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Abstract— This paper considers the problem of automatically
controlling the glucose level in a Diabetes type I patient.
Three issues have been considered: model uncertainty, time-
varying/nonlinear phenomena and controller implementation.
To that end, the dynamical model of the insulin/glucose
relation is framed as a Linear Parameter Varying system
and a controller is designed based on it. In addition, this
framework allows not only a better performance than other
classical methods, but also provides stability and performance
guarantees. Design computations are based on convex Linear
Matrix Inequality (LMI) optimization. Implementation is based
on a low order controller whose dynamics adapts according to
the glucose levels measured in real-time.

I. INTRODUCTION

The blood glucose concentration should be in the interval

of [60, 120] mg/dL [1]. The body in normal conditions reg-

ulates this concentration by means of glucagon and insulin,

both pancreatic endocrine hormones secreted from α and β

cells respectively. The absence of insulin released by the

pancreas is called Type I diabetes mellitus and produces

a higher glucose level in the blood (hyperglycaemia). The

consequences of this fact can be atherosclerosis, retinopathy,

etc. The excess of insulin on the other hand, may produce a

lower value of glucose (hypoglycaemia) which may produce

diabetic coma or even death. Meals and exercise tend to

increase and decrease respectively the glucose levels in the

blood. It is very important to maintain the glucose levels be-

tween the previously mentioned bounds. Therefore, diabetic

patients need external injections of insulin according to their

actual conditions in order to regulate the glucose level. This

is particularly painful in children with diabetes type I which

may need several insulin shots a day, plus regular glucose

measurements which may involve finger picks. Instead, type

II diabetes is generally produced in the long term and has to

do with patient’s aging, which may not even need external

insulin provision.

The dynamics of the glucose-insulin have been studied

extensively. Several models can be used, depending if the

purpose is to simulate this phenomena or to design a reg-

ulatory system to control it (see [2]). For the latter, two

dynamical models based on Ordinary differential equations

(ODE) have been produced: Bergman’s simplified model

[2], [3] and Sorensen’s high order dynamics [4]. Both are

nonlinear models that may be useful for controller design.
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The control of this process has been attempted in several

ways (see [5] for a survey), by using both models. From the

simplified PID control, to the heuristic fuzzy-logic proce-

dures or parametric-programming [6]. In any case controller

design models, even Sorensen’s high order one, have a great

deal of uncertainty. To this end, robust controllers have

been applied to this problem recently [7], [8], but from a

Linear Time Invariant (LTI) perspective. In addition, due

to the nature of the dynamics in both standard models,

nonlinear control design methods have also been applied

[3], [9], although with no clear robustness guarantees. As

a preliminary conclusion, based on the previous attempts in

controlling this system, there are three issues which should

be payed special attention:

• Model uncertainty.

• Time-varying and/or nonlinear phenomena.

• Real-time implementation

As a consequence, in this work we have adopted Linear

Parameter Varying (LPV) models for design purposes, which

accommodates all three issues and provides a performance

which is similar to previous approaches.

LPV control methods received considerable attention since

the mid 90s. The works in [10]–[12] set up a basis of methods

for the analysis of LPV systems and the synthesis of LPV

controllers. More recently, the Full block Multiplier (FBM)

method allowed a wider application of this methodology

[13]. These models represent a large class of dynamical

systems with a special structure, allowing for a systematic

approach for controller design. In addition, but at the cost of

conservatism the approach can be applied to an even wider

range of systems known as quasi-LPV systems. An LPV

system is essentially a family of linear time-varying systems

which are described by the standard state space equations,

but where the matrices (A,B,C, D) are functions of a time

varying parameter vector ρ(t), measured in real time and

contained within a compact set P ∈ R
p:

ẋ(t) = A [ρ(t)]x(t) + B [ρ(t)]u(t) (1)

y(t) = C [ρ(t)]x(t) + D [ρ(t)]u(t) (2)

A number of qualities make LPV methods appealing from

the practical viewpoint.

• A large number of practical (nonlinear) systems can

be cast properly in the LPV framework [14]. An LPV

model can be interpreted as a linear tangent model that



moves along the nonlinear system according to its work-

ing point. If this working point can be measured in real

time by means of a certain parameter, a very practical

representation of a nonlinear system is obtained.

• An LPV controller is a very convenient way of rep-

resenting a systematic gain-scheduling control scheme.

The dynamics of the controller changes according to a

time-varying parameter ρ(t) which can be measured in

real-time, i.e. K[ρ(t)]. The complexity of this controller

is equivalent to the augmented model by which it has

been designed, i.e. order of the model plus performance

and robustness weights. It is implemented in real-time

as a controller which is updated by real-time measure-

ments, which is faster than classical adaptive control

which is dominated by its identification phase.

• These results come originally from Robust Control

Theory [15]–[17]. Hence, model uncertainty may fit

naturally in the framework and in fact, the application

of LPV techniques to practical problems can be seen as

an extension of H∞ control for a class of time-varying

systems.

