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Sampling from the GI
0 distribution

Abstract: Synthetic Aperture Radar (SAR) images are widely used in several environmental 
applications
because they provide information which cannot be obtained with other sensors. The GI

0 distribution is an 
important model for these images because of its flexibility ( it provides a  suitable way for modeling areas 
with different degrees of texture, reflectivity and signal-to-noise ratio) and tractability (it is closely related to 
the Snedekor-F, Pareto Type II, and Gamma distributions). Simulated data are important for devising tools 
for SAR image processing, analysis and interpretation, among other applications. We compare four ways for
sampling data that follow the GI

0 distribution, using several criteria for assessing the quality of the generated 
data and the consumed processing time. The experiments are performed running codes in four different 
programming languages. The experimental results indicate that although there is no overall best method in 
all the considered programming languages, it is possible to make specific recommendations for each one.

Keywords: Random variable generation, SAR image modeling, programming languages, accuracy and 
goodness of fit

Introduction
Synthetic Aperture Radar (SAR) is a coherent radar of high resolution widely used in remote sensing. It works 
using an antenna in a movable platform. The antenna emits a signal, and the sensor measures the intensity 
and the delay between sent and returned signals. The image is then build with the energy backscattered by 
each point from the target. The independence of sunlight or other sources of illumination and that the signal 
is little affected by the presence of clouds and other adverse conditions that hamper the use of sensors which 
operate in the optical spectrum [32] are among the most important advantages of this kind of devices.

These images provide information which cannot be obtained with other remote sensors. They are widely 
used in many applications, including urban planning [13], building density estimation [44], urban-rural 
boundary identification [39], agricultural monitoring [3], crop discrimination [6], flooding mapping [26], oil 
releases detection [41], damage assessment in natural disasters such as Tsunamis [7, 37], earthquakes [9], 
volcanic activity, snow accumulation and landslides [45], and early detection of forest fires [5]. However, 
these imagesare contaminated by a deterministic interference pattern: speckle. This pattern can be conve-
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niently modeled as stochastic, hence it has been called speckle noise. This noise also appears in laser and 
sonar imaging, medical ultrasound and optical coherence tomography. It is neither additive nor Gaussian 
and it is very difficult to eliminate, so statistical modeling is necessary.

In this work we use the multiplicative model for SAR image modeling, which appears to be an excellent 
choice [18]. It states that the observed data can be modeled by a random variable Z, which is the product of 
two independent random variables: X which describes the backscatter, and Y that models the speckle noise.

Following the multiplicative model, Frery, Müller, Yanasse and Sant’Anna [14] introduced the GI
0 distri-

bution which has been widely used for SAR data analysis. It is referred to as a Universal Model because of its
flexibility and tractability [25]. It provides a suitable way for modeling areas with different degrees of texture,
reflectivity and signal-to-noise ratio. The G I

0 distribution is indexed by three parameters:
∙ α, related to the target texture,
∙ γ, related to the brightness and called scale parameter,
∙ L, which describes the signal-to-noise ratio and is termed “equivalent number of looks”.
The two first may vary among positions, while the latter can be considered the same on the whole image.

The assessment of algorithm performance for automatic image interpretation and analysis is an impor-
tant task. Simulationprocedures typically in aMonte Carlo setup, allow inferring about performance in awide
variety of situations.

Several approaches based on the physical properties of the speckled data, have been developed to study
SAR data simulation [22]. Among them we can mention simulation based on a fractal model of sea sur-
face [21], ray tracing and diffraction geometrical theory [2, 12], and ab initio modeling [36].

Another scheme of simulating SAR data involves random number generation. References [19, 28, 30]
use simulated SAR data for the assessment of edge detection techniques by means of non-parametric tests,
stochastic distances and a geodesic distance, respectively. Gambini, Mejail, Jacobo-Berlles and Frery [17]
examine the accuracy of contour detection procedures in SAR imagery using simulated data. Simulation is
essential for the proposal of new speckle filters [8, 40], and for their quantitative evaluation [20, 27]. Simula-
tion studies are used for assessing the performance of hypothesis test [29], classification techniques [25, 38]
and parameter estimation [43].

