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Abstract— In this paper we address invariance principles for
nonlinear switched systems with otherwise arbitrary compact
index set and with constrained switchings. We present an
extension of LaSalle’s invariance principle for these systems
and derive by using detectability notions some convergence and
asymptotic stability criteria. These results enable to take into
account in the analysis of stability not only state-dependent
constraints but also to treat the case in which the switching
logic has memory, i.e., the active subsystem only can switch to
a prescribed subset of subsystems.

Index Terms— Switched systems, detectability, stability, con-
vergence, invariance

I. INTRODUCTION

A switched system is a dynamical system that consists of

a family of subsystems and a logical rule (time or state de-

pendent) that orchestrates switching between them. Although

switched systems may look simple, their behavior may be

very complicated, being a classical example the fact that a

trajectory obtained by switching among asymptotically stable

subsystems may be divergent (see [9]). Although the stability

of switched systems under arbitrary switching laws can be

assured by the existence of a common Lyapunov function

(CLF) for all the switching modes ([9], [11]), in practical

applications many switched systems do not share a CLF.

Nevertheless, they may be stable under restricted switching

signals. Restrictions on the set of admisible switching signals

of a certain switched system arise naturally from physical

constraints of the system, from design strategies (e.g. dis-

continuous control feedback laws), or from the knowledge

about possible switching logic of the switched system, e.g.,

partitions of the state space and their induced switching

rules.The framework of multiple Lyapunov functions (MLF)

is the usual one in the stability analysis of switched systems

with constrained switchings.In this method each switching

mode may have its own Lyapunov function (see [4] and

references therein), however, some additional conditions are

necessary to assure the value of each Lyapunov function on

its corresponding mode will decrease. Sufficient conditions

for asymptotic stability of switched systems with MLF can be

found in [4], [9] and references therein. When the derivative

of a candidate Lyapunov function with respect to each mode

is only non-positive, the asymptotic stability of the switched

system can be derived by using one of the various extensions
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of LaSalle’s invariance principle for switched systems: Hes-

panha in [6] introduced an invariance principle for switched

linear systems under persistently dwell-time switching sig-

nals and in [7] Hespanha et al. extended some of those

results to a family of nonlinear systems. Bacciotti and Mazzi

in [1] presented an invariance principle for switched systems

with dwell-time signals. An invariance principle for switched

nonlinear systems with average dwell-time signals that sat-

isfy state-dependent constraints was derived by Mancilla-

Aguilar and Garcı́a in [13] from the sequential compactness

of particular classes of solutions to switched systems. Based

on invariance results for hybrid systems ([14]), Goebel et

al. ([5]) obtained recently invariance results for switched

systems under various types of switching signals. Lee and

Jiang in [8] gave a generalized version of Krasovskii-LaSalle

Theorem for time-varying switched systems. Under certain

ergodicity conditions on the switching signal, some stability

results were obtained in [3] and in [15].

Most of the invariance results for switched systems already

published only consider restrictions originated by the timing

of the switchings or by the state dependence of it. Neverthe-

less there is also an important restriction to take into account:

the fact that not all the subsystems may be accessible from

a particular one, i.e. when the switching logic has memory

(see [12]). This restriction is clearly exhibited, for example,

in switched systems which are the continuous portion of a

hybrid automaton (see [4], [10]). In this regard, the invariance

principles developed for hybrid systems in [10] and in [14]

could be useful in the analysis of switched systems with this

class of restriction in the switchings.

In this paper we present an invariance principle for

switched systems that takes into account this additional

restriction. This invariance principle differs from those ob-

tained in the mentioned papers in that the index sets that

we consider may be arbitrary compact sets and the type of

invariance considered is both backward and forward. From

this invariance principle we derive some new convergence

and stability criteria that extend some previously obtained

results. These criteria involve some detectability conditions

on the functions which bound the derivatives of Lyapunov-

like functions. The article unfolds as follows. Section II

contains the basic definitions. In Section III we present an

invariance principle for switched systems with constrained

switching. Convergence and stability results are given in

Section IV. Finally Section V contains some conclusions.

II. BASIC DEFINITIONS

In this work we consider switched systems described by

ẋ = f(x, σ) (1)



where x takes values in R
n, σ : R → Γ, with Γ a compact

metric space, is a switching signal, i.e., σ is piecewise

constant (it has at most a finite number of jumps in each

compact interval) and is continuous from the right and

f : dom(f) → R
n, where dom(f) is a closed subset of

R
n × Γ, is continuous. For each γ ∈ Γ, let χγ = {ξ ∈

R
n : (ξ, γ) ∈ dom(f)} and fγ : χγ → R

n defined by

fγ(ξ) = f(ξ, γ); then χγ is closed and fγ is continuous for

any γ ∈ Γ. We note that when Γ is finite, the last conditions

imply that dom(f) is closed and that f is continuous on

dom(f).
We will denote by S the set of all the switching signals.

