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Abstract— The contribution of this paper is a controller-
design oriented model of insulin-glucose dynamics in Type 1
Diabetes Mellitus (T1DM). The novelty of the proposed model
is to more effectively include the time-varying nature, and
also the inter-patient variability, associated with the glucose-
control problem. Importantly, this is achieved in a manner
that straightforwardly facilitates well-known and standard
controller synthesis procedures. In that way, an average Linear
Parameter-Varying (LPV) model that captures the dynamics
from the insulin delivery input to the subcutaneous-glucose
concentration output is constructed based on the Universities
of Virginia (UVA)/Padova metabolic simulator. In addition, a
system-oriented reinterpretation of the classical ad-hoc 1800
rule is applied to adapt the model’s gain.

In order to quantify the effectiveness of this approach, the
ν-gap between this new modeling strategy and the UVA/Padova
model is computed at different glucose levels, together with the
Root Mean Square Error (RMSE) between the glucose deviation
predicted by both models. For comparison purposes, both open-
(RMSE) and closed-loop (ν-gap metric) metrics are also deter-
mined for other control-oriented models previously presented.

From the results, it could be concluded that the proposed
model is more suitable for controller design than the other
control-relevant models, due to the fact that it provides a
better fit and a smaller distance to the UVA/Padova model in a
closed-loop setting. Furthermore, it would allow one to obtain
a LPV controller for both postprandial and overnight control
in a straightforward way, considering its affine dependence on
the glucose level, which is measured in real-time.

Index Terms— Artificial pancreas, insulin-glucose dynamics,
control-oriented model, ν-gap metric.

I. INTRODUCTION

AN Artificial Pancreas (AP) is a system that automat-
ically controls glycemia in Type 1 Diabetes Mellitus
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Fig. 1. Mean DC gain for the adult patients of the distribution version of
the UVA/Padova simulator, linearized at different glucose concentrations.
The mean ± 1 STD values are represented by vertical bars.

amount of in-silico studies, giving an affordable and safe
means of testing glucose controllers. Thus, the use of com-
puter simulation has accelerated the development of AP [5].

The main goal of simulation models is to provide a
blood glucose prediction as close as possible to a real
situation. However, this class of models is not generally
used for controller synthesis, due to its mathematical
complexity. Therefore, simplifications of these models are
generally considered at the controller design phase, because
most of the well established theory of control law design
accommodates only simpler models that are normally
referred to as control-oriented models. Thus, although
control-oriented models have to represent the underlying
dynamics, they are mainly obtained for synthesis purposes
and have a much simpler mathematical formulation.

Another aspect that is worth considering in designing glu-
cose controllers is that most metabolic parameters related to
the insulin-glucose system are not easily identifiable in prac-
tice. Therefore, some tuning based on only a small number
of easily obtainable patient-specific characteristics is recom-
mended for a safe and effective AP [6]. Consequently, a few
works have been focused on such personalization [7]–[11].

One interesting approach to obtain a personalized control-
oriented model is to adapt a low-order model structure
based on a priori patient information. For example, given
the patient’s Total Daily Insulin (TDI), an insulin sensitivity
factor can be obtained using the 1800 rule (1800/TDI) [12].
From the medical point of view, the 1800 rule indicates
the maximum drop in glucose concentration, measured in
mg/dl, after a 1 U injection of rapid-acting insulin. Since
the work in [13], that rule has been used in several studies,
both clinical and in-silico, to tune the gain of a Linear

Control-Oriented Linear Parameter-Varying Model for Glucose Control
in Type 1 Diabetes

(T1DM) patients by infusing an adequate amount of insulin,
according to the measured glucose level. The decision of
how much insulin to infuse is made by a control algorithm. In
general, this algorithm is based on a mathematical model that
is required to suitably describe the insulin-glucose dynamics.
Thus, the model constitutes a key element in the development
of a reliable AP.

Several simulation models have been proposed since the
late 1970s [1]–[4]. They have been used to perform a vast
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Time Invariant (LTI) model to a particular patient [14]–[18].
Nevertheless, the 1800 rule is an empirical rule, and it is not
indicated at which glucose concentration it works best, or
is most appropriate. This is important because, as illustrated
in Fig. 1, a patient’s insulin sensitivity depends, amongst
other factors (see [19], [20]), on the glucose concentration,
meaning that a LTI representation of the insulin-glucose
system is not enough to totally describe it.