In this work, we are interested in speckled data simulation under the G0I distribution.We discuss alterna-
tives for this aim, and we propose a protocol for their assessment which includes error evaluation, execution
times and a statistical significance study of differences.

In the existing literature, Devroye [10] discusses the assessment of non-uniform pseudorandom genera-
tors for parametric families in terms of portability, set-up and execution times. Code length and quality are
mentioned. This approach assumes (i) that the underlying routines for obtaining such samples are error-free,
and (ii) the availability of a perfect uniform pseudorandom deviates generator. The generation of random
data from the G0I distribution has not been evaluated yet in this perspective.

We introduce four optional routines to generate G0I distributed data, based on Γ, χ2, Fisher–Snedekor (F)
and Pareto (P) distributions. The two first apply the multiplicative model, while the third and fourth require
the inversion method. We assess these routines from the computational resources point of view, maximum
value behavior, goodness-of-fit, moments and quantiles accuracy. We perform such assessment for Matlab,
R, Ox, and Julia programming languages.

The paper unfolds as follows: in Section 1 we recall some properties of the G0I model and we refer to the
single look case. In Section 2 we discuss techniques for sampling. Experiments and results are presented in
Section 3. Finally, in Section 4 we expose our remarks and conclusions.

1 The G0
I model

The statistical modeling of SAR data is strategic for the interpretation and understanding of the terrain elec-
tromagnetic scattering. Gao [18] details different models proposed for describing these kind of data and
analyzes their properties and relationships.



Basic speckle properties attest that it follows a Gamma distribution with unitary mean, with density

fY (y; L) =
LL

Γ(L) y
L−1 exp{−Ly},

denoted by Y ∼ Γ(L, L). The physics of image formation imposes L ≥ 1.
The model for X, the backscatter, may be any distribution with positive support. Frery, Müller, Yanasse

and Sant’Anna [14] proposed using the Reciprocal Gamma law, a particular case of the Generalized Inverse
Gaussian Distribution, which is characterized by the density

fX(x; α, γ) =
γ−α

Γ(−α) x
α−1 exp{− γx},

where α < 0 and γ > 0 are the texture and the scale parameters, respectively.
With this, the return Z follows a G0I (α, γ, L) distribution, whose density is

fZ(z) =
LLΓ(L − α)
γαΓ(−α)Γ(L) ⋅

zL−1

(γ + zL)L−α
, (1.1)

where −α, γ, z > 0 and L ≥ 1.
The r-order moments of the G0I (α, γ, L) distribution are

E(Zr) = ( γL)
r Γ(−α − r)

Γ(−α)
Γ(L + r)
Γ(L) , (1.2)

provided α < −r, and infinite otherwise. To simplify calculation and with the intention of obtaining com-
parable results, in most experiments we deal with a restricted case which assumes E(Z) = 1. With this,
equation (1.2) implies the following relation between the parameters:

γ∗ = −α − 1.

We are interested in simulating the noisiest case which occurs when L = 1; it is called single-look and
expression (1.1) becomes

fZ(z) =
−α
γ (

z
γ
+ 1)

α−1
. (1.3)

In this case the cumulative distribution function is

FZ(z) = 1 − (
z
γ
+ 1)

α
.

Figure 1 illustrates three of these densities in linear and semilogarithmic scales, where the scale param-
eter has been set to have unitary mean. It can be observed the slow decay of the tail; this yields, as will be
seen later, an outlier-prone distribution.