Given σ ∈ S, a solution of (1) corresponding to σ is a locally

absolutely continuous function x : Ix → R
n, with Ix ⊂ R a

nonempty interval, such that (x(t), σ(t)) ∈ dom(f) for all

t ∈ Ix and ẋ(t) = f(x(t), σ(t)) for almost all t ∈ Ix. The

solution x is complete if Ix = R and forward complete if

R≥0 ⊂ Ix. A pair (x, σ) is a trajectory of (1) if σ ∈ S and

x is a solution of (1) corresponding to σ. The trajectory is

complete or forward complete if x is complete or forward

complete, respectively. Given a subset O of R
n, we say that

the trajectory (x, σ) is precompact relative to O if there exists

a compact set B ⊂ O such that x(t) ∈ B for all t ∈ Ix.

When O = R
n we simply say that (x, σ) is precompact.

Remark 2.1: Note that we do not suppose that dom(f) =
R

n × Γ. This fact enables us to take into account in the

analysis of the asymptotic behavior of a given trajectory

(x, σ) of (1) some kind of state-dependent constraints which

the trajectory under study must satisfy. In some situations

we are not interested in the analysis of all the forward

complete trajectories (x, σ) of a switched system (1) (with

dom(f) = R
n×Γ) but only of those that verify the constraint

x(t) ∈ χσ(t) for all t ∈ Ix, (2)

where {χγ : γ ∈ Γ} is a collection of subsets of R
n. If

we consider the map f̃ , which is the restriction of f to the

set dom(f̃) = {(ξ, γ) : ξ ∈ χγ}, and dom(f̃) is closed in

R
n×Γ, then the set of trajectories (x, σ) of (1) which verify

(2) coincides with the set of trajectories of

ẋ = f̃(x, σ). (3)

It must be pointed out that in this way we can consider

the system as if its switching is state-independent, and

focus on the restrictions imposed to it by the timing of

the discontinuities of the switching signal and/or by the

accessibility to certain subsystems from another ones.

In this paper we consider forward complete solutions of

(1) corresponding to switching signals σ which belong to

particular subclasses of S. Let Λ(σ) be the set of times where

σ has a jump (switching time). Following ([6]) we say that

σ ∈ S has a dwell-time τD > 0 if |t− t′| ≥ τD for any pair

t, t′ ∈ Λ(σ) such that t 6= t′.
A switching signal σ has an average dwell-time τD > 0

and a chatter bound N0 ∈ N if the number of switching times

of σ in any open finite interval (τ1, τ2) ⊂ R is bounded by

N0 + (τ2 − τ1)/τD, i.e. card(Λ(σ)∩ (τ1, τ2)) ≤ N0 + (τ2 −
τ1)/τD.

We denote by Sa[τD, N0] the set of all the switching sig-

nals which have an average dwell-time τD > 0 and a chatter

bound N0 ∈ N. Ta[τD, N0] denotes the set of all the complete

trajectories (x, σ) of (1) with σ ∈ Sa[τD, N0]. Let Sa =
⋃

τD>0,N0>0 Sa[τD, N0] and Ta =
⋃

τD>0,N0>0 Ta[τD, N0].
We note that the set of switching signals σ which have a

dwell-time τD > 0 coincides with Sa[τD, 1] := Sd[τD].
We denote by Td[τD] the set of all the complete trajectories

(x, σ) of (1) with σ ∈ Sd[τD]. Let Sd =
⋃

τD>0 Sd[τD] and

Td =
⋃

τD>0 Td[τD].
The following family of trajectories is introduced in order

to take into account the case in which the switching logic

has memory, i.e. when a subsystem corresponding to an index

γ ∈ Γ only can switch to subsystems corresponding to modes

γ′ that belong to a certain subset Γγ ⊂ Γ. Given a set value-

map H : Γ Γ, SH is the set of all the switching signals σ
which verify the condition σ(t) ∈ H(σ(t−)) for every time

t ∈ Λ(σ). Here σ(t−) = lims→t− σ(s). T H denotes the set

of all the complete trajectories (x, σ) with σ ∈ SH . This

class of switching signals enable us, for example, to model

the restrictions imposed by the discrete process of a hybrid

system whose continuous portion is as in (1) (see [4]).

III. INVARIANCE RESULTS FOR TRAJECTORIES WHICH

SATISFY A DWELL-TIME CONDITION

In what follows we study the asymptotic behavior of a

precompact forward complete trajectory (x, σ) of (1) with

σ ∈ Sa.

We recall that a point ξ ∈ R
n belongs to Ω(x), the ω-limit

set of x : Ix → R
n, with R≥0 ⊂ Ix, if there exists a strictly

increasing sequence of times {sk} with limk→∞ sk = ∞ and

limk→∞ x(sk) = ξ. The ω-limit set Ω(x) is always closed

and, when x evolves in a compact set of R
n, it is nonempty,

compact and x → Ω(x) (for a set M ⊂ R
n, x → M if

limt→+∞ d(x(t),M) = 0, where d(ξ,M) = infν∈M |ν−ξ|).
As was done in [13], we will associate to each precompact

forward complete trajectory (x, σ) of (1) with σ ∈ Sa, the

nonempty set Ω♯(x, σ) ⊂ R
n × Γ defined by

Definition 1: Given a precompact forward complete tra-

jectory (x, σ) of (1) with σ ∈ Sa, a point (ξ, γ) ∈ R
n × Γ

belongs to Ω♯(x, σ) if there exists a strictly increasing and

unbounded sequence {sk} ⊂ R≥0 such that

1) limk→∞ τ1
σ(sk) − sk = r, 0 < r ≤ ∞;

2) limk→∞ x(sk) = ξ and limk→∞ σ(sk) = γ.

