Using Linear Difference Equations to Model Nonlinear Cryptographic Sequences

P. Caballero-Gil
Faculty of Mathematics, University of La Laguna, 38271 Tenerife, Spain, Email: pcaballe@ull.es

A. Fúster-Sabater
Institute of Applied Physics (CSIC), Serrano 144, 28006, Madrid, Spain, Email: amparo@iec.csic.es

M.E. Pazo-Robles

ITBA Instituto Tecnológico de Buenos Aires, Av.E Madero 399, Buenos Aires, Argentina, Email: eugepazorobles@gmail.com

Abstract

A new class of linear sequence generators based on cellular automata is here introduced in order to model several nonlinear keystream generators with practical applications in symmetric cryptography. The output sequences are written as solutions of linear difference equations, and three basic properties (period, linear complexity and number of different output sequences) are analyzed.

Keywords: Nonlinear generators, Cryptography, Difference equations
of states per cell and transition rules. A

1. Introduction

Cellular Automata (CA) are discrete dynamical systems of simple construction but complex behaviour. These finite state machines are defined as uniform arrays of identical cells in an n-dimensional space, and may be classified with respect to parameters such as cellular geometry, neighbourhood specifications, number
well-known two-dimensional $C A$ invented by Conway and popularized by Gardner ${ }^{[6]}$ is the so-called Game of Life. Different mathematical techniques have been used to analyze $C A$ by Wolfram, Martin and Odlyzko ${ }^{[15,16,17]}$.

In this work, only one-dimensional binary $C A$ with three site neighbourhood and linear transition
rules will be used. Furthermore, the $C A$ here considered are hybrid (different cells evolve under different transition rules) and null (cells with null content are adjacent to the extreme cells).

In symmetric key cryptography, most keystream generators are based on Linear Feedback Shift Registers (LFSRs) whose output sequences are combined in a nonlinear way. A thorough introduction to the theory of shift register sequences may be found in the classic book by Golomb ${ }^{[7]}$. The relationship between the linear $C A$ above characterized and LFSRs was analyzed by Serra et al ${ }^{[13]}$, who proved that both structures are isomorphic, and consequently the latter ones may be substituted by the former ones in order to accomplish the same goal: the generation of pseudorandom sequences. Nevertheless, as it will be shown within this paper, the main advantage of this type of $C A$ is that certain multiple generators designed in terms of LFSRs as nonlinear structures preserve their original linearity when they are expressed under the form of linear $C A$. In particular, in this paper cryptographic generators such as the Shrinking Generator introduced by Coppersmith, Krawczyk and Mansour ${ }^{[3]}$, and Clock-Controlled Shrinking Generators (CCSGs) defined by $\mathrm{Kanso}^{[8]}$ will be linearly modelled through an extremely simple procedure. Furthermore, the same simple procedure can be
applied to keystream generators in a wider range of practical application.

This work is organized as follows. In the next section, a new type of linear $C A$ called Multiplicative-Polynomial Cellular Automata (MPCA) is introduced. Structural properties of $M P C A$ are studied in section 3, where emphasis is given on different parameters of their generated sequences (e.g. period, linear complexity, characteristic polynomial and number of different output sequences). Section 4 shows that MPCA allow modelling nonlinear cryptographic generators in terms of linear structures. Finally, some illustrative examples and conclusions complete the paper.

2. Fundamentals and Basic Notation

In this section, several characteristics of the two basic structures considered within this paper (LFSRs and one-dimensional linear hybrid $C A$) are briefly introduced.

2.1. Linear Recurrence Relationship in LFSRs

A binary $L F S R$ is a pseudorandom sequence generator made out of L memory cells or stages (numbered $1,2, \ldots, L$) so that each one is capable of storing one bit. At each unit of time, the following operations are performed:
(i) The content of stage 1 is output.
(ii) The content of stage i is moved to stage $i-1$

$\forall i: 2 \leq i \leq L$.

(iii) The new content of stage L is the exclusive- $O R$ of a subset of stages given by $P(X)$, which is the LFSR characteristic polynomial of degree L. If $P(X)$ is a primitive polynomial ${ }^{[11]}$, then the $L F S R$ is called maximal-length $L F S R$ and its output sequence is a $P N$-sequence. In the sequel, only maximal-length LFSRs and their corresponding $P N$-sequences will be considered.

