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A direct method for the simultaneous
estimation of self-steepening and the fractional
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Abstract—We propose an original, simple, and direct
method for the simultaneous estimation of the self-
steepening parameter and the fractional Raman contribution
in fiber optics. Our proposal is based on the dependence
of the modulation instability gain on both parameters, as
obtained from a linear stability analysis of the newly intro-
duced photon-conserving generalized nonlinear Schrödinger
equation (pcGNLSE), and requires only the CW or quasi-
CW pumping of the waveguide under test and a few
direct spectral measurements. Further, we demonstrate the
feasibility of the estimation procedure by means of detailed
simulations for typical waveguide parameters in relevant
spectral ranges. Last, we discuss the range of applicability
of the proposed method and compare its results, advantages,
and disadvantages with a recently introduced method based
on short-pulse dynamics.

Index Terms—Nonlinear optics, Raman scattering, self-
steepening.

I. INTRODUCTION

STIMULATED Raman scattering is a most relevant
nonlinear phenomenon encountered in the context

of short-pulse propagation in optical waveguides. It
manifests as an energy transfer from high to low fre-
quency components in the pulse spectrum and is re-
sponsible for the redshift of short pulses, an effect often
referred to as the Raman-induced frequency shift (RIFS).
This RIFS has been extensively studied in the context
of solitons [1], [2] as well as the concomitant time
shift enabled by the group-velocity dispersion (GVD) of
the medium. Both frequency and time shifts have been
widely observed in experiments [3], [4] and find applica-
tions in a vast number of areas in optics and photonics,
such as in frequency-tunable femtosecond sources [5],
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signal processing, and tunable time delays [6], to name
a few.

Another most relevant high-order nonlinear effect is
that of self-steepening (SS), which is responsible for the
optical shock of short pulses [7]. However, in the case of
soliton propagation no optical shock occurs due to self-
steepening [8], but pulses experience a time shift that
adds to that produced by the RIFS. Self-steepening is
modeled by introducing the parameter s in a first order
expansion of the nonlinear coefficient in the frequency
domain as γ(Ω) = γ0 (1+s Ω

ω0
), where ω0 is the pulse cen-

tral frequency, and Ω = ω−ω0 is the frequency detuning
from ω0 [7]. It is worth mentioning that SS plays a pivotal
role in nonlinear processes involving large bandwidths,
such as in supercontinuum generation [9], [10].

Propagation of light pulses in optical fibers is custom-
arily modeled by the generalized nonlinear Schrödinger
equation (GNLSE) [7]. However, a severe drawback
of the GNLSE is that it does not conserve the num-
ber of photons in lossless waveguides unless the self-
steepening parameter is set to s = 1 [11]. This fact
renders the GNLSE inadequate when applied to waveg-
uides with an arbitrary frequency dependence of the
nonlinear coefficient. This, in turn, has motivated the in-
troduction of alternative modeling approaches [12]–[14].
In this paper, we resort to the photon-conserving gener-
alized nonlinear Schrödinger equation (pcGNLSE) [15].
The pcGNLSE, which reduces to the GNLSE whenever
s = 1, reads
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∂z
= iβ(ω)Ãω+i
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hR(τ)|B(t− τ)|2dτ −B|B|2
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, (1)

where γ(ω) = ωr̃, B̃ = r̃Ã, C̃ = r̃∗Ã, and r̃ = 4
√
γ(ω)/ω;

hR(t) models the delayed Raman response and fR is the
fractional Raman contribution to the nonlinearity. Most
remarkably, this equation can be solved with the very
same numerical methods as the GNLSE, e.g., the split-
step Fourier algorithm [16].

The focus of this paper is on an original proposal
of a simple measurement scheme of the self-steepening
parameter, s, and the fractional Raman contribution, fR.
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It is important to emphasize that although these pa-
rameters are of utmost relevance when modeling short-
pulse nonlinear propagation in optical fibers, they are
commonly either assumed or computed from analytical
models.

The remaining of this paper is organized as follows:
Section II briefly reviews some other measurement tech-
niques found in the literature. Section III presents the
proposed scheme and makes a detailed comparison with
another recently introduced measurement procedure.
Finally, Section IV closes the paper with some final
remarks and conclusions.

