

An algebra for OLAP

Bart Kuijpersa,∗ and Alejandro Vaismanb

 aDatabases and Theoretical Computer Science Research Group, UHasselt – Hasselt University and

Transnational University Limburg, Agoralaan, 3590 Diepenbeek, Belgium bInstituto Tecnológico de

Buenos Aires, Buenos Aires, Argentina

Abstract. Online Analytical Processing (OLAP) comprises tools and algorithms that allow querying multidimensional databases.
It is based on the multidimensional model, where data can be seen as a cube, where each cell contains one or more measures
can be aggregated along dimensions. Despite the extensive corpus of work in the field, a standard language for OLAP is still
needed, since there is no well-defined, accepted semantics, for many of the usual OLAP operations. In this paper, we address
this problem, and present a set of operations for manipulating a data cube. We clearly define the semantics of these
operations, and prove that they can be composed, yielding a language powerful enough to express complex OLAP queries. We
express these operations as a sequence of atomic transformations over a fixed multidimensional matrix, whose cells contain
a sequence of measures. Each atomic transformation produces a new measure. When a sequence of transformations defines
an OLAP operation, a flag is produced indicating which cells must be considered as input for the next operation. In this way,
an elegant algebra is defined. Our main contribution, with respect to other similar efforts in the field is that, for the first time,
a formal proof of the correctness of the operations is given, thus providing a clear semantics for them. We believe the present
work will serve as a basis to build more solid practical tools for data analysis.

Keywords: OLAP, data warehousing, algebra, data cube, dimension hierarchy

1. Introduction

Online Analytical Processing (OLAP) [9] comprises a set of tools and algorithms that allow efficiently

querying multidimensional (MD) databases containing large amounts of data, usually called Data

Warehouses (DW). Conceptually, in the MD model, data can be seen as a cube, where each cell contains

one or more measures of interest, that quantify facts. Measure values can be aggregated along

dimensions, which give context to facts. At the logical level, OLAP data are typically organized as a set

of dimension and fact tables. Current database technology allows alphanumerical warehouse data to

be integrated for example, with geographical or social network data, for decision making. In the era of

so-called “Big Data”, the kinds of data that could be handled by data management tools, are likely to

increase in the near future. Moreover, OLAP and Business Intelligence (BI) tools allow to capture,

integrate, manage, and query, different kinds of information. For example, alphanumerical data

coming from a local DW, spatial data (e.g., temperature) represented as rasterized images, and/or

economical data published on the semantic web. This wide variety of data types thus requires a BI user

not only to know some OLAP language (or OLAP graphic tool), but also to deal with spatial data, and

even with SPARQL (the standard query language for the semantic web). Ideally, this user would just

like to deal with what she knows

Correspoding author: Bart Kuijpers, Databases and Theoretical Computer Science Research Group, UHasselt – Hasselt

University and Transnational University Limburg, Agoralaan, Gebouw D, 3590 Diepenbeek, Belgium. E-mail:

bart.kuijpers@uhasselt.be.

well, namely the data cube, using only the classical OLAP operators, like Roll-up, Drill-down, Slice, and

Dice (among other ones), regardless the cube’s underlying data type. Data types should only be

handled at the logical and physical levels, not at the conceptual level. Building on this idea, Ciferri et

al. [2] proposed a conceptual, user-oriented model, independent of technologies like ROLAP (for

Relational OLAP), MOLAP (for Multidimensional OLAP) or HOLAP (for Hybrid OLAP). In this model, the

user only manipulates a data cube. Associated with the model, there is a query language providing

high-level operations over the cube. This language, called Cube Algebra, was sketched informally in the

mentioned work. Extensive examples on the use of Cube Algebra were presented in [?], suggesting that

this idea can lead to a language much more intuitive and simple than MDX [8], the de facto standard

for OLAP. Nevertheless, these works do not give any evidence of the correctness of the languages and

operations proposed, other than examples at various degrees of comprehensiveness. In fact,

surprisingly, and in spite of the extensive corpus of work in the field, a formally-defined reference

language for OLAP is still needed [11]. There is not even a well-defined, accepted semantics, for many

of the usual OLAP operations. We believe that, far for being just a problem of classical OLAP, this

formalization is also needed in current “Big Data” scenarios, where there is a need to efficiently

perform real-time OLAP operations [3], that, of course, must be well defined.

1.1. Contributions

In this paper we address the problem described above. To this end, we:

– introduce a collection of operators that manipulate a data cube, and clearly define their

semantics; and

– prove, formally, that our operators can be composed, yielding a language powerful enough to

express complex queries and cube navigation (“à la OLAP”) paths.

We achieve the above representing the data cube as a fixed d-dimensional matrix, and a set of k

measures, and expressing each OLAP operation as a sequence of atomic transformations. Each

transformation produces a new measure, and, additionally, when a sequence forms an OLAP operation,

a flag that indicates which are the cells that must be considered as input for the next operation. This

formalism allows us to elegantly define an algebra as a collection of operations, whose proof of

correctness we provide in the paper. In this paper we limit ourselves to the most usual operations,

namely slice, dice, roll-up and drill-down, which constitute the core of all practical OLAP tools. We

denote these the classical OLAP operations. This allows us to focus on our main interest, which is, to

prove the feasibility of the approach. Other not-so-usual operations, and operations between two or

more cubes, are left for future work.

The main contribution of our work, with respect to other similar efforts in the field is that, for the

first time, a formal proof to practical problems is given, so the present work will serve as a basis to

build more solid tools for data analysis. As we show in the next section, existing work either lacks of

formalism, or of applicability, and no work of any of these kinds give sound mathematical prove of its

claims.

1.2. Paper organization

The remainder of the paper is organized as follows. In Section 2, we review and discuss related work.

In Section 3, we present our MD data model, on which we base the rest of our work. Section 4 presents

the atomic transformations that we use to build the OLAP operations. In Section 5 we discuss the

classical OLAP operations in terms of the transformations, show how they can be composed to address

complex queries, and give proofs of all of our claims. We conclude in Section ??. Additional proofs are

given in the appendix.

2. Related work

Although the need of an algebra for OLAP has long been acknowledged in the literature (see for

example [11]), just a few works have addressed this problem so far, and in a limited way. Further, most

of the proposals have addressed this issue from a logical point of view, rather than from a conceptual

one. Conceptually, one would like to define an algebra that can be intuitive for typical OLAP users.

These users know how to manipulate and query data cubes. With this idea in mind, Viswanathan and

Schneider [?] proposed what they called a user-centric approach for modeling MD data. As a sequel,

the authors presented a query language based entirely on the abstract data cube metaphor. They

called this language CAL (standing for Cube Analysis Language). CAL includes a Cube Definition

Language (CDL), and a Cube Manipulation Language (CML). Similar ideas were presented in [2], where,

as we said, a Cube Algebra was proposed. Actually, CAL and Cube Algebra suggest similar OLAP

operations. However, and like in all proposals for query languages for OLAP, no formal definition of the

semantics of the operations is presented. Although our work is based on the proposals above, we next

review other approaches to querying MD databases.

The MD model proposed by Gyssens and Lakshmanan [7] defines a data manipulation language that

can express a so-called cube operator. The authors propose an algebra (and an equivalent calculus),

which includes set operations (like selection, projection, Cartesian product), operations for

summarization, and for re-structuring (fold and unfold). This model largely simplifies typical MD models

for OLAP (for example, dimension hierarchies are considered in a very limited way), and the operations

only address simple cases rather than complex, real-world queries.

Along similar lines, Agrawal et al. [1] proposed a data model that supports multiple hierarchies along

each dimension, and the possibility of performing ad-hoc aggregates. They also define a minimal set of

algebraic operators that is composed of the following ones: push and pull, destroy dimension,

restriction (slice and dice), join, and associate. These operations are introduced in an informal way.

In real-world scenarios, the composition of basic operations is usually required (e.g., we would need

to roll-up to a certain level in a dimension hierarchy, and then select a portion of the result). The

proposals above do not completely address this problem. On the contrary, we show that our approach

can be applied to address typical operations composition, since our algebra is closed: all operations

receive a matrix and return a matrix.

Macedo and Oliveira [10] presented an approach that can be considered close to ours, since they

represent MD data as a matrix, with the idea of expressing OLAP operations in linear algebra (LA). The

paper, like in our case, is aimed at filling the theoretical gap in the field. The proposal expresses some

simple OLAP operations, mainly cross tabulations, as a combination of matrix multiplication,

transposition, and a variant of the Kronecker product. However, it is very preliminary, as the authors

acknowledge, and no justification of the approach is provided. Further, as it is, the work is oriented to

Excel spreadsheets rather than to OLAP, and it has yet to be incorporated into a typical MD model for

OLAP.

With a more OLAP-oriented flavor, Vassiliadis [?] presented a classic MD model, which includes the

concepts of dimensions, hierarchies, and cubes. The author also proposes a set of operations using the

notion of base cube, e.g., a cube defined at the finest granularity level. These operations are: level

climbing, packing, function application, projection, navigation, slicing, and dicing. Again, no formal

language is presented. To overcome these drawbacks, Ravat et al. [5] also proposed an OLAP algebra

at the conceptual level. Again, no formal semantics is defined for the algebra presented by the authors.

Stolte et al. [?] introduced Polaris, an interface for exploring large MD databases, based on the Pivot

table paradigm. The tool makes use of a table algebra as a formal mechanism to specify table

configurations. This algebra includes operations allowing performing the union and Cartesian product

of tables, as well as a nesting operation. Again, the proposal lacks of a formal proof of the correctness

of the operations, or a formal definition of their semantics.

Some works have already made use of the cube algebra proposed in [2]. Gómez el al. [6] used cube

algebra to manipulate different kinds of spatial data: discrete spatial data, and continuous fields

implemented in several different ways, like Voronoi diagrams and rasterized data. They implemented

Cube Algebra at a conceptual level, and all the machinery needed to manipulate the heterogeneous

cubes at the logical and physical levels. Similar work, but with semantic web data, is presented in [?].

We envision that, given the “Big Data” wave, applications like these are likely to grow in number and

variety. Thus, the definition of an algebra at the conceptual level (i.e., based on the data cube

metaphor), is clearly needed. Along the same lines, Viswanathan and Schneider [?] extended their

proposal to spatial OLAP.

We remark once more that from all the works discussed above, only CAL and Cube Algebra are the

ones that are defined from a user-centric point of view, at a conceptual level, providing high-level query

operations for the user. For a comprehensive survey, we refer the reader to [2], where a deep study

that shows that none of the existing approaches consider the data cube as a first-class citizen of the

MD model.

3. The OLAP data model

In this section we describe the OLAP data model, based on the MD data cube. We first define the

notion of MD matrix. In our model, the “empty” matrix serves as a placeholder for the measures in the

data cube. We also define the notions of dimension schema (with hierarchies and levels) and dimension

instance (level instance, hierarchy instance and dimension graph). We conclude with a discussion of

ordered domains and the representation of higher-level objects.

3.1. Multidimensional matrix

We next give the definitions of multidimensional matrix schema and instance. Throughout this paper,

d is a natural number, with d > 1, which represents the number of dimensions of a data cube.

Definition 1 (Matrix Schema). A d-dimensional matrix schema is a sequence (D1,D2,...,Dd) of d dimension

names.

Dimension names can be considered to be strings. As illustrated in the following example, the

convention will be that dimension names start with a capital letter.

Example 1. The running example we use throughout the paper, deals with sales information of certain

products, at certain locations, at certain moments in time. For this purpose, we will define a

3dimensional matrix schema (D1,D2,D3) = (Product, Location, Time).

Definition 2 (Matrix Instance). A d-dimensional matrix instance (matrix, for short) over the

ddimensional matrix schema (D1,D2,...,Dd) is the product

dom(D1) × dom(D2) × ··· × dom(Dd),

i = 1,2,...,d, where dom(Di) is a non-empty, finite, ordered set, called the domain, that is associated

with the dimension name Di. For all i = 1,2,...,d, we denote by <, the order that we assume on the

elements of dom(Di). For a1 ∈ dom(D1),a2 ∈ dom(D2),...,ad ∈ dom(Dd), we call the tuple (a1,a2,...,ad), a

cell of the matrix.