Multiple Linear Parameter-Varying (LPV) models have
been proposed in the past [21]–[26]. In [21] and [22], the
Bergman minimal model [1] was considered and transformed
into a quasi-LPV model by an appropriate choice of
parameters. In [23]–[25], the Sorensen compartmental
model [2] was linearized at different points, which were
defined as the vertexes of an affine-LPV model that
covers the original nonlinear one. This model was used as
an uncertainty LTI model set, and an H∞ controller was
designed to control it, hence, the time-varying characteristics
were not exploited. Finally, in [26], an LPV approach using
the Cambridge model [4] was developed.

In this work, the discussion presented in [27] is considered
and adapted to the AP application. There, it is explained that
the use of complex models for synthesis is not necessarily
related to better closed-loop performance. In that sense,
a simple third-order LPV model from the insulin delivery
input to the deviation from the glucose concentration output
is proposed here, and personalized by a system-oriented
reinterpretation of the 1800 rule. Thus, a combination of the
model personalization using a priori patient-specific charac-
teristics with the time-varying description of the dynamics
by means of a LPV system representation, is achieved.
Due to the fact that this modeling strategy is intended for
controller design, the ν-gap metric δν (see [28], [29]) is
employed to quantify the quality of achievable closed-loop
performance afforded by the control-oriented model. Model
identification and tuning are performed using the distribution
version of the UVA/Padova metabolic simulator [30], [31].

The paper is organized as follows. In Section II, we de-
scribe the procedure to obtain the personalized LPV model.
In Section III, we present open- and closed-loop indexes
to quantify the effectiveness of this approach, including
comparisons with other control-oriented models presented in
previous works. Finally, conclusions are drawn in Section IV.

II. METHODS

In order to quantitatively estimate subjects’ insulin
sensitivity, a 1 U insulin bolus was applied to each in-
silico adult of the distribution version of the UVA/Padova
simulator at a large number of different steady-state glucose
concentrations (operation conditions), and the maximum
glucose decrease was captured in each case. The distribution
version of the simulator has 11 adults (one, Adult #11, is an
average patient). Because Adult #007 from the database has
an insulin sensitivity that is not coherent with its TDI, it has
been excluded, leaving 10 subjects for the following analysis.
In Fig. 2, the glucose drop for each patient, and the mean
values excluding Adult #007, are plotted along with the
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Fig. 2. Glucose drop for each in-silico adult (gray lines: Study patients,
red line: Adult #007) and the mean values excluding Adult #007 (blue line)
at different operation conditions after a 1 U insulin bolus. The magenta
dashed line indicates the average value of the 1800 rule.

average value of the 1800 rule. As shown in that figure, Adult
#007 is the patient most sensitive to insulin, despite having a
TDI of 43 U, which is close to the mean TDI dose of around
46 U. It is worth mentioning that the Correction Factor
(CF) implemented in the simulator follows the 1800 rule,
even though it is stated (seemingly erroneously) in [31] that
the simulator’s CF is characterized according to 1700/TDI.

A. Average Model

As shown in Fig. 2, the 1800 rule is only rendered correct
at 235 mg/dl. Hence, for each adult of the T1DM simulator,
a linearized model from the insulin delivery (pmol/min) to
the subcutaneous-glucose concentration deviation (mg/dl) is
calculated at this operation condition. Subsequently one LTI
model, based on the mean of the frequency responses of
each subject’s frequency response, is identified. In order to
obtain a simple low-order system, a grey-box identification
method was performed with the following model structure:

G(s) = k
s+ z

(s+ p1)(s+ p2)(s+ p3)
e−15s. (1)

The identified parameters are k = −1.6788 × 10−5,
z = 0.1501, p1 = 0.0035, p2 = 0.0138, and p3 = 0.0143,
achieving a 98.58% fitting. Note that the structure for model
(1) is similar to the structure of previous control-oriented
models [13], [14], [17]. The reason is that a more effective
model for controller design is sought, but without increasing
its order. In Fig. 3, the Nyquist plots of both the average
frequency response and the identified model are depicted.

The bandwidth (BW) of a system is commonly defined as
the first frequency satisfying -3dB from DC gain. Here, we
use that definition to represent the insulin sensitivity variation
detected in Figs. 1 and 2, by making the BW of the proposed
model (1) vary with subcutaneous-glucose concentration g
[mg/dl] appropriately. In this way, the average BW variation
of the linearized models at different glucose values was
obtained, and fitted with a 88.08% accuracy by the following
continuous, piecewise polynomial function:

BW(g) = aig
3 + big

2 + cig + di (2)
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Fig. 3. Nyquist plots of the mean frequency response of the linearized
models (light-blue) and the identified LTI model (orange).

where:

i =


1 if 110 mg/dl ≤ g
2 if 65 mg/dl ≤ g < 110 mg/dl
3 if 59 mg/dl ≤ g < 65 mg/dl
4 if g < 59 mg/dl.