Here, for any t ∈ R, τ1
σ(t) = inf{s ∈ Λ(σ) : t < s} if

{s ∈ Λ(σ) : t < s} 6= ∅ and τ1
σ(t) = +∞ in other case

(τ1
σ(t) is the first switching time greater than t.)

The following relation between Ω(x) and Ω♯(x, σ) holds.

Lemma 1: Let (x, σ) be a forward complete trajectory of

(1) with σ ∈ Sa that is precompact relative to O ⊂ R
n. Then

Ω♯(x, σ) ⊂ dom(f) ∩ (O × Γ) and Ω(x) = π1(Ω
♯(x, σ)),

where π1 : R
n × Γ → R

n is the projection onto the first

component.

Proof. That Ω♯(x, σ) ⊂ dom(f) ∩ (O × Γ) follows from

the fact that (x(t), σ(t)) belongs to a compact subset of

dom(f) ∩ (O × Γ) for all t ∈ Ix and from the definition of

Ω♯(x, σ). The proof of the other assertion follows mutatis



mutandis from the proof of Lemma 4.1 in [13].

The set Ω♯(x, σ) enjoys certain kind of invariance prop-

erty. First we introduce the following

Definition 2: Given a family T ∗ of complete trajectories

of (1), we say that a nonempty subset M ⊂ R
n×Γ is weakly-

invariant with respect to T ∗ if for each (ξ, γ) ∈ M there is

a trajectory (x, σ) ∈ T ∗ such that x(0) = ξ, σ(0) = γ and

(x(t), σ(t)) ∈ M for all t ∈ R.

This notion of weak invariance differs from the one intro-

duced in [13], in that the last one involves only forward

invariance while the introduced here also involves backward

invariance.

The next proposition, whose proof we omit, establishes the

weak invariance of Ω♯(x, σ) with respect to certain classes

of complete trajectories under study in this paper.

Proposition 3.1: Let (x, σ) be a precompact forward com-

plete trajectory of (1).

1) If σ ∈ Sa[τD, N0] for some τD > 0 and N0 ∈
N, then Ω♯(x, σ) is weakly invariant with respect to

Ta[τD, N0].
2) If σ ∈ Sd[τD] ∩ SH for some τD > 0 and some H :

Γ Γ such that Graph(H) = {(γ, γ′) ∈ Γ×Γ : γ′ ∈
H(γ)} is closed, then Ω♯(x, σ) is weakly invariant with

respect to Td[τD] ∩ T H .

Remark 3.1: At first glance, it would seem more natural to

consider for a given precompact forward complete trajectory

(x, σ) of (1) its ω-limit set Ω(x, σ) instead of Ω♯(x, σ) ⊂
Ω(x, σ). Nevertheless, there exist forward complete trajec-

tories (x, σ) of (1) with σ ∈ Sa such that Ω(x, σ) is

not weakly-invariant for any family of trajectories of that

switched system.

Next, we present an invariance result which involves the

existence of a function V which is nonincreasing along a

trajectory of (1). For a set O ⊂ R
n and γ ∈ Γ let Oγ =

O ∩ χγ .

Assumption 1: The forward complete trajectory (x, σ) of

(1) verifies the following:

1) there exists a function V : O×Γ → R, with O an open

subset of R
n such that V is continuous on dom(f) ∩

(O × Γ) and for all γ ∈ Γ, V (·, γ) is differentiable at

every ξ ∈ Oγ ;

2) v(t) = V (x(t), σ(t)) is nonincreasing on [0,∞).
In what follows, we denote Z = {(ξ, γ) ∈ dom(f)∩(O×Γ) :
∂V
∂ξ

(ξ, γ)fγ(ξ) = 0}.

Theorem 1: Suppose that (x, σ) is a forward complete

trajectory of (1) for which Assumption 1 holds. Suppose in

addition that (x, σ) is precompact relative to O.

1) If σ belongs to Sa[τD, N0] for some τD > 0 and

some N0 ∈ N, then there exists c ∈ R such that

x → π1(M(c)), where M(c) is the maximal weakly

invariant set w.r.t. Ta[τD, N0] contained in dom(f) ∩
V −1(c) ∩ Z.

2) If σ belongs to Sd[τD] ∩ SH for some τD > 0 and

some H : Γ  Γ, with Graph(H) closed, then there

exists c ∈ R such that x → π1(M
∗(c)), where M∗(c)

is the maximal weakly invariant set w.r.t. Td[τD]∩T H

contained in dom(f) ∩ V −1(c) ∩ Z.

