
Using Linear Difference Equations to Model Nonlinear 

Cryptographic Sequences 

P. Caballero-Gil

Faculty of Mathematics, University of La Laguna, 38271 Tenerife, Spain, Email: pcaballe@ull.es 

A. Fúster-Sabater

Institute of Applied Physics (CSIC), Serrano 144, 28006, Madrid, Spain, Email: amparo@iec.csic.es 

M.E. Pazo-Robles

ITBA Instituto Tecnológico de Buenos Aires, Av. E Madero 399, Buenos Aires, Argentina, Email: eugepazorobles@gmail.com 

Abstract 

A new class of linear sequence generators based on cellular automata is here introduced in order to 

model several nonlinear keystream generators with practical applications in symmetric cryptography. The 

output sequences are written as solutions of linear difference equations, and three basic properties (period, 

linear complexity and number of different output sequences) are analyzed.  

Keywords: Nonlinear generators, Cryptography, Difference equations 

1. Introduction

Cellular Automata (CA) are discrete

dynamical systems of simple construction but 

complex behaviour. These finite state machines 

are defined as uniform arrays of identical cells in 

an n-dimensional space, and may be classified 

with respect to parameters such as cellular 

geometry, neighbourhood specifications, number 

 

of states per cell and transition rules. A 

well-known two-dimensional CA invented by 

Conway and popularized by Gardner[6] is the 

so-called Game of Life. Different mathematical 

techniques have been used to analyze CA by 

Wolfram, Martin and Odlyzko[15, 16, 17].  

In this work, only one-dimensional binary CA 

with three site neighbourhood and linear transition 



rules will be used. Furthermore, the CA here 

considered are hybrid (different cells evolve under 

different transition rules) and null (cells with null 

content are adjacent to the extreme cells).  

In symmetric key cryptography, most keystream 

generators are based on Linear Feedback Shift 

Registers (LFSRs) whose output sequences are 

combined in a nonlinear way. A thorough 

introduction to the theory of shift register 

sequences may be found in the classic book by 

Golomb[7]. The relationship between the linear CA 

above characterized and LFSRs was analyzed by 

Serra et al[13], who proved that both structures are 

isomorphic, and consequently the latter ones may 

be substituted by the former ones in order to 

accomplish the same goal: the generation of 

pseudorandom sequences. Nevertheless, as it will 

be shown within this paper, the main advantage of 

this type of CA is that certain multiple generators 

designed in terms of LFSRs as nonlinear 

structures preserve their original linearity when 

they are expressed under the form of linear CA. In 

particular, in this paper cryptographic generators 

such as the Shrinking Generator introduced by 

Coppersmith, Krawczyk and Mansour[3], and 

Clock-Controlled Shrinking Generators (CCSGs) 

defined by Kanso[8] will be linearly modelled 

through an extremely simple procedure. 

Furthermore, the same simple procedure can be 

applied to keystream generators in a wider range 

of practical application.  

This work is organized as follows. In the next 

section, a new type of linear CA called 

Multiplicative-Polynomial Cellular Automata 

(MPCA) is introduced. Structural properties of 

MPCA are studied in section 3, where emphasis is 

given on different parameters of their generated 

sequences (e.g. period, linear complexity, 

characteristic polynomial and number of different 

output sequences). Section 4 shows that MPCA 

allow modelling nonlinear cryptographic 

generators in terms of linear structures. Finally, 

some illustrative examples and conclusions 

complete the paper. 

2. Fundamentals and Basic Notation

In this section, several characteristics of the two 

basic structures considered within this paper 

(LFSRs and one-dimensional linear hybrid CA) 

are briefly introduced.  

2.1. Linear Recurrence Relationship in LFSRs  

A binary LFSR is a pseudorandom sequence 

generator made out of L memory cells or stages 

(numbered 1, 2,..., L) so that each one is capable 

of storing one bit. At each unit of time, the 

following operations are performed:  

(i) The content of stage 1 is output.

(ii) The content of stage i is moved to stage i−1



∀i: 2 ≤ i ≤ L.  