The cells of a matrix serve as placeholders for the measures that are contained in the data cube (see

Definition 7 below). Note that, as it is common practice in OLAP, we assumed an order < on the domain.

The role of the order is further discussed in Section 3.4.

As a notational convention, elements of the domains dom(Di) start with a lower case letter, as it is

shown in the following example.

Example 2. For the 3-dimensional matrix schema (D1,D2,D3) = (Product, Location, Time) of Example 1,

the non-empty sets dom(D1) = {lego, brio, apples, oranges}, dom(D2) = {antwerp, brussels, paris,

marseille}, and dom(D3) = {1/1/2014,...,31/1/2014} produce the matrix instance dom(D1) × dom(D2)

× dom(D3).

This matrix is depicted in Fig. 3. The cells of the matrix contain the sales for each combination of

values in the domain. In dom(D2), we have, for instance, the order antwerp < brussels < paris <

marseille. Over the dimension Time, we have the usual temporal order.

3.2. Level instance, hierachy instance and dimension graph

We now define the notions of dimension schema (with hierarchies and levels), and dimension graph

(or dimension instance).

Definition 3 (Dimension Schema, Hierarchy and Level). Let D be a name for a dimension. A dimension

schema σ(D) for D is a lattice, with a unique top-node, called All (which has only incoming edges) and

a unique bottom-node, called Bottom (which has only outgoing edges), such that all maximal-length

paths in the graph go from Bottom to All. Any path from Bottom to All in a dimension schema σ(D) is

called a hierarchy of σ(D). Each node in a hierarchy (i.e., in a dimension schema) is called a level (of

σ(D)).

We remark that a lattice is always a partial order set.

As a notational convention, level names start with a capital letter. Note that the Bottom node is often

renamed, depending on the application, as is illustrated in the following example. This example also

introduces a non-graphical notation for hierarchies.

Example 3. Figure 1 gives examples of dimension schemas σ(Location) and σ(Time) for the dimensions

Location and Time in Example 1.

For the dimension Location, we have Bottom = City, and there is only one hierarchy, which we denote

as

City → Region → Country → All.

The node Region is an example of a level in this hierarchy.

For the dimension Time, we have Bottom = Da, and two hierarchies, namely Day → Month →

Semester → Year → All and Day → Week → All.

We remark that for the dimension Location, we have a linear lattice as a dimension schema. In this

example, this is not the case for the dimension Time.

Definition 4 (Level Instance, Hierachy Instance, Dimension Graph). Let D be a dimension with schema

σ(D), and let ` be a level of σ(D). A level instance of ` is a non-empty, finite set dom(D.`). If ` = All, then

dom(D.All) is the singleton {all}. If ` = Bottom, then dom(D.Bottom) is the the domain of the dimension

D, that is, dom(D) (as in Definition 2).

Fig. 1. Dimension schemas for the dimensions Location, in (a), and Time , in (b).

A dimension graph (or instance) I(σ(D)) over the dimension schema σ(D) is a directed acyclic graph

with node set

[

dom(D.`),
`

where the union is taken over all levels in σ(D). The edge set of this directed acyclic graph is defined

as follows. Let ` and `0 be two levels of σ(D), and let a ∈ dom(D.`) and a0 ∈ dom(D.`0). Then, only if

there is a directed edge from ` to `0 in σ(D), there can be a directed edge in I(σ(D)) from a to a0.

If H is a hierarchy in σ(D), then the hierarchy instance (relative to the dimension instance I(σ(D))) is
the subgraph of I(σ(D)) with nodes from dom(D.`), for ` appearing in H. This subgraph is denoted
IH(σ(D)).

As notational convention, the names of objects in a set dom(D.`) start with a lower case character.

We remark that a hierarchy instance IH(σ(D)) is always a (directed) tree, since a hierarchy is a linear

lattice. We also use the following terminology. If a and b are two nodes in a hierarchy instance IH(σ(D)),

such that (a,b) is in the transitive closure of the edge relation of IH(σ(D)), then we say that a rolls-up

to b and we denote this by ρH(a,b) (or ρ(a,b) if H is clear from the context). The following example

illustrates these concepts.

Example 4. We continue with Example 3, and focus on dimension Location, whose schema σ(Location),

is given in Fig. 1 (a). From Example 2, we have dom(Location) = {antwerp, brussels, paris, marseille},

which is dom(Location.Bottom), or dom(Location.City).

For the levels Region and Country, we have dom(Location.Region) = {flanders, capital, north, south},

and dom(Location.Country) = {belgium, france}, respectively. An example of a dimension instance

I(σ(Location)) is depicted in Fig. 2. This example expresses, for instance, that the city brussels is located

in the region capital which is part of the country belgium, meaning that brussels rolls-up to capital and

to belgium, that is, ρ(brussels, captial) and ρ(brussels, belgium). Note that the dimension instance of

Fig. 2 is indeed a tree.

Fig. 2. An example of a dimension graph (or instance) I(σ(Location)).

In a dimension graph with multiple hierarchies, elements in some levels may be reachable from

elements in the Bottom level, in multiple ways. However, it is important to guarantee that rolling-up in

different ways (i.e., through different paths) gives the same results. This is formalized by the concept

of “sound” dimension graph.

Definition 5 (Sound Dimension Graph). Let I(σ(D)) be a dimension graph (as in Definition 4). We call

this dimension graph sound, if for any level ` in σ(D) and any two hierarchies H1 and H2 that reach `

from the Bottom level and any a ∈ dom (D) and b1,b2 ∈ dom(D.`), we have that ρH1(a,b1) and ρH2(a,b2)

imply that b1 = b2.

In this paper, we assume that dimension graphs are always sound (as specified in Definition 7). Note

that this poses an integrity constraint over the dimension instances. This constraint, together with the

ones implied in the model’s definition, are typical in so-called balanced (or homogeneous) dimensions

[?]. We use this assumption in Property 1, at the end of Section 3.4.

3.3. Multidimensional data cube

In this section we define the concepts of MD data cube schema and instance. Essentially, a data cube

is a matrix in which the cells are filled with measures that are taken from some value domain Γ. For

many applications, Γ will be the set of real or rational numbers. But we may also think of applications

where Γ includes spatial regions or other geometric objects, for instance.

Definition 6 (Data Cube Schema). A d-dimensional data cube schema consists of

– a d-dimensional matrix schema (D1,D2,...,Dd); and

– a hierarchy schema σ(Di) for each dimension Di, with i = 1,2,...,d.

Definition 7 (Data Cube Instance). Let Γ be a non-empty set of “values”. A d-dimensional, k-ary data

cube instance (or data cube, for short) D over the d-dimensional matrix schema (D1,D2,...,Dd) and

hierarchy schemas σ(Di) for Di, for i = 1,2,...,d, with values from Γ, consists of

– a d-dimensional matrix instance over the matrix schema (D1,D2,...,Dd), denoted M(D);

– for each i = 1,2,...,d, a sound dimension graph I(σ(Di)) over σ(Di);

– k measures µ1,µ2,...,µk, which are functions from dom(D1)×dom(D2)×···×dom(Dd) to the value

domain Γ; and

Fig. 3. An example of a data cube with one measure: µ1 = sales.

– a flag ϕ , which is a function from dom(D1) × dom(D2) × ··· × dom(Dd) to the set {0,1}.

In the remainder of this paper we assume that Γ = Q, the set of the rational numbers. For most

applications, this suffices. Also, as a notational convention, we use calligraphic characters, like D, to

represent data cube instances.

The flag ϕ can be considered as a (k+1)-st Boolean measure. The role of ϕ is to indicate which of the

matrix cells are currently “active”. The active cells have a flag value 1 and the others have a flag value

0. When we operate over a data cube, flags are used to indicate the input or output parts of the matrix

of the cube. Typically, in the beginning of the operations, all cells have a flag value of 1. The role of

flags will become more clear in the next sections, when we discuss OLAP transformations and

operations.

Example 5. We build on the previous examples. Figure 3 shows a 3-dimensional 1-ary data cube

instance over the matrix schema (Product, Location, Time), and dimension schemas σ(Product),

σ(Location), and σ(Time) (two of which were given in Example 3), with the set of the rational numbers

as value domain. The matrix cells contain one measure, namely µ1 = sales, which expresses the sales

amount per product, per location and per time instant. Initially, the flag ϕ may be, for instance, 1 for

all matrix cells (not indicated in Fig. 3), telling that all cells of the matrix are currently active.

3.4. Ordered domains and the representation of higher-level objects

In the process of performing OLAP transformations and operations, we may need to store aggregate

information about certain measures up to some level above the Bottom one. We do not want to use

extra space for this in the data cube. Instead, we use the available cells of the original data cube to

store this aggregate information, yielding a more elegant solution, since this allows us to manipulate

always the same cube schema while we perform a sequence of operations over the cube, as we will

see later.

Recall that in Definition 2 we have assumed an order < for the domains dom(Di). We make use of

this order for the representation of high-level objects by Bottom-level objects. The following definition

specifies how this is achieved.

Definition 8. Let D ∈ {D1,D2,...,Dd} be an arbitrary dimension with domain dom(D) = dom(D.Bottom). Let

` be a level of σ(D). An element b ∈ dom(D.`) is represented by the smallest element a ∈ dom(D)

(according to <) for which ρ(a,b) holds. We denote this as rep(b) = a, and say that a represents b.

We remark that, since we assume dimension graphs to be sound, this notion of representation is

well defined, because the smallest element of the bottom level will always reach the same element in

any level, regardless of the path traversed. The following example illustrates the concept of

representation.

Example 6. Continuing with the previous examples, we consider the dimension Location with

dom(Location) = {antwerp, brussels, paris, marseille}. Note that this is actually dom(Location.City). On

this set, we assume the order antwerp < brussels < paris < marseille. For this dimension, we have the

hierarchy City → Region → Country → All, and the dimension instance I(σ(Location)), given in Fig. 2.

At the Bottom = City level, cities represent themselves. At higher levels, regions and countries are

represented by their “first” city in dom(Location) (according to <). Thus, flanders and belgium are

represented by antwerp, france is represented by paris, and south is represented by marseille. Let us

explain further explain this. For the level Region, we have dom(Location.Region) = {flanders, capital,

north, south}. At this level, antwerp represents flanders and marseille represents south, since they are

the first (and, in this case only) domain elements that roll-up to these regions. So, we have rep(flanders)

= antwerp. For the level Country, we have dom(Location.Country) = {belgium, france}. At this level

antwerp represents belgium and paris represents france, since they are the first (but not only) domain

elements that roll-up to these countries. At the level All, antwerp represents all.

We will use the convention above, to encode outputs of OLAP transformations and operations at

different levels. That means, in our running example, if we want to represent an output at the Country

level, we will flag antwerp and paris to represent belgium and france. The idea is to store aggregate

information for higher-level objects in the cells of their Bottom-level representatives. In an output cube

that contains this aggregate information, we have these representatives flagged 1 and other cells

flagged 0. We remark once more, that, in this way, we do not need extra cells in the matrix in order to

represent aggregate information.

Remark 1. In the previous example we can see that, if we aggregate information at the level Region,

with dom(Location.Region) = {flanders, capital, north, south}, then all cities of dom(Location) =

{antwerp, brussels, paris, marseille} become flagged. At this point, it would not be clear if the cube

contains information at the level City or at the level Region. A practical solution would be to keep a log

of the OLAP operations that are performed, making the level of aggregation clear.

The following property shows how the order on the Bottom level induces and order on higher levels.

This property depends on the soundness of the dimension graph. Its proof is straightforward and we

omit it.

Property 1. Let D ∈ {D1,D2,...,Dd} be a dimension of a data cube D and let ` be a level in the dimension

schema σ(D). The order < on dom(D) induces an order (also denoted <) on dom(D.`) as follows. If b1,b2

∈ dom(D.`), then b1 < b2 if and only if rep(b1) < rep(b2).