Let $\left\{x_{n}\right\}$ be the $P N$-sequence generated by a maximal-length $L F S R$. The linear L-degree recurrence relationship that specifies its n-th element can be written as:

$$
\begin{equation*}
x_{n}+\sum_{i=1}^{L} c_{i} x_{n-i}=0, \quad n \geq L \tag{1}
\end{equation*}
$$

where the sequence elements x_{n} as well as the coefficients c_{i} belong to $G F(2)$. In this paper both addition and multiplication refer always to modulo 2 operations. The linear recursion in (1) can be expressed as a linear difference equation:

$$
\begin{equation*}
\left(E^{L}+\sum_{i=1}^{L} c_{i} E^{L-i}\right) x_{n}=0, \quad n \geq 0 \tag{2}
\end{equation*}
$$

where E is the shift operator defined on x_{n} so that $E x_{n}=x_{n+1}$. The characteristic polynomial of equation (2) coincides with the LFSR characteristic polynomial, which is:

$$
\begin{equation*}
P(X)=X^{L}+\sum_{i=1}^{L} c_{i} X^{L-i} \tag{3}
\end{equation*}
$$

Let $a \in G F\left(2^{L}\right)$ be a root of $P(X)$. If $P(X)$ is a
primitive polynomial, then its L roots are ${ }^{[12]}$:

$$
\begin{equation*}
\alpha, \alpha^{2}, \alpha^{2^{2}}, \ldots, \alpha^{2^{L-1}} \tag{4}
\end{equation*}
$$

each of them being a primitive element of $G F\left(2^{L}\right)$. Thus, the n-th element of $\left\{x_{n}\right\}$ can be written in terms of the previous roots ${ }^{[11]}$ such as follows:

$$
\begin{equation*}
x_{n}=\sum_{j=0}^{L-1} A^{2^{j}} \alpha^{2^{j} n} \tag{5}
\end{equation*}
$$

where $A \in G F\left(2^{L}\right)$. The value of A determines the starting point of the $P N$-sequence. It is remarkable that equation (5) is just a solution of the difference equation (2).

2.2. One-Dimensional Linear Hybrid $C A$

In this paper our attention is focussed on three-dimensional binary linear hybrid $C A$ with three site neighbourhood. In fact, there are eight of such transition rules, among which only two (rule 90 and rule 150) lead to non trivial structures. These rules can be defined as follows:

Rule 90

Rule 150

$a_{n+1}^{k}=a_{n}^{k-1}+a_{n}^{k+1} \quad a_{n+1}^{k}=a_{n}^{k-1}+a_{n}^{k}+a_{n}^{k+1}$
Indeed, the content a_{n+1}^{k} of the k-th cell at time $n+1$ depends on the content of either two different cells (rule 90) or three different cells (rule 150) at time $n, \forall k=1,2, \ldots, L$, where L is the length of the automaton. Moreover, the state of the automaton is formed by the binary content of
the L cells at each unit of time. For the previous rules, the different states of the automaton are grouped in closed cycles ${ }^{[9]}$. A natural form of $C A$ representation is given by an L-tuple $D_{L}=\left(d_{l}\right.$, d_{2}, \ldots, d_{L}) where $\mathrm{d}_{\mathrm{k}}=0$ if the k-th cell follows the rule 90 while $d_{k}=1$ if the k-th cell follows the rule 150. Also $D_{k}=\left(d_{1}, d_{2}, \ldots, d_{k}\right) \forall k=1,2, \ldots, L$ denote the corresponding sub-automata of length k.

Characteristic polynomial $P(X)=X^{3}+X^{2}+1$							
LFSR	CA:	150	90	90	90	90	150
110		1	0	0	1	1	1
101		1	1	0	1	0	0
010		0	1	1	0	1	0
100		1	1	1	1	0	1
001		0	0	1	0	0	1
011		0	1	0	0	1	1
111		1	0	1	1	1	0