1.1 Properties

In this subsection, we detail some of the properties of the G0I law that are useful in our study. Consider the
sample Z1, . . . , Zn of independent identically distributed G0I (α, γ, 1) random variables, and sort it in non-
decreasing order to obtain Z1:n ≤ ⋅ ⋅ ⋅ ≤ Zn:n. Let

Un = min
1≤i≤n
{Z1, Z2, . . . , Zn} and Vn = max

1≤i≤n
{Z1, Z2, . . . , Zn}

be the minimum and the maximum of the set of random variables, respectively. Then the probability density
functions of these random variables are given by

fUn (u) = −n(1 − FZ(u))n−1fZ(u) = −
nα
γ (

1 + u
γ )

nα−1



Figure 1: Linear and semilogarithmic scale densities of the G0I (α, γ
∗ , 1) distribution compared with Exponential distribution

(all with unitary mean).



and

fVn (v) = n(FZ(v))n−1fZ(v) = −
nα
γ (

1 + v
γ)

α−1
[1 − (1 + vγ)

α
]
n−1

,

where FZ and fZ are the cumulative distribution and the probability density function of the G0I lawwith L = 1,
respectively.

The tails of a distribution are an important feature for the analysis of extreme events. In the article [30],
several approaches for probability distributions classification are presented, according to the heaviness of
their tails.

Gambini, Cassetti, Lucini and Frery [16] proved that the density function of the G0I (α, γ, L) distribution is
slow-varying at infinite and heavy tailed with tail index 1 − α, since its asymptotic behavior is comparable to
the function f(z) = zα−1. In addition, it is prone to extreme observations.

1.2 Relationships

In this subsection we present the relationships that lead to alternative techniques for simulation. Mejail,
Jacobo-Berlles, Frery and Bustos [25] proved that the family of G0 distributions is a reparametrization of the
Fisher–Snedekor F law. Their cumulative distribution functions are related as

FG0
I (α,γ,L)(x) = Υ2L,−2α(−

αx
γ )

,

where Υs,t is the cumulative distribution function of a Fisher–Snedekor’s Fs,t distributed random variable
with s and t degrees of freedom. Then this formula can be used to sample from the G0I (α, γ, L) law, and to
obtain quantiles.

The secondkindGeneralizedParetodistribution [31] is characterizedby the followingprobability density
function:

f IIP (x) =
β
σ(

1 + x − μ
σ )
−β−1

, (1.4)

with x > μ, μ ∈ ℝ, σ > 0 and β > 0. Comparing (1.4) and (1.3), we notice that the single-look G0I distribution
is a particular case of the second kind Generalized Pareto distribution: the one with μ = 0, σ = γ, and β = −α.

2 Data generation techniques

Four generation routines are implemented using the fact that the random variable Z ∼ G0I (α, γ, L) can be
defined as the product of two independent random variables. In the following, we cite relations between
distributions involved in the forthcoming techniques.
∙ If X ∼ Γ(α, γ), then 1

X ∼ Γ−1(−α, γ−1), where Γ−1 denotes the Inverse Gamma distribution.
∙ The χ2 distribution is a particular case of a Γ distribution, if X ∼ χ2n, then X ∼ Γ( n2 , 2).
∙ X ∼ Γ(m, n) implies that aX ∼ Γ(m, na ) for a > 0.
Thus, we propose the following two ways of data generation:
∙ Γ generation routine:

Z = Y 1
X
,

where X and Y are independent random variables such that X ∼ Γ(−α, γ) and Y ∼ Γ(1, 1).
∙ χ2 generation routine:

Z = γX 1
Y
,

where X and Y are independent random variables such that X ∼ χ22 and Y ∼ χ2−2α.



Multiplicative model Inversion method

Γ F
χ2 P

Table 1: Classification of generation routines.

The following generation routine is based on the construction of Fisher–Snedekor F random variables
as the quotient of independent χ2 deviates scaled by their degrees of freedom:
∙ F generation routine:

Z = − γ
α
F,

where F is an F(2, −2α) distributed random variable.
The fact that the G0I (α, γ, 1) distribution is a particular case of Generalized Pareto Type II distribution leads
to another manner of generation for the single look case:
∙ P generation routine:

Z ∼ P(II)(0, γ, −α),

with P(II) denoting Pareto Type II distribution.
In all cases, −α, γ > 0. Table 1 shows the classification of the methods of random number generation.