4. OLAP transformations and operations

A typical OLAP user manipulates a data cube by means of well-known operations. Just to mention

the most popular ones, Roll-Up aggregates measures up to a certain level in a dimension, Drill-Down

disaggregates measures down to a certain level in a dimension, Slice drops a whole dimension, and

Dice keeps only the cells in a cube satisfying a certain Boolean condition. These operations, which we

will formally define later in this paper, actually express queries over the data cube, typically submitted

using some graphic tool, and translated into an underlying query language. The result can then be

displayed in graphic or tabular format. An OLAP query can then be considered as a sequence of these

individual operations, which receive a cube as input, and return a cube as output. For instance, using

our running example, an apparently simple query like “Total sales by region, for regions in Belgium or

France”, is actually expressed as a sequence of operations, whose semantics should be clearly defined,

and which can be applied in different order (with the same result). For example, we can first apply a

Roll-Up to the Country level, and once at that level apply a Dice operation, which keeps the cube cells

corresponding to Belgium or France. Finally, a Drill-Down disaggregates the sales down to the level

Region, returning the desired result. Note that since the sales not occurred in Belgium and France have

been eliminated, this last operation must only consider the remaining members in Country. Thus, the

Drill-Down operation is not a just an undo of the previous Roll-Up, as it is sometimes considered to be.

In day-to-day practice, this problem appears regardless of the querying interface, that is, whether the

operation sequence is submitted as an expression in a query language, or processed during the user’s

navigation through a graphic tool.

In what follows, we regard OLAP operations as the result of sequences of “atomic” OLAP

transformations, which are measure-creating updates to a data cube. First, we give the definition of an

OLAP transformation. Next, we show how these transformations can be combined to define OLAP

operations, and how these OLAP operations can be composed. Finally, we give an overview of our

arsenal of atomic OLAP transformations.

4.1. Introduction to OLAP transformations and operations

An atomic OLAP transformation acts on a data cube instance, by adding a measure to the existing

data cube measures. OLAP operations like the ones informally introduced above are defined, in our

approach, as a sequence of transformations. The process of OLAP transformations starts from a given

input data cube Din. We assume that this original data cube has k given measures µ1,µ2,...,µk (as in

Definition 7). These k measures have a special status in the sense that they are “protected” and can

never be altered (see Section 4.3). However, there is one exception to this protection. These original

measures can be “destroyed” in some cells (see further on and Section 4.2), for instance, as the result

of slice or dice operations, which are destructive by nature. Operations of these types destroy the

content of some matrix cells and remove even the protected measures in it.

Typically, the input-flag ϕ of the original data cube Din is set to 1 in every cell and signals that every

cell of M(Din) is part of the input cube.

Atomic OLAP transformations can be applied to data cubes. They add (or create) new measures to

the sequence of existing measures by adding new measure values in each cell of the data cube’s matrix.

At any moment in this process, we may assume that the data cube D has k + l measures

µ1,µ2,...,µk;τ1,...,τl, where the first k are the original measures of Din, and the last l (with l > 0) ones have

been created subsequently by l OLAP transformations (where τ1,...,τl is the empty sequence of τ’s, for

l = 0). The next OLAP transformation adds a new measure τl+1 to the matrix cells.

We have said that we use OLAP transformations to compute OLAP operations. In this sense, we can

see that many of the measures τ1,τ2,...,τl added by the transformations in a process, may represent the

result of intermediate computations that are not really relevant to the output of an OLAP operation.

We indicate that the computation of an OLAP operation O is finished by creating an m-ary output flag

. This output flag is a Boolean measure, that is created like other measures, via atomic OLAP

transformations. It indicates which of the cells of M(D) should be considered as belonging to the

output of O. It is m-ary in the sense that it keeps the last m created measures τl−m+1,τl−m+2,...,τl and

“trashes” τ1,τ2,...,τl−m. It also removes the previous flag, which it replaces. The initial measures

µ1,µ2,...,µk of the input data cube Din are never removed (unless they are “destroyed” in some cells).

They are “protected” and remain in the cube throughout the process of applying one OLAP operation

after another to Din. So, at any stage, we can use the given measures µ1,µ2,...,µk (except in destroyed

cells).

Summarizing the above, after an OLAP operation of output arity m is completed on some cube D,

the measures in the cells of the output data cube D0 = O(D) are of the form

.

In the previous expression, the underlining indicates the protected status of these measures. After

each OLAP operation, we do a “cleaning” by renaming the unprotected measures with the symbols

τ1,τ2,...,τm and the output measures become

.

The next OLAP operation O0 can then act on D0 and use in its computation all the measures

. When O0 finishes its computation after adding l0 measures

τm+1,τm+2,...,τm+l0 and producing an m0-ary output, the new measures in the cells will look like

.

The last m0 measures before the flag are renamed τ1,τ2,...,τm0, again. In this way, the composition of

OLAP operations should be viewed.

We remark that the dimensions, the hierarchy schemas and instances of D remain unaltered during

the entire OLAP process.

We end this description of our view of OLAP transformations, OLAP operations and their

composition, with a remark on destructors. Destructors are similar to flags, in the sense that they are
computed by some sequence of atomic OLAP transformations and that they are Boolean. A
destructor, optionally, precedes the creation of an output flag. A destructor δ takes the value 1 for
some cells of the matrix of a data cube, and 0 on other cells. When δ is invoked (and activated by the

output flag that follows it) on a data cube D with measures µ1,µ2,...,µk;τ1,τ2,...,τm and flag , it
empties all cells for which the value of the destructor δ is 0 by removing all measures from them, even

the protected ones, thereby effectively “destroying” these cells. This is the only case where the
protected measures are altered. For example, this happens when the OLAP operation is a slice or a
dice. Operations of these types destroy part of the cube and make them inaccessible for further use.
In this context, the output of a destructive operation O looks like

,

in which the destructor precedes the output flag. The effect of the presence of a destructor is the

following. A cell such that δ = 0 is emptied, after which it contains no more measures and flag. For cells

with δ = 1, the sequence of measures ; is transformed to

; which is renamed as µ1,µ2,...,µk;τ1,τ2,...,τm;ϕ; be-

fore the next transformation takes place. This transformation will act, cell per cell, on the matrix of a

cube, with the understanding that it does nothing with emptied cells. That is, no new measure can ever

be added to a destroyed cell.

4.2. OLAP transformations

The following definition specifies how an OLAP transformation acts on a data cube. We then address

in detail each atomic OLAP transformation appearing in this definition.

Definition 9 (OLAP transformation). Let D be a d-dimensional, (k + l)-ary data cube instance with given

(or protected) measures µ1,µ2,...,µk, created measures τ1,...,τl (with l > 0) and flag ϕ over some value

domain Γ. An OLAP transformation T, applied to D, results in the creation of a new measure τl+1 in D.

The transformation T adds the measure τl+1 to non-empty cells of M(D). The measure τl+1 is produced

from

– µ1,µ2,...,µk (in non-empty cells);

– ϕ (in non-empty cells);

– τ1,τ2,...,τl (in non-empty cells) and

– the hierarchy schemas and instances of D and belongs to one of the following classes:

1. Arithmethic transformations (see Definition 11);

2. Boolean transformations (see Definition 12);

3. Selectors (see Definition 13);

4. Counting, sum, and min-max (see Definitions 14 and 19);

5. Grouping (see Definition 18).

An OLAP transformation can also result in the creation of a measure that is an output flag ϕ(m) of arity

m. This should be a measure with a Boolean value. In order to indicate that it is a flag of arity m, we

use the reserved symbol ϕ(m) instead of τl+1. An output flag ϕ(m) may (optionally) be preceded by a

destructor δ (which is created following the same rules as for other measures, but which has a special

status, expressed by the reserved symbol δ). This should be a measure with a Boolean value (to indicate

which cells are destroyed). We use the reserved symbol δ instead of τl+1.

The effect of output flags and destructors was discussed in Section 4.1. We remark that atomic OLAP

transformations update the cells of the matrix M(D) cell per cell and that empty cells of M(D) are

unaffected by transformations.

4.3. OLAP Operations and their composition

Before we give the definition of an OLAP operation, we describe the input to the OLAP process (this

process may involve multiple OLAP operations). Such input is a d-dimensional, k-ary data cube instance

Din, with measures µ1,µ2,...,µk and flag ϕ. These measures are protected in the sense that they remain

the first k measures throughout the entire OLAP process and are never altered or removed unless they

are destroyed in some cells. The cube Din has also a Boolean flag ϕ, which typically has value 1 in all

cells of M(Din), indicating that all the matrix cells are relevant for the input. Thus, the measures of the

input cube Din are denoted as follows:

µ1,µ2,...,µk;ϕ.

After applying a sequence of OLAP operations to Din, we obtain a data cube D, defined next.

Definition 10 (OLAP operation). Let D be a d-dimensional, (k + l)-ary input data cube instance with

given measures µ1,µ2,...,µk, computed measures τ1,...,τl and flag ϕ. The data cube D acts as the input of

an OLAP operation O (of arity m), which consists of a sequence of n consecutive OLAP transformations

that create the additional measures τl+1,...,τl+n, followed by the creation of an m-ary flag (possibly

preceded by a destructor δ). As the result of the creation of , the measures in the cells of the data

cube are changed from µ1,µ2,...,µk;τ1,...,τl;ϕ;τl+1,...,τl+n to

,

which become µ1,µ2,...,µk;τ1,...,τm;ϕ,

after renaming. The output cube D0 = O(D) has the same dimensions, hierarchy schemas and instances

as D, and measures µ1,µ2,...,µk;τ1,...,τm;ϕ.

In the case where is preceded by a destructor δ, the same procedure is followed, except for the

cells of M(D) for which δ takes the value 0. These cells of M(D) are emptied, contain no measures, and

become inaccessible for future transformations or operations.

We remark that the output D0 = O(D) of the OLAP operation O on input D can serve as input to a

next OLAP operation. We later illustrate the composition of two operations in Example 11 and other

examples.

4.4. Atomic OLAP transformations

In this section, we address the five classes of atomic OLAP transformations described in Definition 9.

In the remainder of this section, we use the following notational convention. For a measure α, we write

α(x1,x2,...,xd) to indicate the value of α in the cell (x1,x2,...,xd) ∈ dom(D1) × dom(D2) × ··· × dom(Dd). We

remark that α(x1,x2,...,xd) does not exist for empty cells and it is therefore not considered in

computations (such as sums). Also, we assume that there are protected measures µ1,µ2,...,µk, and

computed measures τ1,...,τl in the non-empty cells and that the next measure we compute is called τl+1.

Throughout this section, we continue with the running example given in Section 3, where we have a

data cube D over the 3-dimensional matrix schema (D1,D2,D3) = (Product, Location, Time), with

measure µ1 = sales, indicating the sales of certain products, at certain locations, at certain moments in

time.

4.4.1. Arithmethic transformations

We start with the first class of transformations in Definition 9, namely, the arithmetic ones.

Definition 11 (Arithmetic transformations). The following creations of a new measure τl+1 are arithmetic

transformations:

1. (Rational constant) τl+1 = α, with α ∈ Q, a rational number.

2. (Sum) τl+1 = α + β, with α,β ∈ {µ1,µ2,...,µk,τ1,τ2,...,τl}.

3. (Product) τl+1 = α · β, with α,β ∈ {µ1,µ2,...,µk,τ1,τ2,...,τl}.

4. (Quotient) τl+1 = α/β, with α,β ∈ {µ1,µ2,...,µk,τ1,τ2,...,τl}. Here, by convention, a/0 := a for all a ∈

Q.

Example 7. If µ1 = sales is the only measure, the following sequence of transformations computes the

10% of the sales:

– τ1 = 0.1 (rational constant); – τ2 = τ1 · µ1 (product).

As another example, to create a Boolean measure that indicates whether a cell contains non-zero

sales, we can write

– τ3 = µ1/µ1 (quotient).

