
INSTITUTO TECNOLÓGICO DE BUENOS AIRES – ITBA
ESCUELA DE INGENIERÍA Y GESTIÓN

Coding Evaluation Platform
Desarrollo de una plataforma online de aprendizaje para la

evaluación de ejercicios de programación

Authors: Lobo, Daniel Alejandro (Leg. 51171)
Bellini, Juan Marcos (Leg. 52056)

Tutor: Meola, Franco Román

A thesis submitted for the degree of
SOFTWARE ENGINEERING

Place: Buenos Aires, Argentina
Date: December 6, 2019

Contents

1 Motivation 7

2 State of the Art: similar platforms 10
2.1 Introduction . 10
2.2 HackerRank . 10
2.3 CodinGame . 12
2.4 Codility . 12
2.5 DevSkiller . 13
2.6 CodeRunner . 14
2.7 Conclusions . 14

3 Functional Requirements 16
3.1 Identity Management . 16

3.1.1 Authentication . 16
3.1.2 Authorization . 16

3.2 Teacher . 16
3.2.1 Exams . 16
3.2.2 Exercises . 17
3.2.3 Test cases . 17
3.2.4 Scoring . 17

3.3 Student . 17
3.3.1 Exams . 17
3.3.2 Exercises . 18
3.3.3 Test cases . 18

3.4 Playground . 18

4 Quality Attributes 19
4.1 Primary quality attributes . 19

4.1.1 Interoperability . 19
4.1.2 Usability . 19
4.1.3 Security . 20
4.1.4 Fault Tolerance . 20
4.1.5 Scalability . 21
4.1.6 Availability . 21

4.2 Secondary quality attributes 22
4.2.1 Modularity . 22

2

4.2.2 Supportability . 22
4.2.3 Maintainability . 23
4.2.4 Performance . 23

5 Architecture 24
5.1 Components . 24

5.1.1 Executor Service . 26
5.1.2 Evaluations Service . 26
5.1.3 Playground Service . 26
5.1.4 User Service . 26
5.1.5 LTI Service . 27
5.1.6 LTI App . 27
5.1.7 Service Registry . 27
5.1.8 Tracing Service . 28
5.1.9 API Gateway . 28
5.1.10 User Interface . 30

6 Implementation 31
6.1 React for the front end . 31

6.1.1 Ace Editor . 32
6.2 Backend built using Java 11 and Spring 34
6.3 Netflix Eureka and Netflix Ribbon 35
6.4 Spring Cloud API gateway . 36
6.5 Spring Cloud Sleuth and Zipkin 37
6.6 Docker containers . 38
6.7 Kubernetes cluster . 38

6.7.1 Pods . 39
6.7.2 Replica sets . 40
6.7.3 Services . 40
6.7.4 Volumes . 40
6.7.5 Statefulsets . 41

6.8 Postgres databases . 41
6.9 Apache Kafka . 41

7 Infrastructure 44

3

8 Critical Points 48
8.1 Apache Kafka . 48
8.2 ZooKeeper . 48
8.3 Databases . 49
8.4 API Gateway . 49

9 Methodology 50
9.1 First steps . 50
9.2 Docker images . 50
9.3 Users: authentication and authorization 51
9.4 Integration with ITBA Campus 52
9.5 Implementation . 52

10 Future implementations 55
10.1 New and improved features 55

10.1.1 Stats to be collected . 55
10.1.2 Improved test cases . 56
10.1.3 Support for more programming languages and themes 56
10.1.4 Auto-complete and multiple cursors 57
10.1.5 Integration with 3rd-party services 57
10.1.6 Multi-file code support 58

10.2 Architecture improvements 59
10.2.1 Containerize runners 59
10.2.2 Error tracking software 60
10.2.3 Log aggregation . 61

10.3 Auto-scaling . 62
10.4 Infrastructure improvement 62

10.4.1 Multi availability zones deployment 62

11 Appendix A: API documentation 64

12 Appendix B: Infrastructure Guide 65

13 Appendix C: Deployment Guide 66

14 Appendix D: Hexagonal Architecture 67

15 Appendix E: LTI Integration 70

4

16 Bibliography 74

5

Abstract

The following work is the final project of Daniel Alejandro Lobo and
Juan Marcos Bellini, both students at the Instituto Tecnológico de Buenos
Aires (ITBA), for the Software Engineering career.

The purpose of this document is to explain with as much level of de-
tail as possible the different edges of this final project: a coding evaluation
platform to be used by both teachers and students of the same university
(or any other given institution), and also by any other developer using the
platform without sitting in an exam.

The entire project consisted in planning, designing and creating an en-
tire (micro) services platform. From a project management and software
engineering perspectives, it involved: infrastructure, frontend, backend,
databases and deployment.

The decisions made and the reasons behind them, the methods used
and their implementation, the results obtained and their conclusions, are
detailed in the following sections.

6

1 Motivation

How should we assess programming skills? Asking students to write
code in a traditional hand-written exam can produce a wide variety of re-
sults both for the teacher and for the student. We, as students, have felt
this awkward experience more than once when sitting on a written pro-
gramming exam for the subjects that we have done during university.

More often than not, from the teacher perspective it is nearly impossi-
ble to meaningfully grade such code. The code might be crossed over by
the student many times either on pen or pencil and the lines of it might be
hardly indented as well, compared to what one could see on a typical text
editor with syntax highlighting on your platform of choice. With sufficient
effort one can get some idea of whether the general idea is correct, but to
assess programming skills and real knowledge of the taught concepts in
the subject we need much more than this.

From the student perspective, and we think one of the best gains relies
here, is hard to translate the mental speed one combines when program-
ming on the computer and typing those lines on the computer keyboard
than to do it with pen and pencil. It actually requires twice the effort when
studying: once while coding away on the computer (either for the exam
or for personal projects) and then coding on a piece of paper simulating a
real life scenario when sitting on a classroom during an exam.

At the same time, when talking about the contents of the student’s sub-
mission, for example, there will almost certainly be errors in the code; how
do we know whether the student would be able to correct those small er-
rors or not? Few students (and actually programmers as well) get their
code correct on the first try—testing and debugging is an integral part of
the programming process or, like some people call it, ‘programming flow’
when solving a specific problem. To assess programming skills properly,
we should provide students with an authentic programming environment
in which they can develop and test their code. Only then is it fair for us
to run their code and use correctness tests as our measure of their ability
and understanding of computer science concepts we are evaluating them
on. Not only are examinations the only kind of assessment a student has
throughout their course. In introductory programming courses we usu-

7

ally also assess laboratory and assignment work.

From the students point of view, unlike a classic programming exam
evaluated on paper, the student gains immediate feedback by submitting
the code and seeing if the submitted answer works for the public test cases
or not.

Some of the use cases students and teachers can give on an educational
context to our platform throughout taught courses include: laboratories,
tests, assignments, and even final exams. Assessment, grade recording,
and distribution of course material are thus all consolidated on the same
platform. Thanks to the use of an intelligent editor that supports several
programming languages, our platform is very flexible in terms of the type
of question that can be asked and even the form of feedback displayed.
An added benefit of the consolidated approach we took is that students
do not need to set up an entire environment for either Java, Ruby or C on
their machines, so that the stress of online tests and examinations is con-
siderably reduced.

We thought of a platform able to support any text-based programming
language. Built-in question types are available for C, Java and Ruby. It
is really simple to include other programming languages to the platform.
At the same time, it offers integration with learning management systems
(LMS) like Blackboard through LTI, an industry standard to communicate
to such systems.

We wanted to build a platform that is particularly well suited to in-
troductory programming courses, for which students need lots of practice
with small programming problems that teach the different language con-
cepts and techniques taught during the course.

Any student can, during an exam or just in practice mode, submit an
entire file in either Java, C or Ruby and run it against a specific code sand-
box created for the purpose of running code snippets of that particular lan-
guage. Once the code snippet is run in the code sandbox and the resulting
program is compiled and run, then the output from that run is compared
with the expected output to determine if the code passes particular public
and private test cases. For security reasons, we separated the execution of

8

the submitted code by the student on a separate machine (in our servers).

In a nutshell, having an online exam rather than a hand-written one
can also provide some interesting insights. Some of these could be statis-
tics on how students perform on each question, so we can immediately
spot topic areas that might warrant further teaching effort in the future
and also questions that prove problematic (e.g., that appear to discrimi-
nate against good students). Another useful statistic that might come in
short notice is the ability to see which questions are answered before dur-
ing the duration of the exam. At the same, any kind of data can be ex-
tracted from the database if needed once the exam (or semester) is over, in
order to evaluate and iterate the way the programming topics were taught
and then evaluated.

9

2 State of the Art: similar platforms

2.1 Introduction

At the very beginning when starting this project, one of the main things
that we have done is evaluating the state of the art of the similar initiatives
that we have found all over the Internet. Some of these projects have a
business origin (i.e. to generate money), but most of them are academic
initiatives or made for the sake of creating programming competitions.

Regardless of their genesis, they all share similar features and show a
wide array of issues and different perspectives to solve the needs of the
different end users. The most descriptive solutions and approaches that
we have found are detailed below.

2.2 HackerRank

HackerRank is a technology hiring platform that is the standard for as-
sessing developer skills for over 1,000 companies around the world. By
enabling tech recruiters and hiring managers to objectively evaluate talent
at every stage of the recruiting process, HackerRank helps companies hire
skilled developers and innovate faster.

HackerRank allows solving challenges in different languages. For uni-
versities and schools it simplifies how you create, manage and grade pro-
gramming assignments. It lets you invite students to test and submit their
code in a true coding environment. It also lets you auto grade and eval-
uate student performance. They also have a plagiarism detector that will
flag any submission that is > 70% similar to other students. Finally, it also
provides different kinds of competitions.

HackerRank is probably one of the most famous platforms and also
includes many features that universities, companies and individual soft-
ware developers might look after when choosing one of these alternatives.
It also offers a nice and modern user interface with proper user feedback.

10

One of the things that we have found interesting about HackerRank is
its Leaderboard. Programmers are ranked globally on the HackerRank
leaderboard and earn badges based on their accomplishments to drive
competition among users. HackerRank is part of the growing gamification
trend within competitive computer programming and the consumer-side
of their website is free for coders to use.

Another key feature it offers are the exercises discussions. Each chal-
lenge has a Discussions tab where you can collaborate with fellow pro-
grammers who’ve attempted that challenge. When asking for help, be
sure to provide detailed information that will enable others to understand
what you’re talking about.