3 Experiments and results

The α parameter of the G0I distribution can be interpreted in terms of the texture of the image region, see [14]
for details. A very textured area such as an urban spot is usually related to α ∈ (−3, 0). The level of texture
declines as the value of this parameter decreases, for α ∈ (−6, −3] we may be in presence of a forest, while
for α ∈ (−∞, −6] we usually have pasture or crops. Since we are interested in studying all types of areas, we
consider several representative values of the texture and brightness parameters (α, γ) in each experiment.

We report results in the following programming languages, which are used in image processing and
remote sensing applications:
∙ R [47], version 3.3.1, is a software environment for statistical computing and image processing, among

other applications. It runs on several platforms and provides statistical and graphical tools.
∙ MatLab [46], version R2017a, is a numerical computing framework. It has its own programming lan-

guage and an image processing toolbox. MatLab allows a variety of matrix operations, and the creation
of user interfaces.

∙ Ox [11], version 7.00, is an object-oriented programming language with an extensive statistical function
library. It is available for several platforms.

∙ Julia [4], version 0.5.0, is a high-performance dynamic programming language for technical comput-
ing. It provides a compiler, distributed parallel execution with good numerical accuracy and a library of
mathematical functions.

All these frameworks are open source except for the second one.

3.1 Execution times

An important feature to be analyzed is the computational time consumed in each routine. We examined
cases involving the following parameters: (α, γ) ∈ {−8, −7, −6, −5, −4, −3, −2} × {0.1, 1, 5, 10, 25, 50, 100},
for each one of the considered languages using a computer with processor Intel© Core™, i7-6700K CPU
3.4GHz, 16GB RAM, System Type 64 bit operating system. Figure 2, exhibits the time consumed to generate
samples of size 106 with these parameters, by each generation routine and for each programming language.



Figure 2: Processing time according to programming language.

In order to compare the computational times of generation routines and programming languages, we
replicate this experience twice to apply Friedman test [15], first using generation routines as blocks and lan-
guages as factors and then viceversa. It can be observed that P generation routine consumes the shortest
computational time in all the programming languages. Difference between the mean times consumed by P
and Γ generation routines turn out significant in Friedman post-hoc pairwise comparisons (p-value = 0.065).

Difference among programming languages shows statistical significance (p-value = 0.007). After post-
hoc pairwise comparisons we conclude that the principal difference among processing time according to
languages is due to Matlab and Ox.

Listings 1, 2, 3 and 4 show the codes for data generation in R, MatLab, Ox and Julia programming lan-
guages, respectively, denoting alpha and gam the texture and the scale parameters, respectively, n the sample
size, and gen the selected generation routine.

Listing 1: G0I generation function in R.

library(stats4)

library(rmutil)

rGI0= function(alpha,gam,n,L = 1,gen){

switch(gen,

"Pareto" = rpareto(n,-alpha,gam),

"Gamma" = rgamma(n,L,L)/rgamma(n,-alpha,gam),

"Chi2" = gam*rchisq(n,2)/rchisq(n,-2*alpha),

"F-Snedecor" = (-1)*gam*rf(n,2,-2*alpha)/ alpha)

}

Listing 2: G0I generation function in Matlab.

function data = rGI0(alpha,gam,n,gen,varargin)

L = 1;

fprintf('Total␣number␣of␣inputs␣=␣%d\n',nargin);

if nargin == 4

gen = 'Pareto';

end

switch gen



case 'Gamma'

data=gamrnd(L,1/L,n,1)./gamrnd(-alpha,1/gam,n,1);

case 'Chi2'

data=gam*chi2rnd(2,n,1)./chi2rnd(-2*alpha,n,1);

case 'F-Snedecor'

data=(-1)*gam*frnd(2,-2*alpha,n,1)./alpha;

case 'Pareto'

data=gprnd(-1/alpha,-gam/alpha,0,n,1);

end

Listing 3: G0I generation function in Ox.