(iii) The new content of stage L is the

exclusive-OR of a subset of stages given by P(X), 

which is the LFSR characteristic polynomial of 

degree L. If P(X) is a primitive polynomial[11], 

then the LFSR is called maximal-length LFSR and 

its output sequence is a PN-sequence. In the 

sequel, only maximal-length LFSRs and their 

corresponding PN-sequences will be considered. 

Let {xn} be the PN-sequence generated by a 

maximal-length LFSR. The linear L-degree 

recurrence relationship that specifies its n-th 

element can be written as:  

∑
=

− ≥=+
L

i
inin Lnxcx

1

,0   (1) 

where the sequence elements xn as well as the 

coefficients ci belong to GF(2). In this paper both 

addition and multiplication refer always to 

modulo 2 operations. The linear recursion in (1) 

can be expressed as a linear difference equation: 

∑
=

− ≥=+
L

i
n

iL
i

L nxEcE
1

0,0)(   (2) 

where E is the shift operator defined on xn so that 

Exn=xn+1. The characteristic polynomial of 

equation (2) coincides with the LFSR 

characteristic polynomial, which is: 

.)(
1
∑
=

−+=
L

i

iL
i

L XcXXP   (3) 

Let α ∈ GF(2L) be a root of P(X). If P(X) is a 

primitive polynomial, then its L roots are[12]: 

12 222 ,,,,
−L

αααα K         (4) 

each of them being a primitive element of GF(2L). 

Thus, the n-th element of {xn} can be written in 

terms of the previous roots[11] such as follows: 

∑
−

=

=
1

0

22
L

j

n
n

jj
Ax α (5) 

where A ∈ GF(2L). The value of A determines the 

starting point of the PN-sequence. It is remarkable 

that equation (5) is just a solution of the difference 

equation (2). 

2.2. One-Dimensional Linear Hybrid CA 

In this paper our attention is focussed on 

three-dimensional binary linear hybrid CA with 

three site neighbourhood. In fact, there are eight 

of such transition rules, among which only two 

(rule 90 and rule 150) lead to non trivial structures. 

These rules can be defined as follows: 

Rule 90 Rule 150 

11
1

11
1

+−
+

+−
+ ++=+= k

n
k
n

k
n

k
n

k
n

k
n

k
n aaaaaaa

Indeed, the content k
na 1+  of the k-th cell at

time n+1 depends on the content of either two 

different cells (rule 90) or three different cells 

(rule 150) at time n, ∀k = 1, 2,..., L, where L is the 

length of the automaton. Moreover, the state of 

the automaton is formed by the binary content of 



the L cells at each unit of time. For the previous 

rules, the different states of the automaton are 

grouped in closed cycles[9]. A natural form of CA 

representation is given by an L-tuple DL= (d1, 

d2,..., dL) where dk= 0 if the k-th cell follows the 

rule 90 while dk= 1 if the k-th cell follows the rule 

150. Also Dk= (d1, d2,..., dk) ∀k= 1, 2,..., L denote

the corresponding sub-automata of length k. 

Characteristic polynomial P(X)=X3+X2+1 
LFSR CA: 150 90 90  90 90 150 
1 1 0 1 0 0  1 1 1 
1 0 1 1 1 0  1 0 0 
0 1 0 0 1 1  0 1 0 
1 0 0 1 1 1  1 0 1 
0 0 1 0 0 1  0 0 1 
0 1 1 0 1 0  0 1 1 
1 1 1 1 0 1  1 1 0 
Tab. 1: Equal output sequences of LFSR and CA 

Given an irreducible polynomial Q(X), the 

Cattell and Muzio synthesis algorithm[1] provides 

a pair of reversal linear 90/150 CA whose 

characteristic polynomial is Q(X). Reciprocally, 

given a linear 90/150 cellular automaton, the 

Euclid’s GCD algorithm is the basis for the 

calculation of its corresponding characteristic 

polynomial. Furthermore, it is known that a linear 

CA and a LFSR with the same primitive 

characteristic polynomials are isomorphic[14]. 