On that regard, at the same time, exercises are organized in a way that
can be used to learn or sharp a skill in particular making the most out of
the discussions one can have per challenge. This also helps in a sense of
community creation and we personally think it’s a great value proposal
for HackerRank.

At the same time, HackerRank offers a user ranking, called scoring
where users can earn the following badges by solving challenges on Hack-
erRank: either by problem solving (algorithms and data structures), lan-
guage proficiency, or specialized skills, like SQL.

Another possibility HackerRank offers is the possibility to create chal-
lenges and contests. Some of the topics they cover are Algorithms, Artifi-
cial Intelligence, Distributed Systems, Databases, Mathematics, Cryptog-
raphy and Security and Language Specific Domains. Some of the things
one can include when creating a challenge is: its name, the description,
the problem statement, the input format, the constraints, the output for-
mat and the sample Input/Output together with an explanation of them.

Most of the important features raised here are available on the free ver-
sion. However, on the premium version, one can find instantly detection
of code plagiarism, a dedicated account manager and personalized on-
boarding of candidates, integration with the Applicant Tracking System
and access to a premium library of coding questions or create a personal
one.

11

2.3 CodinGame

CodinGame is a technology company editing an online platform for
developers, allowing them to play with programming with increasingly
difficult puzzles, to learn to code better with an online programming ap-
plication supporting twenty-five programming languages, and to com-
pete in multiplayer programming contests involving timed artificial in-
telligence, or code golf challenges.

CodinGame also serves as a recruiting platform, allowing developers
to get noticed by companies based on their performance on the contests.

We have found it has really great insights and resources for developers
to learn and improve their skills while using the platform. It also has a
great learning community that has been around for at least five years and
it also counts with a wide array of different types of practices to test dif-
ferent skills and programming languages.

Most of the important features raised here are available on the free ver-
sion. However on the premium version, one can find a library of 1500+
tasks, Junior / Senior / Expert level questions, unlimited custom ques-
tions, cheating protection, a dedicated account manager, multiple accounts
/ teams and ATS integration API access.

2.4 Codility

Codility is a software platform that helps tech recruiters and hiring
managers assess their candidate’s skills by testing their code online. It of-
fers free global coding challenges and lessons to help candidates prepare.
Codility also has a subproduct that is valuable for companies, called Code-
Train. It lets you audit the capabilities and assess skills gaps of your devel-
opment team or outsourced talent. This information can be used, for ex-
ample, to make promotion decisions, inform tech hiring and on-boarding
strategies, and ultimately, enhance engineering workforces.

12

The most important features that we have found in the entire platform
are the support availability (they have 24/7 for possible bugs and issues
while submitting a solution), an important focus on the performance of
the code sandboxes that run the code and of their entire web application.
They also have a significant number of practices and challenges to offer
to the user. At the same time, they have a long list of integrations and a
plagiarism software.

Most of the important features raised here are available on the free ver-
sion. However on the premium version, one can find a full platform ac-
cess, single sign-On via SAML, full Codility task library, a custom task li-
brary, full anti-plagiarism suite, enhanced security, integration ecosystem,
a developer toolkit, support and a services package.

2.5 DevSkiller

Devskiller is an automated online programming skills assessment plat-
form. It helps to test candidates’ abilities to develop in a target environ-
ment before the interviewing process.

At an overall point of view it does seem to have more complex and
more variety of coding challenges that products like HackerRank. Some
of the features that we have observed is the live code pair with video, the
amount of different programming languages, frameworks and libraries. It
also has a diverse amount of question types, for example it lets you evalu-
ate with multiple choice, database, code review, programming task, code
gap, and essay questions.

One feature that it highlights from other alternatives that we have an-
alyzed so far is an included natural programming environment (Browser
IDE). It also counts with a plagiarism system integrating with other APIs
and screen customization.

Most of the important features raised here are available on the free ver-
sion. However on the premium version, one can find DevOps testing, code

13

pair with video interview, session recording and playback, AI Benchmark-
ing Engine, Divisions / Teams, coding contest support, a personal account
manager and single sign-on (SSO).

2.6 CodeRunner

CodeRunner is a free open-source question-type plug-in for Moodle
(one of the largest open-source learning platforms that can run program
code submitted by students in answer to a wide range of programming
questions in many different languages. It is intended primarily for use
in computer programming courses although it can be used to grade any
question for which the answer is text. It is normally used in Moodle’s
adaptive quiz mode; students paste in their code in answer to each pro-
gramming question and get to see their test-case results immediately. They
can then correct their code and resubmit, typically for a small penalty.

It has several integrations with other services that support a wide va-
riety of programming languages. At the moment of testing we liked a lot
their usage of public and private tests being run when the code is sub-
mitted and the instant feedback given to the user. The offered features on
CodeRunner are free.

2.7 Conclusions

Having considered all these services and web applications we decided
to focus mainly on offering a neat experience to the user to run their code
snippets in, initially, three different languages: C, Java, Ruby. These lan-
guages are the ones taught in the first years of ITBA courses and are the
ones known by the students that will be using the platform for the first
time. They can be thought of as the first real users of this platform. The
user would be able to run them anytime by using the application’s play-
ground mode without needing to install any kind of dependencies or set
environmental variables or any kind of configuration.

On the other hand, we opted to enclose this same playground on an
evaluation platform, where teachers can create exams with exercises of

14

either one of these programming languages, together with public and pri-
vate test cases, in order to be run when executing the solutions provided
by the students. At the same time, these exams end up having a score
based on the individual score each exercise have. The score each exercise
has is correlated to the test cases they passed (or not) depending if they
match the program’s output matches the output suggested by each test
case.

Ultimately, the main goal of this project is for it to be a free application
used in academic environments supporting different programming lan-
guages with the possibility of offering teachers the ability to create evalu-
ations and evaluate exams.

15

3 Functional Requirements

The following sections list the functional requirements that we aimed
for when starting this project as a group of features that we considered
eseential for the platform as a whole and that we included in the first ver-
sion of this project. The sections listed below are considered, from a prod-
uct point of view, the different domains of our project at the moment of
launching the first version.

3.1 Identity Management

3.1.1 Authentication

1. Allow students enter the platform when they are signed into Black-
board.

2. Allow teachers log into the platform.

3.1.2 Authorization

1. Allow teachers perform all possible operations only within their sub-
jects and the exams they create.

2. Allow students perform all possible operations within the exam they
are in and the exercises they submit.

3.2 Teacher

3.2.1 Exams

1. Allow teachers to create an exam.

2. Allow teachers to edit an exam.

3. Allow teachers to view all created exams.

4. Allow teachers to delete an exam.

5. Allow teachers to start exams.

6. Allow teachers to finish exams.

16

7. Allow teachers to see exam results when it is finished.

3.2.2 Exercises

1. Allow teachers to create exercises for one exam.

2. Allow teachers to edit the exercises for one exam.

3. Allow teachers to delete the exercises for one exam.

4. Allow teachers to view all the exercises of one exam.

3.2.3 Test cases

1. Allow teachers to create public test cases for one exercise.

2. Allow teachers to create private test cases for one exercise.

3. Allow teachers to edit public test cases for one exercise.

4. Allow teachers to edit private test cases for one exercise.

5. Allow teachers to delete public test cases for one exercise.

6. Allow teachers to delete private test cases for one exercise.

7. Allow teachers to view all test cases for one exercise.

3.2.4 Scoring

1. Allow teachers to mark exams according to the results on each exer-
cise, and the test cases that are passed / failed.

3.3 Student

3.3.1 Exams

1. Allow students to enter an exam.

2. Allow students to solve exam exercises and submit them.

3. Allow students to submit an entire exam.

17

3.3.2 Exercises

1. Allow students to work on an exercise at any point during an exam.

2. Allow students to run the code of an exercise at any point during an
exam.

3. Allow students to submit the code of an exercise at any point during
an exam.

3.3.3 Test cases

1. Allow students to see the public test cases of an exercise.

2. Allow students to run the public test cases of an exercise.

3. Allow students to see the passed / failed public test cases of an ex-
ercise after running their code at any point during an exam.

3.4 Playground

1. Allow users to run the code in the programming language offered by
the platform.

2. Allow users to see the output of the compiler / interpreter after the
code is run.

3. Allow users to use auto-complete programming language structures
as they use the editor.

18

4 Quality Attributes

While defining the functional requirements and the entire architecture
of our application we carefully considered the quality attributes that would
impact on its behavior, design, user interface, and at the same time, the
development and support of the system. These quality attributes together
with their raison d’être and how we they are implemented within our plat-
form are described in the sections below.

4.1 Primary quality attributes

4.1.1 Interoperability

Interoperability is an important benchmark for us when talking about
the quality attributes of our system given the fact that we chose a microser-
vices architecture where the transmission of data and its exchange with
other external systems, via the API Gateway, is a common fact in the na-
ture our system.

Implementing the API Gateway [14] pattern facilitates integration with
third-party systems in the future and also facilitates the interoperability
with other systems (or new microservices within our application). It also
facilitates an abstraction layer to possible outdated external systems, dif-
ferent formats of data in external systems (or microservices), different ver-
sions of the API and backward compatibility of the API for integration.

Thanks to ensuring interoperability mainly with the microservices ar-
chitecture and the implementation of the API Gateway pattern, we evade
creating additional layers for API interactions and hence, in the future,
having the problem of rebuilding the entire system if new business re-
quirements appear.

4.1.2 Usability

Usability is one of the most essential quality attributes we considered
when thinking the different API endpoints of the microservices we built

19

and also the frontend layer of them in our user interface. We think that
unlike in cases with other attributes, users can see directly how well this
attribute of the system is worked out specially when performing CRUD
operations with exams, exercises or test cases.

We strongly focused ourselves in evading too much interaction or too
many actions necessary to accomplish a task. At the same time we iterated
on different product flows with incorrect sequences of steps in multistage
interfaces to perform a simple task (such as adding new test cases and set-
ting their attributes). Our initial efforts were much more complex for us
for simple operations and usage of the application.

Keeping it simple and clear from the playground, to the identity man-
agement part and also to the evaluation platform as a whole has been in
our best interests since the beginning and we hope it remains the same in
next versions of this project.

4.1.3 Security

Given the nature of saving the submissions of exam exercises and also
entire exams before being published security for users (and also for the
entire platform) is another key quality attribute we have considered when
designing our system. We ensure HTTPS usage between all the microser-
vices that are within our system as a whole. We ensure proper authenti-
cation and authorization with the usage of JSON Web Tokens (JWTs). In
this way we try to reduce the likelihood of malicious or accidental actions
as well as the possibility of theft or loss of information. Security measures
like restrictions of user access by authentication/authorization, encryp-
tion of passwords and content and enabling secure connections between
the microservices are essentials features in our entire platform.