#include <oxstd.h>

#include <oxprob.h>

rGI0(const alpha,const gam,const n,const gen)

{decl data,i,XG,YG,XC,YC,XF,XU,DG,L = 1;

switch (gen)

{

case "Gamma":

YG = rangamma(n,1,L,L);

XG = rangamma(n,1,-alpha,gam);

data = YG./XG;

break;

case "Chi2":

XC=ranchi(n,1,2);

YC=ranchi(n,1,-2*alpha);

data = gam * XC./YC;

break;

case "F-Snedecor":

XF=ranf(n,1,2,-2*alpha);

data = -(gam/ alpha) * XF;

break;

case "Pareto":

XU=ranu(n,1);

data=gam*((1-XU).^(1/alpha)-1);

break;

}

return data; }

Listing 4: G0I generation function in Julia.

Pkg.add("Distributions")

Pkg.add("Switch")

using Distributions

using Switch

function rGI0(alpha,gam,n,gen)

data=ones(n);

L = 1;

@switch gen begin



@case "Gamma"

fg=Gamma(L,1/L)

dg=Gamma(-alpha,1/gam)

YG=rand(fg,n)

XG=rand(dg,n)

data=YG./XG

break

@case "Chi2"

fc=Chisq(2)

dc=Chisq(2*alpha)

XC=rand(fc,n)

YC=rand(dc,n)

data=gam.*XC./YC

break

@case "F-Snedecor"

ff=FDist(2,2*alpha)

XF=rand(ff,n)

data=gam.*XF./alpha

break

@case "Pareto"

XU=rand(n)

data=gam.*((1-XU).^(-1/alpha)-1)

end

return data

end

3.2 Moments accuracy

We generated 1000 random samples of size 500, with the following parameters:

(α, γ) ∈ {−8, −5, −3} × {0.1, 1, 10, 100, 1000}.

For each one we compute their mean and variance values. The second moment is not defined for α = −1.5,
so we do not take it into account in this section. The true values of mean and variance of the G0I distribution
are calculated using equation (1.2). Then we computed the deviation between the obtained (θ̂) and the true
values (θ), considering the following error measures, where n is the sample size:
∙ Mean square error (MSE)

M̂SE(θ̂) = 1
n

n
∑
i=1
(θ̂i − θ)2.

∙ Mean absolute error (MAE)

M̂AE(θ̂) = 1
n

n
∑
i=1
|θ̂i − θ|.

∙ Maximum absolute error (MxAE)

M̂xAE(θ̂) = max
1≤i≤n
{|θ̂i − θ|}.

MAE is widely applied in image processing, since its memory requirements are noticeably smaller than the
ones MSE needs [35].



Figure 3:Mean errors according to the generation routine.
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Figure 4:Mean errors according to the programming language.

3.2.1 Error comparison

Mean accuracy. We applied the Kruskal–Wallis (KW) test [23] to comparemean errors considering as factors:
generation routine and programming language. Post hoc comparisons are conducted when statistical signif-
icance appeared. Clear differences are observed between Julia and the other languages and also between Ox
and R, for the MAE measure. However, there is no statistical significant difference between Matlab and R.
The KW test also shows significant differences for MxAE by programming language. Post hoc pairwise com-
parisons indicate that Ox has the lowest mean accuracy, Matlab and R match, and Julia presents the lowest
errors. Similar results are found forMSE. Figures 3 and 4 show the distribution of errormeasures for themean
sample value, in logarithmic scale, according to the generation routines and to the programming language,
respectively.