Proof. Since Ω♯(x, σ) is weakly-invariant w.r.t. Ta[τD, N0]
or Td[τD] ∩ T H when, respectively, σ ∈ Sa[τD, N0] or

σ ∈ Sd[τD] ∩ SH , Ω♯(x, σ) ⊂ dom(f) ∩ (O × Γ) and

x → π1(Ω
♯(x, σ)), we only have to prove that Ω♯(x, σ) ⊂

V −1(c) ∩ Z for some c ∈ R. As (x, σ) is precompact

relative to O, there exists a compact set B ⊂ O such that

x(t) ∈ B for all t ∈ Ix. Therefore (x(t), σ(t)) belongs to

the compact set dom(f)∩ (B ×Γ) for all t ∈ Ix. Thus v(t)
is bounded, since V is continuous on dom(f) ∩ (O × Γ),
and nonincreasing by hypothesis; in consequence there exists

limt→+∞ v(t) = c.

Let (ξ, γ) ∈ Ω♯(x, σ). Then there exists a strictly

increasing and unbounded sequence {sk} which

verifies 1. and 2. of Definition 1. We have that

(x(sk), σ(sk)) → (ξ, γ) as k → ∞. In consequence

c = limk→∞ v(sk) = limk→∞ V (x(sk), σ(sk)) = V (ξ, γ)
and (ξ, γ) ∈ V −1(c). Now we show that (ξ, γ) also

belongs to Z. Since Ω♯(x, σ) ⊂ V −1(c) is weakly

invariant w.r.t. Ta[τD, N0] (resp. Td[τD] ∩ T H ) there exists

(x∗, σ∗) ∈ Ta[τD, N0] (resp. Td[τD] ∩ T H ) such that

(x∗(0), σ∗(0)) = (ξ, γ) and (x∗(t), σ∗(t)) ∈ Ω♯(x, σ)
for all t ∈ R. So, V (x∗(t), σ∗(t)) = c for all t ∈ R.

In particular, since σ∗(t) = γ on [0, τ) for τ small

enough, we have that V (x∗(t), γ) = c on [0, τ). Therefore
∂V
∂ξ

(x∗(0), γ)fγ(x∗(0)) = 0, and (ξ, γ) ∈ Z.

When Γ is a finite set, we identify Γ with the finite subset

of N, {1, . . . , N}, where N = card(Γ). In this case we

can relax the nonincreasing condition in Assumption 1 as

follows.

Assumption 2: The forward complete trajectory (x, σ) of

(1) verifies the following:

1) There exists a function V : O × Γ → R, with O an

open set of R
n, such that for all γ ∈ Γ, V (·, γ) is

differentiable at every ξ ∈ Oγ ;

2) for each γ ∈ Γ, v(t) = V (x(t), σ(t)) is nonincreasing

on the set Tγ = σ−1(γ) ∩ [0,+∞).
Assumptions of this kind are standard when the stability anal-

ysis of the zero solution of a switched system is performed

with the help of multiple Lyapunov functions (see [9], [4]).

We note that when Γ is finite, any function V which

verifies 1. of Assumption 2 also verifies condition 1. of

Assumption 1.

Theorem 2: Suppose that Γ is finite and that (x, σ) is a

forward complete trajectory of (1) for which Assumption 2

holds. Suppose in addition that (x, σ) is precompact relative

to O.

1) If σ belongs to Sa[τD, N0] for some τD > 0 and

some N0 ∈ N, then there exists ~c ∈ R
N such

that x → π1(M(~c)), where M(~c) is the maximal

weakly invariant set w.r.t. Ta[τD, N0] contained in

∪γ∈Γ{(ξ, γ) ∈ dom(f)∩(O×Γ) : V (ξ, γ) = cγ}∩Z.

2) If σ belongs to Sd[τD] ∩ SH for some τD > 0 and

some H : Γ  Γ, then there exists ~c ∈ R
N such

that x → π1(M
∗(~c)), where M∗(~c) is the maximal



weakly invariant set w.r.t. Td[τD] ∩ T H contained in

∪γ∈Γ{(ξ, γ) ∈ dom(f)∩(O×Γ) : V (ξ, γ) = cγ}∩Z.

Proof. For γ ∈ Γ we define cγ as follows:

• cγ = 0 if σ−1(γ) ∩ [0,∞) is bounded;

• cγ = limt→+∞, t∈Tγ
v(t) if σ−1(γ) ∩ [0,∞) is un-

bounded.

We note that the limit exists since v is non-increasing and

bounded on Tγ .

Reasoning as in the proof of Theorem 1, and taking into

account that Graph(H) is closed since Γ is finite, it suffices

to show that Ω♯(x, σ) ⊂ {(ξ, γ) ∈ dom(f) ∩ (O × Γ) :
V (ξ, γ) = cγ} ∩ Z, in order to prove the thesis of the

theorem.

Let (ξ, γ) ∈ Ω♯(x, σ) ⊂ dom(f). Then there exists

a strictly increasing and unbounded sequence {sk} which

verifies 1. and 2. of Definition 1. Since σ(sk) → γ and

Γ is a finite set, σ(sk) = γ for k large enough and for

those k, sk ∈ Tγ . It follows that V (x(sk), γ) → cγ as

k → ∞ and in consequence, V (ξ, γ) = cγ and (ξ, γ) ∈
∪γ′∈Γ{(ξ

′, γ′) ∈ dom(f)∩ (O×Γ) : V (ξ′, γ′) = cγ′}. The

fact that (ξ, γ) ∈ Z can be proved in the same way as in the

proof of Theorem 1.