(3)

In this way, data is adjusted with good accuracy without the
use of a high-order function. Results are illustrated in Fig.
4, and parameter values are given in Table I.

According to Fig. 4, the average BW has a similar shape to
the average DC gain depicted in Fig. 1. For example, in the
region where the absolute value of the gain is larger (between
65 and 80 mg/dl), the BW is lower. Observe that, as shown
in Figs. 1 and 4, there is an abrupt change at 60 mg/dl. The
explanation for that can be found in [31], where the increase
in insulin action when the glucose decreases below a certain
value is modeled by including a blood glucose risk function
in the insulin-dependent utilization description. The risk
function is defined so as to increase when glucose concen-
tration decreases below its basal value (around 120 mg/dl),
and to saturate at a hypoglycemic threshold Gth = 60 mg/dl.

For a fixed value of p1, the DC gain of model (1) is
kz

p1p2p3
. Therefore, if we assume the simplification that

all parameters from the model are invariant, except for
parameter p1, a decrease in the model’s BW is associated
with a decrease in the value of p1, and as a consequence,
an increase in the absolute value of the model’s static gain.

The next step is to characterize the dependence of
parameter p1 on glucose g in order to make the BW of
model (1) coincide with the piecewise function BW(g) for
any given value of g. To this end, for a glucose concentration
g∗, a desired BW w∗ is defined as BW(g∗). Then, parameter

TABLE I
PARAMETER VALUES OF BW(g) OF (2).

i ai bi ci di

1 0 4.5505× 10−8 −2.8536× 10−5 7.5712× 10−3

2 −2.8294× 10−8 7.3020× 10−6 −5.6072× 10−4 1.5967× 10−2

3 0 0 −7.0925× 10−4 4.8702× 10−2

4 0 −6.4804× 10−7 5.6075× 10−5 5.8039× 10−3
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Fig. 4. Piecewise polynomial function BW(g) (orange line), and average
variation of the BW for the in-silico adults linearized at different glucose
values (light-blue line). Vertical lines represent the average BW ± 1 STD.
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Fig. 5. Parameter p1 computed at different values of glucose concentration
g (light-blue), and piecewise polynomial function p1(g) (orange).

p1 is computed so that:∣∣∣∣jw∗z + 1

∣∣∣∣∣∣∣∣jw∗p1
+ 1

∣∣∣∣ ∣∣∣∣jw∗p2
+ 1

∣∣∣∣ ∣∣∣∣jw∗p3
+ 1

∣∣∣∣ = 10−3/20. (4)

Note that 10−3/20 is equivalent to −3 dB expressed in
magnitude units. Parameter p1 was calculated by repeating
this procedure for multiple values of g, and then fitting with
a 97.24% accuracy by the following function:

p1(g) = qig
3 + rig

2 + sig + ti (5)

with i defined as in (3). Results are illustrated in Fig. 5,
and parameter values are given in Table II.

Finally, an average LPV model with the following
state-space representation can be obtained by including the
glucose-varying parameter p1(g) into the model structure (1):

ẋ(t) = A(p1)x(t) +Bu∆(t) (6)
y∆(t) = Cx(t)

TABLE II
PARAMETER VALUES OF p1(g) OF (5).

i qi ri si ti

1 0 9.0580× 10−8 −5.3562× 10−5 1.1357× 10−2

2 −4.2382× 10−8 1.1402× 10−5 −9.1676× 10−4 2.5849× 10−2

3 0 1.7321× 10−4 −2.3080× 10−2 7.7121× 10−1

4 0 −2.9126× 10−6 2.4514× 10−4 8.0865× 10−3
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with

A(p1) =

0 1 0
0 0 1
0 −p2p3 −(p2 + p3)

 (7)

+p1

 0 0 0
0 0 0

−p2p3 −(p2 + p3) −1


B =

[
0 0 1

]T
, C = k

[
z 1 0

]
,

and with u∆(t) = u(t)−uop, and y∆(t) = y(t)−yop being,
respectively, the difference between the insulin delivery input
u(t) and the glucose deviation output y(t) from the operation
point {uop, yop}. Note that model (6) is affine in the
parameter p1(g), and that a delay of 15 min should be added
to the output (see (1)). In addition, it is worth mentioning
that if p1(g) is evaluated at g = 235 mg/dl, it produces
a result (0.0038) that is slightly different from the value
previously obtained with the grey-box identification method
(0.0035). Thus, in order to maintain coherence with the static
gain of the LTI model previously identified, the static gain
of the LTI model resulting from holding parameter p1 fixed
at 0.0038 is consistently adjusted by modifying the value
of parameter k from −1.6788× 10−5 to −1.8244× 10−5.