Variance accuracy. In this case MAE, MxAE and MSE differences are statistically significant according to
programming language. Figures 5 and 6 show the distribution of error measures, in logarithmic scale, for the
variance according to generation routine and to programming languages, respectively. In the case of MAE,
we noticed the presence of two subgroups: Ox-R and Julia-Matlab.

3.3 Goodness of fit

In this subsection we assess the goodness of fit of the data provided by the proposed generation routines
using several values of α and the corresponding γ∗.



Figure 5: Variance errors according to generation routine.
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Figure 6: Variance errors according to language.

3.3.1 Raw data

For all the considered programming languages, we generated 1000 samples of size 1000 with each of the
proposed generation routines using α ∈ {−8, −5, −3, −1.5}. In order to assess the goodness of fit for each
sample, we applied two classical criteria: Kolmogorov–Smirnov [24] and Anderson–Darling [33] tests. The
first test is based on themaximumdifference between the empirical and the cumulative distribution functions
(equation (1.1)). One of its properties is that it is less sensitive in the tails of the distribution, but its statistic
distribution does not dependon the underlying distributionwhen the true parameters are known. The second
test gives more weight to the tails improving, thus, the KS test discriminatory ability. The tests are applied
with significance level η = 0.05. Table 2 shows the average p-values obtained for each method, framework
and test. Rejection level of the KS and the AD tests for the raw data has not significant differences from the
theoretical fixed level, neither for programming language nor for generator.

3.3.2 Maximum distribution

By absolutely outlier-prone and slowly varying at infinite properties of theG0I distribution [16, 34],we analyze
the extreme value data performance produced by each generation routine. For n ∈ {50, 100, 500, 1000}, we
generated 1000 samples of size 1000 of n-size sample maxima, and we evaluate the goodness of fit of their
distribution applying KS and AD tests. Tables 3 and 4 show the sample p-values at the η = 0.05 level. There
are no significant deviations from the theoretical level of KS and AD tests rejection levels for the sample
maximum , neither for programming language nor for generator.



Test Language Γ χ2 F P

KS R 0.0498 0.0495 0.0485 0.0470
Matlab 0.0420 0.0420 0.0420 0.0420
Ox 0.0410 0.0520 0.0440 0.0523
Julia 0.0490 0.0409 0.0310 0.0530

AD R 0.0493 0.0498 0.0490 0.0488
Matlab 0.0430 0.0430 0.0430 0.0430
Ox 0.0350 0.0523 0.0440 0.0578
Julia 0.0510 0.0470 0.0510 0.0570

Table 2: KS and AD tests results.

KS test Sample size Average

Language Routine 50 100 500 1000

R Γ 0.049 0.046 0.050 0.051 0.049
χ2 0.048 0.047 0.051 0.056 0.050
F 0.053 0.075 0.042 0.046 0.054
P 0.041 0.049 0.053 0.047 0.048

Matlab Γ 0.053 0.050 0.043 0.050 0.049
χ2 0.048 0.049 0.046 0.044 0.047
F 0.052 0.046 0.046 0.047 0.048
P 0.052 0.057 0.053 0.048 0.053

Ox Γ 0.054 0.045 0.051 0.049 0.050
χ2 0.052 0.041 0.052 0.052 0.051
F 0.048 0.043 0.051 0.052 0.048
P 0.049 0.050 0.047 0.056 0.051

Julia Γ 0.048 0.043 0.051 0.052 0.048
χ2 0.053 0.047 0.047 0.047 0.048
F 0.045 0.047 0.049 0.047 0.047
P 0.054 0.058 0.070 0.052 0.059

Table 3: p-values of the KS test for the maxima.