II. A BRIEF REVIEW OF MEASUREMENT TECHNIQUES

Several ways of estimating the fractional Raman con-
tribution have been proposed in the literature. Hell-
warth et al. [17] resort to measurements of intensity-
induced polarization changes and the Raman differential
scattering cross section to determine hR(t) and fR for
several glasses. In the seminal work of Stolen and col-
leagues [18], [19] a relation between the Raman gain and
the differential scattering cross section is used for fused
silica, and fR can be calculated from the independent
measurement of both quantities.

The Raman gain spectrum is related to the Fourier
transform of hR(t), the fractional Raman contribution,
and the nonlinear refractive index of the material. Thus,
if the Raman response hR(t) is known, independent
measurements of the Raman gain and the nonlinear
refractive index make possible the estimation of fR [20],
[21]. However, precise measurements of those quantities
are difficult, impeding accurate estimations of the frac-
tional Raman contribution [22]. Finally, fR is sometimes
estimated by fitting measured pulse spectra to simula-
tions [23].

We also have proposed an alternative method to mea-
sure fR in Ref. [24] based on results obtained with the
GNLSE and thus only valid for s = 1. It is worth
mentioning the underlying idea of this previous pro-
posal as it is related to our present work. Studying the
modulation instability (MI) phenomenon, Shukla and
Rasmussen [25] and De Angelis et al. [26] showed that, in
the absence of Raman scattering, the MI gain disappears
if the pump power is greater than a given cutoff power
(COP) (see, also, Ref. [27]), a fact often overlooked in
the literature. However, when the effect of Raman is
accounted for there still exists gain beyond the COP.
Moreover, when the pump power exceeds the cutoff
power, the MI gain spectral profile follows the Raman
spectrum, but with a peak-gain frequency that depends
both on the pump power and the fractional Raman
contribution [28], [29]. This observation allows for the es-
timation of fR through the measurement of the MI-gain
peak frequency [24]. We shall henceforth refer to this
situation as the Raman-dominated gain (RDG). Further,
the analysis of the MI gain and the COP in the absence
of Raman scattering has been extended for arbitrary

frequency dependent nonlinear coefficients in Refs. [30],
[31]. In particular, in Ref. [31], two distinct modulation
instability regimes were observed depending upon the
SS parameter: Ultra-wideband and narrowband MI gain.

Notwithstanding its relevance, there is not much work
in the literature on the direct measurement of the SS
parameter. Since s is related to the effective area of the
fiber [11], most of the work has focused either on the
numerical estimation [9], [32], [33] or the measurement of
the latter [34], [35]. It must be emphasized, however, that
the self-steepening parameter is determined not only by
the frequency dependence of the mode effective area,
but also by the frequency dependence of the nonlinear
refractive index (see, e.g., [36], [37]). Moreover, s can
differ significantly from unity [9], [36]–[39], the photon-
conserving value under the GNLSE which is oftentimes
assumed in the literature.

We have recently put forth a pulsed measurement
scheme of the SS parameter, relying on the time delay
experienced by solitons upon propagation but neglecting
the influence of Raman scattering [40]. In the presence of
Raman scattering, however, the time delay experienced
by the soliton depends on both the SS parameter and
Raman. As it was shown in Ref. [2], for relatively long
solitons (> 100 fs), the frequency (Ωp) and time (qp) shifts
are given by

Ωp(z) = −8TRγ0P0

15T 2
0

z, qp(z) =
β2Ωp

2
z +

(s+ 2)γ0P0

3ω0
z,

(2)

where β2 is the GVD parameter, γ0 = γ(0), P0 and
T0 are the soliton peak power and the 1/e-half width,
respectively, and TR is the effective Raman parameter [7].
These expressions were derived neglecting higher-order
dispersion terms and for pulses satisfying the funda-
mental soliton condition, i.e., T 2