B. Model Tuning

As mentioned before, the interpatient variability should
be considered in modeling the insulin-glucose dynamics,
and in consequence, the model should be tuned to each
patient. To this end, the following procedure is carried
out. For each in-silico Adult #j, its TDI is selected from
the UVA/Padova simulator database, and defined as TDIj .
Then, the 1800 rule, i.e., 1800/TDIj , indicates the maximum
glucose drop to be reached by the personalized LPV model
when it is excited with a 1 U insulin bolus, starting from
a glucose concentration g of 235 mg/dl. Finally, the tuning

TABLE III
PERSONALIZED GAIN k FOR EACH IN-SILICO ADULT.

Adult #j k × 105 Adult #j k × 105

001 −1.7888 006 −1.0343
002 −1.7451 008 −1.4379
003 −1.4343 009 −2.2024
004 −2.1396 010 −1.5919
005 −1.8650 011 −1.8864
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Fig. 7. Tuning procedure of parameter k for Adult #009. Left: Average
model (light-blue line); nonlinear model (black dashed line); set-point based
on the 1800 rule (red dashed line). Right-top: Absolute error between desired
and actual glucose. Right-bottom: Evolution of parameter k.

method consists in computing a suitable gain k that makes
the model achieve that condition.

An intuitive and simple way to approach this problem is by
means of a control loop, like the one depicted in Fig. 6, where
a discrete Proportional-Integral (PI) controller with transfer-
function 3.5 × 10−7

(
1 + 1

z−1

)
is used to adjust the value

of k. An analytical procedure could also be used for this
same purpose, but has not been explored here. In summary,
the average LPV model at 235 mg/dl is excited with a 1 U
insulin bolus and the minimum of its response is computed.
Then, the operation point g = 235 mg/dl is subtracted from
that value, and the result is compared with the glucose drop
indicated by the 1800 rule for that particular patient. The PI
controller increments (less sensitive model) or decrements
(more sensitive model) the value of parameter k until the rel-
ative error between the set-point (1800/TDIj) and the closed-
loop output (glucose drop) is within the predefined threshold
of 5×10−3. As an example, the process to obtain k for Adult
#009 is illustrated in Fig. 7. Finally, the personalized values
of gain k for all in-silico adults are presented in Table III.

III. RESULTS

A. Open-loop comparison

For each of the 10 virtual adult patients of the distribution
version of the UVA/Padova simulator (see Section II), a 1 U
insulin bolus was applied at different operation conditions to
test (i) the personalized LPV model. A comparison with, (ii)
the average LTI model in (1), and (iii) the model presented in
[13], as well as (iv) and (v), the extensions described in [14]
and [17], respectively, are considered. As an example, in
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Fig. 8. Response to a 1 U insulin bolus starting from 100, 170 and 240
mg/dl for Adult #011, considering models (i) (orange), (ii) (light-blue), (iii)
(green), (iv) (red), (v) (magenta), and the UVA/Padova nonlinear model
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Fig. 9. Normalized RMSE between the time-response of the control-
oriented models (i) (orange), (ii) (light-blue), (iii) (green), (iv) (red), and
(v) (magenta), and the nonlinear UVA/Padova description to a 1 U insulin
bolus at different operation conditions. The continuous lines indicate the
medians, and the red crosses the outliers. The vertical bars are limited by
the 25th and 75th percentiles.