The value of τ3 is 1 if sales > 0 and 0 if sales = 0 (our definition of quotient says that 0/0 = 0).

4.4.2. Boolean transformations

We now address the second class of transformations in Definition 9, the boolean ones.

Definition 12 (Boolean transformations). The following creations of a new measure τl+1 are Boolean

transformations:

1. (Equality test on measures) τl+1 = (α = β), with α,β ∈ {µ1,µ2,...,µk,τ1,τ2,...,τl}. Here, the result of the

comparison (α = β) is a Boolean 1 or 0 (cell per cell in the non-empty cells of the matrix).

2. (Comparison test on measures) τl+1 = (α < β), with α,β ∈ {µ1,µ2,...,µk,τ1,τ2,...,τl}. Here, the result of

the comparison (α < β) is a Boolean 1 or 0 (cell per cell in the non-empty cells of the matrix).

3. (Equality test on levels) For a level ̀ in the dimension schema σ(Di) of dimension Di, and a constant

object c ∈ dom(Di.`), τl+1(x1,x2,...,xd) = (` = c) is an “equality” test. Here, the result of the

comparison (` = c) is a Boolean 1 or 0 (cell per cell in the non-empty cells of the matrix) such that

τl+1(x1,x2,...,xd) is 1 if and only if xi rolls-up to c at level `, that is ρ(xi,c).

4. (Comparison test on levels) For a level ` in the dimension schema σ(Di) of dimension Di, and a

constant object c ∈ dom(Di.`), τl+1(x1,x2,...,xd) = (` <` c) is a “comparison” test. The result of the

comparison (` <` c) is a Boolean 1 or 0 (cell per cell in the non-empty cells of the matrix), such that

τl+1(x1,x2,...,xd) is 1 if and only if xi rolls-up to an object b at level ` for which b <` c. The order <` can

be any order that is defined on level `. The transformation τl+1(x1,x2,...,xd) = (c <` `) is defined

similarly.

We remark that the above equality tests are superfluous since they can be expressed as a Boolean

combination of comparison tests, but we include them for obvious practical reasons. Indeed, a = b is

equivalent to ¬(a < b∨b < a). Finally, note that the comparison test on levels uses the order <`, which

may be the order (derived from) <, but, in practice, it will often be a lexicographical or alphabetical

order, particular to the level domain.

Example 8. We illustrate the use of Boolean transformations by means of a sequence of

transformations that implement a “dice” (see Section 5.2 for more details), that is, an OLAP operation

that returns a portion of the cells in a data cube. The query

DICE(D,sales > 50)

asks for the cells in the matrix of D which contain sales that are higher than 50. Again, we assume that

µ1 = sales is the only available measure in the input cube. So, the measures in the cells are sales;ϕ. This

query can be implemented by the following sequence of transformations:

– τ1 = 49.99 (rational constant);

– τ2 = (τ1 < sales) (comparison test on measures);

– τ3 = µ1 · τ2 (product);

– δ = τ2 (destructor); and – ϕ(1) = τ2 (unary flag)

The measure τ3 contains the sales values larger than or equal to 50 (and a 0 if the sales are lower).

The destructor δ destroys the cells that contain a O. Finally, the flag ϕ(1) selects all cells from the input

as output cells (it will contain a 1 for all such cells that satisfy the condition), and concludes the

DICE(D,sales > 50) operation. The output of this operation is sales;τ3;ϕ(1), which is then renamed to

sales;τ1;ϕ.

4.4.3. Selectors

We now address selector transformations.

Definition 13 (Selector transformations). The following creations of a new measure τl+1 are selector

transformations (or selectors), and their definition is (as always) cell per cell of M(D):

1. (Constant selector) For a level ` in the dimension schema σ(Di) of a dimension Di, and c ∈

dom(Di.`), τl+1 can be a constant-selector for c, denoted σDi.`=c, and it corresponds to the equality

test on levels τl+1(x1,x2,...,xd) = (` = c).

2. (Level selector) For a level ` in the dimension schema σ(Di) of a dimension Di, τl+1 can be a level-

selector for `, denoted by σDi.`, which means that we have, for all xj ∈ dom(Dj) with j 6= i,

1 if a = rep(b)

τl+1(x1,...,xi1,a,xi+1,...,xd) = for some b ∈ dom(Di.`), 0 otherwise.

The constant selector in Definition 13, corresponds to the equality test on levels (see 3. in Definition

12). Here, this transformation appears with a different functionality and we reserve a special notation

for it, and we repeated it. Also, note that the level selector selects all representatives (at the Bottom

level) of objects at level ` of dimension Di.

Example 9. As a second example of a dice operation, we look at the query

DICE(D,Location.City = antwerp), which asks for the sales in the city of antwerp. This operation

is destructive, since it destroys all the information in cells that do not belong to antwerp. This query

can be implemented by the following sequence of transformations:

– τ1 = σLocation.City=antwerp (constant selector);

– τ2 = τ1 · µ1 (product);

– δ = τ1 (destroys the cells outside

antwerp); – ϕ(1) = τ1 (unary flag creation).

The output arity of the query DICE(D,Location.City = antwerp) is 1. The measure τ2 selects the sales

in antwerp only, and the flag ϕ(1) is a selector on the constant antwerp. The destructor δ, that precedes

the flag, empties the cells outside antwerp.

Example 10. As a next example, we look at the query

DICE(D,Location.City = antwerp OR Location.City = brussels),

which asks for the sales in the cities of antwerp and brussels. This query can be implemented by the

following sequence of transformations:

– τ1 = σLocation.City=antwerp (constant selector);

– τ2 = σLocation.City=brussels (constant selector);

– τ3 = τ1 + τ2 (sum);

– τ4 = τ3 · µ1 (product);

– δ = τ3 (destroys the cells outside antwerp and brussels); – ϕ(1) = τ3 (unary flag creation).

The logical connective OR is implemented by the sum in τ3, which can take values 0 or 1, since the

cities antwerp and brussels do not overlap. Thus, this sum implements their union. Then, measure, ϕ4

selects the sales in antwerp and brussels only. The flag ϕ(1) is a selector on the constants antwerp and

brussels and indicates that the cells of both these cities belong to the output. The destructor δ, that

precedes the flag, empties the cells outside antwerp and brussels.

Note that in the two previous examples, the flag and the destructor do the same double work.

However, this will not be the case in most situations, and, in practice, it would not have impact.

Our final example in this section, combines the two previous ones, illustrating a dice operation on a

measure (sales) and a dimension member (brussels).

Example 11. We consider the query

DICE(D,sales > 50 AND Location.City = brussels).

We can implement this by the operation DICE(D,sales > 50) followed by the operation

DICE(D,Location.City = brussels).

Let sales;ϕ be the input measures. The query DICE(D,sales > 50) is the same as in Example 8. The

output of this operation is sales;τ3;ϕ(1), which is then renamed to sales;τ1;ϕ. Next, the query

DICE(D,Location, City = brussels) is implemented as

– τ2 = σLocation.City=brussels (constant selector);

– τ3 = τ2 · µ1 (product);

– δ = τ2 (destroys the cells outside brussels);

– ϕ(1) = τ2 · ϕ (product and unary flag creation).

The output of this operation is sales;τ3;ϕ(1), which we rename to sales;τ1;ϕ.

Note that, of course, the query can also be implemented as DICE(D,Location.City = brussels) followed

by DICE(D,sales > 50).

4.4.4. Counting, sum and min-max

Now, we give transformations for counting different measure values, for summing all values of a

measure in a matrix, and for determining the minimum and maximum value of a measure in a matrix.

Later on, in Definition 19, we extend the counting and min-max transformations to be used together

with grouping ones.

Definition 14 (Counting, sum, and min-max transformations). The creations of a new measure τl+1

defined next, are denoted counting, sum and min-max transformations:

1. (Count-Distinct) τl+1 = #6=(α), with α ∈ {µ1,µ2,...,µk,τ1,τ2,...,τl} counts the number of distinct values

of the measure α in the complete matrix M(D) of the data cube.

2. (d-dimensional sum)

 τl+1 = X α(x1,x2 ...,xd),
(x1,x2,...,xd)∈M(D)

with α ∈ {µ1,µ2,...,µk,τ1,τ2,...,τl}, gives the sum of the measure α over all non-empty matrix cells.

We abbreviate this operation by writing

τl+1 = SUMd(α)

and call this transformation the d-dimensional sum.

3. (Min-Max) τl+1 = min(α), with α ∈ {µ1,µ2,...,µk,τ1,τ2,...,τl}, gives the smallest value of the measure α

in non-empty cells of the matrix M(D). Similarly, τl+1 = max(α), gives the largest value of the

measure α in the matrix M(D).

It is important to remark that the above transformations create the same new measure value for all

cells of the matrix M(D).

We now give two examples of the use of d-dimensional sum. Examples of the use of #6=(α) are given

in the following sections.

Example 12. Let us consider the query “(grand total) average sales”. This is calculated as the total sales

(over all cities, products and dates), divided by the total number of cells in the matrix of the data cube.

This query can be computed as follows, given µ1 = sales:

– τ1 = SUM3(µ1) (this is the grand total of sales, stored in all cells in the matrix);

– τ2 = σLocation.Bottom (this puts a 1 in every cell of the matrix)

– τ3 = SUM3(τ2) (this is the grand total of cells in the matrix);

– τ4 = τ1/τ3 (this is the average);

– ϕ(1) = τ2 (this flag creation selects all cells of the matrix).

The output measures are sales;τ4;ϕ(1), which are renamed sales;τ1;ϕ. This means that the grand total

of average sales is now available in every cell of the matrix of the cube.

Example 13. Now, we look at the query “total sales in antwerp”. This query is asking for the total sales

(over all products and dates) in the city of antwerp. The query can be computed as follows, given µ1 =

sales:

– τ1 = σLocation.City=antwerp (constant selector on antwerp);

– τ2 = τ1 · µ1 (product that selects the sales in antwerp, puts a 0 in all the other ones);

– τ3 = SUM3(τ2) (this is the total sales in antwerp in every cell); – τ4 = τ3 · τ1 (this is the total sales in
antwerp in the cells of antwerp); – ϕ(1) = τ1 (this flag creation selects the cells of antwerp).

The output measures are sales;τ4;ϕ(1), which are renamed sales;τ1;ϕ. Thus, the value of the total of

sales in antwerp is now available in every cell corresponding to antwerp. For the cells outside antwerp

there is a 0. We remark that this example can be modified with a destructor that effectively empties

cells outside antwerp.

Example 14. We look at the query “maximum sales”, which should return all cells containing the

maximum value in the cube. This query can be computed as follows:

– τ1 = max(µ1) (the maximum sales amount);

– τ1
 = (τ1 = µ1) (equality test to determine if a cell reaches the maximum);

– τ3 = τ2 · µ1 (only the maximum sales remain; the others turn 0); – ϕ(1) = σLocation.Bottom (this flag

creation selects all cells).

The output measures are sales;τ3;ϕ(1), which are renamed sales;τ1;ϕ. We remark that this example,

like the previous one, can be modified with a destructor that effectively empties cells with strictly less

than maximum sales.

4.4.5. Grouping

The most common OLAP operations (e.g., roll-up, slice), require grouping data before aggregating

them. For example, typically we will ask queries like “total sales by city”, which requires grouping facts

1 · 7 · 11 = 154. Each cell in A1 × A2 × A3 gets a unique prime product label.

by city, and, for each group, sum all of its sales; or, we can ask for the “total sales by city and day”,

meaning that, for each city-day combination, we sum all the sales. Therefore, we need a transformation

to express “grouping”. We address this issue next.

To deal with grouping, we use the concept of “prime labels” for sets and products of sets. We will

use these labels to identify elements in dimensions and in dimension levels. Before giving the definition

of the grouping transformations, we elaborate on prime labels and product of prime labels. As we

show, these prime labels work in the context of measures that take rational values (as it is often the

case, in practice).

The following definition specifies our infinite supply of prime labels.

