt
¼ geðM�HÞ þ

a
M

M�
dM

dt
, (10)

where ge is the gyromagnetic ratio and a is the damping
factor.

Assuming that the magnetic field and the magnetization
are harmonic functions:

H ¼ H i þ h eþjot,

M ¼M0 þm eþjot,

where Hi is the total internal field and M0 is the saturated
magnetization of the ferrite.

Then the magnetic susceptibility ws can be expressed as

ws ¼
ðos þ joaÞosws0
ðo2

s þ joaÞ2 � o2
, (11)

where os ¼ �gHi (the resonance frequency of the spin
component) and ws0 ¼ �gM0 (the static magnetic suscept-
ibility).

Thus, the total magnetic permeability results (see
Greiner Ref. [8]):

m ¼ 1þ
o2

dwd0
o2

d � o2 � job
þ
ðos þ joaÞosws0
ðo2

s þ joaÞ2 � o2
. (12)
The real and imaginary parts of formula (12) can be
derived as follows:

m0ðoÞ ¼ 1þ
o2

dwd0ðo
2
d � o2Þ

ðo2
d � o2Þ

2
þ o2b2

þ
o2

sws0ðo
2
s � o2Þ þ o2a2

ðo2
s � o2ð1þ a2ÞÞ2 þ 4o2o2

sa2
, ð13Þ

m00ðoÞ ¼
o2

dwd0ob

ðo2
d � o2Þ

2
þ o2b2

þ
osws0oaðo

2
s þ o2ð1þ a2ÞÞ

ðo2
s � o2ð1þ a2ÞÞ2 þ 4o2o2

sa2
. ð14Þ

According to the principle of causality, the values of B at a
certain moment can only be dependent of the H values,
which occurred previously. Therefore, there is a direct
relation between m0 and m00, this relation is given by the
Kramers–Kronig relation [10,16]

m0rðoÞ � mr1 ¼
1

p
P

Z þ1
�1

m00r ðx
0Þdx

x� o
, (15)

m00r ðoÞ ¼ �
1

p
P

Z þ1
�1

ðm0rðx
0Þ � mr1Þdx

x� o
, (16)

where mr1=m0(omax) is the real part of the relative magnetic
permeability for the maximum frequency.
The relationship between m0 and m00 shows that the

mechanisms of energy storage and energy dissipation are
two aspects of the same phenomenon. Hence, if one of the
terms is known, even only approximately (for instance, by
an experimental way), the other can be deduced. The
losses, represented by the imaginary part of the magnetic
permeability, can be extremely small; however, they are
always present [10].
The well-known Kramers–Kronig relations were ob-

tained taking a complex integration along curve C that is
shown in Fig. 1, according to the Cauchy Theorem [9]:I

C

mrðoÞ � mr1
o� o0

do ¼ 0. (17)



Table 1

Permeability dispersion parameters of sintered Mn–Zn and Ni–Zn ferrite reported by Tsutaoka [6]

Density (g/cm3) Domain-wall component Spin component 4.9

wd0 od (MHz) b ws0 os (MHz) a

Mn–Zn ferrite 4.9 3282 2.5 9.3� 106 1438 6.3 1.28

Ni–Zn ferrite 5.2 485 2.8 3.5� 106 1130 1100 161

Table 2

Sample information of NiZnCu ferrite and NiZnCu ferrite composite reported by Kawano et al. [14]

Sample

name

Weight ratio of NiZnCu ferrite

(wt%)

Weight ratio of Bi2O2+SiO2

(wt%)

Sintering time

(h)

Density (g/

cm3)

Ferrite grain size

(mm)

Sample A 100 0 6 5.16 ffi12.67

Sample B-1 70 30 6 5.04 ffi3.69

Table 3

Sample information of Ni2Y ferrite and Ni2Y ferrite composite reported

by Shin and Oh [15]

Sample name Weight ratio of

Ni2Y ferrite (wt%)

Weight ratio of

silicon rubber

(wt%)

Sintering

time (h)

Sample Ni2Y 100 0 3

Sample Ni2Y

composite

57 43 3

Fig. 2. Positions of the poles for the magnetic susceptibility.
The complex magnetic permeability function m(o) must
be analytical in the area enclosed by the curve C (Fig. 1),
their poles must be located in the complex superior semi-
plane: this is one important property to verify the principle
of causality and temporary independence.