Therefore, a one-dimensional binary linear 90/150 

cellular automaton of primitive characteristic 

polynomial P(X) given by (3) will generate the 

PN-sequence defined in equations (1) and (5). As 

an example, Tab. 1 depicts the same PN-sequence 

 

(in bold at the most left cells) generated by two 

different kinds of structures (LFSR and linear 

90/150 CA) both with characteristic polynomial 

P(X)= X3+X2+1. In such an example, the LFSR 

initial sate is (1, 1, 0), while the initial states of 

the two reversal CA are (1, 0, 0) and (1, 1, 1), 

respectively. At the remaining cells, shifted 

versions of the same PN-sequence are generated. 

In the following definition, a special class of CA 

is introduced.  

Definition 1: A Multiplicative-Polynomial 

Cellular Automaton is defined as a cellular 

automaton whose characteristic polynomial is a 

reducible polynomial of the form PM(X)= P(X)p 

where p is a positive integer and P(X) is an 

irreducible polynomial. If P(X) is a primitive 

polynomial, then the automaton is called a 

Primitive Multiplicative-Polynomial Cellular 

Automaton (PMPCA). 

The polynomial PM(X) is a reducible 

polynomial, so the Cattell and Muzio algorithm 

can not be applied. Nevertheless, in the next 

section, linear 90/150 CA with characteristic 

polynomials PM(X) are introduced. 

3. Properties of MPCA

Since the characteristic polynomial of MPCA is 

of the form PM(X)= P(X)p, it seems quite natural 

to construct a Multiplicative-Polynomial Cellular 



Automaton by concatenating p times the basic CA 

of characteristic polynomial P(X). The following 

lemma is a concrete formalization of this idea. 

Lemma 2: Let O be a linear hybrid 90/150 

cellular automaton of length L, binary 

codification (d1, d2,…, dL−1, dL) and characteristic 

polynomial P(X). Let Õ be the reversal version of 

O, with binary codification (dL, dL−1,…, d2, d1), 

and the same length and polynomial as O. Then, 

the 2L-tuple )d ,d ,,d ,d ,,d ,(d 12LL21 KK  

represents the linear 90/150 cellular automaton of 

length 2L and characteristic polynomial P(X)2. 

The proof is based on the recurrence 

relationship for the characteristic polynomials of 

the successive sub-automata of a given 

automaton[1]. Let ∆k(X) denote the characteristic 

polynomial of the sub-automaton (d1, d2,…, dk) 

and let ∆k(X)= (X+ dk)∆k−1(X)+ ∆k−2(X) (k>0, 

∆−1=0, ∆0=1) be the above mentioned recurrence 

relationship. Then, the successive polynomials of 

the previous 2L-tuple are: 

)(
1)(

)(

)(
)(

)(

)(

)(
)(

)(

11

122

1233

3211

21

11

112

4232322

3222212

221212

dX
dX
dX

dX
dX

dX

dX

dX
dX

dX

LLLL

LLLL

LLLL

LLLL

LLL

LLL

LLL

+=∆
+∆+=∆
∆+∆+=∆

∆+∆+=∆
∆+∆+=∆

∆+∆+=∆

∆+∆+=∆

∆+∆+=∆
∆+∆+=∆

∆+∆+=∆

−−−−

−−

−+

+−+

−−−

−−−

−−

M

M

Thus, the computation of ∆2L can be carried out 

by multiple substitutions. 

.))((

)(

)()(

)()(

)(

)(

2
21

2
2

2
1

22
2

2
1

11
2

2

2
121

2
221

2
1

1211

422323321

222221212

−−

−−−−

−−−

−−−

−−−−

−−−+

−−−

−−−

∆+∆+=

=∆+∆+=∆+∆+

+∆+∆+=∆+

+∆+∆+∆∆+=

=∆+∆∆++∆+

+∆∆+=∆∆+∆∆=

==∆∆+∆∆=∆∆+
+∆∆=∆+∆∆=∆

LLL

LLLLL

LLLLL

LLLLL

LLLLL

LLLLLLL

LLL

LLLL

dX

dX

dXdX

dX

dX

dX

L

If P(X) is the characteristic polynomial of the 

automaton (d1,d2,…,dL), then the characteristic 

polynomial of the automaton 

)d ,d ,,d ,d ,,d ,(d 12LL21 KK  is: 

.)()( 2
2 XPXL =∆  (6) 