4.1.4 Fault Tolerance

Thanks to having a microservice architecture and being able to scale
horizontally on demand, it is easier for us to ensure reliability in the form
of Fault Tolerance. Parts of our architecture like the microservices itself

20

together with the support of addons like Apache Kafka helped us build
a fault-tolerant product while improving the performance, reducing the
complexity of the entire architecture (and each of its components at the
same time). All this led us to have simpler components, a simpler user
interface (and hence simple React components) reducing the development
time of the entire project.

4.1.5 Scalability

Probably the most important quality attribute of this entire system and
one of the first we discussed about when starting this project is Scalability.
Our main concern was how to handle load increases without decreasing
performance and satisfying the different needs of the clients connected to
our platform and submitting coding snippets while waiting for the code
sandboxes to respond and sometimes to even share to the user if the pub-
lic and private test cases would pass or not.

The scalability of our platform can be improved either vertically or hor-
izontally by replicating the microservices that compute the code snippets
submitted from different clients.

Enabling horizontal scaling was a must since the very beginning of this
project. Also the effort it takes to scale it was considered when we started
working with Docker images and architecturing the different microser-
vices together with the API Gateway pattern.

4.1.6 Availability

Supported by the Scalability and Fault Tolerance attributes we also en-
sure proper Availability by making sure the total working time is maxi-
mized due to how we prevent the system from failing but also how easier
it is for it to scale vertically and (most importantly) horizontally.

Having each feature of the product worked out on a separated mi-
croservice lets the maintainers update the software easily with different
patches or minor releases and hence, a low time to apply these updates if

21

needed to the system as a whole.

4.2 Secondary quality attributes

4.2.1 Modularity

A quality attribute that definitely characterises our platform is Mod-
ularity, given that from the microservices architecture we focused since
the very beginning on separating the functionality of a program into inde-
pendent, interchangeable modules, such that each of them contains every-
thing necessary to execute only one aspect of the desired functionality.

We also believe that this attribute helps to extend the platform with fur-
ther microservices and implementation, all of them under the API Gate-
way pattern. It is also important to highlight that other quality attributes,
such as Scalability, Maintainability and specially Interoperability, rely on
this attribute.

4.2.2 Supportability

Related to Modularity, another quality attribute that we consider of im-
portance is Supportability. We addressed this problem by having the mi-
croservices architecture and the different functions of the product working
in a separated microservice. In this way, we manage to have separate logs
for each microservice and it is easier to control the activity and perfor-
mance of each them. Following this line of thought, one can even release
different versions of the microservice (patches, minor, major releases) and
identify and solve problems differently.

For us, logging and controlling the activity and performance of the sys-
tem is of key importance for troubleshooting, doing system backups and
even creating snapshots of the system. In this way, even auditing the sys-
tem as a whole (not only one particular microservice) is a much simpler
task. Health checking the system for measuring compilation time, deploy-
ment time and database size is easier to do thanks to this.

22

4.2.3 Maintainability

Given that this platform should easily support changes related to new
business requirements or the correction of errors that can affect system
components, at the moment of designing it we considered that making it
easily maintainable was of paramount importance. Related to this we tried
to evade excessive dependencies between components and spaghetti code.

At the same time, from an architecture point of view, we separated the
responsibility of the different parts of the system with a microservice archi-
tecture and modularity. Having said this, this attribute affected not only
our development processes but also how we splitted our responsibilities
when developing the different product-related features.

4.2.4 Performance

We considered this quality attribute as a benchmark for our applica-
tion to make sure all the actions in the system during a certain period of
time occur in a proper latency (the time it is spent on responding to an
event) and the channel capacity (the number of events that occur at a cer-
tain point in time). We believe performance issues very often grow into
problems that can affect everything, from our server’s capacity to how we
built our front-end or even the efficiency of database queries.

Given all these problems that may affect the user experience but also
the functioning of the system as a whole we considered Performance to be
a key quality attribute to be taken into account. Also, the fact of this be-
ing an evaluation coding platform increases the importance of code sub-
missions and their corresponding programming environments (with their
environment variables, error reporting, etc) to work as one would expect.

23

5 Architecture

The chosen architecture for the platform is based on independent mi-
croservices, where each of them implement the corresponding features.
Each microservice exposes different types of APIs, which can be consumed
by other microservices, and from external clients as well. Communications
can be performed both synchronously (using HTTP as protocol), and asyn-
chronously (using a message broker).

With this approach, scalability and fault tolerance are achieved. On
one hand, as components are deployed independently, when more capac-
ity is needed to fulfill different types of requests, more replicas of a given
set of microservices can be deployed. On the other hand, failure of a given
component might not affect the operation of the entire system, and users
might be able to continue using the platform – especially if the failed com-
ponent is accessed through a message broker.

Apart from scalability and fault tolerance, this architecture helps achieve
modularity. Each component is a separate piece of software that can be
developed, tested and deployed independently. This will allow future ex-
tensions of the platform in an easy way. Adding new features will result in
tiny modifications of existing components, or adding new microservices,
which will not impact – in most cases – in the existing system.

The next subsections will give more details about the architecture.

5.1 Components

The platform is built from different components that interact between
them using different protocols. These components have different tasks
(implementing business logic, storing data, exchanging messages, trans-
lating protocols, etc). The following figure describes the architecture in an
abstract way, giving a general overview of the system.

24

Figure 1: General overview of the architecture

25

5.1.1 Executor Service

The executor service is in charge of running code submitted by any
other component of the platform. It can be accessed by sending a message
to it via the message broker, which means that execution requests are per-
formed asynchronously. This avoids the platform from blocking while the
system is executing code, which allows handling more requests at a given
time. The executor service will notify execution results in a “reply chan-
nel”, also using the message broker.

5.1.2 Evaluations Service

This component is in charge of managing exams (including its exercises
and test cases) created by teachers, together with solutions submitted by
students, and results achieved given the said solutions.

The service can be accessed through a REST API, which exposes the dif-
ferent operations implemented by the component. These include creating,
editing, deleting, and searching exams, exercises, test cases, submitting so-
lutions, and querying results. In order to perform these tasks, the service
relies on a relational database. It also communicates (through the message
broker) with the executor service to request the execution of solutions.

5.1.3 Playground Service

The playground service allows users to interact with the executor ser-
vice thought a REST API. It handles the protocol translation by storing
created execution requests, sending the corresponding messages, and sub-
scribing to the channel where the executor service publishes the execution
results.

5.1.4 User Service

The users service is in charge of managing users, including permissions
granted to them. It is basically the identity management software of the

26

platform. It allows creating, (de) activating, and deletings users, including
adding and removing permissions.

For the sake of simplicity, this service is also in charge of issuing, re-
freshing, and blacklisting tokens which are used by the entire platform as
a medium to authenticate and authorize users. The standard in which this
relies is JWT (JSON Web Tokens).

This component can be accessed through a REST API which exposes
the different operations implemented by the service.

5.1.5 LTI Service

This component is in charge of implementing the LTI 1.3 standard. It
basically creates the messages that must be exchanged between a learn-
ing platform and this system to allow the integration with the university’s
online campus. These messages are actually JWTs, which means that the
service must store private and public keys (the former to sign the mes-
sages being sent; the latter, to verify the received ones). The service can be
accessed through a REST API.

5.1.6 LTI App

The LTI app is a web application that communicates with the LTI ser-
vice through its REST API. It exposes a user interface that can be accessed
from the learning platforms, allowing users to communicate with this sys-
tem in the context of the said platforms.

5.1.7 Service Registry

Doing service discovery is something of key importance in the archi-
tecture. In any distributed environment, components need to know the
location of other members of the platform. This concept has been around
since the beginning of distributed computing.

27

Service discovery can be achieved by a simple approach, such as a
properties file, in which all addresses of all components are stored (they
must be static, which means that they will not change ever), or by a more
complex system, such as a DNS server, or a UDDI (Universal Description,
Discovery, and Integration) repository.

The chosen architecture makes use of a service registry. This compo-
nent allows the platform perform service discovery, which is critical to
microservice, cloud-based platforms for the following reasons.

On one hand, it allows to easily scale horizontally up and down. This
means that the number of replicas of a given service running in an envi-
ronment can be altered without impacting the operation of the platform.
The consumers are abstracted away from the physical location of the ser-
vices.

On the other hand, service discovery helps increase application re-
siliency. When an instance becomes unhealthy or unavailable, the service
registry removes the said replica from its internal list of available services.
The damage caused by a failed component will be minimized because the
service discovery engine will not resolve to unavailable services.

5.1.8 Tracing Service

This component is in charge of storing trace data created by all the
other microservices. With this information, future administrators of the
platform can query how a request is spanned across the different services
that handles it, including gathering timing data and troubleshooting re-
quests. This allows achieving the required supportability.

5.1.9 API Gateway

The entire architecture is composed of several microservices, each one
implementing its own set of operations, exposed by different types of APIs
(HTTP routes, or messages sent/received by a message broker). This cre-
ates a very fine-grained API, often different from what clients need.

28

If considered from a different kind of devices point of view, different
consumers need different types of APIs. On one hand, each client might
need different types of data. For instance, a desktop browser version of
a product details page is typically more elaborated than a mobile version.
On the other hand, network latency might not be the same for each client.
A mobile network will not perform the same as a wired one, which means
that accesses should be reduced. Finally, a client should not need to know
the location of the different components that must be accessed to fulfill a
given functionality.

The API gateway pattern [14] is then considered to solve those prob-
lems. The architecture has a component (called API gateway) that im-
plements this pattern. It allows accessing the platform from the outside
world, through a REST API. It is the single entry point for all clients, rout-
ing each request to the corresponding service, based on different rules
(as, for instance, HTTP method, HTTP headers, URL paths, and/or other
HTTP constructs). This avoids exposing directly all the internal compo-
nents that conforms the platform, allowing to exhibit a subset of opera-
tions (separating between the public and the private API).

Being a single entry point to the platform also allows enforcing several
rules when a request is received. Authentication is performed in this com-
ponent, analyzing the Authorization HTTP header, which must contain
a valid and non-expired JWT. Also CORS is implemented in this service,
adding the needed headers to the requests. Finally, it allows locating a
whole request, including how it spans along the entire platform, making
use of the tracing service.