Definition 15 (Prime labels).√Let√pn denote the√ √ √n-th prime number,

for√ n > 1. We define the sequence

of prime labels√as follows: 1, 2, 3, 5, 7, 11,..., pn,.... We denote the set of all prime labels

by P.

Now, we define a prime labeling of a finite set and of a Cartesian product of finite sets.

Definition 16 (Prime labeling of sets).√Let A, A1,A2,...,An be (finite) sets. A prime labeling of the

set A is an injective function w : A → P. For a ∈ A, we call w(a) the prime label of a (for the prime

labeling w).

Let I be a subset of {1,2,...,n}, which serves as an index set. A prime product I-labeling of the Cartesian

product A1 × A2 × ··· × An consists of prime labelings wi of the sets Ai, for i ∈ I, that satisfy the condition

that wi(Ai) ∩ wj(Aj) is empty for i,j ∈ I and i =6 j. For (a1,a2,...,an) ∈ A1 ×A2 ×···×An, we call Qi∈I wi(ai) the

prime product I-label of (a1,a2,...,an) (given the prime labelings wi, for i ∈ I). When I is a strict subset of

{1,2,...,n}, we speak about a partial prime product labeling and when I = {1,2,...,n}, we speak about a

full prime product labeling.

 In the sequel, whenever I is clear from the context, we can omit referencing√ I. In practice, to label a

set A1×A2×···×An, we use consecutive, available labels from P to label the sets A1,A2,...,An, as the

following example illustrates. Further on, we apply this labeling to domains of dimensions (possibly at

different levels).

Example 15. Let A1 = {a1,a2,a3},A2 = {b1,b2} and A3 = {c1,c2}. To create a full prime product label for the

elements of A1 × A√2 × A3, we can use the prime labelings√ √ w1√,w2 and

w3, defined as√

follows: w√1(a1) = 1,w1(a2) = 2,w1(a3) = 3, w2(b1) = 5,w2(√b2) = 7, w3(c1) = 11 and w3(c3) = 13. We

remark that we have used consecutive elements of P (with respect to the natural

√order of natural numbers). These labelings give the

tuple√ √ √ (a2,b2,c1) the label w1(a2)·w2(b2)·w3(c1) =

To create a partial prime product label for I = {1,2}, we can use w1 and w2, as given above. In this

case, for any a ∈ A1 and b ∈ A2, the cells (a,b,c1) and (a,b,c2) get the same (partial) prime product

label.

If we view a Cartesian product A1 × A2 × ··· × An as a finite matrix, whose cells contain rationalvalued

measures, we can use prime (product) labelings as follows in the aggregation process. Let us assume

that the cells of A1 ×A2 ×···×An contain rational values of a measure µ and let us denote the value of this

measure in the cell (a1,a2,...,an) by µ(a1,a2,...,an). If we have a full prime product labeling on

A1×A2×···×An, then we can consider the sum over this Cartesian product of the product of the prime

product labels with the value of µ:

X µ(a1,a2,...,an) · w1(a1) · w2(a2)···wn(an). (1)
(a1,a2,...,an)∈A1×A2×···×An

Since each cell of A1 × A2 × ··· × An has a unique prime product label, and since these labels are

rationally independent (as we show in Property 2 below), this sum enables us to retrieve the values

µ(a1,a2,...,an).

If we have a partial prime product labeling on A1×A2×···×An, determined by an index set I, then,

again, we can consider the sum over this Cartesian product of the product of the partial prime product

labels with the value of µ:

 X Y
 µ(a1,a2,...,an) · wi(ai). (2)
 (a1,a2,...,an)∈A1×A2×···×An i∈I

Now, all cells in A1 × A2 × ··· × An above a cell in the projection of A1 × A2 × ··· × An on its components

with indices in I, receive the same prime label. This means that these cells are “grouped” together and

the above sum allows us to retrieve the part of the sum that belongs to each group. To make this

clearer, we can write (†2) as

 , (2a)

where the outer sum ranges over the components of A1 × A2 × ··· × An whose index belongs to I

and where the inner sum ranges over the components of A1 × A2 × ··· × An whose index belongs to

Ic := {1,2,...,n} \ I. The above statement says that (†2) allows us to uniquely determine the sums

X

µ(a1,a2,...,an).
×i∈IcAi

We remark that this last sum is the same for all cells above a cell in the projection of A1×A2×···×An on

the components whose index is in I.

The following definition gives a name to the above sums.

Definition 17 (Prime sums). We call sums of type (†1) full prime sums and sums of type (†2)

partial prime sums (over I).

√

...,The following property can be derived from the well-known fact that the field extension√pn) = {a0 +

a1√2 + a2√3+ ... + an√pn | Qn(over2, Q3,

a0,a1,a2,...,an ∈ Q} has degree 2

and corollaries of this property (see Chapter 8 in [4]). No square root of a prime number is a rational

combination of square roots of other primes.

Property 2. Let n > 1 and let A1 × A2 × ··· × An be a Cartesian product of finite sets. We assume that the

cells (a1,a2,...,an) of this set contain rational values µ(a1,a2,...,an) of a measure µ. Let I be a subset of

{1,2,...,n} and let wi be prime labelings of the sets Ai, for i ∈ I, that form a prime product I-labeling (see

Definition 16). Then we have that the prime sum (†2) uniquely determines the values P
×i∈IcAi

µ(a1,a2,...,an) for all cells of A1 × A2 × ··· × An.

Proof. We give the proof of this property in Appendix ??.

Remark 2. We remark that we use these prime (product) labels in a purely symbolic way without

actually calculating the square root values in them. The square roots are treated as symbolic entities

in the computations.

Given these facts about prime (product) labels, we are ready to define atomic OLAP operations that

allow us to implement grouping. In what follows, we apply these prime labels to the case where the

sets Ai in A1×A2×···×An are domains of dimensions (e.g., at the bottom level), or domains of dimensions

at some level.

Definition 18 (Grouping transformations). The following creations of a new measure τl+1 are grouping

transformations:

1. (Prime labels for groups in one dimension) Let Di be a dimension and ` a level in the dimension

schema σ(Di) of a dimension Di. Let dom(Di.`) = {b1,b2,...,bm} with induced order b1 < b2 < ··· < bm

(see Property 1). If the prime labels w1,w2,...,wk have been used by previous transformations, then

for all j, with j 6= i, and all xj ∈ dom(Dj), we have τl+1(x1,...,xi−1,xi,xi+1,...,xd) = wk+l if ρ(xi,bl). We

denote this transformation by γDi.`(x1,...,xi−1,xi,xi+1,...,xd) or γDi.`, for short, and call the result of such

a transformation a prime labeling.

2. (Projection of a prime sum) If the result of some previous transformation τm is a (full or partial)

prime sum (over the complete matrix M(D)) in which prime (product) labels

wk,wk+1,...,wk+l (computed in a previous transformation τn) are used, then τl+1 is a new measure

that “projects” on the appropriate component from the prime sum, that is, τl+1(x1,x2 ...,xd) = ak+l if

the prime (product) label τn(x1,x2 ...,xd) = wk+l. We denote this projection transformation by τm |τn.

In OLAP practice we often need to compute the number of elements in a dimension level. That

means, we perform an aggregation without operating on measures, but on dimension members. We

use the concepts explained above for doing this. As always, we use sales information for certain

products, at certain locations, at certain time moments.

√

Example 16. Consider the query “total number of cities”, which asks to count the number of cities

appearing at the Bottom level of the dimension Location. We can implement this query using

CountDistinct and prime labels, given µ1 = sales, as follows:

– τ1 = γLocation.City (gives each city a different prime label);

– τ2 = #6=(τ1) (counts the number of different prime labels, e.g., the number of cities, and stores

this number in every cell);

– ϕ(1) = σLocation.Bottom (this flag creation selects all cells of the matrix).

The output measures are sales;τ2;ϕ(1), which are renamed sales;τ1;ϕ. This means that the total number

of cities is now available in every cell of the matrix M(D).

Example 17. We look at the query “total number of countries”, which asks to count the number of

countries appearing at the Country level of the dimension Location. We can implement this query using

Count-Distinct and prime labels, given µ1 = sales, as follows:

– τ1 = γLocation.Country (gives each country a different prime label);

– τ2 = #6=(τ1) (counts the number of different prime labels and thus the number of countries); – ϕ(1)

= σLocation.Bottom (this flag creation selects all cells of the matrix).

The output measures are sales;τ2;ϕ(1), which are renamed sales;τ1;ϕ. This means that the total number

of countries is now available in every cell of the matrix.

Note that, like in the previous example, we are operating on the dimensions, and we are not

aggregating measures, which shows the generality of our approach. The next example goes further into

this issue, since it uses grouping within the same dimension, in order to compute the number of

elements in a child dimension level rolling-up to their corresponding parent element. Thus, we can

express queries like “number of cities per country”, “number of products per category”, and so on.

Example 18 below, uses two prime labels on the dimension Location. One prime labeling is at the

Country level; the second prime labeling is at the City (Bottom) level. This construction fits in the given

prime product labeling concept if we consider A1 = dom(Location.Country) and A2 = dom(Location.City).

Example 18. Consider the query “for each country, give the total number of cities”. This query can be

implemented as follows (we explain the details below):

– τ1 = γLocation.Country (this gives each country a prime label);

– τ2 = γLocation.City (this gives each city a (fresh) prime label);

– τ3 = τ1 · τ2 (this gives each city a product of prime labels);

– τ4 = SUM3(τ3);

– τ5 = γProduct.Bottom (gives each product a different prime label);

– τ6 = #6=(τ5) (counts the number of products – see Example 16); – τ7 = γTime.Bottom (gives each time

moment a different prime label);

– τ8 = #6=(τ7) (counts the number of moments in time – see Example 16);

– τ9 = τ6 · τ8 (is the number of products times the number of time moments);

– τ10 = τ4/τ9 (normalization of the sum);

– τ11 = τ10 |τ2; (projection over the prime labels of city);

– τ12 = SUM3(τ11) (3-dimensional sum);

– τ13 = τ12/τ9 (normalization of the sum);

– τ14 = τ13 |τ1 (projection over the prime labels of country);

– ϕ(1) = σLocation.Bottom (this flag creation selects all cells of the matrix).

We now discuss this example, using the data given in Example 4. Transformation τ1 gives each

country a next available prime label. Since no labels have been used yet,√ belgium gets label√1
and france gets

label 2. Transformation√τ2 gives each city a next available prime label. Since√√ 1

and 2 have been used,√

antwerp gets label 3, brussels gets label 5, √paris gets label√7, and marseille√gets label√ 11.

 Transformation√√ √τ3 gives antwerp the value √3 (i.e.,√ 1√. 3, brussels the value 5(1. 5), paris the

value 14 (2. 7), and marseille the value√ 22√ (2√. 11). If there are 10 products and 100 time√

moments, then τ4 puts the value 10 · 100 · (3 + 5 + 14 + 22) in each cell of the matrix M(D).

Transformations τ6 and τ8 count the number of products and the number of time moments (using

fresh prime labels), and the product of these quantities is computed in√ √ √ √ τ9. In τ10, τ3 is divided
by this product,

putting 3 + 5 + 14 + 22 in every cell of the matrix.

 √ √ √ √

Transformation τ11 is a projection on the prime labels of√ √ √ √ City. Since√ 3√, 5, √7, and√ √11

are the√ prime labels for the cities, and since 3+ 5+ 14+√ 22 = 1· 3+1· 5+ 2· 7+ 2· 11, this will put 1

in the cells of antwerp and brussels and 2 in the cells of paris and marseille. These are the coefficients

of the sum, that are associated with each of the prime labels for the cities (e.g., 1 is

the√ √

respectively√antwerp and brussels). √ coefficient for 3 and 5,

Next, τ12 puts 10 · 100 · (2 · 1 + 2 · 2) in every cell of the cube and τ13 puts 2 · 1 + 2√· 2 in every cell

of the cube. Finally, τ14 projects on the prime labels of countries, which are 1 and 2. This puts a 2 in

every cell of a Belgian city and a 2 in every cell in a French city. This is the result of the query, as the

flag indicates, that is returned in every cell. Now every cell of a city in belgium has the count of 2 cities,

as has every city in france.