• Stability and performance analysis and controller syn-

thesis for these systems can be formulated as linear

matrix inequalities (LMIs), see [18], [19]. LMIs pose

convex problems and can be efficiently solved by nu-

merical software packages [20]–[22].

Therefore we have an analysis and controller design proce-

dure that can cope with nonlinear and uncertain dynamical

problems and may be solved by efficient convex optimization

algorithms off-line, and at the same time produces a fast

real-time implementation algorithm. Recent work have been

carried out based on these models, oriented towards Fault

Detection [23] and modelling [24]. In [9], and LPV controller

was designed based on a transformation of the Sorensen

model into an affine-LPV model [24]. Here it is not clear if

the affine-LPV model should mimic the actual phenomena.

This is due to the fact that taking several linearizations of a

system and combining them as if they where vertices of a

convex set of models does not clearly reproduce the original

system. Interpolation of vertex models into an LPV format is

not a trivial task, not to mention if also closed-loop stability

and performance need to be considered [25].

Instead, an LPV model could be attempted by taking

the original model into consideration and broadening the

parameter dependence from the mere affine combination.

This could be done by using a more general Linear Fractional

Transformation (LFT) parameter dependency, as may be

considered using the FBM LPV methodology [13] which

may still be solved by a finite number of LMI computations.

As mentioned in [7], an automatic glucose regulation

procedure needs the following items:

• An in vivo sensor for blood glucose continuous mea-

surements; preferably noninvasive.

• A control algorithm for computing the necessary insulin

delivery concentration or the insulin delivery rate con-

centration.

P1 P2 P3 V1 Gb Ib n

0 0.025 0.000013 12 81 15 0.09

TABLE I

MODEL PARAMETERS.

• A physical device, for example, an electromechanical

pump, to deliver the insulin calculated by the above-

mentioned algorithm.

The scientific community is already working towards accu-

rate noninvasive glucose sensors (see [26]) and insulin pumps

for this control system (see [27]). Non-invasive methods are

specially important, which work subcutaneously [28]. There-

fore both, sensors and actuators are available and control

algorithms may be implemented in real time applications.

The objective of this work is to illustrate the current

research at the Centro de Sistemas y Control to automatically

control the glucose-insulin levels in Diabetes Mellitus type

I, based on an LPV framework. To this end, we will use the

simplified Bergman’s model and transform it directly into

a quasi-LPV model in order to design an LPV controller,

in section II. Model uncertainty considerations will be also

taken into account in the design procedure. Simulation illus-

trating the system’s performance are presented in section III.

Final conclusions and future research end this paper in

section IV.

II. MAIN RESULTS

Bergman’s model will be used here to illustrate the LPV

methodology as a way to control the insulin-glucose dy-

namics taking into account both the nonlinear and time-

varying nature of the problem as well as the inherent model

uncertainty. This model is as follows:

Ġ(t) = −P1G(t) − X(t) [G(t) + Gb] + d(t) (3)

Ẋ(t) = −P2X(t) + P3I(t) (4)

İ(t) = −n [I(t) + Ib] +
1

V1

u(t) (5)

where G is the plasma-glucose concentration above the basal

value Gb in mg/dL, I is the plasma-insulin concentration

above the basal value Ib in mU/L, and X is proportional to

the plasma-insulin concentration in the remote compartment

(1/min). The disturbance d = FG

VG
is the meal glucose pertur-

bation in mg/mL/min, where FG is the rate of exogenously

infused glucose in mg/min, and VG is the glucose distribution

space in dL. V1 is the insulin distribution volume in L, and

n is the fractional disappearance rate of insulin (1/min). The

parameters considered here are shown in Table I.

This can be considered as a quasi-LPV model by defining

variable ρ(t) = G(t) in equation (3) as a real-time measured

parameter, due to the fact that it is also the output of the

system. In addition, the input has been re-defined as v(t) =



1

V1

u(t) − nIb for simplicity. Therefore, the system is:

ẋ(t) =





−P1 −(ρ + Gb) 0
0 −P2 P3

0 0 −n



x(t) +





d(t)
0

v(t)



 (6)

y(t) =
[

1 0 0
]

x(t) (7)

where the state vector is x(t) =
[

G X I
]T

. The last

vector of the state equation can be interpreted as a distur-

bance in the first element and the control variable in the last

component. The state-space structure appears as a sort of

canonical representation. Note that this model has the same

LPV structure as in equations (1)-(2), where the parameter

ρ(t) is the plasma-glucose (time-varying) level which may

be measured in real-time.

In order to evaluate robustness against model uncertainty,

the three parameters (P2, P3, n) have been considered, ac-

cording to the inter-patient and intra-patient variations men-

tioned in [6]. These parameters appear in the first stage of

this model which is LTI, and therefore can be evaluated by

robustness margins as the structured singular value [15]–[17].