The basic automaton is concatenated with its 

reversal version after the complementation of the 

last rule dL. Consequently, successive applications 

of this result provide MPCA whose characteristic 

polynomials are: KK ,)(,,)(,)( 222 2 q
XPXPXP  

of lengths 2L, 22L,…, 2qL,…, respectively. It is 



remarkable that for every P(X) there are two 

different basic automata that may be used for the 

concatenation. Therefore, if 2q−1<p≤2q, then the 

two MPCA of length 2qL built as in Lemma 2 and 

applied on different initial states will produce all 

the sequences {an} with characteristic polynomial 

P(X)p that satisfy the difference equation: 

∑
=

− ≥=+
L

i
n

piL
i

L naEcE
1

0,0)(  (7) 

On the other hand, if PM(X)= P(X)p, then the 

roots of PM(X) will be the same as those of P(X) 

but with multiplicity p. Thus, the n-th element of 

{an} can be written in terms of the previous 

multiple roots such as follows: 

∑∑
−

=

−

=

⋅=
1

0

2
1

0

2 )(
L

j

n
p

i
iin

jj
Ana α   (8) 

where Ai∈GF(2L) and ni are binomial coefficients 

reduced modulo 2. The choice of Ai determines 

the properties of the sequences {an} generated by 

MPCA. 

3.1. Period of Sequences Generated by MPCA 

The solutions of the equation (7) can be 

rewritten as: 

∑ ∑
−

=

−

=

=
1

0

2
1

0

2 ).(
p

i

n
L

j
iin

jj
Ana α    (9) 

According to equation (5), ∑
−

=

=
1

0

22
L

j

n
i

i
n

jj
Ax α

represents the n-th element of the PN-sequence of 

period 2L−1 whose starting point is determined by 

Ai. Thus, {an} can be written as the sum of p times 

the same PN-sequence starting at different points 

and weighted by binomial coefficients 

∑
−

=

=
1

0

}.{}{
p

i

i
nin xna  (10) 

In addition, each binomial coefficient defines a 

succession of binary values of constant period pi. 

Tab. 2 shows the values of pi for different ni. Such 

as it may be seen, they are different powers of 2 

between the integers 1 and p. Therefore, the 

sequence {an} is the sum of p sequences of 

distinct periods Ti = pi ·(2L−1), and the period of 

such a sum sequence will be: 

T = max{Ti (i = 0,..., p − 1) / Ai≠ 0}.   (11) 

It can be noticed that the period of the different 

sequences {an} generated by an MPCA depends 

on the choice of the coefficients Ai in equation (8). 

Nevertheless, all the sequences generated at the 

same state cycle have the same period. 

Binomial coeff. Binary values pi 
n0 1,1,1,1,1,1,1,1,1,1,… p0=1 
n1 0,1,0,1,0,1,0,1,0,1,… p1=2 
n2 0,0,1,1,0,0,1,1,0,0,… p2=4 
n3 0,0,0,1,0,0,0,1,0,0,… p3=4 
n4 0,0,0,0,1,1,1,1,0,0,… p4=8 
n5 0,0,0,0,0,1,0,1,0,0,… p5=8 
n6 0,0,0,0,0,0,1,1,0,0,… p6=8 
n7 0,0,0,0,0,0,0,1,0,0,… p7=8 

Tab. 2: Coefficients, values and periods 

3.2. Linear Complexity of Sequences 

Generated by MPCA 

The linear complexity of a sequence equals the 



number of roots (with their multiplicities) that 

appear in the linear recurrence relationship[10]. 

Therefore, going back to expression (8), the linear 

complexity of {an} can be computed because 

there are L roots each of them with multiplicity p. 

Thus, if imax is the greatest value of i (i= 0,1,…, 

p−1) for which Ai≠ 0, then the linear complexity 

LC of the sequence {an} will be: 

LC = (imax + 1) · L .       (12) 

The maximum linear complexity will be 

LCmax= p·L (if Ap−1≠ 0) while the minimum linear 

complexity will be LCmin= L (if Ai=0 ∀i>0). The 

linear complexity for this kind of sequences will 

always be a multiple of L. In brief, the linear 

complexity of the different sequences {an} 

depends on the choice of the coefficients Ai in (8), 

and all the sequences generated at the same state 

cycle have the same linear complexity. 