4.4.6. Counting and min-max revisited

Now that we know prime (product) labelings, we can give extensions of the counting and min-max

transformations of Definition 14. Here, the counting, the minimum, and the maximum are taken over

cells which share a common prime (product) label.

Definition 19. The following creations of a new measure τl+1 are generalizations of the counting and

min-max transformations:

1. (Count-Distinct) If the result of some previous transformation τm is a prime (product) labeling of

the cells of M(D), then τl+1(x1,x2 ...,xd) = #6= |τm (α), with α ∈ {µ1,µ2,...,µk,τ1,τ2, ...,τl} counts the

number of different values of the measure α in cells of the matrix M(D) that have the same prime

product label as τm(x1,x2 ...,xd).

2. (Min-Max) If the result of some previous transformation τm is a prime (product) labeling of the

cells of M(D), then τl+1(x1,x2 ...,xd) = min |τm (α), with α ∈ {µ1,µ2,...,µk,τ1,τ2,...,τl}, gives the the

smallest value of the measure α in cells of the matrix M(D) that have the same prime product

label as τm(x1,x2 ...,xd). And τl+1(x1,x2 ...,xd) = max |τm (α) is defined similarly.

We remark that when there is only one prime label (for instance, 1) throughout the matrix M(D),

then the above generalization of the counting and min-max transformations correspond to the version

of Definition 14.

5. The classical OLAP operations

In this section, we prove that the classical OLAP operations can be expressed using the OLAP

transformations from Section 4. These classic operations can be combined to express complex

analytical queries. The classical OLAP operations are

– Dice (see Section 5.2);

– Slice (see Section 5.3);

– Slice-and-Dice (see Section 5.4); – Roll-Up (see Section 5.5); and – Drill-Down (see Section 5.5).

Throughout this section, we assume that the input data cube Din has k given measures µ1,µ2,...,µk (as

in Definition 7) and that at some point in the OLAP process this cube is transformed to a cube D, having

measures µ1,µ2,...,µk;τ1,τ2,...,τl;ϕ,

where τ1,τ2,...,τl, with l > 0, are created measures and ϕ is an input/output flag.

5.1. Boolean cell-selection condition

Before we present our study on the OLAP operations, we need to define the notion of a Boolean

cellselection condition. We also give a lemma about its expressiveness that is used throughout Section

5.

Definition 20 (Boolean condition on cells). Let M(D) = dom(D1) × dom(D2) × ··· × dom(Dd) be the matrix

of D. A Boolean condition on the cells of M(D) is a function φ from M(D) to {0,1}. We say that the cells

of M(D) in the set φ−1({1}) are selected by φ.

We say that a Boolean condition φ is transformation-expressible if there is a sequence of OLAP

transformations τ1,τ2,...,τk such that φ(x1,x2,...,xd) = τk(x1,x2,...,xd) for all (x1,x2,...,xd) ∈ M(D).

Lemma 1. If φ,φ1,φ2 are transformation-expressible Boolean conditions on cells, then NOT φ, φ1 AND

φ2 and φ1 OR φ2 are transformation-expressible Boolean conditions on cells.

Proof. We give the proof in Appendix ??.

5.2. Dice

Intuitively, the Dice operation selects the cells in a cube D that satisfy a Boolean condition φ on the

cells. The syntax for this operation is

DICE(D,φ), where φ is a Boolean condition over level values and measures. The resulting cube

has the same dimensionality as the original cube. This operation is analogous to a selection in the

relational algebra. In a data cube, it selects the cells that satisfy the condition φ by flagging them with

a 1 in the output cube. The operation has been already illustrated in Examples 8, 9, 10 and 11, with

queries such as DICE(D,Location.City = antwerp OR Location.City = brussels).

We also allow equality and order constraints on objects at certain levels and in different dimensions,

as illustrated by the example

DICE(D,Location.Country = belgium AND Time.Day > 15/1/2014).

We also consider equality and order constraints over measures, like in the query

DICE(D,sales > 50) of Example 8. Therefore, our approach covers all typical cases in real-world

OLAP [?]. We next formalize the operator’s definition in terms of our transformation language. In the

remainder, we use the term OLAP operation to express a sequence of OLAP transformations.

Definition 21 (Dice). Given a data cube D, the operation DICE(D,φ), selects all cells of the matrix M(D)

that satisfy the Boolean condition φ by giving them a 1 flag in the output. The Boolean condition φ on

the cells of M(D) is a Boolean combination of conditions of the form:

– A selector on a value b at a certain level ` of some dimension Di;

– A comparison condition at some level ` from a dimension schema σ(Di) of a dimension Di of the

cube of the form ` < c or c < `, where c is a constant (at that level `);

– An equality or comparison condition on some measure α of the form α = c, α < c or c < α, where c

is a (rational) constant.

Property 3. Let D be a data cube en let φ be a Boolean condition on the cells of M(D) (as in Definition

21). The operation DICE(D,φ) is expressible as an OLAP operation.

Proof. The proof is given in Appendix ??.

5.3. Slice

Intuitively, the Slice operation takes as input a d-dimensional, k-ary data cube D and a dimension Di

and returns as output SLICE(D,Di), which is a “(d − 1)-dimensional” data cube in which the original

measures µ1,...,µk are replaced by their aggregation (sum) over different values of elements in dom(Di).

In other words, dimension Di is removed from the data cube, and, if this operation is part of a sequence

of OLAP ones, Di will not be visible in the next operations. That means, for instance, that we will not be

able to dice on the levels of the removed dimension. As we will see, the “removal” of dimensions is, in

our approach, implemented by means of the destroyer measure δ. We remark that the aggregation

above is due to the fact that, in order to eliminate a dimension Di, this dimension should have exactly

one element [1], therefore a roll-up (which we explain later in Section 5.5) to the level All in D − i is

performed.

For example, if (D1,D2,D3) = (Product, Location, Time), and we consider

SLICE(D,Location),

then we obtain a cube whose (Product,Time)-cells contain the sums of the given measures for certain

products and times, but summed over all locations (for each time-product combination).

Obviously, in our philosophy, we keep the d-dimensional data cube and store identical aggregate

values for all locations, in the cells above some product-time combination. Next, we destroy all

locations, except the representative for All in the Location dimension. As explained in Example 6,

antwerp represents All and we only keep the cells for antwerp, where we keep the aggregate values.

We formalize this next.

Definition 22 (Slice). Given a data cube D, and one of its dimensions Di, the operation SLICE(D,Di)

“replaces” the measures µ1,µ2,...,µk by their aggregation (sum) µnΣi (for 1 6 n 6 k) as follows:

µnΣi(x1,...,xi−1,xi,xi+1,...,xd) = X µn(x1,...,xi−1,xi,xi+1,...,xd),
xi∈dom(Di)

for all (x1,...,xi−1,xi,xi+1,...,xd) ∈ M(D). Further, the operation SLICE(D,Di) destroys all cells except those of

the representative of All for dimension Di. We abbreviate the above 1-dimensional sum as SUMDi(µn).

Property 4. Let D be a data cube and let Di be one of its dimensions. The operation SLICE(D,Di) is

expressible as an OLAP operation.

Proof. The formal proof of of Property 4 can be found in Appendix ??. Example 19 gives the intuition of

such proof.

Example 19. Consider our running example with dimensions (D1,D2,D3) = (Product, Location, Time) and

measure µ1 = sales, and consider the query

SLICE(D,Location).

This query returns a cube with (product,time)-cells which contain the sums of µ1 for each product-
time combination, over all locations (for that product and that time). At the end, all cells not
belonging to the representative of All in the dimension Location, that is, antwerp, are destroyed.

The query SLICE(D,Location) is the result of the following transformations

– τl+1 = γProduct.Bottom (prime labels on products);

– τl+2 = γTime.Bottom (fresh prime labels on time moments);

– τl+3 = τl+1 · τl+2 (product of the two previous prime labels);

– τl+4 = µ1 · τl+3 (product);

– τl+5 = SUM3(τl+4) (3-dimensional sum);

– τl+6 = τl+5 |τl+3 (projection on prime product labels);

– τl+7 = σLocation.All (selects the representative of All in the dimension Location); – δ = τl+7 (destroys all

cells except the representative of All in dimension Location); – ϕ(1) = σLocation.All (this flag creation
selects the relevant cells of the matrix).

The transformation τl+4 gives each (product,time)-combination a unique prime product label. This

label is multiplied by the sales in each cell. We then make the global sum over M(D) in τl+5. The

transformation τl+6 = τl+5 |τl+3 is the projection over the prime product labels for

(product,time)combinations. This gives each cell above some fixed (product,time)-combination, the

sum of the sales, over all locations, for that (product,time)-combination. All cells of M(D) that do not

belong to antwerp (selected in τl+7), which represents all, are destroyed by δ.

5.4. Slice and dice

A particular case of the Slice operation occurs when the dimension to be removed already contains

a unique value at the bottom level. Then, we can avoid the roll-up to All, and define a new operation,

called Slice-and-Dice. Although this can be seen as a Dice operation followed by a Slice one, in practice,

both operations are usually applied together.

Definition 23. Given a data cube D, one of its dimensions Di and some value a in the domain dom(Di),

the operation SLICE-DICE(D,Di,a) contains all the cells in the matrix M(D) such that the value of the

dimension Di equals a. All other cells are destroyed.

Property 5. Let D be a data cube, Di on of its dimensions en let a ∈ dom(Di). The operation SLICE-

DICE(D,Di,a) is expressible as an OLAP operation.

Proof. The proof is given in Appendix ??.

Example 20. In our running example, the operation SLICE-DICE(D,Location, antwerp) is implemented

by the output flag σLocation.City=antwerp.

5.5. Roll-Up and Drill-Down

We now address two key operations in typical OLAP practice, namely Roll-Up and Drill-Down.

Intuitively, the former aggregates measure values along a dimension up to a certain level. The latter,

disagregates measure values along a dimension, down to a certain level. However, as we already

commented, although at first sight it may appear that Drill-Down is the inverse of Roll-Up, like stated

in [1], this is not necessarily the case, particularly when we are composing several OLAP operations,

and, for example, a Roll-Up is followed by a SLICE or a DICE. In these cases, we cannot just undo the

Roll-Up, but we need to account for the cells that have been eliminated on the way.

More precisely, the Roll-Up operation takes as input a data cube D, a dimension Di and a subpath h

of a hierarchy H over Di, starting in a node `0 and ending in a node `, and returns the aggregation

1294 B. Kuijpers and A. Vaisman / An algebra for OLAP

of the original cube along Di up to level ` for some of the input measures α1,α2,...,αr. Roll-Up uses one

of the following classic SQL aggregation functions, applied to the indicated protected and computed

measures α1,α2,...,αr (selected from µ1,µ2,...,µk;τ1,...,τl;ϕ):

– sum (SUM);

– average (AVG);

– minimum and maximum (MIN and MAX);

– count and count-distinct (COUNT and COUNT-DISTINCT).

We remark that, usually, measures have an associated default aggregation function. The typical

aggregation function for the measure sales, for instance, is SUM.

We denote the above roll-up operation as

ROLL-UP(D,Di,H(`0 → `),{(αi,fi) | i = 1,2,...,r}),

where fi is one of the above aggregation functions that is associated to αi, for i = 1,2,...,r. Since we are

mainly interested in the expressiveness of this operation as a sequence of atomic transformations, we

remark that only the destination node ` in the path h is relevant. Indeed, the result of this roll-up

remains the same if the subpath h is extended to start from the Bottom node of dimension Di. So, we

can abbreviate the above notation to

ROLL-UP(D,Di,H(`),{(αi,fi) | i = 1,2,...,r}),

and assume that the roll-up starts at the Bottom level.

