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Abstract. Data-driven simulation of pedestrian dynamics is an incipi-
ent and promising approach for building reliable microscopic pedestrian
models. We propose a methodology based on generalized regression neu-
ral networks, which does not have to deal with a huge number of free
parameters as in the case of multilayer neural networks. Although the
method is general, we focus on the one pedestrian - one obstacle problem.
The proposed model allows us to simulate the trajectory of a pedestrian
avoiding an obstacle from any direction.
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1 Introduction

Recently, we proposed a general framework of pedestrian simulation [1] in which
the surroundings of a virtual pedestrian, i.e., obstacles and other noncontacting
particles, can only influence its trajectory by modifying its desired velocity.

The basic assumption is that the avoidance behavior can be exerted only
by the self-propelled mechanism of the particle itself (usually modeled by the
desired velocity).

Under this approach, the problem lies in postulating the heuristics required
for computing the variable desired velocity depending on the environment. As
in traditional pedestrian theoretical models, any arbitrary heuristic can be pro-
posed (for example, [2], [3]) and then the free parameters could be tuned in order
to obtain simulated trajectories that approach experimental micro or macro-
scopic data.

Instead of this traditional methodology, we can directly use the experimental
data so as to compute the desired velocity at each time step. From a set of
real trajectories we extract the information for providing a desired velocity to
the simulated agent, considering the state of the agent in the simulated and
experimental environment.

Here we propose a data-driven approach using a nonparametric universal in-
terpolator: the generalized regression neural network (GRNN) [4]. The GRNN
needs to have access to the data examples (patterns) when predicting a new
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output. However, because it has only one degree of freedom (only one free pa-
rameter), the number of (input/output) patterns can be relatively low. Also, we
postulate that a complete set of (input/output) examples, extracted from exper-
imental trajectories, could be sufficient for simulating and reproducing several
configurations. As a starting point, here we present this methodology in the case
of one pedestrian avoiding a fixed obstacle.

2 The data-driven model

The set of experimental trajectories Because this is a data-driven model,
the experimental data are the first ingredient needed. As a case study of the pro-
posed method, we will focus on a simple configuration, considering one pedestrian
and one fixed obstacle.

We realize several experiments to obtain real trajectories. Volunteers were in-
structed to walk from a starting points to a final point. Some of these trajectories
have an obstacle in the way.
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Fig. 1: Experimental trajectories (solid lines) and rotated trajectories (dashed
lines). The points indicate the initial position of trajectories.

We choose 13 experimental trajectories represented in solid lines in Fig. 1.
Another 13 trajectories were obtained by replicating and rotating extreme tra-
jectories, which do not avoid the obstacle. The 26 trajectories will provide a set
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of data examples for solving the one pedestrian - one narrow obstacle problem
after the following processing.

Input and output We postulate continuous input/state ξij and output/reaction
ζi vectors given by

ξij = [ ˆ|v|i, θ̂ij , d̂ij , θ̂vij , ˆ|v|ij , d̂iT ] (1)

ζi = [v+
i , θ

+
i ] (2)

The variables with hat are dimensionless versions of those presented in Fig. 2
(a), where the two velocity variables were divided by 1.8 m/s, the two distance

variables were divided by 4 m saturating its values at 2, θ̂ij were divided by π/2
and saturates at −1 and 1 and

θ̂vij =


−2(θvij + π)/π if θvij < −π/2
−1 if −π/2 < θvij < 0
+1 if 0 < θvij ≤ π/2
−2(θvij − π)/π if θvij > π/2

.

The output are the velocity in the next time step in polar coordinates as
show Fig. 2(b).
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Fig. 2: (a) Basic quantities needed for defining the input vector (ξ). (b) Polar
coordinates of the future velocity.

The nonparametric neural network We call E = {ξ(t), ζ(t)} the experi-
mental set of state/action examples having data points for each time step t.

Each one of the two components of the output vector ζ(t) (eq. 2) will we
approximated by one neural network with output µO : R6 → R, where µ = 1, 2
indicates its polar components, i.e., the speed (v+i ) and the angle (θ+i ) respec-
tively.