3.3 Number of Different Sequences Generated 

by MPCA 

In order to get the number of different sequences 

{an} generated by MPCA, the choice of the 

coefficients Ai in equation (8) must be considered. 

Three distinct situations may be distinguished: 

• If Ai= 0 ∀i, then all the cells of the CA will

generate the identically null sequence. 

• If A0≠ 0 and Ai= 0 ∀i> 0, then all the cells of

of period T0= 2L−1 and characteristic polynomial 

P(X). It is remarkable that the relative shifts of 

this sequence generated at the different cells can 

be determined[2]. 

• In general, if A0,A1,…,Ai−1∈ GF(2L), Ai≠ 0 and

Aj= 0 ∀j>i, i≥1, then there are 2iL ·(2L−1) possible 

choices of (A0,A1,…,Ai). According to section 3.1, 

the period of such sequences is the maximum 

value of Ti= pi ·(2L−1). Thus, the number of 

different sequences for these values of Ai is: 

.2)12(2

i

iL

i

LiL

i pT
N =

−⋅
= (13) 

Consequently, the total number of distinct 

sequences obtained from an MPCA (excluded the 

null sequence) is: 

.
1

0
∑
−

=

=
p

i
itotal NN  (14) 

3.4. Illustrative Example 

This section includes a simple example to 

illustrate the previous results. Consider the 

PMPCA of 20 cells D20= 

(1,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1) with 

characteristic polynomial PM(X)= P(X)p, P(X)= 

X5+ X4+ X2+ X+ 1, p= 4, L= 5. Different choices 

of Ai (not all null) are now considered separately: 

1. If A0≠ 0 and Ai= 0 ∀i> 0, then the CA will

produce N0= 1 sequence, which is a unique 
the CA will generate a unique PN-sequence {xn} 

PN-sequence of period T0= 31, linear complexity 

 



LC0= 5 and characteristic polynomial P(X). In 

addition, the automaton cycles through doubly 

symmetric states of the form: (a0, a1, a2, a3, a4, a4, 

a3, a2, a1, a0, a0, a1, a2, a3, a4, a4, a3, a2, a1, a0) 

with ai ∈ GF(2). Fig. 1 illustrates the formation 

of the output sequences (binary sequences in 

vertical) for the previous CA of 20 cells and initial 

state (1,1,0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,1,1). In 

fact, diamonds represent 1’s and blanks represent 

0’s. The 31 doubly symmetric states are 

concentrated into the same cycle. 

2. If A0∈ GF(25), A1≠ 0 and Ai = 0 ∀i> 1, then

the CA will produce N1= 16 different sequences of 

period T1= 62, linear complexity LC1= 10 and 

characteristic polynomial P(X)2. Moreover, the 

automaton cycles through symmetric states of the 

form: (a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a9, a8, a7, 

a6, a5, a4, a3, a2, a1, a0) with ai∈ GF(2). Fig. 2 

illustrates the formation of the output sequences 

for the previous cellular automaton of 20 cells and 

initial state (0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0). 

In fact, there are 210 − 32 = 992 symmetric states 

distributed in 16 cycles of 62 states each of them. 

3. If A0, A1∈ GF(25), A2 ≠0 and Ai= 0 ∀i> 2,

then the CA will produce N2= 256 different 

sequences of period T2= 124, linear complexity 

LC2= 15 and characteristic polynomial P(X)3. 

Moreover, the automaton cycles through several 

repetitive states of the form: (a0, a1, a2, a3, a4, a5, 

a6, a7, a8, a9, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9) 

with ai∈ GF(2). 

4. If A0, A1, A2 ∈ GF(25), A3≠ 0, then the

cellular automaton will produce N3= 8192 

different sequences of period T3 = 124, linear 

complexity LC3 = 20 and characteristic 

polynomial P(X)4. In addition, the automaton 

cycles through the states not included in the 

previous cycles. 