2. Experimental

The loss factor of the complex magnetic permeability of
sintered Mn–Zn, Ni–Zn, Ni2Y, Ni2Y and NiZnCu ferrites
and their composites have been computed numerically
applying the Hilbert transform to the real part of the
ferrites, by using the results reported by Tsutaoka [6],
Kawano et al. [14], and Shin and Oh [15] (See Tables 1–3).
Those complex magnetic permeability responses were
depicted and have been compared with the imaginary part
of m(o) computed numerically by means of the Hilbert
transform obtained in this paper.

3. Results and discussions

According to the preceding discussion, the magnetic
permeability complex function m(o) must be analytical in
the complex upper half-plane [10]. The magnetic circuit
model [4] of the magnetic permeability (12) is analytic
except at the poles (the zeros of the denominator), and the
expressions of that singular points are

o1;2 ¼
�jb�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b2 þ 4o2

d

q

2
, (18)

o3;4 ¼ j
�josja
1þ a2

�
josj

1þ a2
. (19)

The position of the poles from Eqs. (9) and (11) is
illustrated in Fig. 2. o1,2 are the poles that represent the
movement of the domain’s wall, while o3,4 are the poles
that represent the gyromagnetic spin rotation. It can be
observed that all poles lay in the lower complex half-plane,
as it belongs to a causal system [10,16].
The experimental data of m0 from Refs. [6,14,15] have

been employed to calculate m00 using the Hilbert transform
as follows:

m00 ¼ HTðm0 � m0r1Þ, (20)

where HT is the Hilbert transform.



Fig. 3. Complex permeability spectra of sintered Ni–Zn ferrite.

Fig. 4. Complex permeability spectra of sintered Mn–Zn ferrite.

Fig. 5. Complex permeability spectra of NiZnCu ferrite (sample A).

Fig. 6. Complex permeability spectra of Ni–ZnCu ferrite composite

(sample B1).
Figs. 3–8 show the experimental results of m0 and m00

taken from the reports and m00 obtained numerically by
mean of Hilbert transform in the present investigation.
Experimental and calculated curves of magnetic loss
spectra have fairly good coherence.

Fig. 3 shows the complex permeability spectra of the
NiZn ferrite [6], where it can be observed that the
calculated curve m00 ¼ HTðm0 � m0r1Þ fits with the experi-
mental values in the central zone of the spectra, whereas it
differs for frequencies smaller than 1MHz and greater than
10MHz. The loss peak of this ferrite is around 2.5MHz,
and a deformation can be observed, which is coherent with
the calculated values for this frequency.

The complex permeability spectra of MnZn ferrite are
shown in Fig. 4 [6]. The peak is located around 0.6MHz;
the calculated data are coherent with the experimental ones
in the center of the spectra, whereas they differ in high and
low frequencies.
In Fig. 5, the complex permeability spectra of the
NiZnCu ferrite are shown. The frequency of the peak is
located at 3MHz and the calculated results match the
measured results.
In Fig. 6, the complex permeability spectra of NiZnCu

ferrite composite are shown. The loss peak is at 50MHz
and the coherence is as acceptable as in the previous
ferrites.
In Fig. 7, the measurements and the numerical results of

the Ni2Y ferrite are depicted. Two peaks can be observed at
0.9 and 6.5GHz; the calculated curve fits to the measured
values along almost all the range of frequencies. It can be
seen that when enlarging the rank of frequencies, the
calculated results fit better to the experimental curve. In
Fig. 8, the measurements and the numerical results of the
Ni2Y ferrite composite are depicted. The differences



Fig. 7. Complex permeability spectra of Ni2Y ferrite.

Fig. 8. Complex permeability spectra of Ni2Y ferrite composite.
between both the curves can be observed specially at higher
and lower frequencies. In almost all the graphs, it is
observed that in maximum and minimum frequencies of
the measured range, the error between the calculated and
the measured losses increase, and an explanation will be
provided here.

Theoretically, the bandwidth used to apply the Hilbert
transform goes from �N up to +N, as it has been
expressed in Eqs. (15) and (16). This cannot be obviously
reproduced in practice, but when the bandwidth is
increased, the error in the numerical predictions of m00

decreases.
4. Conclusion

The proposed model of the magnetic permeability as a
function of the frequency for ferrites has been analyzed.
This model fulfills the essential property of complex
permeability spectra of ferrites: the absence of singular
points in the superior semi-plane of the complex plane,
which is a direct consequence of the physical principle of
causality.
The magnetic loss factor of the NiZn, MnZn, Ni2Y, and

NiZnCu ferrites and their composites has been predicted
successfully by mean of the computed Hilbert transform
applied to the real part of the permeability.
From the above analysis, it can be concluded that this

numerical technique can be applied to calculate the
response of m00, just by knowing m0. This conclusion is
important for experimental investigations in the complex
permeability spectra of ferrites.
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