Fig. 8, the response of all those models starting at 100, 170
and 240 mg/dl for Adult #011 (average patient) are depicted.
It can be observed that with 240 mg/dl as an operating
point, the average LTI and the proposed personalized LPV
have similar behavior. Nevertheless, the BW adjustment in
the LPV model provides a much better fit to the original
nonlinear model, when the concentration moves away
from that condition. In Fig. 9, the normalized Root Mean
Square Error (RMSE) between the time-response of each
control-oriented model (i)-(v) and the nonlinear dynamics
is compared, considering as the unit the highest norm. As
shown in that figure, the median value of the normalized
RMSE and its dispersion for all 10 patients at different
operation conditions are illustrated. It is worth noting that
the LPV model has the best fit for most of the glucose
concentration values that were considered. The model in
[14] also presents good performance in regions where,
according to Fig. 2, g does not tend to drop significantly.
This is because that model is less sensitive to insulin than the
others, and, as a consequence, is compensated by an Insulin
Feedback Loop (IFL) when controlled. Instead, the average
LTI model reaches its best performance at large values of g,
due to the fact that it was identified at a high glucose level.
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Fig. 10. ν-gap δν between the UVA/Padova model linearized at different
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B. Closed-Loop Comparison

The comparison of different model representations of a
physical system for simulation purposes is well established,
and has been explored in the previous subsection.
Nevertheless, when the model is intended for controller
design, the comparison is not so obvious. A good model, i.e.,
one that fits adequately a set of experimental data (in this
case a Hi-Fi simulator as the UVA/Padova one), does not
necessarily provide a good model for control design [27]. For
this reason, we have used a measure that indicates whether a
particular model is capable of providing a good closed-loop
performance. This measure is the ν-gap metric δν [28], [29]
that considers the distance between two models according
to their achievable closed-loop performance. The latter is
measured in the sense of an H∞ loop-shaping index as will
be briefly reviewed next. It is worth mentioning that this is
the only distance that measures the closed-loop performance
before a controller is designed, making it particularly
adequate when comparing control-oriented models.

For LTI models, given a controller K and a model P0,
a performance measure/stability margin for the (stable)
closed-loop system (P0,K) is defined in [28] and [29] as:

bP0,K =

∥∥∥∥[P0

I

]
(I −KP0)

−1
[
−K I

]∥∥∥∥−1

∞
. (8)

A larger bP0,K corresponds to a better performance/stability
margin, with bopt = supK bP0,K its optimal value. An
interesting property of the ν-gap is that any controller K
stabilizing P0 with bP0,K > β, also stabilizes the model
set {P : δν(P, P0) ≤ β}. In addition, the difference in the
closed-loop performance of a nominal model P0 and a per-
turbed model P for the same controller K can be quantified
in terms of δν(P, P0), i.e., the smaller δν(P, P0), the closer
their performances (see details in [28], [29]). Here, due to
the fact that the UVA/Padova simulator has been linearized at
different glucose concentrations g, the δν distance between
each linearized model and the personalized LPV description
has been computed as a function of g. For comparison
purposes, the distance between the simulator and models (i)-
(vi), where (vi) is the average LTI model (1) personalized



TABLE IV
MODEL COMPARISON IN TERMS OF THE δν .

Model Average δν Improvement (%)

(i) 0.1803 38.3
(vi) 0.2261 10.3
(ii) 0.2493 0

(iii) 0.3739 -33.3
(v) 0.4619 -46.0

(iv) 0.5087 -51.0

by its gain k using the 1800 rule, is also calculated. This is
illustrated in Fig. 10 where the median value of the ν-gap and
its dispersion for all 10 patients is depicted in each case. Note
that this figure indicates an important improvement in (i), (ii)
and (vi) with respect to the other three models. In addition,
among models (i), (ii) and (vi), the improvement goes from
(ii)→(vi)→(i), being therefore, the tuned LPV model, the
one with the lowest δν . The main differences between them
lie in the glucose region [90, 180] mg/dl and at 50 mg/dl. The
average values, and the relative improvement with respect to
model (ii), are indicated in Table IV.

Finally, note that although model (iv) presents less RMSE
than the other LTI models in several situations according
to Fig. 9, this does not imply that it is better for designing
glucose controllers, as reflected in Table IV.

IV. CONCLUSION

A control-oriented LPV model was formulated. Impor-
tantly, the LPV is affine in the parameter p1. This parameter
is itself a more general function of the glucose level. The
model was compared to previous control-oriented models
in an open-loop fashion, by measuring the RMSE with the
UVA/Padova distribution version simulator. Also a closed-
loop comparison quantified by the ν-gap was made. In both
cases, the personalized LPV model achieved smaller errors,
possibly due to the fact that time-varying dynamics and a de-
tailed interpretation of the well-known 1800 rule are consid-
ered. This anticipates a better means of designing LPV con-
trollers to achieve a higher performance in the T1DM control
problem. The authors are aware that improvements in the ν-
gap are incidental, because the proposed modeling approach
does not explicitly optimize the ν-gap metric. The rigorous
ν-gap optimization may be the object of future research.
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