Tab. 1: Equal output sequences of $L F S R$ and $C A$

Given an irreducible polynomial $Q(X)$, the Cattell and Muzio synthesis algorithm ${ }^{[1]}$ provides a pair of reversal linear $90 / 150 C A$ whose characteristic polynomial is $Q(X)$. Reciprocally, given a linear $90 / 150$ cellular automaton, the Euclid's $G C D$ algorithm is the basis for the calculation of its corresponding characteristic polynomial. Furthermore, it is known that a linear $C A$ and a LFSR with the same primitive characteristic polynomials are isomorphic ${ }^{[14]}$. Therefore, a one-dimensional binary linear 90/150 cellular automaton of primitive characteristic polynomial $P(X)$ given by (3) will generate the $P N$-sequence defined in equations (1) and (5). As an example, Tab. 1 depicts the same $P N$-sequence
(in bold at the most left cells) generated by two different kinds of structures (LFSR and linear $90 / 150 C A$) both with characteristic polynomial $P(X)=X^{3}+X^{2}+1$. In such an example, the $L F S R$ initial sate is $(1,1,0)$, while the initial states of the two reversal $C A$ are $(1,0,0)$ and $(1,1,1)$, respectively. At the remaining cells, shifted versions of the same $P N$-sequence are generated. In the following definition, a special class of $C A$ is introduced.

Definition 1: A Multiplicative-Polynomial Cellular Automaton is defined as a cellular automaton whose characteristic polynomial is a reducible polynomial of the form $P_{M}(X)=P(X)^{p}$ where p is a positive integer and $P(X)$ is an irreducible polynomial. If $P(X)$ is a primitive polynomial, then the automaton is called a Primitive Multiplicative-Polynomial Cellular Automaton (PMPCA).

The polynomial $P_{M}(X)$ is a reducible polynomial, so the Cattell and Muzio algorithm can not be applied. Nevertheless, in the next section, linear $90 / 150 \quad C A$ with characteristic polynomials $P_{M}(X)$ are introduced.

3. Properties of MPCA

Since the characteristic polynomial of $M P C A$ is of the form $P_{M}(X)=P(X)^{p}$, it seems quite natural to construct a Multiplicative-Polynomial Cellular

Automaton by concatenating p times the basic $C A$ of characteristic polynomial $P(X)$. The following lemma is a concrete formalization of this idea.

Lemma 2: Let O be a linear hybrid 90/150 cellular automaton of length L, binary codification ($d_{l}, d_{2}, \ldots, d_{L-1}, d_{L}$) and characteristic polynomial $P(X)$. Let \tilde{O} be the reversal version of O, with binary codification ($d_{L}, d_{L-l}, \ldots, d_{2}, d_{1}$), and the same length and polynomial as O. Then, the $2 L$-tuple $\quad\left(d_{1}, d_{2}, \ldots, \bar{d}_{L}, \overline{d_{L}}, \ldots, d_{2}, d_{1}\right)$ represents the linear 90/150 cellular automaton of length $2 L$ and characteristic polynomial $P(X)^{2}$.

The proof is based on the recurrence relationship for the characteristic polynomials of the successive sub-automata of a given automaton ${ }^{[1]}$. Let $\Delta_{k}(X)$ denote the characteristic polynomial of the sub-automaton $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$ and let $\Delta_{k}(X)=\left(X+d_{k}\right) \Delta_{k-1}(X)+\Delta_{k-2}(X)(k>0$, $\Delta_{-I}=0, \Delta_{0}=1$) be the above mentioned recurrence relationship. Then, the successive polynomials of the previous $2 L$-tuple are:

$$
\begin{gathered}
\Delta_{2 L}=\left(X+d_{1}\right) \Delta_{2 L-1}+\Delta_{2 L-2} \\
\Delta_{2 L-1}=\left(X+d_{2}\right) \Delta_{2 L-2}+\Delta_{2 L-3} \\
\Delta_{2 L-2}=\left(X+d_{3}\right) \Delta_{2 L-3}+\Delta_{2 L-4} \\
\vdots \\
\Delta_{L+2}=\left(X+d_{L-1}\right) \Delta_{L+1}+\Delta_{L} \\
\Delta_{L+1}=\left(X+\overline{d_{L}}\right) \Delta_{L}+\Delta_{L-1} \\
\Delta_{L}=\left(X+\overline{d_{L}}\right) \Delta_{L-1}+\Delta_{L-2} \\
\Delta_{L-1}=\left(X+d_{L-1}\right) \Delta_{L-2}+\Delta_{L-3} \\
\quad \vdots \\
\Delta_{3}=\left(X+d_{3}\right) \Delta_{2}+\Delta_{1} \\
\Delta_{2}=\left(X+d_{2}\right) \Delta_{1}+1 \\
\Delta_{1}=\left(X+d_{1}\right)
\end{gathered}
$$