0 γ0P0/β2 = 1. The lin-
ear relation between the time shift qp and s in Eq. 2
suggests a direct way for the measurement of the self-
steepening parameter. Although fR can also be obtained
by measuring the frequency shift, and with knowledge
of the Raman response hR(t), this was not reported in
Ref. [40]. We shall henceforth refer to the scheme that
allows for the measurement of both the SS parameter
and the fractional Raman contribution from Eqs. 2 as the
pulsed method. Even though this pulsed method is direct
and simple, it might not always be possible to find the
right soliton sources for the spectral range of interest.
Moreover, as the time shift due to Raman scattering
is larger than that from self-steepening, a small error
in the measurement of the frequency shift may lead
to large errors in the estimation of s, strongly limiting
the applicability of the pulsed method. Furthermore, the
required propagation distance might be inconveniently
long if pulses lie close to zero-dispersion wavelength
(ZDW) of the waveguide.
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III. CW MEASUREMENT METHOD

In this work we focus on an original proposal that
allows for the simultaneous measurement of both s and
fR, based on a simple spectral measurement of the
modulation instability gain under the RDG condition,
which we shall henceforth refer to as the CW method.
The MI gain, gMI, can be derived by departing from a
linear stability analysis of the pcGNLSE (see e.g. [7],
[41]). Although an expression for gMI is needed for
a characterization of the modulation instability phe-
nomenon, it is not required to understand the proposed
measurement scheme and, thus, we refer the interested
reader to Appendix A for its full derivation. Figure 1
shows an example of the MI gain for a chalcogenide fiber
with β2 = −10−4 ps2/ m, γ0 = 1 W−1 m−1 [42], [43],
s = 1.2, and fR = 0.1, as predicted by the pcGNLSE.
The Raman response is modeled as hR(t) = (τ−2

1 +
τ−2
2 )τ1 exp (−t/τ2) sin (−t/τ1), where τ1 = 15.5 fs and
τ2 = 230.5 fs [23], [44], and the pump wavelength is
λ0 = 5000 nm. The top panel shows the MI gain under
the RDG regime with a pump power of P0 = 20 W,
and red dots mark MI-gain maxima. The bottom panel
shows gMI as a function of power and frequency. The
blue dashed line marks the cutoff power and thus the
limit of the RDG.

The dependence of the RDG peak frequency with the
fractional Raman contribution in the framework of the
GNLSE was already shown in Ref. [24]. Here, we extend
this result with a modulation instability analysis of the
pcGNLSE, and thus valid for any arbitrary SS parameter.
The derivation of the MI gain in this setting reveals that
gMI = gMI(Ω, P0, fR, s), i.e., it not only depends on the
input power and frequency (see bottom panel in Fig. 1)
but also on the fractional Raman contribution and the
self-steepening parameter. This is put in evidence in
Fig. 2 which shows the MI gain vs. s (top panel) and
fR (bottom panel).

The dependence of gMI on fR and s suggests that these
parameters can be estimated from gain measurements.
Furthermore, the distinctiveness of MI gain peaks in the
top panel of Fig. 1 suggests that simple measurements
of these peaks can be advantageously used for such an
estimation. Indeed, let us fix a pump power P0 larger
than the COP and define the gain and position of one of
the RDG peaks as

gMAX(fR, s) = max
Ω>0

gMI(Ω, P0, fR, s), (3)

ΩMAX(fR, s) = arg max
Ω>0

gMI(Ω, P0, fR, s). (4)

These functions can be easily computed from the ana-
lytical expression of the MI gain (see Appendix A). Let
us call g, Ω the actual measurements of the peak gain
and position, respectively. Then, the fractional Raman
contribution and the SS parameter can be estimated
by solving the two equations gMAX(fR, s) = g and
ΩMAX(fR, s) = Ω. Geometrically, the estimation corre-

0 1 2 3 4 5 6

Fig. 1: (Top panel) Raman-dominated gain for a pump
power P0 = 20 W. Red dots mark gain maxima. (Bottom
panel) MI gain for a chalcogenide fiber vs. pump power
and frequency. The dashed line marks the cutoff power.

sponds to the intersection of two independent curves in
the (fR, s)-plane (see Fig. 3)

gMAX(fR, s)− g = 0, ΩMAX(fR, s)− Ω = 0. (5)