Fig. 1: CA 8C031Hex with initial state CCF33Hex 



Fig. 2: CA 8C031Hex with initial state CCF33Hex 

4. MPCA-Based Model of Cryptographic

Generators 

The previous analysis of MPCA can be used for 

the linearization of cryptographic generators. In 

particular, the Shrinking Generator and the class 

of CCSGs are typical examples of binary 

sequence generators with practical application in 

symmetric cryptography. These generators are 

based on two LFSRs where the output bits of one 

register decimate the sequence produced by the 

other. The resultant decimated sequence is just the 

output sequence of the generator. The properties 

of these generators can be summarized as follows: 

• The shrinking generator[3] is made of two

LFSRs, SR1 and SR2, with lengths Lj (j= 1, 2) and 

characteristic polynomials Pj(X) (j= 1, 2) 

respectively. The decimation rule is: The bit 

produced by SR2 is discarded if the corresponding 

bit of SR1 equals 0. The period of the generated 

sequence is 112 2)12( −−= LLT and its linear 

complexity takes values in the 

interval .22 1
2

2
2

11 −− ≤< LL LLCL  The 

characteristic polynomial is of the form PM(X)= 

P(X)p, P(X) being a primitive polynomial of 

degree L= L2 and .22 12 11 −− ≤< LL p . Moreover, 

P(X) is the characteristic polynomial[4,5] of the 

cyclotomic coset E in )2( 2LGF with 

.222 110 1−+++= LE L  

• A Clock-Controlled Shrinking Generator[8] is

made out of two LFSRs, SR1 and SR2, with 

lengths Lj (j= 1, 2) and characteristic polynomials 

Pj(X) (j= 1, 2), respectively, plus a decimation 

function DFt that depends on the bits of SR1 at 

each unit of time. Period and linear complexity 

are analogous to those of the previous generator. 

Indeed, a CCSG is a generalized version of the 

shrinking generator. So, the characteristic 

polynomial is of the form PM(X)= P(X)p, P(X) 

being a primitive polynomial of degree L= L2 that 

depends on P2(X), L1 and the decimation function 

DFt. In addition, p takes values in the same 

interval as before. 

Both classes of generators produce sequences 



with characteristic polynomials of the form 

PM(X)= P(X)p. Thus, their output sequences will 

be solutions of linear difference equations 

corresponding to PMPCA. Consequently, these 

generators can be expressed in terms of a linear 

model based on CA. A simple example for the 

shrinking generator illustrates the simple 

modelling procedure: 

Input: A shrinking generator characterized by 

two LFSRs of lengths L1= 3 and L2= 5 and 

characteristic polynomial P2(X)= X5+ X4+ X2+ 

X+ 1. 

• Step 1: P(X) is the characteristic polynomial of

the cyclotomic coset E= (20+ 21+ 22) in GF(25). 

Thus, the polynomial P(X) is of degree L= L2= 5: 

.1

)())(()(
25

22 1

++=

=+++=
−

XX

XXXXP EEE L
ααα L

• Step 2: Applying the Cattell and Muzio

algorithm[1], two linear CA whose characteristic 

polynomial is P(X) can be determined. Such CA 

are written in binary codification as: 

0 1 1 1 1 

1 1 1 1 0 

• Step 3: Computation of the required pair of

CA by successive concatenations. 

For the first automaton: 

0 1 1 1 1 

0 1 1 1 0 0 1 1 1 0 

0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 

For the second automaton: 

1 1 1 1 0 

1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 

For each automaton, the procedure in Step 3 has 

been carried out L1−1 times. In fact, each basic 

automaton with complementations has been 

concatenated 42 11 == −Lp  times. 

Output: Two binary strings of length 

2
112 LLp L ⋅=⋅ −  corresponding to the CA. 

In this way, we have obtained a pair of linear 

CA able to produce the shrunken sequence 

corresponding to the given shrinking generator. 

An analogous procedure may be applied for a 

CCSG. In brief, we have obtained two simple and 

different linear models describing the behaviour 

of a nonlinear cryptographic sequence generator. 

5. Conclusions

In this work, a new type of CA called Primitive

Multiplicative-Polynomial Cellular Automata 

have been introduced and analyzed. What it is 

important about PMPCA is that it has been shown 

that a wide class of LFSR-based sequence 

generators of practical cryptographic application, 

such as the Shrinking Generator and the 

Clock-Controlled Shrinking Generators, can be 

described in terms of PMPCA-based structures. In 

this way, sequence generators conceived and 



designed as complex nonlinear models can be 

written in terms of simple linear models. 