Remark 3.2: If in Assumptions 1 and 2 we remove the

hypothesis on the differentiability of V , theorems 1 and 2

remain valid removing the set Z from the statements of

theses theorems.

Remark 3.3: Some invariance results for switched systems

reported in the literature can be derived from Theorem 2. In

particular, [1, Thms. 1 and 2], [13, Prop. 4.1] and [5, Corol.

5.6].

IV. CONVERGENCE AND STABILITY RESULTS

In this section we derive, from the invariance princi-

ples presented in the previous section, some convergence

and stability results for switching systems with constrained

switchings.

A. Convergence results

In the sequel we will consider the following assumptions

Assumption 3: fγ(0) = 0 for all γ ∈ Γ such that 0 ∈ χγ .

Assumption 4: The initial value problem ẋ = fγ(x),
x(0) = 0 has a unique solution for every γ ∈ Γ such that

0 ∈ χγ .

Let us introduce some definitions. Given a map g : R
n →

R
n, a function W : R

n → R and a subset V ⊂ R
n in which

g is continuous, we say that for a given τ (τ > 0 or τ = ∞)

a point ξ ∈ V is τ -forward-indistinguishable from 0 on V
(resp. τ -backward-indistinguishable from 0 on V), if there

exists a solution ϕ : [0, τ ] → V (resp. ϕ : [−τ, 0] → V)

of ẋ = g(x) such that ϕ(0) = ξ and W (ϕ(t)) = 0 for all

t ∈ [0, τ ] (resp. t ∈ [−τ, 0]).
We denote by Vf (g,W, τ) (Vb(g,W, τ)) the set of

points ξ ∈ V that are τ -forward(backward)-indistinguishable

from 0 on V . We also consider the sets Vf (g,W ) =
⋃

τ>0 V
f (g,W, τ), Vb(g,W ) =

⋃

τ>0 V
b(g,W, τ) and

V(g,W ) = Vf (g,W ) ∪ Vb(g,W ).

We say that the pair (g,W ) is zero-state small-time de-

tectable in V if V(g,W ) ⊂ {0}. This detectability condition

is equivalent to the following one: for each a < b, if ϕ :
[a, b] → V is a solution of ẋ = g(x) such that W (ϕ(t)) = 0
for all t ∈ [a, b] then ϕ(t) = 0 for all t ∈ [a, b]. This last

condition was considered in ([5]) where it was referred to as

observability. We note that V(g,W ) ⊂ {0} ⇔ Vf (g,W ) ⊂
{0} ⇔ Vb(g,W ) ⊂ {0}.

Remark 4.1:

1) We do not assume that W (0) = 0 in the above

definitions. So, 0 might not necessarily belong to

Vb(g,W, τ) or Vf (g,W, τ) even in the case when

0 ∈ V . This posibility is convenient for our purposes.

2) The set Vf (g,W,∞) (Vb(g,W,∞)) coincides with

the maximal weakly forward(backward) invariant set

with respect to g contained in the set {ξ ∈ V :
W (ξ) = 0}. We recall that a subset K ⊂ R

n is weakly

forward(backward) invariant with respect to g if for

each ξ ∈ K there exists a solution ϕ : [0,∞) → R
n

(ϕ : (−∞, 0] → R
n) of ẋ = g(x) such that ϕ(0) = ξ

and ϕ(t) ∈ K for all t ≥ 0 (t ≤ 0).

3) When g is a linear function and W is a quadratic form,

i.e., g(ξ) = Aξ and W (ξ) = ξT CT Cξ, with A and C
matrices, (g,W ) is zero-state small-time detectable in

V if V ∩ U ⊂ {0} being U the unobservable subspace

of (C,A).
4) When g and W are smooth functions we have that

V(g,W ) ⊂ {ξ ∈ V : Lk
gW (ξ) = 0 ∀k ∈ N0},

with Lk
gW the k-th. Lie derivative of W along g.

Let us introduce the following assuptions in order to obtain

some convergence results based on the invariance results

previously given and the detectability concepts presented.

Assumption 5: The forward complete trajectory (x, σ) of

(1) verifies the following:

1) there exist a function V : O × Γ → R as in 1. of

Assumption 1 and a family of functions {Wγ : R
n →

R, γ ∈ Γ} such that for all γ ∈ Γ

−
∂V

∂ξ
(ξ, γ)fγ(ξ) ≥ Wγ(ξ) ≥ 0 ∀ξ ∈ Oγ . (4)

2) v(t) = V (x(t), σ(t)) is nonincreasing on [0,∞).
Assumption 6: For the forward complete trajectory (x, σ)

of (1) there exist a function V : O × Γ which verifies 1. of

Assumption 2 and a family of functions {Wγ : R
n → R}

such that (4) holds, and, in addition, for all γ ∈ Γ v(t) =
V (x(t), σ(t)) is nonincreasing on Tγ = σ−1(γ) ∩ [0,∞).

Theorem 3: Suppose that assumptions 3 and 4 hold. Let

(x, σ) be a forward complete trajectory of (1) with σ ∈ Sa

that verifies Assumption 5.

If (x, σ) is precompact relative to O and

1) Of
γ (fγ ,Wγ ,∞)∩Ob

γ(fγ ,Wγ ,∞) ⊂ {0} for every γ ∈
Γ.