In Fig. 3 we explore the proposed scheme by means
of two simulated examples and we compare results with
those obtained with the pulsed method (see Section II).
The top panel shows results for a waveguide in the mid
IR. Fiber parameters are the same as in Fig. 1, except
for β2 = −0.1 ps2/ km. The self-steepening parameter
and fractional Raman contribution are set to 2 and 0.25,
respectively (marked with a red star in the figure). For
the CW method we launch a 100-W CW laser (with a
realistic 60-dB signal-to-noise ratio) at 5000 nm. The blue
dashed line shows the dependence of ΩMAX and the
green solid line shows that of gMAX, and the intersection
of both curves corresponds to the estimated values of fR

and s (black square). As it can be seen, the estimation
is in excellent agreement with the expected values. For
reference, we show the estimation employing the pulsed
method (black triangle). This is done by launching a
200-fs fundamental soliton along 50LD, with LD the
dispersion length defined by LD = T 2

0 /|β2|, and fR and
s are obtained from Eqs. 2 and the measurement of the
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Fig. 2: Raman-dominated gain for different values of
(top) s (fR = 0.15) and (bottom) fR (s = 1), and for the
same parameters used in Fig. 1.

Parameter Fig. 3 (top) Fig. 3 (bottom)
Spectral range Mid IR Near IR
Optical fiber Chalcogenide PCF
λ0 [nm] 5000 800
s 2.0 1.1
fR 0.25 0.15

β2 [ps2/ km] −0.1(a) −0.1(a)

γ0 [W−1 km−1] 1000 130
CW method

P0 [W] 100(b) 6000(b)

Pulsed method
P0 [mW] 2.5 20
T0 [ps] 0.2 0.2

TABLE I: Summary of simulation parameters for the two
spectral bands. (a) The pump wavelength is assumed to
lie close to the zero-dispersion wavelength (ZDW). (b) A
realistic 60-dB signal-to-noise ratio was assumed.

frequency and time shifts. Note that although higher-
order dispersion was neglected in these simulations, it
can be readily incorporated into the model for both the
CW (see Ref. [30]) and pulsed schemes (see Ref. [40]).
For the sake of clarity, simulation parameters used in
Fig. 3 are summarized in Table I.

As it was mentioned, the reason for the poorer per-
formance of the pulsed method is that, since the Raman
contribution to the temporal shift is larger than that from

Fig. 3: Application of the CW (black square) and pulsed
methods (black triangle) in the mid IR (top) and near IR
(bottom). Red stars mark the actual values of fR and
s. The estimation of the CW scheme is given by the
intersection of the curves for the MI-gain peak (green-
dotted line) and its frequency (blue dashed line).

self-steepening, a small error in the measurement of the
frequency shift leads to a large error in the estimation of
the SS parameter. In numerical simulations this error is
given by the frequency discretization, which in results
shown in Fig. 3 was set to coincide with the typical
resolution of a spectrum analyzer in order to replicate
real experimental conditions. Indeed, observe that while
the error in the estimation of fR is only 5.6 %, it is as
high as 27 % for the self-steepening parameter.

The bottom panel in Fig. 3 shows the application of
the CW method in the near IR. Fiber parameters are
comparable to those of a photonic-crystal fiber (PCF), i.e.
β2 = −0.1 ps2/ km and γ0 = 130 W−1 km−1. The self-
steepening parameter and fractional Raman contribution
are set to 1.1 and 0.15, respectively (marked with a red
star). For the CW method we launch a 6000-W CW laser
(60 dB SNR) at 800 nm, close to the ZDW of the PCF.
For the pulsed method, we launch a 200-fs fundamental
soliton along 10LD. Once again, we observe a very good
agreement between the CW method (black square) and
the actual values (red star), and a poorer performance
of the pulsed method (black triangle). It is instructive
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Fig. 4: Limitations of the CW and pulsed methods.
(Top) Pump power required for the CW method and
(bottom) propagation distance required for the pulsed
method. (Top) Diagonal lines show the approximate
cutoff power for each spectral band and each fiber type.
(Bottom) The top of each colored band is given by
the corresponding effective attenuation length. In both
panels, colored regions indicate the parameter range for
practical application of each method.

to analyze the accuracy of the CW scheme in terms of
experimental errors. For instance, assuming a typical in-
strument resolution at 800 nm of ∼ 1 mW and ∼ 0.2 nm,
a standard error analysis yields and uncertainty of ∼ 7%
and ∼ 9% in the fractional Raman contribution and
the SS parameter, respectively, in agreement with values
found in the literature (see, e.g., Ref. [22]).