Thus, the computation of $\Delta_{2 L}$ can be carried out by multiple substitutions.

$$
\begin{aligned}
& \Delta_{2 L}=\Delta_{1} \Delta_{2 L-1}+\Delta_{2 L-2}=\Delta_{2} \Delta_{2 L-2}+ \\
& +\Delta_{1} \Delta_{2 L-3}=\Delta_{3} \Delta_{2 L-3}+\Delta_{2} \Delta_{2 L-4}=\cdots= \\
& =\Delta_{L+1} \Delta_{L-1}+\Delta_{L} \Delta_{L-2}=\left(X+\overline{d_{L}}\right) \Delta_{L} \Delta_{L-1}+ \\
& +\Delta_{L-1}^{2}+\left(X+\overline{d_{L}}\right) \Delta_{L-1} \Delta_{L-2}+\Delta_{L-2}^{2}= \\
& =\left(X+\overline{d_{L}}\right) \Delta_{L-1}\left(\Delta_{L}+\Delta_{L-2}\right)+\Delta_{L-1}^{2}+ \\
& +\Delta_{L-2}^{2}=\left(X+\overline{d_{L}}\right) \Delta_{L-1}\left(X+\overline{d_{L}}\right) \Delta_{L-1}+ \\
& +\Delta_{L-1}^{2}+\Delta_{L-2}^{2}=\left(X+\overline{d_{L}}\right)^{2} \Delta_{L-1}^{2}+\Delta_{L-2}^{2}= \\
& =\left(\left(X+d_{L}\right) \Delta_{L-1}+\Delta_{L-2}\right)^{2} .
\end{aligned}
$$

If $P(X)$ is the characteristic polynomial of the automaton $\left(d_{1}, d_{2}, \ldots, d_{L}\right)$, then the characteristic polynomial of the automaton $\left(d_{1}, d_{2}, \ldots, \bar{d}_{L}, \overline{d_{L}}, \ldots, d_{2}, d_{1}\right)$ is:

$$
\begin{equation*}
\Delta_{2 L}(X)=P(X)^{2} . \tag{6}
\end{equation*}
$$

The basic automaton is concatenated with its reversal version after the complementation of the last rule d_{L}. Consequently, successive applications of this result provide MPCA whose characteristic polynomials are: $P(X)^{2}, P(X)^{2^{2}}, \ldots, P(X)^{2^{q}}, \ldots$ of lengths $2 L, 2^{2} L, \ldots, 2^{q} L, \ldots$, respectively. It is
remarkable that for every $P(X)$ there are two different basic automata that may be used for the concatenation. Therefore, if $2^{q-1}<p \leq 2^{q}$, then the two MPCA of length $2^{q} L$ built as in Lemma 2 and applied on different initial states will produce all the sequences $\left\{a_{n}\right\}$ with characteristic polynomial $P(X)^{p}$ that satisfy the difference equation:

$$
\begin{equation*}
\left(E^{L}+\sum_{i=1}^{L} c_{i} E^{L-i}\right)^{p} a_{n}=0, \quad n \geq 0 \tag{7}
\end{equation*}
$$

On the other hand, if $P_{M}(X)=P(X)^{p}$, then the roots of $P_{M}(X)$ will be the same as those of $P(X)$ but with multiplicity p. Thus, the n-th element of $\left\{a_{n}\right\}$ can be written in terms of the previous multiple roots such as follows:
$a_{n}=\sum_{j=0}^{L-1} \sum_{i=0}^{p-1}\left(n_{i} A_{i}^{2^{j}}\right) \cdot \alpha^{2^{j} n}$
where $A_{i} \in G F\left(2^{L}\right)$ and n_{i} are binomial coefficients reduced modulo 2 . The choice of A_{i} determines the properties of the sequences $\left\{a_{n}\right\}$ generated by MPCA.