AD test Sample size Average

Language Routine 50 100 500 1000

R Γ 0.049 0.044 0.054 0.056 0.051
χ2 0.049 0.052 0.047 0.057 0.051
F 0.053 0.065 0.047 0.047 0.053
P 0.038 0.048 0.059 0.048 0.048

Matlab Γ 0.051 0.048 0.047 0.050 0.049
χ2 0.047 0.051 0.051 0.047 0.049
F 0.052 0.045 0.047 0.049 0.048
P 0.051 0.051 0.049 0.055 0.052

Ox Γ 0.053 0.045 0.047 0.048 0.048
χ2 0.054 0.044 0.055 0.054 0.052
F 0.048 0.046 0.052 0.055 0.050
P 0.053 0.052 0.051 0.053 0.052

Julia Γ 0.053 0.054 0.054 0.043 0.051
χ2 0.050 0.048 0.045 0.038 0.045
F 0.046 0.047 0.052 0.046 0.048
P 0.056 0.060 0.057 0.045 0.055

Table 4: p-values of the AD test for the maxima.



3.3.3 Minimum distribution

Allende, Frery, Galbiati and Pizarro [1], while seeking for a robust estimator of the texture in a closely related
model, noted that large outliersmay cause problems in homogeneous areas, whereas very small ones are crit-
ical in extremely heterogeneous areas. The reason for this is that the ML estimator depends on the sum of the
logarithmof the sample observations. This fact suggests that very small outliersmay hamper the performance
of the ML estimator. Therefore, we study here the sample minimum distribution behavior. We considered
n ∈ {50, 100, 500, 1000} and generated 1000 samples of size 1000 of n-size sampleminima. Then, applying
KS andAD tests, we evaluate the goodness of fit of their distribution. Tables 5 and 6 show the sample p-values

KS test Sample size Average

Language Routine 50 100 500 1000

R Γ 0.050 0.049 0.046 0.047 0.048
χ2 0.050 0.049 0.046 0.047 0.048
F 0.049 0.049 0.043 0.047 0.047
P 0.055 0.044 0.050 0.050 0.050

Matlab Γ 0.048 0.048 0.052 0.047 0.049
χ2 0.055 0.042 0.045 0.048 0.048
F 0.044 0.043 0.051 0.041 0.045
P 0.045 0.050 0.055 0.042 0.048

Ox Γ 0.092 0.088 0.096 0.088 0.091
χ2 0.065 0.061 0.065 0.074 0.066
F 0.071 0.066 0.076 0.068 0.071
P 0.054 0.067 0.064 0.085 0.068

Julia Γ 0.055 0.048 0.053 0.056 0.053
χ2 0.050 0.046 0.051 0.049 0.049
F 0.046 0.048 0.049 0.051 0.048
P 0.049 0.047 0.050 0.046 0.048

Table 5: p-values of the KS test for the minima.

AD test Sample size Average

Language Routine 50 100 500 1000

R Γ 0.047 0.050 0.050 0.051 0.050
χ2 0.047 0.050 0.050 0.051 0.050
F 0.049 0.051 0.047 0.049 0.049
P 0.055 0.047 0.052 0.050 0.051

Matlab Γ 0.049 0.046 0.052 0.048 0.049
χ2 0.053 0.043 0.050 0.055 0.050
F 0.048 0.049 0.050 0.047 0.048
P 0.047 0.050 0.055 0.044 0.049

Ox Γ 0.086 0.077 0.086 0.077 0.081
χ2 0.059 0.057 0.058 0.070 0.061
F 0.073 0.062 0.073 0.063 0.068
P 0.051 0.064 0.067 0.082 0.066

Julia Γ 0.051 0.048 0.053 0.054 0.051
χ2 0.053 0.049 0.049 0.047 0.049
F 0.051 0.049 0.050 0.054 0.051
P 0.049 0.049 0.055 0.046 0.050

Table 6: p-values of the AD test for the minima.



at the η = 0.05 level. As in the previous cases, we compared the rejection level with the p-values and we did 
not find any significant difference between them neither by language nor by generation routine.

3.3.4 Quantile confidence intervals

Considering each generated sample as mentioned in Sec. 3.3, we register the third quartile, the 90th per-
centile and the limits of 95 % level confidence i nterval f or t hem based on a  Bootstrap method [ 42]. We 
replicated this experiment using all the simulation techniques and all the selected programming languages. 
Tables 7 and 8 show the results.