Furthermore, the algorithm to convert a given 

nonlinear LFSR-based generator into a linear 

CA-based model is very simple and can be applied 

to generators in a wide range of practical interest. 

Thus, the linearity of these cellular models might 

be advantageously used in the analysis and/or 

cryptanalysis of such keystream generators. 

Acknowledgements 

This work was supported in part by Ministry of 

Science and Innovation and European FEDER 

Fund under Project TIN2008-02236/TSI, as well 

as by CDTI (Spain) and the companies INDRA, 

Unión Fenosa, Tecnobit, Visual Tool, Brainstorm, 

SAC and Technosafe under Project 

Cenit-HESPERIA. 

References 

[1] Cattell, K., Muzio, J.C. Synthesis of

One-Dimensional Linear Hybrid Cellular 

Automata, IEEE Trans. Computers-Aided Design, 

15-3: 325-335, 1996.

[2] Cho, S. J., Choi, U.S., Hwang, Y.H., Kim,

H.D., Pyo, Y.S., Kim, K.S., He, S.H. Computing

Phase Shifts of Maximum-Length 90/150 Cellular 

Automata Sequences. Proc. of ACRI 2004. 

Lecture Notes on Computer Science, 

Springer-Verlag, 3305: 31-39, 2004. 

[3] Coppersmith, D., Krawczyk H., Mansour, Y.

The Shrinking Generator. Proc. of CRYPTO’93. 

Lecture Notes in Computer Science, Springer 

Verlag, 773: 22-39, 1994. 

[4] Fúster-Sabater, A., Caballero-Gil, P. On the

Use of Cellular Automata in Symmetric 

Cryptography. Acta Applicandae Mathematicae, 

Springer-Verlag, 93-1-3: 215-236, 2006. 

[5] Fúster-Sabater, A., Caballero-Gil, P. Linear

Solutions for Cryptographic Nonlinear Sequence 

Generators, Physics Letters A, Elsevier, 369/5-6: 

432-437, 2007.

[6] Gardner M. Mathematical Games: The

fantastic combinations of John Conway’s new 

solitaire game ”Life”, Scientific American, 223: 

120-123, 1970.

[7] Golomb, S.W. Shift Register-Sequences,

Aegean Park Press, Laguna Hill, 1982. 

[8] Kanso, A. Clock-Controlled Shrinking

Generators. Proc. of ACISP 2003. Lecture Notes 



in Computer Science, Springer Verlag, 2727: 443- 

451, 2003. 

[9] Kari, J. Theory of cellular automata: A survey,

Theoretical Computer Science, 334: 3-33, 2005. 

[10] Key, E.L. An Analysis of the Structure and

Complexity of Nonlinear Binary Sequence 

Generators, IEEE Trans. Informat. Theory, 22-6: 

732-736, 1976.

[11] Lidl, R., Niederreiter, H. Introduction to

Finite Fields and Their Applications, Cambridge, 

England: Cambridge University Press, 1986. 

[12] Peterson, W., Weldon, E.J. Error-Correcting

Codes, 2nd Edition, MIT Press: Cambridge, 1972. 

[13] Serra, M. Slater, T., Muzio, J.C., Miller, D.M.

The Analysis of One-dimensional Linear Cellular 

Automata and Their Aliasing Properties, IEEE 

Trans. on Computer-Aided Design, 9-7: 767-778, 

1990. 

[14] Sun, X., Kontopidi, E., Serra M. Muzio, J.C.

The Concatenation and Partitioning of Linear 

Finite State Machines, Int. J. Electronics, 78: 

809-839, 1995.

[15] Wolfram, S. Statistical mechanics of cellular

automata. Rev. Mod. Physics, 55: 601-644, 1983. 

[16] Wolfram, S. Geometry of Binomial

Coefficients, American Mathematical Monthly, 91: 

566-571, 1984.

[17] Wolfram, S., Martin, O., Odlyzko, A.M.

Algebraic Properties of Cellular Automata, 

Communications in Mathematical Physics, 93: 

219-258, 1984.

https://www.researchgate.net/publication/220485713