Last but not least, being the entry point also avoids clients to know
about the implementation of the platform. If the API gateway would not
exist, clients would have to make use of the service registry to locate all
the services that it wants to access, and then access them. Instead, making
use of the API gateway allows clients ignore all this, which is performed
by this component.

29

5.1.10 User Interface

Users will interact with the platform through a user interface imple-
mented as a web application running in the user’s browser. This compo-
nent will communicate with the backend through the API gateway using
the HTTP protocol. It implements all the features needed to fulfill the
functional requirements of the project.

30

6 Implementation

Within the architecture, it was considered each component to be de-
ployed as a Docker container. These containers are orchestrated using Ku-
bernetes. Kubernetes operators [17] are used to simplify the deployment
of some components. These are used to create Postgres [18] databases,
which are used as data stores for some of the microservices explained in
the architecture section. A Kafka cluster – together with a Zookeeper [19]
ensemble – is used as a message broker. Both are also created using oper-
ators.

The next subsections will give more details about the implementation
details, and how the architecture is deployed.

6.1 React for the front end

A single piece of code was decided to be used for all the screens and
places where user interaction is needed. This code conforms an applica-
tion to be run in the user’s browser, which communicates with the back-
end through its API, matching the features it offers. The elected technol-
ogy is React.

Originally developed by Facebook, React is a JavaScript library that
builds user interfaces by dividing UI into composable components. Since
it requires only a minimal understanding of HTML and JavaScript, React
has risen in popularity as a front-end web development tool and currently
has a lot of maintainers, tutorials and a big community behind it.

One of the reasons React was chosen is because of its learning curve.
React is a very simple and lightweight library that only deals with the view
layer. It is not like other MV* [11] frameworks, such as Angular or Ember.
Any Javascript developer can understand the basics and start developing
a web application after only a couple of days reading a tutorial.

Another reason why React was chosen is that it provides a component
based structure. Components are like lego pieces. You start with tiny com-
ponents like buttons, checkboxes, dropdowns etc., which are then used

31

to create wrapper components composed of those smaller ones. Then a
higher level of wrapper components can be created, going one like that
until a root component is created, conforming the web application.

Each component has its own internal logic, and decides how it should
be rendered. This approach has some amazing results. For instance, com-
ponents can be reused anywhere as needed, which allows the application
to have a consistent look and feel and code reutilization, making it easier
to maintain, grow the codebase, and develop the software.

Another reason why React was chosen is performance. When a web
application that involves high user interaction, and view updates must be
developed, possible performance issues must be considered. Even though
today’s JavaScript engines are fast enough to handle such complex appli-
cations, DOM manipulations are still not that fast. Updating the DOM is
usually the bottleneck when it comes to the web performance. React is try-
ing to solve this problem by using something called virtual DOM; a DOM
kept in memory. Any view changes are first reflected to virtual DOM, then
an efficient diff algorithm compares the previous and current states of the
virtual DOM and calculates the best way (minimum amount of updates
needed) to apply these changes. Finally those updates are applied to the
DOM to ensure minimum read/write time. This is the main reason behind
React’s high performance.

6.1.1 Ace Editor

When choosing an editor for our end-users to use, we instantly thought
of Ace Editor. It has a great community support and is updated compared
to other alternatives in the market. It easily adapts to the needs we had
at the beginning of the project and supported the programming languages
we were thinking to use. If in future implementations, anyone wants to
add more languages, that can easily done. Same thing goes for other plu-
gins that can be added to the editor. [16]

Ace is an embeddable code editor written in JavaScript. It matches
the features and performance of native editors such as Sublime, Vim and
TextMate. It can be easily embedded in any web page and JavaScript ap-

32

plication. Ace is maintained as the primary editor for Cloud9 IDE and is
the successor of the Mozilla Skywriter (Bespin) project.

Some of the features it offers from the baseline are:

• Syntax highlighting for over 110 languages (TextMate/Sublime Text.tmlanguage
files can be imported).

• Over 20 themes (TextMate/Sublime Text .tmtheme files can be im-
ported).

• Automatic indent and outdent.

• An optional command line.

• Handles huge documents.

• Fully customizable key bindings including vim and Emacs modes.

• Search and replace with regular expressions.

• Highlight matching parentheses.

• Toggle between soft tabs and real tabs.

• Displays hidden characters.

• Drag and drop text using the mouse.

• Line wrapping.

• Code folding.

• Multiple cursors and selections.

• Live syntax checker (currently JavaScript/CoffeeScript/CSS/XQuery).

• Cut, copy, and paste functionality.

33

6.2 Backend built using Java 11 and Spring

Backend includes several components, as a message broker and data
stores. But the most important parts are the services that implement the
business logic. These (micro) services are built using Java 11 and Spring
Boot. The reason for choosing Java 11 is that is the newest version with
long term support.

Spring is an open-source application framework, and an inversion of
control container for the Java platform. Spring Boot is Spring’s conven-
tion over configuration solution for creating stand alone, production grade
Spring based applications that can “just run” – the web server can be em-
bedded, which allows an easy and rapid deployment of applications. It
also provides production-ready features, such as metrics, health checks
and externalized configuration. But the most important feature is that it
can auto-configure the application, which means that the developer must
not (in most cases) create Spring Beans for stuff such as database connec-
tions or dispatcher servlets, among other things. Spring Boot will scan the
classpath in search of libraries and create those beans based on the pres-
ence of such libraries. This will result in less code, increasing the main-
tainability of the platform.

Spring Data is used in components that must persist information. This
Spring project provides a familiar and consistent Spring-based, program-
ming model for data access, while still retaining the special traits of the un-
derlying data store. It makes it easy to use data access technologies, rela-
tional and non-relational databases, map-reduce frameworks, and cloud-
based data services. The most important benefit is that it allows develop-
ers to create repository interfaces, defining methods for custom queries,
and letting the framework create the implementation of those interfaces
using name conventions. This reduces the codebase, which results in less
developing time, and increases resiliency, as bugs cannot be introduced by
programmers. The data mapping layer chosen is JPA, using Hibernate as
the implementation (which, however, is performed by Spring Data, as it
was said).

Spring Security is used as the authentication and authorization layer of
all (micro) services. Final users of the platform authenticate using a JWT

34

which must be included in the Authorization header of the HTTP requests.
Spring Security then analyzes the token, and adds the user’s data (includ-
ing granted permissions) in the Security Context. This information is used
to allow or deny operations in the platform, such as creation of exams, or
solution submission).

Glassfish Jersey – currently Eclipse Jersey – is used as the web layer of
all the (micro) services. It provides support for JAX-RS APIs, and serves
as a reference implementation for it. Using this approach allows chang-
ing the implementation in the future. If other solutions would have been
chosen (for example, Spring Web MVC), the code would be tied to that
technology. Instead, using a standard as JAX-RS, the implementation of
the web layer could be changed easily.

Cloud native features are provided by Spring Cloud. These include ser-
vice discovery, client load balancing, fault-tolerance and tracing, among
others. These features will be explained in the next subsections. The rea-
son for choosing all these technologies is the familiarity, and the ease of
finding developers for them. The university has been teaching these tech-
nologies for several years now, which means that future students could
easily maintain the platform. Also, Spring provides a rich set of features
which allows building applications with a big grade of complexity, in an
easy way.

6.3 Netflix Eureka and Netflix Ribbon

Eureka is a REST based service developed by Netflix used for locating
services for the purpose of load balancing and failover of services. It al-
lows components to perform client-side service discovery, in order to find
and communicate with each other without hard-coding hostnames and
ports. It is composed of two parts: the client and the server.

When behaving as a server, the main task is to store and localize exist-
ing services, in order to be able to report their location, state, and relevant
data of each of them. To achieve these tasks, those services must commu-
nicate with the server to inform their location, every now and then (this

35

amount of time can be configured). If a component does not report this
data, then the server will consider the instance down, and will not include
it when it is queried. This approach is known as taught monitoring, in
which services send heartbeats to the server to report they are alive. To
achieve high availability, the server can be replicated. In this case, all the
server’s instances will exchange their data, in order to be consistent be-
tween them. As high availability is one of the quality attributes that must
be achieved by the platform, this component is deployed with two repli-
cas. Even though Kubernetes will always monitor the pod in which the
service registry is running, having two instances of the Eureka server al-
lows minimizing downtime.

Eureka also has its client-side components. Each component that would
like to communicate with other services registered with Eureka must query
the registry to get a copy of the location data. This query must be per-
formed every a set amount of time, in order to have the most recent data.
This information can then be used by Ribbon – also developed by Netflix –
which implements client load balancing and fault tolerance, to allow com-
munications with the services managed by Eureka.

6.4 Spring Cloud API gateway

Spring Cloud gateway is a project that provides a library for building
an API gateway on top of Spring Web MVC. It aims to provide a simple,
yet effective way to route to APIs, and provide cross cutting concern to
them, such as security, monitoring, and resiliency.

It is built on top of Spring Framework 5, project reactor, and Spring
Boot 2.0. It is able to match routes on any request attribute (URL, path,
headers, etc.). It can be integrated with Netflix Eureka in order to know
the location of each service to which requests must be routed. Ribbon can
be used to perform client load balancing when routing requests.

As it was said before, Spring Cloud Gateway is built on top of project
reactor, which means that the execution model is based on reactive pro-
gramming. This approach is concerned with data streams and progra-

36

pation of change, and it’s especially useful when interacting with exter-
nal systems, which are unpredictable. Using reactive programming, the
process does not block waiting for responses, it just react when the result
is available, increasing the performance and efficiency of the component.
Only one thread could be used to handle all requests.

6.5 Spring Cloud Sleuth and Zipkin

Zipkin is a distributed tracing system. It helps gather timing needed
to troubleshoot latency problems in service architectures. Features include
both the collection and lookup of this data. All the service in the platform
are integrated with Zipkin using Spring Cloud Sleuth.

A span is the basic unit of work. For example, sending an HTTP re-
quest to a service is a new span, as is sending an HTTP response. Spans
are started and stopped, keeping track of their timing information. A set
of spans forming a tree-like structure is called a trace. Each span is identi-
fied by a unique 64-bit ID, together with another 64-bit ID for the trace to
which the span belongs. With this information, anyone can know how a
request is handled across the several components of the platform.

Spring Cloud Sleuth is the library in charge of tracking traces on the
platform. It uses protocol metadata to inform span and trace id when a
request is sent, or a response is received. This data is then used by the
process handling a request to be aware of the identity of the request. For
instance, it can be used by the logging system to report unexpected situa-
tions.