2) Ob
γ(fγ ,Wγ) ∩ Of

γ′(fγ′ ,Wγ′) ⊂ {0}, ∀γ 6= γ′.

Then x(t) → 0 as t → ∞.

If Γ is finite, the same holds if we suppose that (x, σ)
verifies Assumption 6 instead of Assumption 5.



Proof. Since σ ∈ Sa, there exist τD > 0 and N0 ∈ N such

that σ ∈ Sa[τD, N0]. Suppose first that (x, σ) verifies (i) As-

sumption 5 or (ii) Γ is finite and (x, σ) verifies Assumption 6.

Let M be the maximal weakly invariant set w.r.t. Ta[τD, N0]
contained in Z. Since (x, σ) verifies the hypotheses of

Theorem 1 when (i) holds and those of Theorem 2 when

(ii) holds, and the sets M(c) or M(~c) which appear in these

theorems are subsets of M , we have that x → π1(M). So,

it suffices to show that M ⊂ {0} × Γ. Let (ξ, γ) ∈ M ;

then there exists a trajectory (x∗, σ∗) ∈ Ta[τD, N0] such

that (x∗(0), σ∗(0)) = (ξ, γ) and (x∗(t), σ∗(t)) ∈ M ⊂ Z
for all t. We will consider two cases.

Case 1. σ∗ has no switching times, i.e. σ∗(t) = γ for

all t ∈ R. Thus, x∗(t) ∈ Oγ and Wγ(ϕ(t)) = 0 for all

t ∈ R and, in consequence x∗(t) = 0 for all t, since

x∗(t) ∈ Of
γ (fγ ,Wγ ,∞) ∩ Ob

γ(fγ ,Wγ ,∞) ⊂ {0}.

Case 2. σ∗ has a switching time t∗. So, there exists τ > 0
such that, if ϕ(t) = x∗(t+t∗), γ = σ∗(t∗−) and γ′ = σ∗(t∗),
γ 6= γ′ and

1) ϕ is solution of ż = fγ(z) on [−τ, 0] and ϕ is solution

of ż = fγ′(z) on [0, τ ] ;

2) ∂V
∂ξ

(ϕ(t), γ)fγ(ϕ(t)) = 0 on [−τD, 0] and
∂V
∂ξ

(ϕ(t), γ′)fγ′(ϕ(t)) = 0 on [0, τ ]. Thus,

Wγ(ϕ(t)) = 0 on [−τD, 0] and Wγ′(ϕ(t)) = 0
on [0, τ ].

Therefore ϕ(0) ∈ Ob
γ(fγ ,Wγ , τ) ∩ Of

γ′(fγ′ ,Wγ′ , τ).
Thus, by 2., x∗(t∗) = ϕ(0) = 0. That x∗(0) = 0 follows

from the fact that, due to assumptions 3 and 4 any initial

value problem ż = fγ̂(z), z(0) = 0 has the unique solution

z(t) ≡ 0, if 0 ∈ Oγ̂ .

In the case in which Γ is finite and σ belongs to Sd∩SH ,

hypothesis 2. of Theorem 3 can be weakened as follows.

Given a set-valued map H : Γ  Γ, a finite sequence

{γi}
m
i=1 ⊂ Γ, m ≥ 3, is a simple cycle of H if γ1 = γm,

γi+1 ∈ H(γi) for all i = 1, . . . ,m − 1 and if γi = γj and

i < j then i = 1 and j = m.

Theorem 4: Suppose that Γ is finite, H : Γ Γ, τD > 0
and that (x, σ) is a forward complete trajectory of (1) with

σ belonging to Sd[τD]∩SH , such that Assumption 6 holds.

Suppose in addition that assumptions 3 and 4 hold.

If (x, σ) is precompact relative to O and

1) Of
γ (fγ ,Wγ ,∞) ⊂ {0} for every γ ∈ Γ or

Ob
γ(fγ ,Wγ ,∞) ⊂ {0} for every γ ∈ Γ,

2) for each simple cycle {γi}
m
i=1 of H there exists j ∈

{1, . . . ,m − 1} such that

Ob
γj

(fγj
,Wγj

, τD) ∩ Of
γj+1

(fγj+1
,Wγj+1

, τD) ⊂ {0}, (5)

then x(t) → 0 as t → ∞.

Proof. Let M be the maximal weakly invariant set w.r.t.

Td[τD] ∩ T H contained in Z. Since (x, σ) verifies the

hypotheses of Theorem 2, we have that x → π1(M). So,

it suffices to show that M ⊂ {0} × Γ. Let (ξ, γ) ∈ M ; then

there exists a trajectory (x∗, σ∗) ∈ Td[τD] ∩ T H such that

(x∗(0), σ∗(0)) = (ξ, γ) and (x∗(t), σ∗(t)) ∈ M ⊂ Z for all

t. We will consider two cases:

Case 1. σ∗ has a finite number of switching times, t0 <
t1 < · · · < tl. Suppose first that Of

γ (fγ ,Wγ ,∞) ⊂ {0}
for every γ ∈ Γ and let ϕ(t) = x∗(t + tl) for t ≥ 0 and

γl = σ∗(tl). Then ϕ is a solution of ż = fγl
(z), ϕ(t) ∈

Oγl
for all t ≥ 0 and ∂V

∂ξ
(ϕ(t), γl) = 0 on [0,∞). Thus,

Wγl
(ϕ(t)) = 0 for all t ≥ 0 and, in consequence x∗(tl) = 0

since x∗(tl) = ϕ(0) ∈ Of
γl

(fγ ,Wγ ,∞) ⊂ {0}. That ξ =
x∗(0) = 0 follows from the fact that the unique solution of

the initial value problem ż = fγ(z), z(0) = 0 is z(t) ≡ 0
for every γ ∈ Γ such that 0 ∈ Oγ .