The Drill-down operation takes as input a data cube D, a dimension Di and a subpath h of a hierarchy

H over Di, starting in a node ` and ending in a node `0 (at a lower level in the hierarchy), and returns

the aggregation of the original cube along Di from the bottom level up to level `0. The drill-down uses

the same type of aggregation functions as the roll-up. Again, since we are only interested in the

expressiveness of this operation, we remark that the drill-down operation

DRILL-DOWN(D,Di,H(`0 ← `),{(αi,fi) | i = 1,2,...,r}),

has the same output as ROLL-UP(D,Di,H(`0),{(αi,fi) | i = 1,2,...,r}). Therefore, we can limit the further

discussion in this section to the roll-up.

We remark that, since we assume, by definition, that dimension graphs are sound, we can also omit

reference to the hierarchy H in the above notation and simply write ROLL-UP(D,Di,`,{(αi,fi) | i =

1,2,...,r}) and DRILL-DOWN , for these OLAP operations.

Definition 24 (ROLLUP). Given a data cube D, one of its dimensions Di, and a hierarchy H over Di,

ending in a node `, the operation

ROLL-UP(D,Di,H(`),{(αi,fi) | i = 1,2,...,r})

 B. Kuijpers and A. Vaisman / An algebra for OLAP 1295

computes the aggregation of the measures αi by their aggregation functions fi, for i = 1,2,...,r, as

follows:

αi
fi(x1,...,xi−1,xi,xi+1,...,xd) = fi({αi((x1,...,xi−1,yi,xi+1,...,xd) | yi ∈ dom(Di) and

ρH(yi,b)}),

for all (x1,...,xi−1,xi,xi+1,...,xd) ∈ M(D), for which ρH(yi,b), for some b ∈ dom(Di.`). This roll-up flags all

representative Bottom-level objects for elements of dom(Di.`) as active.

Property 6. Let D be a data cube, let Di be one of its dimensions, and let H be a hierarchy over Di ending

in a node `. Let {(αi,fi) | i = 1,2,...,r} be a set of selected measures (taken from the protected measures

µ1,µ2,...,µk and the computed measures τ1,...,τk of D), with their associated aggregation functions. The

operation ROLL-UP(D,Di,H(`),{(αi,fi) | i = 1,2,...,r}) is expressible as an OLAP operation.

Proof. We give the proof of this property in Appendix ??.

We next illustrate the roll-up implementation, using our running example.

Example 21. In this example we simulate the Roll-Up operation, using prime (product) labels, sums

and projections together with the 3-dimensional sum. We look at the query “total sales per country”.

We use the simplified syntax, only indicating the level to which we roll-up on the Location dimension

(i.e.,

Country). The query

ROLL-UP(D,Location,Country,{(sales,SUM)})

is the result of the following transformations, given the measure µ1 = sales:

1. τ`+1 = γProduct.Bottom (prime labels on products);

2. τ`+2 = γTime.Bottom (prime labels on time moments);

3. τ`+3 = γLocation.Country (prime labels on countries);

4. τ`+4 = τ`+1 · τ`+2 · τ`+3; (prime product label – in one step);

5. τ`+5 = µ1 · τ`+4 (product of labels with sales);

6. τ`+6 = SUM3(τ`+5) (3-dimensional sum);

7. τ`+7 = τ`+5 |τ`+4 (projection on prime product labels); 8. ϕ(1) = σLocation.Country (output flag on country-

representatives).

Transformation τ`+4 gives every product-date-country combination a unique prime product label.

Normally this product takes more steps. Above, we have abbreviated it to one transformation. The

transformation τ`+7 gives the aggregation result, and ϕ(1) is the flag that says that only the cities

antwerp and paris, which represent the level Country, are active in the output (and nothing else of the

original cube).

1296 B. Kuijpers and A. Vaisman / An algebra for OLAP

We continue with another example of a roll-up operation. To avoid redundancy, we only give

highlevel descriptions of its implementation as a sequence of atomic OLAP transformations.

Example 22. Let us consider a rather complex, although usual query in data analysis in real-world

situations: “Average sales for cities that are above the country average”. The query can be answered

using our OLAP transformations as follows:

– Compute the total sale per country (like in Example 13);

– Compute the number of sales per country (see the proof of Property 6);

– Take the quotient of these two values;

– Flag σlocation.Country;

– Compute the total sales over all products and all dates per city;

– Compute the total (non-zero) sales per city;

– Take the quotient of the two previous values;

– Select the cities for which this quotient exceeds the “average sale per country”. – Use this last

Boolean as an output flag.

5.6. The composition of classical OLAP operations

To conclude this section, we remark that the main result of this paper is the proof of the

completeness of an OLAP algebra, composed of the most classical OLAP operations Dice (Section 5.2,

Slice (Section 5.3), Slice-and-Dice (Section 5.4), Roll-Up, and Drill-Down (Section 5.5). This result is

summarized by the following theorem.

Theorem 1. The classical OLAP operations and their composition are expressible by OLAP operations

(that is, as sequences of atomic OLAP transformations).

Proof. The proof of this theorem follows immediately from the properties in this section, where we

have proved that all of these operations can be expressed as a sequence of transformations, whose

correctness we had also proved (see Section 4).

We conclude this section with an example that illustrates the power and generality of our
approach, combining a sequence of OLAP operations, and expressing them as a sequence of OLAP

transformations.

Example 23. Let us consider an OLAP user, who is analyzing sales in different countries and regions.

She wants to analyze and compare sales in the north of Belgium (the Flanders region), and in the south

of France (which we, generically, have denoted south in our running example). She starts navigating

the cube (as we said, indistinctly this can be done through a query language or with a graphic tool),

and first filters the cube, keeping just the cells of the two desired regions. This is done with the

following expression:

 B. Kuijpers and A. Vaisman / An algebra for OLAP 1297

DICE(D,Location.Region = flanders OR Location.Region = south).

As we showed, this can be implemented as a sequence of atomic OLAP transformations. Now the

user has a cube with the cells that do not have been destroyed. Next, within the same navigation

process, she obtains the total sales, in France and Belgium, only considering the desired regions, by

means of:

ROLL-UP(D,Location,Country,{(sales,SUM)}).

This will only consider the valid cells for rolling up. After this, our user only wants to keep the sales

in France (since she is within the same process, she will obviously obtain the sales in the south of

France). Thus, she writes (or “clicks”):

DICE(D,Location.Country = france).

Finally, she wants to go back to the details, one level below in the hierarchy (that is, the sales in the

south of France, the latter being the country she is at, at this stage of her navigation). For this, she

does:

DRILL-DOWN(D,Location,Region,{(sales,SUM)})

In our approach, this will be a roll-up from the bottom level to the Region level, but only considering

the cells that have not been destroyed.

1298 B. Kuijpers and A. Vaisman / An algebra for OLAP

6. Conclusion and discussion

We have presented a formal, mathematical approach, to solve a practical problem, which is, to

provide a formal semantics to a collection of the OLAP operations most frequently used in real-world

practice. Although OLAP is a very popular field in data analytics, this is the first time a formalization

like this is given. The need for this formalization is clear: in a world being flooded by data of different

kinds, users must be provided with tools allowing them to have an abstract “cube view” and cube

manipulation capabilities, regardless of the underlying data types. Without a solid basis and

unambiguous definition of cube operations, the former could not be achieved. We claim that our work

is the first one of this kind, and will serve as a basis to build more robust practical tools to address the

forthcoming challenges in this field.

We have addressed the four core OLAP operations: slice, dice, roll-up, and drill-down. This does not

harm the value of the work. On the contrary, this approach allows us to focus on our main interest,

that is, to study the formal basis of the problem. Our line of work can be extended to address other

kinds of OLAP queries, like queries involving more complex aggregate functions like moving averages,

rankings, and the like. Further, cube combination operations, like drill-across, must be included in the

picture. We believe that our contribution provides a solid basis upon which, a complete OLAP theory

can be built.

Acknowledgments

Alejandro Vaisman was supported by a travel grant from Hasselt University (Korte verblijven–

inkomende mobiliteit, BOF15KV13). He was also partially supported by PICT-2014 Project 0787.

References

[1] R. Agrawal, A. Gupta and S. Sarawagi, Modeling multidimensional databases, In Proceedings of the 15th International
Conference on Data Engineering, (ICDE), Birmingham, UK, 1997, IEEE Computer Society, pp. 232–243.

[2] C. Ciferri, R. Ciferri, L. Gómez, M. Schneider, A. Vaisman and E. Zimányi, Cube algebra: A generic user-centric model

and query language for OLAP cubes, International Journal of Data Warehousing and Mining 9(2) (2013), 39–65.
[3] F. Dehne, Q. Kong, A. Rau-Chaplin, H. Zaboli and R. Zhou, Scalable real-time OLAP on cloud architectures, Journal of

Parallel and Distributed Computing 7980 (2015), 31– 41.
[4] J.-P. Escofier, Galois Theory, volume 204 of Graduate Texts in Mathematics, Springer-Verlag, 2001.
[5] F. Ravat, O. Teste, R. Tournier and G. Zurfluh, Algebraic and graphic languages for OLAP manipulations, International

Journal of Data Warehousing and Mining 4(1) (2008), 17–46.
[6] L. Gómez, S. Gómez and A. Vaisman, A generic data model and query language for spatiotemporal OLAP cube analysis,

In Proceedings of the 15th International Conference on Extending Database Technology, EDBT 2012, Berlin, Germany,
2012, pp. 300–311.

[7] M. Gyssens and L. Lakshmanan, A foundation for multi-dimensional databases, In Proceedings of the 23rd International
Conference on Very Large Data Bases, VLDB, Athens, Greece, 1997, pp. 106–115.

[8] S. Harinath, R. Pihlgren, D.-Y. Lee, J. Sirmon and R. Bruckner, Professional Microsoft SQL Server 2012 Analysis Services
with MDX and DAX, Wrox, 2012.

[9] R. Kimball, The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouse, Wiley, 1996.

[10] H.D. Macedo and J.N. Oliveira, A linear algebra approach to OLAP, Formal Aspects of Computing 27(2) (2015), 283–
307.

[11] O. Romero and A. Abelló, On the need of a reference algebra for OLAP, In Proceedings of the 9th International
Conference on Data Warehousing and Knowledge Discovery, DaWaK’07, Regensburg, Germany, 2007, pp. 99–110.

[12] C. Stolte, D. Tang and P. Hanrahan, Polaris: a system for query, analysis, and visualization of multidimensional
databases, Communications of ACM 51(11) (2008), 75–84.

[13] A. Vaisman and E. Zimányi, Data Warehouse Systems: Design and Implementation, Springer, 2014.
[14] J. Varga, L. Etcheverry, A. Vaisman, O. Romero, T.B. Pedersen and C. Thomsen, Enabling OLAP on statistical linked open

data, In Proceedings of the 32nd International Conference of Data Engineering, (ICDE), Helsinki, Finland, 2016, pp.
1346–1349.

[15] P. Vassiliadis, Modeling multidimesional databases, cubes and cube operations, In Proceedings of the 10th
International Conference on Scientific and Statistical Database Management, (SSDBM), Capri, Italy, 1998, pp. 53–62.

[16] G. Viswanathan and M. Schneider, Bigcube: A metamodel for managing multidimensional data, In ISCA 19th
International Conference on Software Engineeringand Data Engineering (SEDE), San Francisco, CA, USA, 2010, pp. 237–
242.

[17] G. Viswanathan and M. Schneider, On the requirements for user-centric spatial data warehousing and SOLAP, in:
Proceedings of the DASFAA 2011 Workshops, volume 6637 of Lecture Notes in Computer Science, J. Xu, G. Yu, S. Zhou
and R. Unland, eds, Hong Kong, China, Springer, 2011, pp. 144–155.

Appendix A Proof of property 2

We now give the proof of Property 2. We repeat the property here, to facilitate reading.