Zipkin is used as the tracing service. Sleuth communicates with Zipkin
to report spans, in order to store them and then be able to query them by
system administrators. It offers a simple UI, which includes a dependency
diagram showing how many requests went through each component. This
is especially useful to check on performance and dependency issues (for
example, if an old version of a component is still consuming a deprecated
service).

37

For the sake of simplicity, this component is deployed as an in-memory
database. This means that it cannot be replicated (as it is), and that data
is ephemeral. However, in a more productive environment, it could be in-
tegrated with Cassandra, ElasticSearch or MySQL to allow persistence of
data, and in consequence, replication. Note that having one replica of this
service is not a bottleneck as requests can be fulfilled by all services even if
Zipkin is down. This communication is asynchronous, which means that
it does not impact in the request time. Final users will not note the pres-
ence of Zipkin.

6.6 Docker containers

A container is a standard unit of software that packages up code and all
its dependencies together. This allows an application to run quickly and
reliably from one computing environment to another. Docker allows pack-
aging the components as containers, using OS-level virtualization [20].

A Docker container image is a lightweight, standalone, executable pack-
age of software that includes everything needed to run an application:
code, runtime, system tools, libraries, and settings. A container image
becomes a container at runtime and, in the case of Docker containers, im-
ages become containers when they run on the Docker engine, which can
run on several Linux distributions (CentOS, Debian, Fedora, Oracle Linux,
RHEL, SUSE, and Ubuntu), and Windows Server operating systems. This
enable containerized applications to run anywhere consistently on any en-
vironment, on any infrastructure.

6.7 Kubernetes cluster

Kubernetes is used in order to simplify the deployment of container-
ized components. Kubernetes is an open source system – originally de-
signed by Google, now maintained by the Cloud Native Computing Foun-
dation [21] – for automating deployment, scaling, and management of
containerized applications, across a cluster of hosts running the system. It
groups containers that make up an application into logical units for easy

38

management and discovery.

Kubernetes is spread across several nodes, conforming a cluster. There
are two types of nodes: the master node, and worker nodes. The mas-
ter node executes several processes needed to control the cluster. The
main processes are kube-apiserver, kube-controller-manager, and kube-
scheduler. Its main task is to maintain the desired state of the cluster. The
master node can be replicated to achieve high availability and redundancy.
The worker nodes are those executing the scheduled processes and work-
flows in the cluster. They are controlled by the master node. The main
processes executed by these nodes to be part of the cluster are kubelet,
which is needed to communicate with the master node, and kube-proxy,
which implements the necessary network services on each node.

Kubernetes defines a set of building blocks (“primitives”), which col-
lectively provide mechanisms that deploy, maintain, and scale applica-
tions based on CPU, memory, or custom metrics. Kubernetes is loosely
coupled and extensible to meet different workloads. This extensibility is
provided in large part by the Kubernetes API, which is used by internal
components, as well as extensions and containers that run on Kubernetes.

The platform exerts its control over compute and storage resources by
definings resources as Objects, which can then be managed as such. The
key objects are the following.

6.7.1 Pods

A pod is a higher level of abstraction grouping containerized compo-
nents. It consists of one or more containers that are guaranteed to be
co-located on the host machine, and can share resources. It is the basic
scheduling unit in Kubernetes. Pods can be managed manually through
the Kubernetes API, or by delegating their management to a controller.

Each pod in Kubernetes is assigned a unique pod IP address within the
cluster, which allows applications to use ports without the risk of conflict.
Within a pod, all containers can reference each other on localhost, but a
container within one pod has no way of directly addressing another con-

39

tainer within another pod. Instead, it has to use the pod’s IP address.

A pod can define a volume, such as a local disk directory, or a network
disk, and expose it to the containers in the pod, in order to store data.
Note that pods are ephemeral, which means that data is lost when the pod
is terminated.

6.7.2 Replica sets

A Replica set purpose is to maintain a stable set of replica pods running
at a given time. They are used often used to guarantee the availability of a
specified number of identical pods. To create new pods, a replica set uses
a pod template.

6.7.3 Services

A service is an abstract way to expose an application running on a set
of pods as a network service. Using a service, a consumer can refer the
pods by a name, instead of by their IP, which are ephemeral (they will
change if the pod is terminated and re created).

6.7.4 Volumes

A Kubernetes volume provides persistent storage that exists for the
lifetime of the pod itself. This storage can also be used as shared disk
space for containers within a pod. They are mounted at specific mount
points within the container, which are defined by the pod configuration,
and cannot mount onto other volumes, or link to other volumes. How-
ever, the same volume can be mounted at different points in the filesystem
tree by different containers.

40

6.7.5 Statefulsets

A statefulset allows a pod to preserve state if it is restarted. It also al-
lows to redistribute this state when an application is scaled up and down.
Finally, it enforces the property of uniqueness and ordering among in-
stances of a pod.

6.8 Postgres databases

PostgreSQL is a free and open source relational database management
system (RDBMS) emphasizing extensibility and technical standards com-
pliance. It is designed to handle a range of workloads, from single ma-
chines to data warehouses or web services with many concurrent users.
Postgres features transactions with Atomicity, Consistency, Isolation and
Durability (ACID) properties. This database engine is used as the data
store for the components described in the architecture section (specifically,
for the evaluations, the playground, the users and the LTI services).

Postgres databases are deployed in Kubernetes using Zalando’s Post-
gres operator [22]. This tool allows creating high available Postgres clus-
ters in a very easy way, powered by Patroni [23]. Patroni is a tool de-
veloped by Zalando that simplifies the deployment of replicated Postgres
databases by managing their state, including leader election of a master
node. Other features include rolling updates, volume resizing, cluster
cloning, logical backups stored in AWS S3 [24] buckets, among others.

In order to create a Postgres cluster using this tool, a manifest file must
be created, setting the cluster’s desired state. The operator will be in
charge of maintaining this state, checking the cluster’s health, and per-
forming the needed operations to get the cluster into the said state.

6.9 Apache Kafka

Apache Kafka was developed by LinkedIn in 2010, and it has been a
top-level Apache project since 2012. It is a highly scalable, durable, ro-
bust, and fault-tolerant publish-subscribe event streaming platform. It is

41

used as the message broker of the platform.

The basic components that Kafka uses for its publish-subscribe mes-
saging system are the producers, the consumers, and the brokers. A pro-
ducer is an entity/application that publishes data to a Kafka cluster, which
is made up of brokers. A broker is responsible for receiving and storing the
data when a producer publishes. A consumer then consumes data from a
broker at a specified offset, i.e. position. The result after connecting all
these components is a multi-producer and multi-consumer structure.

A basic unit of data in Kafka is generally called a message or a record
(interchangeably). A message contains the data and also the metadata.
The metadata contains information such as the offset, a timestamp, com-
pression type, etc. These messages are organised into logical groupings or
categories which are called topics, to which producers publish data. Typi-
cally, messages in a topic are spread across different partitions in different
brokers. Each partition contains a subset of a topic’s messages. A broker
can have multiple partitions. This allows increasing throughput; parallel
access to the topic can occur.

Furthermore, Kafka also provides reliability and data protection using
replication. If a broker fails, then all the partitions assigned to that broker
would become unavailable.To resolve this issue, there is the concept of a
replica, i.e. a duplicate of each partition. The number of replicas a parti-
tion has can be specified. At a given point in time, all replicas are identical
to the original partition – i.e. the “leader” – unless it hasn’t caught up to
the most recent data. This leader is elected using Zookeeper (among other
features).

What is unique about Kafka is that it keeps all the messages for a set
amount of time (this can be indefinitely). Each message has an offset, or
position, in this message log. Instead of Kafka managing which message
a consumer is up to, Kafka delegates this responsibility entirely to the
consumer itself. By doing this, Kafka is able to support many more con-
sumers.

In order to deploy a Kafka cluster in a Kubernetes cluster, operators are
used. In particular, Banzai cloud’s operator [25] is used for this. This al-

42

lows to create a manifest file that describes the Kafka cluster, and then this
tool will be in charge of maintaining the cluster’s state according to the
said manifest, including persistence and access. Other features include
fine-grained broker configuration support, advanced and highly config-
urable External Access via load balancers, graceful scaling and rebalanc-
ing, monitoring, encrypted communications, automatic reaction and self
healing based on alerts, graceful rolling upgrades, and advanced topic and
user management via custom kubernetes resources (CRDs).

43

7 Infrastructure

In order to achieve the proposed architecture, and the chosen imple-
mentation, infrastructure must be deployed. This includes host machines
and networking. As it was stated before, the platform consists of a set of
decoupled components, deployed in a Kubernetes cluster, which means
that a cloud is needed for this. Amazon Web Services [5] was chosen as
the cloud provider. The following paragraphs will explain the infrastruc-
ture.

First of all, a Kubernetes cluster is needed, as it is the platform in which
all the system is deployed. Deploying a Kubernetes cluster is not an easy
task. Many components must be installed, including orchestration and
networking software. That is why a tool like KOPS must be used.

KOPS [6] helps create, upgrade, maintain and destroy production-grade,
highly available, Kubernetes cluster from the command line. AWS is cur-
rently officially supported, with Google Compute Engine [7] and Open-
Stack [8] in beta support, and VMWare vSphere [12] in alpha.

KOPS helps provisioning Kubernetes clusters using the command line,
and by manifest files that describes the cluster (for instance, amount of
nodes, names, and networking stuff can be stated in these files). It can
build high available cluster spread across several availability zones in a
given region, including master node replication. With just a couple of
steps a production-grade cluster can be provisioned. To maintain the clus-
ter’s state (this is, the amount of desired nodes) KOPS creates autoscaling
groups [13] (for master nodes, and for worker nodes) which monitors the
hosts’ health, and are able to scale up and down the amount of nodes in
order to achieve the desired performance.

For the sake of simplicity, the platform is deployed in a single avail-
ability zone, using only one master node, and three worker nodes, with-
out autoscaling (i.e without increasing or decreasing the amount of hosts,
but only monitoring the node’s state to allow autohealding in case one
machine fails). It was decided this way taking into account that this is a
university project, and that the computing costs might be too high.

44

The chosen instance type for both the master node, and for the worker
nodes is m5.large [9]. These are general purpose instances, providing a
balance in compute, memory and network resources. It features two vir-
tual CPUs, 8 GiB of RAM memory, EBS-Only storage, up to 10gbps of
network bandwidth and up to 3500mbps EBS bandwidth.