In the case when Ob
γ(fγ ,Wγ ,∞) ⊂ {0} for every γ ∈ Γ,

we proceed in a similar way, but considering ϕ(t) = x∗(t +
t0) for t ≤ 0.

Case 2. σ∗ has an infinite number of switching times, Since

σ∗ ∈ SH , there exists a finite sequence of consecutive

switching times {tk}
m
k=1, such that the sequence {γk}

m
k=1,

with γk = σ∗(tk), is a simple cycle of H . By hypothesis

there exists an index j ∈ {1, . . . ,m−1} for which (5) holds.

For such j we consider the function ϕ : [−τD, τD] → R
n

defined by ϕ(t) = x∗(t+ tj+1). Since (x∗, σ∗) ∈ Td[τD] we

have that

1) ϕ is solution of ż = fγj
(z) on [−τD, 0] and ϕ is

solution of ż = fγj+1
(z) on [0, τD] ;

2) ∂V
∂ξ

(ϕ(t), γj) = 0 on [−τD, 0] and ∂V
∂ξ

(ϕ(t), γj+1) =
0 on [0, τD]. Thus, Wγj

(ϕ(t)) = 0 on [−τD, 0] and

Wγj+1
(ϕ(t)) = 0 on [0, τD].

Therefore

ϕ(0) ∈ Ob
γj

(fγj
,Wγj

, τD) ∩ Of
γj+1

(fγj+1
,Wγj+1

, τD).

Thus, by (5), x∗(tj+1) = ϕ(0) = 0. By using arguments

similar to those of the proof of case 1, we conclude that

ξ = x∗(0) = 0.

Remark 4.2:

1) From the proofs of theorems 3 and 4 it follows that

theses theorems remain valid if, instead of assumptions

3 and 4, we assume that the function V in assumptions

5 and 6 verifies the following: for each γ ∈ Γ such

that 0 ∈ χγ , V (ξ, γ) = 0 and ξ ∈ χγ ⇔ ξ = 0.

This condition is fulfilled when, for example, V (·, γ)
is positive definite on χγ for all γ such that 0 ∈ χγ .

2) If for all γ ∈ Γ the pair (fγ ,Wγ) is zero-state small-

time detectable in Oγ , conditions 1 and 2 of Theorem

3 are fulfilled. Nevertheless, in this case, a careful

analysis of the proof of that theorem shows that its

conclusions hold without assumptions 3 and 4. So, in

the case when every pair(fγ ,Wγ) is zero-state small-

time detectable we recover the first conclusion of the

convergence result given in [5, Corol.4.10].

B. Stability criteria

Combining the convergence results already presented with

well known sufficient Lyapunov conditions for the local

stability of a family T of forward complete trajectories of

(1) we can derive some asymptotic stability criteria (see [13]

for the definitions of the stability properties of a family of

trajectories).



Theorem 5: Let T be a family of forward complete tra-

jectories of (1) such that for every (x, σ) ∈ T , σ ∈ Sa.

Suppose that every trajectory of T verifies, with the same

function V and the same family {Wγ : γ ∈ Γ}, Assumption

5 or, in the case when Γ is finite, Asumption 6. Suppose,

in addition, that 1. and 2. of Theorem 3 hold and that there

exist functions α1 and α2 of class K such that

α1(|ξ|) ≤ V (ξ, γ) ≤ α2(|ξ|) ∀ξ ∈ Oγ ,∀γ ∈ Γ. (6)

Then T is locally asymptotically stable.

Theorem 6: Suppose that Γ is finite. Let T be a family

of forward complete trajectories of (1) such that for every

(x, σ) ∈ T , σ ∈ Sd ∩ SH , with H : Γ  Γ. Suppose that

every trajectory of T verifies, with the same function V and

the same family {Wγ : γ ∈ Γ}, Assumption 6. Suppose, in

addition, that 1. and 2. of Theorem 4 hold and that there

exist functions α1 and α2 of class K such that (6) holds.

Then T is locally asymptotically stable.

Proof of theorems 5 and 6. Since, due to well known results,

the hypotheses of both theorems implies that T is locally

uniformly stable (LUS) (see, for example [2] or [9]) we only

have to prove that there exists η > 0 such that for every

(x, σ) ∈ T , |x(0)| < η implies that x → 0.