3.1. Period of Sequences Generated by MPCA

The solutions of the equation (7) can be rewritten as:

$$
\begin{equation*}
a_{n}=\sum_{i=0}^{p-1}\left(n_{i} \sum_{j=0}^{L-1} A_{i}^{2^{j}} \alpha^{2^{j} n}\right) . \tag{9}
\end{equation*}
$$

According to equation (5), $x_{n}^{i}=\sum_{j=0}^{L-1} A_{i}^{2^{j}} \alpha^{2^{j} n}$ represents the n-th element of the $P N$-sequence of
period $2^{L}-1$ whose starting point is determined by A_{i}. Thus, $\left\{a_{n}\right\}$ can be written as the sum of p times the same $P N$-sequence starting at different points and weighted by binomial coefficients $\left\{a_{n}\right\}=\sum_{i=0}^{p-1} n_{i}\left\{x_{n}^{i}\right\}$.

In addition, each binomial coefficient defines a succession of binary values of constant period p_{i}. Tab. 2 shows the values of p_{i} for different n_{i}. Such as it may be seen, they are different powers of 2 between the integers 1 and p. Therefore, the sequence $\left\{a_{n}\right\}$ is the sum of p sequences of distinct periods $T_{i}=p_{i} \cdot\left(2^{L}-1\right)$, and the period of such a sum sequence will be:
$T=\max \left\{T_{i}(i=0, \ldots, p-1) / A_{i} \neq 0\right\}$.
It can be noticed that the period of the different sequences $\left\{a_{n}\right\}$ generated by an $M P C A$ depends on the choice of the coefficients A_{i} in equation (8). Nevertheless, all the sequences generated at the same state cycle have the same period.

Binomial coeff.	Binary values	p_{i}
n_{0}	$1,1,1,1,1,1,1,1,1,1, \ldots$	$p_{0}=1$
n_{1}	$0,1,0,1,0,1,0,1,0,1, \ldots$	$p_{1}=2$
n_{2}	$0,0,1,1,0,0,1,1,0,0, \ldots$	$p_{2}=4$
n_{3}	$0,0,0,1,0,0,0,1,0,0, \ldots$	$p_{3}=4$
n_{4}	$0,0,0,0,1,1,1,1,0,0, \ldots$	$p_{4}=8$
n_{5}	$0,0,0,0,0,1,0,1,0,0, \ldots$	$p_{5}=8$
n_{6}	$0,0,0,0,0,0,1,1,0,0, \ldots$	$p_{6}=8$
n_{7}	$0,0,0,0,0,0,0,1,0,0, \ldots$	$p_{7}=8$

Tab. 2: Coefficients, values and periods

3.2. Linear Complexity of Sequences

Generated by MPCA

The linear complexity of a sequence equals the
number of roots (with their multiplicities) that appear in the linear recurrence relationship ${ }^{[10]}$. Therefore, going back to expression (8), the linear complexity of $\left\{a_{n}\right\}$ can be computed because there are L roots each of them with multiplicity p. Thus, if $i_{\max }$ is the greatest value of $i(i=0,1, \ldots$, $p-1)$ for which $A_{i} \neq 0$, then the linear complexity $L C$ of the sequence $\left\{a_{n}\right\}$ will be:
$L C=\left(i_{\max }+1\right) \cdot L$.
The maximum linear complexity will be $L C_{\max }=p \cdot L\left(\right.$ if $\left.A_{p-l} \neq 0\right)$ while the minimum linear complexity will be $L C_{\text {min }}=L$ (if $A_{i}=0 \forall i>0$). The linear complexity for this kind of sequences will always be a multiple of L. In brief, the linear complexity of the different sequences $\left\{a_{n}\right\}$ depends on the choice of the coefficients A_{i} in (8), and all the sequences generated at the same state cycle have the same linear complexity.

3.3 Number of Different Sequences Generated

by MPCA

In order to get the number of different sequences $\left\{a_{n}\right\}$ generated by $M P C A$, the choice of the coefficients A_{i} in equation (8) must be considered. Three distinct situations may be distinguished:

- If $A_{i}=0 \forall i$, then all the cells of the $C A$ will generate the identically null sequence.
- If $A_{0} \neq 0$ and $A_{i}=0 \forall i>0$, then all the cells of the $C A$ will generate a unique $P N$-sequence $\left\{x_{n}\right\}$
of period $T_{0}=2^{L}-1$ and characteristic polynomial $P(X)$. It is remarkable that the relative shifts of this sequence generated at the different cells can be determined ${ }^{[2]}$.
- In general, if $A_{0,} A_{1}, \ldots, A_{i-l} \in G F\left(2^{L}\right), A_{i} \neq 0$ and $A_{j}=0 \forall j>i, i \geq 1$, then there are $2^{i L} \cdot\left(2^{L}-1\right)$ possible choices of $\left(A_{0}, A_{1}, \ldots, A_{i}\right)$. According to section 3.1, the period of such sequences is the maximum value of $T_{i}=p_{i} \cdot\left(2^{L}-1\right)$. Thus, the number of different sequences for these values of A_{i} is:
$N_{i}=\frac{2^{i L} \cdot\left(2^{L}-1\right)}{T_{i}}=\frac{2^{i L}}{p_{i}}$.

Consequently, the total number of distinct sequences obtained from an $M P C A$ (excluded the null sequence) is:

$$
\begin{equation*}
N_{\text {total }}=\sum_{i=0}^{p-1} N_{i} . \tag{14}
\end{equation*}
$$

3.4. Illustrative Example

This section includes a simple example to illustrate the previous results. Consider the PMPCA of 20 cells $D_{20}=$ $(1,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1) \quad$ with characteristic polynomial $P_{M}(X)=P(X)^{p}, P(X)=$ $X^{5}+X^{4}+X^{2}+X+1, p=4, L=5$. Different choices of A_{i} (not all null) are now considered separately:

1. If $A_{0} \neq 0$ and $A_{i}=0 \forall i>0$, then the $C A$ will produce $N_{0}=1$ sequence, which is a unique $P N$-sequence of period $T_{0}=31$, linear complexity
$L C_{0}=5$ and characteristic polynomial $P(X)$. In addition, the automaton cycles through doubly symmetric states of the form: $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{4}\right.$, $\left.a_{3}, a_{2}, a_{1}, a_{0}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{4}, a_{3}, a_{2}, a_{1}, a_{0}\right)$ with $a_{i} \in G F(2)$. Fig. 1 illustrates the formation of the output sequences (binary sequences in vertical) for the previous $C A$ of 20 cells and initial state $(1,1,0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,1,1)$. In fact, diamonds represent 1 's and blanks represent 0 's. The 31 doubly symmetric states are concentrated into the same cycle.
2. If $A_{0} \in G F\left(2^{5}\right), A_{1} \neq 0$ and $A i=0 \forall i>1$, then the $C A$ will produce $N_{1}=16$ different sequences of period $T_{1}=62$, linear complexity $L C_{1}=10$ and characteristic polynomial $P(X)^{2}$. Moreover, the automaton cycles through symmetric states of the form: $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{9}, a_{8}, a_{7}\right.$, $\left.a_{6}, a_{5}, a_{4}, a_{3}, a_{2}, a_{1}, a_{0}\right)$ with $a_{i} \in G F(2)$. Fig. 2 illustrates the formation of the output sequences for the previous cellular automaton of 20 cells and initial state $(0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0)$. In fact, there are $2^{10}-32=992$ symmetric states distributed in 16 cycles of 62 states each of them.

$$
\text { 3. If } A_{0}, A_{1} \in G F\left(2^{5}\right), A_{2} \neq 0 \text { and } A_{i}=0 \quad \forall i>2
$$ then the $C A$ will produce $N_{2}=256$ different sequences of period $T_{2}=124$, linear complexity $L C_{2}=15$ and characteristic polynomial $P(X)^{3}$.

Moreover, the automaton cycles through several repetitive states of the form: $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right.$, $\left.a_{6}, a_{7}, a_{8}, a_{9}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right)$ with $a_{i} \in G F(2)$.
4. If $A_{0}, A_{1}, A_{2} \in G F\left(2^{5}\right), A_{3} \neq 0$, then the cellular automaton will produce $N_{3}=8192$ different sequences of period $T_{3}=124$, linear complexity $L C_{3}=20$ and characteristic polynomial $P(X)^{4}$. In addition, the automaton cycles through the states not included in the previous cycles.