By transforming the transfer function between v(t) → X(t)
using the Laplace transform and introducing parametric un-

certainty variables (δn, δ2, δ3) and the weights (wn, w2, w3),
we obtain:

X =
1

(s + n)
·

P3

(s + P2)
v (8)

=
1

(s + no)
(

1 + wnδn

s+no

)

(P3o + w3δ3)

(s + P2o)
(

1 + w2δ2

s+P2o

)v

where the nominal values have index o and all uncertainties

are in the unitary interval δi ∈ [−1, 1]. This uncertainty

structure will be evaluated to test both the stability and

performance robustness of the design.

III. SIMULATIONS

The controller has been designed based on a Single

Quadratic Lyapunov function (SQLF) with pole placement

constraints [29]. The latter has been used to avoid the fast

pole phenomena which is typical of these type of controllers.

The uncertainty in all three model parameters (P2, P3, n)
is in the order of 40% according to the inter-patient and

intra-patient figures mentioned in [6]. This has been defined

in the previous section and corresponds to the intervals δi ∈
[−1, 1], i = n, 2, 3.

The meal perturbations can take very different values and

dynamics, but in this framework it has been modelled as a

set of (normalized) disturbances ‖d‖
2
≤ 1, where ‖·‖

2
stands

for the signal energy.

The final objective is to achieve the smallest variation in

the glucose levels (around the basal value Gb) for a set of

meal disturbances and under all possible model uncertainties

considered. Therefore Robust performance can be defined as

follows:

min ‖G‖
2

∀ ‖d‖
2
≤ 1, and ∀δi ∈ [−1, 1], i = n, 2, 3

Robust performance analysis is carried out using the

structured singular value (SSV) under parametric uncertainty

[16], [17]. The resulting measure was taken for the glucose

levels (40, 60, 80, 100, 120) mg/dL, showing the designed

controller meets robustness requirements, against the usual

uncertainty considered for this problem [6] (note in Fig. 1

that all the SSV are below unity). This means that the

controller achieves the lowest possible value of G (measured

in terms of its energy) for all possible energy bounded dis-

turbances, for the worst case model uncertainty combination,

and the worst case scenario. This is a very strong result,

particularly because it has theoretical guarantees in terms of

performance and robustness.

In order to simulate the system’s response, the following

disturbance, taken from [3] has been considered: d(t) =
10e−t/100 (see plot in [3]), which corresponds to a meal peak

of 0.5 mmoles/L. The result is presented in Fig. 2 and shows

how the basal level of glucose is reached. In the same figure,

it can be noted that the injected insulin levels are specifically

bounded by 100 mU/min. This is in order to meet practical

saturation constraints imposed by commercial pumps [6].

The controller implementation needs a measurement of the

glucose level, which is considered simultaneously as the out-

put y(t) and as a time-varying parameter ρ(t) of the system.

The dynamics of the controller therefore changes in real-time

according to this parameter ρ(t), i.e. u(t) = K[ρ(t)] ⋆ G(t)
where ⋆ is the convolution operator. The output of the

controller provides the necessary instantaneous insulin level

for the patient. The complexity of this controller is very

reasonable (order 5), and according to the system dynamics,

it can be implemented with commercially available hardware.

In a first stage, this controller could be used as part of a

glucose monitor which provides an indication for the patient

as to how much insulin he needs at any given time. In a

further development stage, it could be used to close the loop

between a glucose monitor and a insulin pump.
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Fig. 1. Robustness analysis: structured singular value for parametric
uncertainties and glucose levels (40, 60, 80, 100, 120) mg/dL.

IV. CONCLUSIONS AND FUTURE RESEARCH

This work has considered several important and practical

issues in the automatic control of glucose levels in blood:
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Fig. 2. Time response of the closed loop system subject to a meal
disturbance.

model uncertainty, time variations, nonlinearities and real-

time implementation. All of them can be handled in an LPV

framework, which guarantees stability and performance and

can be solved (off-line) by convex optimization methods and

implemented (on-line) in a very simple way.

Future research needs to be done with more accurate

models, as the 19th. order one due to Sorensen [4]. In that

case, an LPV model could be attempted by taking the original

model into consideration with an LFT parameter dependency

by using the FBM LPV methodology [13] which may still

be solved by a finite number of LMI computations. Also, an

important issue to be considered are the time delays in insulin

injection and glucose measurement due to subcutaneous

application.

In addition, identification and model invalidation experi-

ments [30] also need to be performed in order to obtain a

more precise description of this complicated phenomena. To

this end, a first stage will be attempted based on a High-

Fidelity simulator (in silico experiments). This may allow to

complete a series of identification, invalidation and control

experiments before turning into in vivo experimentation.
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[24] L. Kovács and B. Kulcsár, “LPV modeling of type i diabetes mellitus,”

in 8th International Symposium of Hungarian Researchers, 2007, pp.
163–173.

[25] F. Bianchi and R. S. Sánchez Peña, “Interpolation for gain scheduled
control with guarantees,” july 2009, submitted to Automatica.

[26] http://www.childrenwithdiabetes.com/continuous.htm, 2010.
[27] http://www.diabetesnet.com/diabetes technology/insulin pump

models.php, 2010.
[28] D. Campos-Delgado and A. Gordillo-Moscoso, “Regulación de glu-
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