Since T is LUS, there exist η > 0 and ρ > 0 such that,

for every (x, σ) ∈ T such that |x(0)| < η, x(t) ∈ B = {ξ ∈
R

n : |ξ| ≤ ρ} ⊂ O for all t ≥ 0. Therefore (x, σ) ∈ T is

precompact relative to O if |x(0)| < η. Then, due to 1. of

Remark 4.2, to Theorem 3 in the case of Theorem 5 and to

Theorem 4 in the case of Theorem 6, we have that x → 0
for any (x, σ) ∈ T such that |x(0)| < η, and the local

asymptotic stability of T follows.

1) Example: Consider the switched system with f :
dom(f) → R

2 where dom(f) ⊂ R
2 × {1, 2, 3}, χ1 =

{ξ : ξ1 ≤ 0 ∧ ξ1 + ξ2 ≥ 0} ∪ {ξ : ξ1 ≥ 0 ∧ (ξ1 + ξ2 ≤
0 ∨ −3ξ1 + ξ2 ≥ 0)}, χ2 = {ξ : ξ1 ≥ 0} ∪ χ1,

χ3 = {ξ : ξ1 ≤ 0} and

f1(ξ) =

[

ξ1 + ξ2

−ξ2

]

, f2(ξ) =

[

ξ2

−ξ1

]

,

f3(ξ) =

[

ξ2

−2ξ1

]

.

Let V : R
2 × {1, 2, 3} → R given by V (ξ, 1) = V (ξ, 2) =

|ξ|2/2, V (ξ, 3) = ξ2
1 + ξ2

2/2.

Let W1(ξ) = ξ2
2/2 and W2(ξ) = W3(ξ) = 0. Then

−∂V
∂ξ

(ξ, i)fi(ξ) ≥ Wi(ξ) on χi, i = 1, 2, 3. It is easy to

see that the conditions of Assumption 6 hold, that for any

τD > 0, condition 1) of Theorem 4 also holds and that the

K-class functions α1(ξ) = |ξ|2/2 and α2(ξ) = |ξ|2 verify

the condition (6).

Let H be given by the assignment H(1) = {2, 3},
H(2) = {1, 3} and H(3) = {1}. Since χb

1(f1,W1, τD) =
χf

1 (f1,W1, τD) = {0}, it can also be verified that whichever

be a simple cycle of H , condition 2) of Theorem 4 holds

since for such a cycle there always exists a switching to or

from subsystem 1. In consequence the hypotheses of Theo-

rem 6 hold and any class of forward complete trajectories

T ⊂ Td ∩ T H of this system is (globally) asymptotically

stable.

On the other hand, if H is now given by H(1) =
{2, 3},H(2) = {1, 3},H(3) = {1, 2} condition 2. of

Theorem 4 does not hold and we only can assert that T
is uniformly stable.

In fact, consider the simple cycle 2 → 3 → 2, with

the switchings taking place on the line {ξ : ξ1 = 0}.

It is not hard to see that in this case χb
2(f2,W2, τD) ∩

χf
3 (f3,W3, τD) = {(0, ξ2) : ξ2 ≤ 0} and that

χb
3(f3,W3, τD) ∩ χf

2 (f2,W2, τD) = {(0, ξ2) : ξ2 ≥ 0}.

V. CONCLUSIONS

In this paper we have obtained invariance results for

switched systems whose switchings are subjected not only

to state-dependent constraints, but also to restrictions on

the accessibility of each subsystem from other ones. We

also derived from these results convergence and stability

criteria for this class of systems. These criteria involve some

detectability conditions on the functions which bound the

derivatives of the Lyapunov-like functions.

REFERENCES

[1] A. Bacciotti and L. Mazzi, “An invariance principle for nonlinear
switched systems,” Systems Contr. Lett., vol.54, pp. 1109–1119, 2005.

[2] M. Branicky, “Multiple Lyapunov functions and other analysis tools
for switched and hybrid systems,” IEEE Trans. Automat. Contr., vol.
43, pp. 475–482, 1998.

[3] D. Cheng, J. Wang and X. Hu, “An extension of LaSalle’s invariance
principle and its applications to multi-agent consensus,” IEEE Trans.

Automat. Contr., vol. 53, pp. 1765–1770, 2008.
[4] R.A. DeCarlo, M.S. Branicky, S. Pettersson and B. Lennartson, “Per-

spectives and results on the stability and stabilizability of hybrid
systems,” Proc. IEEE, vol. 88, pp. 1069–1082, 2000.

[5] R. Goebel, R.G. Sanfelice and A. Teel, “Invariance principles for
switching systems via hybrid systems techniques,” Systems Contr. Lett.,
vol. 57, pp. 980–986, 2008.

[6] J.P Hespanha, “Uniform stability properties of switched linear sys-
tems: extensions of LaSalle’s invariance principle,” IEEE Trans.

Automat.Control, vol. 49, pp. 470–482, 2004.
[7] J.P. Hespanha, D. Liberzon, D. Angeli and E. Sontag, “Nonlinear

observability notions and stability of switched systems,” IEEE Trans.

Automat. Control, vol. 50, pp. 154–168, 2005.
[8] T.C. Lee and Z.P. Jiang, “Uniform asymptotic stability of nonlinear

switched systems with an application to mobile robots,” IEEE Trans.

Automat. Contr., vol. 53, pp. 1235–1252, 2008.
[9] D. Liberzon, Switching in Systems and Control, Birkhäuser, Boston,
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