Property 2. Let n > 1 and let A1 ×A2 ×···×An be a cartesian product of finite sets. We assume that the

cells (a1,a2,...,an) of this set contain rational values µ(a1,a2,...,an) of a measure µ. Let I be a subset of

{1,2,...,n} and let wi be prime labelings of the sets Ai, for i ∈ I, that form a prime product I-labelling

(see Definition 16). Then we have that the prime sum (†2) uniquely determines the values P×i∈IcAi

µ(a1,a2,...,an) for all cells of A1 × A2 × ··· × An.

Proof. First, we assume I contains one element. Without loss of generality, we may assume that I =

{1}. Then the prime sum (over I) is

X µ(a1,a2,...,an) · w1(a1) =
(a1,a2,...,an)∈A1×A2×···×An

 X X

 µ(a1,a2,...,an
) · w1(a1).

 a1∈A1 (a2,...,an)∈A2×···×An

Let us assume this sum is equal to

1300 B. Kuijpers and A. Vaisman / An algebra for OLAP

for some measure µ0 and that there exists a a0 ∈ A1 such that

X 6= X µ0(a0,a2,...,an). µ(a0,a2,...,an)
 (a2,...,an)∈A2×···×An (a2,...,an)∈A2×···×An

Since all µ(a1,a2,...,an) and µ0(a1,a2,...,an) are assumed to be rational numbers, this implies that

w1(a0) is a rational combination of the other labels w1(a1), with a1 ∈ A1 \ {a0}. Since the labels

w
the field extension

1(a1√), with√ a1 ∈√QA1(√, are square roots of different prime numbers, this

leads to a contradiction, since2,√3,...,√pn), for any n, has degree 2n over Q. In other words, the square

roots 2, 3,..., pn (together with 1) are linearly independent over Q (see Chapter 8 in [4]).

When the cardinality of I is strictly larger than 1, we can use a similar argumentation. Then we work

with prime product labels of the form Q
i∈I wi(ai). Because of the restrictions on these products,

imposed by Definition 16 (injectivity of the labelling function per dimension and disjointness of labels
between dimensions), we see that these product labels differ one from the other by at least one prime
factor (under the square root). Therefore, these labels are also linearly independent over Q [4]. This
completes the proof.

Appendix B Proof of lemma 1

Lemma 1. If φ,φ1,φ2 are transformation-expressible Boolean conditions on cells, then NOT φ, φ1 AND

φ2 and φ1 OR φ2 are transformation-expressible Boolean conditions on cells.

Proof. Obviously, a Boolean combination of Boolean conditions is a Boolean condition. Let us assume

that φ, φ1 and φ2 are transformation-expressible by sequences of OLAP transformations that end in

τk, τk1 and τk2, respectively. Then φ1 AND φ2 can be expressed by the transformation τm = τk1 ·τk2, which

is 1 on cells if and only if both φ1 and φ2 give 1 on those cells.

For the negation, we have the following sequence of additional transformations:

– τm = 1 (rational constant);

– τm+1 = −1 (rational constant); – τm+2 = τm+1 · τk (product); and –

τm+3 = τm + τm+2 (sum).

Here, we simulate substraction using the sum. The transformation τm+3 equals τm − τk and turns τk =

0 into 1 and a τk = 1 into 0. So, the transformation τm+3 expresses NOT φ.

Via de Morgan’s law, we can express φ1 OR φ2 using conjunction and negation. An alternative

implementation of the OR is given by τm = τk1 +τk2 (this sum gives 0, 1 or 2); and τm+1 = τm/τm. This last

transformation maps 1 and 2 on 1 and 0 on 0 (in Definition 11, we defined 0/0 to be 0).

Appendix C Proof of property 3

Property 3. Let D be a data cube en let φ be a Boolean condition on the cells of M(D) (as in Definition

21). The operation DICE(D,φ) is expressible as an OLAP operation.

Proof. Since DICE(D,φ) is a cell-selecting operation, it suffices, by Lemma 1, to show that DICE(D,φ) is

expressible by an atomic Boolean cell-selection condition φ (without logical connectives).

We have to consider the three cases of Definition 21.

For the first case, DICE(D,φ) is simply expressed by the selector τl+1 = σDi.`=b, which is the output flag

that indicates the appropriate cells of M(D).

For the second case, if ` is a level from a dimension schema σ(Di) of a dimension Di and c ∈ dom(Di.`)

and φ is of the form ` < c or c < `, then the comparison test on levels τl+1 = (` <` c) (or τl+1 = (c <` `)),

expresses DICE(D,φ). Again, τl+1 specifies the output flag.

For the third case, if α is some measure, then τl+1 = c (rational constant), followed by τl+2 = (α = c),

τl+2 = (α < c) or τl+2 = (α > c) (equality or comparison test on a measure), respectively, express

DICE(D,φ). Once again, τl+2 can serve as the output flag. This concludes the proof.

Appendix D Proof of property 4

Property 4. Let D be a data cube and let Di be one of its dimensions. The operation SLICE(D,Di) is

expressible as an OLAP operation.

Proof. Let D be a data cube, and Di be one of its dimensions. The operation SLICE(D,Di) is expressible

in the OLAP algebra by the following sequence of transformations:

– τl+1 = γD1.Bottom (prime labels on dimension D1); – ...

– τl+1+i−2 = γDi−1.Bottom (prime labels on dimension Di−1);

– τl+1+i−1 = γDi+1.Bottom (prime labels on dimension Di+1); – ...

– τl+1+d−2 = γDd.Bottom (prime labels on dimension Dd);

– τl+1+d−1 = τl+1 · τl+1+1;

– τl+1+d = τl+1+d−1 · τl+1+2; – ...

– τl+1+2d−4 = τl+1+d−1 · τl+1+d−2 (product of all prime labels);

– τl+1+2d−3 = µ1 · τl+1+2d−4 (product of measure with product of all prime labels); – ...

– τl+1+2d+k−4 = µk · τl+1+2d−4 (product of measure with product of all prime labels);

– τl+1+2d+k−3 = SUMd(τl+1+2d−3) (d-dimensional sum); – ...

– τl+1+2d+2k−4 = SUMd(τl+1+2d+k−4) (d-dimensional sum);

– τl+1+2d+2k−3 = τl+1+2d+k−3 |τl+1+2d−4 (projection on product labels); – ...

– τl+1+2d+3k−4 = τl+1+2d+2k−4 |τl+1+2d−4 (projection on product labels);

– τl+1+2d+3k−3 = σDi.All (selects the representative of All for dimension Di);

1302 B. Kuijpers and A. Vaisman / An algebra for OLAP

– δ = τl+1+2d+3k−3 (destroyer);

– ϕ(k) = τl+1+2d+3k−3 (output flag).

Transformations τl+1,...,τl+1+d−2 create (fresh) prime labels for each of the dimensions D1,...,

Di−1,Di+1,...,Dd. Transformation τl+1+2d−4 gives the product of all these prime labels. This means that every

(x1,...,xi−1,xi+1,...,xd) ∈ dom(D1) × ··· × dom(Di−1) × dom(Di+1) × ··· × dom(Dd) has a unique prime product

label, that is shared by all cells above the projected cell (x1,...,xi−1,xi+1,...,xd) in the direction of the

dimension Di. Transformations τl+1+2d−3,..., τl+1+2d+k−4 multiply the measures µ1,µ2,...,µk with the prime

product label. Transformations τl+1+2d+k−3,...,τl+1+2d+2k−4 make partial prime sums of the measures

µ1,µ2,...,µk over the complete matrix M(D). The last k transformations τl+1+2d+2k−3,...,τl+1+2d+3k−4 project

on the primeproduct-labels giving each cell above (x1,...,xi−1,xi+1,...,xd) the sum of the k measures above

it. Finally, the destroyer δ and the output flag ϕ(k) select the representative of All for dimension Di and

make sure that the other cells of M(D) are destroyed. The output, for cells that are not destroyed, is

µ1,µ2,...,µk;τl+1+2d+2k−3,...,τl+1+2d+3k−4;ϕ(k),

which is renamed to

µ1,µ2,...,µk;τ1,...,τk;ϕ.

For 1 6 n 6 k, τn = µnΣi is the desired aggregate value. This concludes the proof.

Appendix E Proof of property 5

Property 5. Let D be a data cube, Di on of its dimensions en let a ∈ dom(Di). The operation SLICE-

DICE(D,Di,a) is expressible as an OLAP operation.

Proof. Let D be a data cube, Di on of its dimensions en let a ∈ dom(Di). The selector σDi.Bottom=a is the

transformation that serves as destroyer and output flag and that expresses SLICE-DICE(D,Di,a). This

concludes the proof.

Appendix F Proof of Property 6

Property 6. Let D be a data cube, let Di be one of its dimensions, and let H be a hierarchy over Di ending

in a node `. Let {(αi,fi) | i = 1,2,...,r} be a set of selected measures (taken from the protected measures

µ1,µ2,...,µk and the computed measures τ1,...,τk of D), with their associated aggregation functions. The

operation ROLL-UP(D,Di,H(`),{(αi,fi) | i = 1,2,...,r}) is expressible as an OLAP operation.

Proof. Let D be a data cube, let Di be one of its dimensions, and let H be a hierarchy over Di ending in

a node `. Let {(αi,fi) | i = 1,2,...,r} be a set of selected measures with their associated aggregation

functions.

We start by remarking that the aggregations of the measures αi by the functions fi, can be computed

consecutively for i = 1,2,...,r. At the end their results are copied as the last r computed measures, and

an output flag of type ϕ(r), which is a selector σDi.`, returns these r aggregation results as output.

Now, it remains to be shown how the SQL aggregation functions SUM, AVG, MIN, MAX, COUNT and

COUNT-DISTINCT can be implemented as sequences of atomic OLAP transformations for an arbitrary

measure α.

(1) SUM: We give a description of the implementation of the SUM by a sequence of atomic OLAP

transformations. Since a detailed description of a similar procedure was given in the proof of

Property 4, we refer to that proof for details.

Here, we first create prime labels γDj.Bottom for all j 6= i and, for dimension Di, prime labels γDi.` at

the level `. Next, we create a measure that is the product of all these prime labels. This prime

product label gives each cell (x1,...,xi−1,yi,xi+1,...,xd) of the matrix a unique label, modulo rolling-up

to the same object at level ` for the dimension Di. This implies that (x1,...,xi−1,yi,xi+1,...,xd) and

(x1,...,xi−1,yi0,xi+1,...,xd), for which there is a b ∈ dom(Di.`) such that ρH(yi,b) and ρH(yi0,b), get the

same prime product label. Then we take the d-dimensional sum of the product of this prime

product label with α. The projection on the prime product label, gives the desired result. That is,

the cells (x1,...,xi−1,yi,xi+1,...,xd) and (x1,...,xi−1,yi0,xi+1,...,xd), for which there is a b ∈ dom(Di.`) such

that ρH(yi,b) and ρH(yi0,b), get the same aggregation (sum) value of α over all objects that roll-

up to b. For a detailed description, we refer to the proof of Property 4 and for an illustration, we

refer to Example 21.

(2) COUNT: Here, we proceed as in the case of SUM, except that, before taking the sum, we do not

multiply the prime product labels with α, but with 1. We can count the cells for which α is

nonzero, by multiplying the prime product labels by the quotient α/α, rather than by 1. We

remark that by the definition of quotient, we know that 0/0 = 0, which implies that the cells with

a zero value for α are not counted.

(3) AVG: The aggregation function AVG can be implemented using the implementation of SUM,

followed by the implementation of COUNT (counting all or all non-zeroes) and then computing

the quotient of these two values.

(4) MIN and MAX: As in the case of SUM, we create prime product labels for all cells of M(D). Let us

call this prime product labels τm. Then we multiply this prime product labels by α, resulting in the

measure τm+1. Next, we apply the generalised form of the maximum (or minimum)

transformation max |τm (τm+1) to obtain the maximum value of α per prime product label.

Similarly, min |τm (τm+1) gives the desired minimal values.

(5) COUNT-DISTINCT: We proceed as in the case of MIN and MAX, but now we obtain the result by

the transformation #6= |τm (τm+1), which is the generalized form of the Count-Distinct. This

concludes the proof.