It is relevant to point out that the CW method can be
realized with quasi-CW pulsed laser sources, i.e., when-
ever the bandwidth of the modulated pump represents
a small fraction of the Raman peak frequency of the
medium, as this allows to attain large peak powers with
modest average powers that may otherwise damage the
waveguide under test. As it turns out, this condition is
not overly restrictive. As an example, the Raman gain
peak in silica lies ≈ 13 THz from the pump laser [7];
as such, modulated lasers producing pulses longer than
100 ps can be regarded as quasi-CW sources (see, e.g.,
Ref. [45].)

Some limitations hinder the application of both the
CW and pulsed schemes. The power required to operate
in the RDG regime in the CW method might be too large
when the pump frequency lies far from the ZDW, as the
cutoff power is approximately given by Pco ≈ ω2

0 |β2|/γ0s
(see Ref. [27]). This is depicted in the top panel of Fig. 4
for s = 1, and for different wavelengths and common
fibers, whose characteristic parameters are summarized
in Table II. Black solid lines indicate the limit of appli-
cation of the CW method for each fiber. In the case of
the pulsed method, the propagation distance may be too
long if the pump wavelength lies close to the ZDW, as
the required distance must be in the order of Lpulsed ≈
10T 2

0 /β2 [40]. The dependence of Lpulsed with the GVD
parameter β2 is shown in the bottom panel of Fig. 4.
The upper limit for each band indicates the respective
fiber effective length due to attenuation. Observe that
whenever the pump wavelength is away from the ZDW,
i.e., for large values of β2, the pulsed method appears to
be more suitable than the CW scheme. However, when
the pump wavelength is closer to the ZDW one may
consider using the CW method.

Regarding available laser sources, there is a lack of
short-pulse sources in the mid IR, a region where the CW
method is more appropriate due to the highly nonlinear
(e.g., chalcogenide) fibers available and typical values
of the ZDW. In the near IR, particularly in the telecom-
munication window at 1.5 µm, the fiber nonlinearity is
relatively small and, for most cases, the ZDW does not lie
within this spectral band. However, short-pulse sources
are readily available in this spectral region and thus the
pulsed method is more appropriate.

There is another limitation for the CW scheme pro-
posed in this paper. Indeed, there is no MI cutoff power
for large values of the fractional Raman contribution and
the self-steepening parameter. However, it can be shown
that this is not the case for values commonly found in
the literature, that is, fR between 0.1− 0.3 [3], [19], [23],
[47] and s between 1− 2.5 [9], [38], [39].

IV. CONCLUSIONS

We find in the literature that the fractional Raman
contribution and the self-steepening are two relevant
parameters in fiber optics which are oftentimes either
assumed or computed from analytical models. In this
sense, we believe that there is a lack of simple and
direct measurement procedures for these two relevant
parameters and our proposal intends to fill this gap.
Indeed, we showed that a simple measurement can
provide accurate estimations of both values.

Our proposal is based on an original modulation
instability analysis of the photon-conserving generalized
nonlinear Schrödinger equation (pcGNLSE), which guar-
antees that it can be applied to media with arbitrary
frequency-dependent nonlinear coefficients. Moreover,
the scheme requires only the CW or quasi-CW pumping
of the waveguide under test and a few simple spectral
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TABLE II: Parameters of fibers used in Fig. 4

Wavelength Attenuation ZNW Nonlinear coeff.
Fiber [µm] [dB/m] [µm] [W−1 m−1]
PCF 0.80 0.25 0.77 - 0.80 0.13

SSMF 1.55 2×10−4 1.31 10−3

Chalcogenide(a) 5.00 0.80 - 5.00 3.00 - 5.00 1.00

(a)Parameters taken from Refs. [42], [43], [46].

measurements. Finally, we discussed the practical lim-
itations of our proposal, provided a detailed analysis
of its application to different spectral ranges of interest,
and compared results to a recently introduced pulsed
method.
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APPENDIX A
MODULATION INSTABILITY

In this Appendix we provide the derivation of the
modulation instability (MI) gain departing from a linear
stability analysis of the photon-conserving generalized
nonlinear Schrödinger equation (pcGNLSE).