Fig. 1: $C A 8 \mathrm{C} 031_{\text {Hex }}$ with initial state $\mathrm{CCF} 33_{\text {Hex }}$

Fig. 2: $C A 8 \mathrm{C} 031_{\text {Hex }}$ with initial state CCF $33_{\text {Hex }}$

4. MPCA-Based Model of Cryptographic

Generators

The previous analysis of MPCA can be used for the linearization of cryptographic generators. In particular, the Shrinking Generator and the class of CCSGs are typical examples of binary sequence generators with practical application in symmetric cryptography. These generators are based on two LFSRs where the output bits of one register decimate the sequence produced by the other. The resultant decimated sequence is just the output sequence of the generator. The properties of these generators can be summarized as follows:

- The shrinking generator ${ }^{[3]}$ is made of two $L F S R s, S R 1$ and $S R 2$, with lengths $L_{j}(j=1,2)$ and
characteristic polynomials $P_{j}(X) \quad(j=1,2)$ respectively. The decimation rule is: The bit produced by $S R 2$ is discarded if the corresponding bit of SR1 equals 0 . The period of the generated sequence is $T=\left(2^{L_{2}}-1\right) 2^{L_{1}-1}$ and its linear complexity takes values in the interval $\quad L_{2} 2^{L_{1}-2}<L C \leq L_{2} 2^{L_{1}-1} . \quad$ The characteristic polynomial is of the form $P_{M}(X)=$ $P(X)^{p}, \quad P(X)$ being a primitive polynomial of degree $L=L_{2}$ and $2^{L_{1}-2}<p \leq 2^{L_{1}-1} \ldots$ Moreover, $P(X)$ is the characteristic polynomial ${ }^{[4,5]}$ of the cyclotomic coset E in $G F\left(2^{L_{2}}\right)$ with $E=2^{0}+2^{1}+\cdots+2^{L_{1}-1}$.
- A Clock-Controlled Shrinking Generator ${ }^{[8]}$ is made out of two LFSRs, SR1 and $S R 2$, with lengths $L_{j}(j=1,2)$ and characteristic polynomials $\operatorname{Pj}(X)(j=1,2)$, respectively, plus a decimation function $D F_{t}$ that depends on the bits of SRI at each unit of time. Period and linear complexity are analogous to those of the previous generator. Indeed, a $C C S G$ is a generalized version of the shrinking generator. So, the characteristic polynomial is of the form $P_{M}(X)=P(X)^{p}, P(X)$ being a primitive polynomial of degree $L=L_{2}$ that depends on $P_{2}(X), L_{1}$ and the decimation function $D F_{t}$. In addition, p takes values in the same interval as before.

Both classes of generators produce sequences
with characteristic polynomials of the form $P_{M}(X)=P(X)^{p}$. Thus, their output sequences will be solutions of linear difference equations corresponding to $P M P C A$. Consequently, these generators can be expressed in terms of a linear model based on $C A$. A simple example for the shrinking generator illustrates the simple modelling procedure:

Input: A shrinking generator characterized by two LFSRs of lengths $L_{1}=3$ and $L_{2}=5$ and characteristic polynomial $P_{2}(X)=X^{5}+X^{4}+X^{2}+$ $X+1$.

- Step 1: $P(X)$ is the characteristic polynomial of the cyclotomic coset $E=\left(2^{0}+2^{1}+2^{2}\right)$ in $G F\left(2^{5}\right)$. Thus, the polynomial $P(X)$ is of degree $L=L_{2}=5$:
$P(X)=\left(X+\alpha^{E}\right)\left(X+\alpha^{2 E}\right) \cdots\left(X+\alpha^{2^{L-1} E}\right)=$ $=X^{5}+X^{2}+1$.
- Step 2: Applying the Cattell and Muzio algorithm ${ }^{[1]}$, two linear $C A$ whose characteristic polynomial is $P(X)$ can be determined. Such $C A$ are written in binary codification as:

01111
11110

- Step 3: Computation of the required pair of $C A$ by successive concatenations.

For the first automaton:
01111
0111001110
01110011111111001110

For the second automaton:
11110
1111111111
11111111100111111111
For each automaton, the procedure in Step 3 has been carried out $L_{1}-1$ times. In fact, each basic automaton with complementations has been concatenated $p=2^{L_{1}-1}=4$ times.

Output: Two binary strings of length $p \cdot L=2^{L_{1}-1} \cdot L_{2}$ corresponding to the $C A$.

In this way, we have obtained a pair of linear $C A$ able to produce the shrunken sequence corresponding to the given shrinking generator. An analogous procedure may be applied for a $C C S G$. In brief, we have obtained two simple and different linear models describing the behaviour of a nonlinear cryptographic sequence generator.