The neural network we choose is the generalized regression neural network
(GRNN) [4], which is a type of radial basis function network [5].
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The GRNN is a universal interpolator based on nonparametric regression.
The basic idea is that when trying to predict the output for a new input, the
data examples are used in the following way: first, the distance between the new
input and the data inputs is calculated, then the corresponding data outputs
are weighed with a kernel function, depending on that distance, and averaged.
In other words, the data outputs of closer data inputs are used for interpolating
the new output.

In what follows we explain this concept explicitly for a network with one
dimensional output (O). Suppose a training family of ordered pairs {ξn, ζn}n≤N ,
then:

O(ξ) =

∑N
n=1 ζnK(ξ, ξn)∑N
n=1K(ξ, ξn)

(3)

where

– O(ξ) is the prediction value of an arbitrary input vector ξ.

– ζn is the output of example n corresponding to the input vector ξn.

– K(ξ, ξn) = e−ln/2σ
2

is the radial basis function kernel that weighs the con-
tribution of the nth output example in order to predict the new output.

Where ln = (ξ− ξn)T (ξ− ξn) is the square distance between data examples ξn
and the input vector ξ.

Once we have a proper set of N patterns, the only degree of freedom in this
neural network is the so-called spread (σ), which can be taken as a scalar value
for all examples and variables of the input vector.

3 Simulations

In this section we describe how the spread (σ) of both GRNN’s was calibrated
and we present results showing that with the proposed approach we can simulate
a configuration of a pedestrian avoiding an obstacle.

Simulation scheme At each time step of the simulation, the input state of
the simulated particle is calculated and both GRNN’s will provide the speed
(v+) and angle (θ+) as the outputs corresponding to the input state, then using
[v+cos(θ+), v+sin(θ+)] as the desired velocity vsi we can update the position
r(t) of the particle at time t as follow:

rs(t+∆t) = rs(t) + vs(t)∆t,

and this process continues until the simulated particle reach the final target.
As stated in the previous section, there is only one free parameter for each

GRNN: the spread (σ). In the next section we specify how this parameter was
determined.
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Calibrating the GRNN For the determination of the spread, we consider
the 13 experimental trajectories {r1, r2, ..., r13} and proceed with a leave-one-
out cross-validation. We consider the spread of both GRNN equal and define a
error functions between simulated and experimental trajectories based on the
minimum distance to the obstacle, Ed(σ).
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Fig. 3: Measures of the error for the simulated trajectories comparing with the
experimental ones as a function of the GRNN parameter σ.

Figure 3 shows the results. The optimum spreads found were: σ = 0.074 with
an error Ed = 0.08 m.

Results Using the σ obtained in the calibration and the set of 26 trajectories
as data we analyze the performance simulating several particles starting around
the goal, some of them having to avoid the obstacle.

The system to be simulated consists of a fixed obstacle located and a final
target for all particles. Forty-eight new particles were simulated once at a time,
with initial positions at 6 m from target as shown in Fig. 4 (a).

In Fig. 4 (b) the smoothness and continuity of the trajectories with respect to
the initial positions can be seen except for one trajectory that slightly crosses over
other neighbors’ trajectories. This crossing is also observed in the experiments as
is shown in Fig. 1. It should be noted that only potentially colliding trajectories
produce a detour for avoiding the obstacle, while the rest of the particles describe
straight trajectories toward the target.

4 Conclusions and perspective

We propose a data-driven model for a simple configuration of one pedestrian
and one fixed obstacle using generalized regression neural network (GRNN). The
principal advantage of this neural network is that it only has one free parameter
that was calibrated using a leave-one-out cross-validation.
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Fig. 4: Simulated trajectories with σ = 0.074. (a) Complete view of the simulated
system. (b) Zoom over the avoidance region.

In addition, the method presented allows us to reproduce several configura-
tions with one pedestrian walking freely or avoiding a narrow medium distance
obstacle. The method is invariant under rotations.

The presented data-driven method could be extended to simulate more com-
plex configuration considering two or more pedestrians.

Acknowledgements

The authors acknowledge financial support via project PID2015-003 (Agen-
cia Nacional de Promoción Cient́ıfica y Tecnológica, Argentina; Instituto Tec-
nológico de Buenos Aires; Urbix Technologies S.A.) and from ITBACyT-2018-
42 (Instituto Tecnológico de Buenos Aires).

References

1. Martin, R.F., Parisi, D.R.: Pedestrian collision avoidance with a local dynamic goal.
In: Proceedings of the PED2018 Conference (in progress) (2018)
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