Language Routine α Average−8 −5 −3 −1.5
R Γ 0.960 0.957 0.946 0.955 0.9545

χ2 0.960 0.959 0.946 0.960 0.9470
F 0.946 0.947 0.948 0.956 0.9493
P 0.947 0.936 0.936 0.936 0.9388

Matlab Γ 0.937 0.942 0.944 0.946 0.9423
χ2 0.937 0.942 0.944 0.946 0.9423
F 0.937 0.942 0.944 0.946 0.9423
P 0.942 0.942 0.942 0.942 0.9420

Ox Γ 0.955 0.958 0.945 0.961 0.9548
χ2 0.961 0.948 0.959 0.963 0.9578
F 0.953 0.951 0.954 0.950 0.9520
P 0.942 0.958 0.944 0.943 0.9468

Julia Γ 0.948 0.937 0.958 0.967 0.9525
χ2 0.969 0.956 0.949 0.945 0.9548
F 0.950 0.948 0.953 0.937 0.9470
P 0.948 0.944 0.951 0.953 0.9490

Table 7: q3 confidence interval coverage.

Language Routine α Average−8 −5 −3 −1.5
R Γ 0.969 0.951 0.952 0.946 0.955

χ2 0.969 0.942 0.952 0.951 0.954
F 0.954 0.960 0.950 0.961 0.956
P 0.952 0.961 0.961 0.961 0.959

Matlab Γ 0.947 0.954 0.952 0.936 0.945
χ2 0.947 0.945 0.952 0.936 0.945
F 0.947 0.945 0.952 0.936 0.945
P 0.937 0.937 0.937 0.937 0.937

Ox Γ 0.949 0.954 0.961 0.957 0.955
χ2 0.953 0.959 0.961 0.963 0.959
F 0.945 0.952 0.946 0.946 0.947
P 0.955 0.960 0.960 0.949 0.956

Julia Γ 0.930 0.953 0.959 0.955 0.949
χ2 0.962 0.968 0.959 0.955 0.961
F 0.960 0.943 0.959 0.959 0.955
P 0.950 0.944 0.948 0.959 0.950

Table 8: p90 confidence interval coverage.
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Figure 8: Percentage coverage for p90.

Proportion differences for confidence interval coverage. Wefirst observed that the coverage percentage does
not depend on the texture parameter. We then wondered if the percentile was important and found signif-
icant differences between p75 and p90. This fact led us to separate the study for each percentile and pay
attention to the differences according to generation routine and language. The interaction between genera-
tion routine and language is not significant. The KW test pointed out significant differences among coverage
percentage for p75 by generation routine and by language. Post hoc comparisons indicated that both χ2 and
P routines are different for p75 coverage. In the case of p90, only the differences according language have
statistical significance. This results can be appreciated in Figures 7 and 8. The red dotted line is the fixed
confidence level.

4 Discussion and conclusions

In this section, we present conclusions and give recommendations for the selection of suitable generators
according to the programming language.
(1) P and F routines are simpler than the others in terms of language programming code, length and com-

plexity, since they are based on the inversion method for the single look case.
(2) If we prioritize the processing time, the P routine is the best since it consumes the shortest time in all the

programming languages.
(3) According to the programming language, the difference between Matlab and Ox is significant.
(4) Focusing on data goodness of fit, minima and maxima samples, there was no difference neither by lan-

guage nor by generation routine.
(5) We detected two groups: Ox & R and Julia & Matlab, with respect to the moment adjustment.
(6) Conforming to the confidence intervals coverage percentage, χ2 and P routines are significantly different

for the third quartile and there is no difference between generation routines for the 90th percentile. In
both cases, there is difference between coverage by programming language. For this reason, Ox, R and
Julia outperform Matlab.
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