Another type of host exists in the platform. This is the bastion host,
which exposes an SSH server to the outside world. If any remote ac-
cess to any node in the cluster should be performed, this must be done
through the bastion host. The chosen instance type for this is t2.micro [10].
These are low-cost general purpose instances, whose performance can be
bursted to achieve higher levels of CPU performance when needed.

An AWS classic load balancer is used to access the master node from
the outside in order to schedule pods (this is, in order to deploy the compo-
nents). Using this technology, which combines with the autoscaling group
for the master node, cluster operator users can communicate with the node
in a resilient way. Apart from that, this component implements HTTPS
which allow encrypted communications. Note that operators must au-
thenticate with the cluster in order to perform actions in it. Another load
balancer is used to access the bastion host. Finally, (micro) services ex-
posed to the Internet, such as the API gateway, the frontend server, and
the LTI app, can be accessed through their respective load balancers. They
all use HTTPS to increase the security of the system. The certificates used
to achieve encrypted communications are issued by AWS. Load balancers
are accessed by their name (which match the certificates’ names) assigned
by Route53, the AWS DNS service.

Two types of networks exist in the provisioned cloud. There is a private
network in which all Kubernetes nodes are placed. Hosts in this network
are not directly exposed to the Internet (this means that they do not have
a public address). There is also a public network in which components ex-
posed to the internet are placed. These includes the bastion host, the NAT
gateways, and the load balancers.

In order to allow nodes start communications over the internet with ex-
ternal services (such as LTI Assignment and grade services, implemented
by the LMSs to which the platform is integrated), NAT gateways must be

45

provisioned. These components are in charge of enabling instances in a
private subnet to connect to the internet, the same as a router allows con-
necting a laptop to the internet in a house.

EBS volumes are used to store persistent data. When a persistent vol-
ume is created in the cluster, this is reflected as an EBS volume created in
AWS. These volumes are used to store databases, such as Postgres, Kafka
and Zookeeper data.

KOPS uses an AWS S3 bucket to store the cluster state. This is used to
backup the cluster, which means that can then be replicated in other envi-
ronments (for example, in other regions). This allows rapid change if, for
example, a region becomes uncommunicated with the Internet, increasing
the high availability of the platform as a whole.

The following figure gives a graphic overview of the infrastructure pro-
visioned to carry out the developed platform.

46

Figure 2: Graphic overview of the provisioned infrastructure used to de-
ploy the platform.

47

8 Critical Points

Some of the critical points we have noticed while developing the entire
application were listed in the sections below. Some of them can be con-
sidered possible entry points for future improvements or iterations of this
product.

8.1 Apache Kafka

Though Apache Kafka is of key importance to the functioning of our
system as a whole, it is certainly also a critical point in our architecture.
One of the main weaknesses it offers is that if it fails, some services will
stop working as expected while other remain working. This is something
that is complemented with the health discovery service our micro-services
architecture offers. However, when losing the functionality of one of the
services some of the functional requirements or use cases we have thought
of will not work. A clear example of this would be that a teacher could cre-
ate exams but cannot run the code of those exams in the code sandboxes.

Another clear example of the importance of this tool is that, for exam-
ple, the API Gateway will keep passing or accepting tokens that might
have been blacklisted but as it does not have communication with a (pos-
sible) fallen users service, the API Gateway will not be able to check with
it which token to block.

8.2 ZooKeeper

Another consequence of working with Apache Kafka is how reliable
we are with ZooKeeper. This means, that if Apache Kafka is down, Zoo
Keeper will not know which node is the leader for a specific piece of
data (being Apache Kafka the one who tells ZooKeeper which node is the
leader).

At the same time, ZooKeeper itself is another process that runs stan-
dalone on a completely separate machine and if it falls the entire applica-

48

tion will fall as a whole.

8.3 Databases

If any of the participating databases fall any of the business logic of
the participating services of our micro-services architecture will not work
at all preventing it from working or either given a malfunctioning of the
different use cases the application is expected to support.

Going hand in hand with this aspect, any create, read, update or delete
operations on the involved entities of each micro-service will not work.

8.4 API Gateway

Though we consider, and have mentioned it several times, that the API
gateway pattern has been key for our entire microservices architecture we
are aware that is has some drawbacks.

The API Gateway is yet another moving part that must be developed,
deployed and managed alongside the other services and user interface.
For future implementations or iterations of the product as a whole, devel-
opers will have to consider its maintenance like any other service we have.
At the same time, changing it drastically or removing it would change the
entire application’s architecture as a whole. And moreover, the API Gate-
way is of key importance for extensibility reasons, being a key player to
create new integrations with other services or third-party services.

Another collateral drawback that the API Gateway brings to the entire
architecture is, as many additional parts of it, an increased response time
due to the additional network hop through the API gateway itself. How-
ever, for most applications the cost of an extra round-trip is insignificant.
We consider this a minor setback but worth mentioning it given that it is
not completely transparent for the interactions of the services.

49

9 Methodology

9.1 First steps

Once chosen the different frontiers and challenges that we realized
we would have after defining the functional requirements and quality at-
tributes, we defined a methodology that would help us face and adapt the
different roadblocks and technical difficulties during the entire project.

To begin with, we defined the general architecture which involves the
API Gateway and different microservices that would interact between each
other, while remaining scalable and data-consistent across all devices and
user sessions.

Once drawn the first drafts and defined the technology that we would
use for the different parts of the infrastructure we started implementing
the scaffolding of each of those projects. We drew on paper the different
database schemas listing each of the entities that are part of each of the
microservices and the relationships between them.

We knew there was going to be more infrastructure and additional
components since the very beginning so we considered them as well while
building each of the microservices, but we tried to have a lean and simple
approach when creating a similar and compatible architecture between all
those services.

Having taken all these considerations, we gained a better understand-
ing of the dimension of the project.

9.2 Docker images

For portability reasons while under development circumstances and
also when launching to production each of the microservices, we decided
to use Docker images as environment containers. This had the only draw-
back of us learning the technologies behind it. Docker containers ensure
consistency across multiple development and release cycles, standardiz-
ing your environment. One of the biggest advantages to a Docker-based

50

architecture is actually standardization. Docker provides repeatable de-
velopment, build, test, and production environments.

Having Docker images helped us to speed up development by only
having to pull from a git repository the last version of the image and get it
running in seconds. This would include, for instance, having an instance
of the service running, together with a database and Apache Kafka run-
ning together with it. Sometimes we would only create an image of a
subset of the microservices to easily carry them anywhere without having
to configure each of them and the configurations between them.

For installation purposes on production, the same advantages can be
seen given that we can install each of the microservices without further
complexity in the installation or configuration process.

9.3 Users: authentication and authorization

We decided to work on user’s authentication and authorization after
finishing with the other microservices. The reason behind it is that we
needed to understand not only the different entities that would be related
to the users (or lack of them) and the different endpoints they would con-
sume.

At the same time, from a product design perspective we did not want
the users microservice to interfere at all in the functionality of the other
services. We wanted to think of it as if it was an abstraction layer of iden-
tity management spread through the entire application and across the mi-
croservices.

From a backend perspective, we had to build the service and make it
interact with the other microservices and frontend for signup and login.
From a frontend perspective, we just needed to protect the routes with a
proper JSON Web Token (JWT) given sufficient scopes and authorizations.

51

9.4 Integration with ITBA Campus

Finally, to complete the implementation, we worked on the integration
with ITBA Campus (BlackBoard), which is an LMS (Learning Manage-
ment System) like Moodle. Again, to simplify things we never thought
any of the services to rely on this integration, not even the one related to
users on the section above this one.

For this purpose, to simplify things and take a lean approach for this
integration, we did not proceed in making an entire integration but only in
working with the identity management of the teachers, given the fact that
we only needed to know which is the teacher and the subject they were
creating the exam for.

It is important to highlight that the final mark of an exam ends up being
a numerical mark on the student’s profile of the course on ITBA Campus.
This is done thanks to the communication between the application and the
LMS through the LTI protocol.

9.5 Implementation

Defining the functional requirements and quality attributes was pretty
straightforward given the fact that we had very clear what to do after see-
ing the state-of-the-art regarding other evaluation coding platforms. On
the other hand, it took us a long while to decide the implementation and
corresponding methodology.

What definitely prevailed as a methodology as a whole when imple-
menting all the services, API Gateway and interface with all their fea-
tures and corresponding processes (or flows) was the Agile Methodology.
We mostly based our development process on an iterative development,
where requirements and solutions evolved via collaboration between the
two of us. To be more specific, we incorporated iterations and the continu-
ous feedback from friends and our tutor which successively refined what
we delivered.

Within Agile methodology we implemented a lot of the famous wa-
terfall model by doing a sequential development approach by constantly

52

gathering requirements analysis which, at the same time, resulted in a soft-
ware requirements specification. This would be followed by software de-
sign, implementation, testing (only on the backend), integration between
multiple subsystems (with other components such as databases or Apache
Kafka, for instance), deployment (of Docker images to integrate them all)
and maintenance of the other services of the application as a whole. As
part of this modal some of these phases overlapped between each other
and between the development of different services.

What also drove us between the development of each service or phase
of the development was the strong emphasis on planning and target dates
we set for ourselves. Some of the development phases had the luck to
count with its documentation written at the same time, some had formal
reviews, approvals by users and of our tutor, and code review before start-
ing the next phase (or actually closing the current one). An explicit deliv-
erable of each phase is of course, the written documentation of each phase.

Last but not least, we did also have a bit of Extreme programming (XP)
as part of our software development methodology which is intended to
improve software quality and responsiveness to changing customer/tu-
tor requirements. Given that it is part of the agile software development
methodology, we used it to advocate frequent "releases" in short develop-
ment cycles, these were more frequent and formal on the backend than
on the frontend. The reason behind this is that the frontend grouped (and
is agnostic) of the different interactions between the micro-services of the
entire application.

Following this XP methodology, we believe we managed to increase
productivity and introduced checkpoints at which new iterations and re-
quirements could also be adopted while approaching the final product re-
lease. Within this methodology, we did code review at different milestones
of the development of each service, in some cases performed unit testing
of the code and we also definitely tried avoiding programming of features
until they were actually needed.

In order to do this last part, we used a version control system which
was GIT and the chosen platform for this purpose was GitHub. In that
platform we created an organization where we created several reposito-

53

ries for the different parts of our project and microservices. In each of
them we created the different features/enhancements, bugs and nice-to-
haves. For the different new big changes (and internal releases) we used
pull requests and reviewed each of them (by the one of us both who did
not do those pull requests).