5. Conclusions

In this work, a new type of $C A$ called Primitive Multiplicative-Polynomial Cellular Automata have been introduced and analyzed. What it is important about $P M P C A$ is that it has been shown that a wide class of $L F S R$-based sequence generators of practical cryptographic application, such as the Shrinking Generator and the Clock-Controlled Shrinking Generators, can be described in terms of $P M P C A$-based structures. In this way, sequence generators conceived and
designed as complex nonlinear models can be written in terms of simple linear models. Furthermore, the algorithm to convert a given nonlinear $L F S R$-based generator into a linear $C A$-based model is very simple and can be applied to generators in a wide range of practical interest. Thus, the linearity of these cellular models might be advantageously used in the analysis and/or cryptanalysis of such keystream generators.

Acknowledgements

This work was supported in part by Ministry of Science and Innovation and European FEDER Fund under Project TIN2008-02236/TSI, as well as by CDTI (Spain) and the companies INDRA, Unión Fenosa, Tecnobit, Visual Tool, Brainstorm, SAC and Technosafe under Project Cenit-HESPERIA.

References

[1] Cattell, K., Muzio, J.C. Synthesis of One-Dimensional Linear Hybrid Cellular Automata, IEEE Trans. Computers-Aided Design, 15-3: 325-335, 1996.
[2] Cho, S. J., Choi, U.S., Hwang, Y.H., Kim, H.D., Pyo, Y.S., Kim, K.S., He, S.H. Computing Phase Shifts of Maximum-Length 90/150 Cellular Automata Sequences. Proc. of ACRI 2004.

Lecture Notes on Computer Science,

Springer-Verlag, 3305: 31-39, 2004.
[3] Coppersmith, D., Krawczyk H., Mansour, Y. The Shrinking Generator. Proc. of CRYPTO'93.

Lecture Notes in Computer Science, Springer Verlag, 773: 22-39, 1994.
[4] Fúster-Sabater, A., Caballero-Gil, P. On the

Use of Cellular Automata in Symmetric

Cryptography. Acta Applicandae Mathematicae, Springer-Verlag, 93-1-3: 215-236, 2006.
[5] Fúster-Sabater, A., Caballero-Gil, P. Linear Solutions for Cryptographic Nonlinear Sequence Generators, Physics Letters A, Elsevier, 369/5-6: 432-437, 2007.
[6] Gardner M. Mathematical Games: The fantastic combinations of John Conway's new solitaire game "Life", Scientific American, 223: 120-123, 1970.
[7] Golomb, S.W. Shift Register-Sequences, Aegean Park Press, Laguna Hill, 1982.
[8] Kanso, A. Clock-Controlled Shrinking Generators. Proc. of ACISP 2003. Lecture Notes
in Computer Science, Springer Verlag, 2727: 443451, 2003.
[9] Kari, J. Theory of cellular automata: A survey, Theoretical Computer Science, 334: 3-33, 2005.
[10] Key, E.L. An Analysis of the Structure and Complexity of Nonlinear Binary Sequence Generators, IEEE Trans. Informat. Theory, 22-6: 732-736, 1976.
[11] Lidl, R., Niederreiter, H. Introduction to Finite Fields and Their Applications, Cambridge, England: Cambridge University Press, 1986.
[12] Peterson, W., Weldon, E.J. Error-Correcting Codes, 2nd Edition, MIT Press: Cambridge, 1972. [13] Serra, M. Slater, T., Muzio, J.C., Miller, D.M. The Analysis of One-dimensional Linear Cellular Automata and Their Aliasing Properties, IEEE Trans. on Computer-Aided Design, 9-7: 767-778, 1990.
[14] Sun, X., Kontopidi, E., Serra M. Muzio, J.C. The Concatenation and Partitioning of Linear Finite State Machines, Int. J. Electronics, 78: 809-839, 1995.
[15] Wolfram, S. Statistical mechanics of cellular automata. Rev. Mod. Physics, 55: 601-644, 1983. [16] Wolfram, S. Geometry of Binomial Coefficients, American Mathematical Monthly, 91: 566-571, 1984.
[17] Wolfram, S., Martin, O., Odlyzko, A.M. Algebraic Properties of Cellular Automata, Communications in Mathematical Physics, 93: 219-258, 1984.