We start by considering the photon-conserving gener-
alized equation (pcGNLSE) introduced in Ref. [15],

∂Ãω

∂z
= iβ(ω)Ãω+

i
ωr̃(ω)

2
F
(
C∗B2

)
+ i

ωr̃∗(ω)

2
F
(
B∗C2

)
+

ifRωr̃
∗(ω)F

(
B

∫ ∞
0

hR(τ)|B(t− τ)|2dτ −B|B|2
)
, (6)

where z is the propagation axis, Ãω is the Fourier
transform of the complex envelope A, β(ω) is the fiber
dispersion profile, fR is the fractional Raman contribu-
tion, and hR(t) is the delayed nonlinear response. The
fields B and C are defined in the frequency domain as
B̃ω = r̃(ω)Ãω and C̃ω = r̃∗(ω)Ãω , respectively, where
r̃(ω) = 4

√
γ(ω)/ω and γ(ω) is the fiber nonlinear profile.

As usual in modulation instability analysis [7], [41], we
put forth the ansatz

A(z, t) =
√
P0e

ikpz−iω0t + a(z, t), (7)

where P0, ω0, and kp are the power, frequency, and
wavenumber, respectively, of the stationary solution to
Eq. 6, and a(z, t) is a small perturbation, assumed to
satisfy |a(z, t)|2� P0. For convenience, we write the
perturbation as

a(z, t) =

∫ ∞
−∞

as(z,Ω)eik(Ω)z−i(ω0+Ω)t dΩ. (8)

By replacing Eq. 7 into Eq. 6, and taking into account
only first-order terms of as, we obtain the system of
differential equations{

∂zas(z,Ω) = iκ(Ω)a∗s(z,−Ω)ei∆kz

∂zas(z,−Ω) = iκ(−Ω)a∗s(z,Ω)ei∆k∗z,
(9)

where{
κ(Ω) = (ω0 + Ω)P

(
Re
[
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+fRr̃

∗
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∗
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(
h̃R(−Ω)− 1

))
∆k = 2kp − ks − k∗i

(10)
and we use the notation r̃i = r̃(ω0 − Ω), ks = k(Ω), and
ki = k(−Ω), according to the usual definition of signal
and idler in parametric processes. The solution of Eq. 9
is

as(z,Ω) = a+
s exp

−i∆k
2
z + i

√(
∆k

2

)2

− κsκ∗i z
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√(
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)2

− κsκ∗i z

 , (11)

where κs = κ(Ω), κi = κ(−Ω) and
a+
s = [(Λ + ∆k/2)as(0,Ω)− κsa∗s(0,−Ω)] /2Λ
a−s = [(Λ−∆k/2)as(0,Ω) + κsa

∗
s(0,−Ω)] /2Λ

Λ =
√

(∆k/2)2 − κsκ∗i .
(12)

Although Eq. 11 provides a complete description of
the spectral evolution, a simpler approach is commonly
used in the study of the modulation instability process,
whereby the growth of MI sidebands is given by

|as(z,Ω)|2∝ exp(gMI(Ω)z), (13)

where

gMI(Ω) = max

2Im

∆k

2
±

√(
∆k

2

)2

− κsκ∗i

 (14)

is the MI gain, i.e., the dominant exponential at long
propagation distances.

APPENDIX B
STANDARD ERROR ANALYSIS

In this Appendix we calculate uncertainties in the pro-
posed CW method. By standard analysis, errors incurred
in obtaining ∆fR and ∆s are given by∆fR

∆s

 = J−1

∆g

∆Ω

 , (15)
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J =

 ∂
∂fR

gMAX(fR, s)
∂
∂sgMAX(fR, s)

∂
∂fR

ΩMAX(fR, s)
∂
∂sΩMAX(fR, s)

, (16)

where J is the Jacobian matrix, gMAX and ΩMAX are
the peak gain and its frequency position, respectively, as
obtained from any one of the measured MI gain peaks,
and ∆g and ∆Ω stand for the the uncertainty in these
magnitudes as given by the resolution of the measuring
device. Assuming realistic power and frequency resolu-
tions of 1 mW and 0.2 nm, respectively, the estimated
uncertainties are found to be ∼ 7 % and ∼ 9 % for the
fractional Raman contribution and for the SS parameter,
respectively.
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