54

10 Future implementations

10.1 New and improved features

10.1.1 Stats to be collected

It is considered of paramount importance to track metrics or stats about
the usage of the product in order to understand how the users interact
with the platform, and be able to iterate the product on the right direction.
Is because of this that it is considered that tracking teachers and students
usages stats would be of great use not only for them, but for the develop-
ers and maintainers of the system.

In the case of teachers, if would be useful to know how many students
are sitting for an exam, how many students did pass/fail an exam, how
long did each student take to complete an exam, which test cases are the
most failed ones, or which is the exercise that students were able to be
solved by most of them, among others. These stats seem quite basic to be
implemented, but currently the platform has no section to collect them,
and report them back to the teachers. With this information, teachers
would be able to create improved future exams, and see how easy or hard
they were for the students.

Taking into account the students, tracking metrics about what students
do while sitting for an exam could help both the teacher and the student
to have a better feedback for future courses or exams of the same subject.
This could include the amount of runs each of the exercises have before
passing a given test case. Similar to this, a feature like “rankings per ex-
ercise” – as some platforms like HackerRank have – could be included.
With this functionality students would have a better idea of how hard an
exercise is. With this in mind, the average time a student takes to solve
an exercise (or the whole exam) could be included. All this information
would be really useful for students in order to know the order to tackle
the exercises.

From the developer/maintainer point of view, being able to collect and
present all these stats is something not yet considered by the proposed ar-
chitecture. However, it could be easily implemented creating a (micro)

55

service that would store all the stats, collected using event streaming (us-
ing the message broker) by all the other components.

10.1.2 Improved test cases

Even though the platform already supports some basic conditions and
fields to be filled as input when creating a test case, this could be im-
proved. For example, HackerRank offers the possibility of more editing
options when describing the test case, being able to include code snippets,
highlight text, underline it or put italics. It also offers the possibility of
tagging the difficulty it has for that test case to pass or not, which might
be helpful for the student when wondering what to expect of the exercise
that s/he is working on.

This feature goes together with scoring (based on the test case diffi-
culty). Not all test cases have the same difficulty level. While creating
the test cases, the teacher must ensure that more points are assigned to
the difficult test cases as compared to the easy ones. This would lead to a
better distinction between outstanding, good, and average programmers.
The sum of scores of all test cases would be the total score assigned to a
particular question. One can even assign zero points to sample test cases
if required. The overall score for a coding question could be the sum of the
scores of all the test cases which are successfully passed.

10.1.3 Support for more programming languages and themes

This is translated as adding more runners to the executor service. Right
now Java, Ruby and C are supported. However, adding more environ-
ment is a very simple task. The developer should only upgrade the docker
image running the executor service installing the necessary runtime, and
then writing a new runner program (a template is included with the project).

Together with this, the frontend should be adapted alongside with the
new languages being supported. Ace editor currently supports highlight-
ing for over 100 programming languages. By default, files are highlighted

56

based on their file extension.

10.1.4 Auto-complete and multiple cursors

Regarding improvements on the Ace editor itself, several upgrades or
improvements can be made due to its facility to add these kind of com-
ponents. Ace editor provides varying levels of intelligent and responsive
autocompletion for the code. Autocompletion is based not only on the
content within the code, but also standard functions and language tools
that might be used. This feature can be disabled as well at anytime.

Another important feature that can be enabled/disabled is multiple
cursors. They can be used to perform tasks like rename several variables or
members at once, break up lists separated by commas, or insert the same
text in multiple locations. Multiple selections can be copied and pasted,
and entire lines can be inserted or removed in several locations. One of
the best capabilities is the ability to instantly select the next instance of the
currently highlighted section. This is especially useful for refactoring sev-
eral parts of the code at once.

10.1.5 Integration with 3rd-party services

Given that the Playground Service is basically a place where program-
mers can run code against different programming environments, many of
these developers would definitely benefit from integrating the entire plat-
form to other services. One option could be something like GitHub gist
service (or any other gist service out there). Another useful tool would be
a tool similar to Trello to reference the code snippet and be able to run it
from there. A use case for this would be, for example, if anyone is work-
ing on a feature and wants to show the result of a code snippet that belong
to that feature on the Playground Service, it would be easy to implement
with a short URL belonging from the domain where the service is hosted,
and then easy to share or include in Trello Cards, GitHub issues or similar.

Other kinds of integrations would include the ability to add web hooks
to the platform, in order to allow other systems to perform actions based

57

on events happening in the application. This could include stoppers and
non-stoppers web hooks. For example, before uploading a grade to an
LMS, the platform could be integrated with a plagiarism service (that might
exist on the Internet, or developed by other teams within the university),
in order to avoid student from copying between themselves. This could be
easily implemented creating a (micro) service that collects events streamed
by other components, and performing the corresponding actions. In case
the webhook is stopper, the component streaming the event would have
to wait for the response (also emitted as an event) before continuing its
workflow.

10.1.6 Multi-file code support

Allowing to run code spread across several files would be a big benefit
for users of the platform. Most of the alternatives that have been evalu-
ated on the “State-of-the-art” section do not include this option. A reason
behind this might be that the UIs, the correction, the test cases applied or
even the different code sandboxes executing the submit- ted code tend to
be more complex. Despite it all, this would be a great feature to imple-
ment as it is extremely common for any developer from any language and
background to separate code in files (for example, each Java class in a sep-
arated file).

The basic idea behind this feature would be to allow all files to be sent
as one single submission, for them to work together (without circular de-
pendencies/references of course) and then be ran against a single code
sandbox that would return the result of all the files taken into play. Once
this is achieved in Playground mode, it will surely be easier to implement
in the Evaluations Service, however this comes at a cost of a medium refac-
tor of it.

58

10.2 Architecture improvements

10.2.1 Containerize runners

Right now, submitted code is run in the same environment where the
executor service lives. This has several possible issues. For instance, con-
flict between runtimes could appear (think of different versions of a given
programming language, as Java 11 or Java 8).

Up to now, execution of submitted code is performed using bash scripts
that instruct the machine to (compile and) run the program that was up-
loaded. The executor service uses this scripts to schedule the execution of
the code (using the fork and exec approach), sending input (in the form of
program arguments, or as standard input for the process), and waiting for
the execution to complete, receiving the data that was sent to the standard
output, or to the standard error output. It also sets some environment
variables in order to copy the code to the process. Finally results are read
from files created by the script.

In a future version of the platform this can be improved by extracting
the runner to a container, which can be scheduled by the executor service.
There would be different container images (one per supported environ-
ment). In this way, it would be easier to update each of the environments
and, at the same time, add more runtimes, extending the programming
languages support. The runners would run separated from the executor
service.

In order to achieve this new approach, the executor service could be-
come a Kubernetes controller. With that in mind, this component would
interact with the Kubernetes API to deploy containers whose sole purpose
would be to run the uploaded code, and report back the result. Another
way of implementing this is to create a separate Kubernetes controller, and
change the implementation in the executor service that interacts with the
process API, becoming an adapter that communicates with the controller.
A final approach could be to deploy each runner together with a sidecar
(the executor service), which could react based on each language. In this
case there would be a container for the runner, and another one for the
controller. The executor service would continue receiving execution re-

59

quest messages, but would only react to those whose language matches
the runner with which it is deployed. Note that there would be at least
one pod for each of the supported language. To increase throughput in
this approach, a Kafka topic for each of those pods could be created, so
each one would subscribe to the corresponding channel (one for Java, an-
other one for Ruby, etc.).

10.2.2 Error tracking software

In order to increase the supportability and maintainability of the project,
it is recommended on nearly any software that is exposed to several users
-and especially scale-, an error tracking tool. Such tools help developers
fix bugs before they are reported to the product owner (or developers/-
maintainers) and they help prioritize bug fixes because they show how
many errors and which kind of users are getting on specific releases/ver-
sions of the different software pieces the application as a whole has. Every
developer writes bugs and many of those bugs get shipped to production,
that’s unavoidable. Thanks to tools like this, one can find and fix those
bugs before customers even notice a problem.

This can be seen using an example use case that might happen while
using the application. A teacher might give start to an exam and then sev-
eral students start sitting for it after he/she tells them so. Different code
snippets are run against the corresponding services and given feedback on
the different user interfaces. Some test cases may or may not pass and that
feedback is given to the students as well on each of their browsers. After
that, some code snippets are submitted as exercise solutions, and then the
system grades them. Once the test is finished, the teacher stops it and sees
the results. While this seems a common use case of the platform, there are
several components involved. Different kinds of errors might appear de-
pending on which clients are being used by the students or the inputs they
have submitted against the internal APIs. This entire process can happen
several times and errors might be seen or captured but not handled prop-
erly. With an error tracking software one can see how many errors happen,
classify them and even know which service is the one that has the error,
making easier the labour of bug fixing on each (micro) service.

60

One tool that can be used for this is Sentry. Sentry is an open-source er-
ror tracking software that helps developers monitor and fix crashes in real
time. It allows to iterate continuously, boost efficiency in the development
team and, as a result, improve the user experience.

10.2.3 Log aggregation

Carrying on with this same line of thought, centralizing all logs and
being able to analyze them is definitely worth having in any (monolithic
or not) application and a (micro) services application is no exception to
this. A great tool for this matter is the ELK stack.

Kibana is an open source data visualization plugin for Elasticsearch.
It provides visualization capabilities on top of the content indexed on an
Elasticsearch cluster. Users can create bar, line and scatter plots, or pie
charts and maps on top of large volumes of data. Kibana also provides a
presentation tool, referred to as Canvas, that allows users to create slide
decks that pull live data directly from Elasticsearch.

The combination of Elasticsearch, Logstash, and Kibana – referred to
as the "Elastic Stack" (formerly the "ELK stack") – is available as a product
or service. Logstash provides an input stream to Elasticsearch for storage
and search, and Kibana accesses the data for visualizations such as dash-
boards. Elastic also provides "Beats" packages which can be configured
to provide premade Kibana visualizations and dashboards about various
database and application technologies.

Elasticsearch is a distributed, RESTful search and analytics engine ca-
pable of solving a growing number of use cases. As the heart of the Elastic
Stack, it centrally stores all the data in one place making it easier to dis-
cover patterns or other information any developer might be missing. It
allows to perform and combine many types of searches — structured, un-
structured, geo or metric.

Logstash is an open source, server-side data processing pipeline that
ingests data from a multitude of sources simultaneously, transforms it, and
then sends it to a given “stash.” As data is often scattered or siloed across

61

many systems in many formats, Logstash supports a variety of inputs that
pulls in events from a multitude of common sources, all at the same time
and then it can be easily ingested from logs, metrics, web applications,
data stores, and various AWS services, all in a continuous, streaming fash-
ion. As data travels from source to store, Logstash filters, parse each event,
identify named fields to build a data structure, and transform them to con-
verge on a common format for more powerful analysis and business value.
Logstash dynamically transforms and prepares data regardless of format
or complexity.

10.3 Auto-scaling

The way the platform is deployed (taking into account how compo-
nents are packaged), and the underlying infrastructure, easily allows to
horizontally scale up and down. If more replicas of a given service is
needed, Kubernetes allows to schedule more pods to take the workload.
Then, if more CPU power is needed, AWS could be instructed to add more
nodes to the cluster.

All these operations can be automated based on metrics (amount of
CPU and memory usage, amount of requests in a given period of time,
etc.). This would increase the availability of the platform, as more replicas
could be automatically deployed, without impacting the performance of
the already running replicas. Apart from that, it would allow a quicker
reaction from the platform in such events.

10.4 Infrastructure improvement

10.4.1 Multi availability zones deployment

Up to now the platform is deployed in a single availability zone, which
means that, in the event of a datacenter failure, the platform would not be
accessible. This issue could be tackled by deploying the Kubernetes cluster
in across several datacenters (a.k.a. availability zones). So, in case one dat-
acenter fails, the platform could continue providing services to consumers.

62

In case this is performed, pods could be scheduled in such a way that
replicas are deployed in nodes in different availability zones, increasing
the availability of the service they are carrying out. Also a master node
would be needed to be replicated in each datacenter.

63

11 Appendix A: API documentation

The documentation of all the API endpoints for the different services
used are listed here: https://documenter.getpostman.com/view/
8699794/SWDzgMx6

It includes snippets to make requests in the following languages:

• cURL

• jQuery

• Ruby

• Python

• Node

• PHP

• Go

64

https://documenter.getpostman.com/view/8699794/SWDzgMx6
https://documenter.getpostman.com/view/8699794/SWDzgMx6

12 Appendix B: Infrastructure Guide

In the following link (GitHub repository where this project lives) you
can find a guide to aprovision a Kubernetes cluster in AWS. Note that this
guide only covers MacOS setups:

https://github.com/coding-eval-platform/infrastructure-guides

65

https://github.com/coding-eval-platform/infrastructure-guides

13 Appendix C: Deployment Guide

In the following link (GitHub repository where this project lives) you
can find a guide to the usage of Kubernetes:

https://github.com/coding-eval-platform/kubernetes

66

https://github.com/coding-eval-platform/kubernetes

14 Appendix D: Hexagonal Architecture

Regarding the code structure of the different services, they basically
implement the Ports and Adapters Pattern [1], also known as the Hexagonal
Architecture. The idea of Ports and Adapters is that the application (or ser-
vice in this case) is central to the system. All the inputs and outputs reach
or leave the core of the application through a port. This port isolates the
application from external technologies, tools and delivery mechanics. The
application itself should never have any knowledge about who is sending
or receiving the input and output. This allows the system to be secured
against the evolution of technology and business requirements. You do
not want that an external system you use to become obsolete. And then
be completely coupled to it. You want to be free from these changes, and
make it easy to switch technologies or business partners.

One can consider a port like a gateway that allows the entry or exiting
of data to and from the application. In code, this is what we call an in-
terface. Ports exist in 2 types: inbound and outbound ports. An inbound
port defines the exposure of the core’s functionality. These interfaces de-
fine how the Core Business Logic can be used. This is the only part of the
core exposed to the outside world. An outbound port defines the core’s
view of the outside world. This is the interface the core needs to commu-
nicate with the outside world. In short, the adapter transforms an interface
into another. There are two kinds of adapters: primary and secondary.

The primary or Driving Adapters represents the UI. This can be our
API controllers, web controllers and views. They are called driving adapters
because they drive the application, and start actions in the core applica-
tion. These adapters can use the inbound ports (interfaces) provided by
the core application. The controllers then depend on these interfaces of
the core business logic.

The secondary or Driven Adapters represent the connection to your
back-end databases, external libraries, mail API’s, etc. These adapters re-
act to actions initiated by the primary adapters. The secondary adapters
are implementations of the outbound port. Which in return depend on in-
terfaces of these external libraries and tools to transform them, so the core
application can use these without being coupled to them.

67

Some of the main benefits of this architecture are:

• Agnostic to the outside world: The application can essentially be
driven by any number of different controls. You can use your in-
ner core business logic through a Command Line Interface, another
application or system, a human or an automated script.

• Independent from external services: When your application is ag-
nostic to the outside world, it also means it is independent from ex-
ternal services. You can develop the inner core of your application
long before you have to think about what type of database you are
going to use. By defining the Ports and Adapters for your database,
you are free to use any technology implementation. This allows you
to use an in-memory datastore in the early days, and then make the
decision of what type of database you want to use when you actually
need to store your application’s data in persistent storage.

• Easier to test in isolation: Now that your application is agnostic to
the outside world, it is much easier to test in isolation. This means in-
stead of sending in HTTP requests, or making requests to a database,
you can simply test each layer of your application, mocking any de-
pendencies. This not only results in quicker tests, but it also mas-
sively decouples your code from the implementation details of the
outside world.

• The Ports and Adapters are replaceable: The role of the Ports and
Adapters is to convert requests and responses as they come and go
from the outside world. This conversion process allows the applica-
tion to receive requests and send responses to any number of outside
technologies without having to know anything of the outside world.
It makes possible to replace an adapter with a different implementa-
tion that conforms to the same interface.

• Separation of the different rates of change: The outer most layers
that typically change the most. For example, the User Interface, han-
dling requests or working with external services typically evolves
faster than the business rules of the application. This separation en-
ables you to quickly iterate on the outer layers without touching

68

the inner layers that must remain consistent. The inner layer has
no knowledge of the outer layer and so these changes can be made
without disrupting the code that should not change.

• High Maintainability: Maintainability is the absence of technical
debt. Changes in one area of an application doesn’t really affect oth-
ers. Adding features do not require large code-base changes. Adding
new ways to interact with the application requires few changes. Test-
ing is relatively easy. [2–4]

69

15 Appendix E: LTI Integration

This section includes the main flows of the LTI part of this project.

70

Figure 3: Exam registration flow

71

Figure 4: Exam launch flow

72

Figure 5: Score Publishing flow

73

16 Bibliography

References

[1] Ports and Adapters.
https://softwarecampament.wordpress.com/portsadapters/

[2] Microservices
https://dzone.com/articles/quick-guide-to-microservices-with-spring-boot-
20-e

[3] Hexagonal Architecture
https://medium.com/@nicolopigna/demystifying-the-hexagon-5e58cb57bbda

[4] Hexagonal Architecture
https://apiumhub.com/tech-blog-barcelona/hexagonal-architecture/

[5] Amazon Web Services
https://aws.amazon.com

[6] KOPS
https://github.com/kubernetes/kops

[7] Google Compute Engine
https://cloud.google.com/compute/

[8] OpenStack
https://www.openstack.org/

[9] m5.large https://aws.amazon.com/es/ec2/instance-types/m5/

[10] t2.micro https://aws.amazon.com/es/ec2/instance-types/t2/

[11] MVWildcard

[12] VMWare vSphere
https://www.vmware.com/ar/products/vsphere.html

[13] Autoscaling groups
https://aws.amazon.com/autoscaling/

74

[14] API Gateway Pattern
https://microservices.io/patterns/apigateway.html

[15] Service Discovery/Registry
https://en.wikipedia.org/wiki/Web_Services_DiscoveryUniversal
_Description_Discovery_and_Integration

[16] Ace Editor
https://ace.c9.io/

[17] Kubernetes operators https://kubernetes.io/docs/concepts/extend-
kubernetes/operator/

[18] Postgres https://postgresql.org/

[19] Zookeeper https://zookeeper.apache.org/

[20] OS-level virtualization https://en.wikipedia.org/wiki/OS-
level_virtualization

[21] Cloud Native Computing Foundation https://www.cncf.io/

[22] Zalando’s Postgres operator https://github.com/zalando/postgres-
operator

[23] Patroni https://github.com/zalando/patroni

[24] AWS S3 https://aws.amazon.com/s3/

[25] Banzai cloud’s operator https://github.com/banzaicloud/kafka-operator

75

	Motivation
	State of the Art: similar platforms
	Introduction
	HackerRank
	CodinGame
	Codility
	DevSkiller
	CodeRunner
	Conclusions

	Functional Requirements
	Identity Management
	Authentication
	Authorization

	Teacher
	Exams
	Exercises
	Test cases
	Scoring

	Student
	Exams
	Exercises
	Test cases

	Playground

	Quality Attributes
	Primary quality attributes
	Interoperability
	Usability
	Security
	Fault Tolerance
	Scalability
	Availability

	Secondary quality attributes
	Modularity
	Supportability
	Maintainability
	Performance

	Architecture
	Components
	Executor Service
	Evaluations Service
	Playground Service
	User Service
	LTI Service
	LTI App
	Service Registry
	Tracing Service
	API Gateway
	User Interface

	Implementation
	React for the front end
	Ace Editor

	Backend built using Java 11 and Spring
	Netflix Eureka and Netflix Ribbon
	Spring Cloud API gateway
	Spring Cloud Sleuth and Zipkin
	Docker containers
	Kubernetes cluster
	Pods
	Replica sets
	Services
	Volumes
	Statefulsets

	Postgres databases
	Apache Kafka

	Infrastructure
	Critical Points
	Apache Kafka
	ZooKeeper
	Databases
	API Gateway

	Methodology
	First steps
	Docker images
	Users: authentication and authorization
	Integration with ITBA Campus
	Implementation

	Future implementations
	New and improved features
	Stats to be collected
	Improved test cases
	Support for more programming languages and themes
	Auto-complete and multiple cursors
	Integration with 3rd-party services
	Multi-file code support

	Architecture improvements
	Containerize runners
	Error tracking software
	Log aggregation

	Auto-scaling
	Infrastructure improvement
	Multi availability zones deployment

	Appendix A: API documentation
	Appendix B: Infrastructure Guide
	Appendix C: Deployment Guide
	Appendix D: Hexagonal Architecture
	Appendix E: LTI Integration
	Bibliography

