
INSTITUTO TECNOLÓGICO DE BUENOS AIRES – ITBA

ESCUELA DE INGENIERÍA Y GESTIÓN

ETHEREUM’S SCALABILITY SOLUTIONS
FOR GAMING

Authors: Balaguer, Pedro (Leg. 55795)

Caracciolo Lopez, Juan Franco (Leg. 56382)

Garrigó, Mariano (Leg. 54393)

Tutor: Cortesi, Mariano

A THESIS SUBMITTED FOR THE DEGREE OF

SOFTWARE ENGINEERING

Place: Buenos Aires

Date: December 5, 2019



Contents
Abstract iv

1 Introduction 1
1.1 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Ethereum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Objective 4
2.1 Game concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Ethereum Implementation . . . . . . . . . . . . . . . . . . . . . . . 5

3 Plasma 6
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Plasma Cash vs Plasma Debit . . . . . . . . . . . . . . . . . . . . . 7
3.3 Plasma SideChain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4.1 Deposit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.2 Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6.1 Challenge After . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6.2 Challenge Between . . . . . . . . . . . . . . . . . . . . . . . 20
3.6.3 Challenge Before . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7 Considerations and limitations . . . . . . . . . . . . . . . . . . . . . 22

4 Atomic Swaps 24
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Atomic Swap Transaction . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 The branching history dilema . . . . . . . . . . . . . . . . . . . . . 25
4.4 Secret Revealing Swaps . . . . . . . . . . . . . . . . . . . . . . . . . 27

i



4.5 Secret Revealing Chain . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8 Attempts of attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Force Move Channels 37
5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Turn-Based game . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.2 State-Transitioning game . . . . . . . . . . . . . . . . . . . . 37

5.2 Game Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.2 Force Move Channel . . . . . . . . . . . . . . . . . . . . . . 38
5.2.3 Integration with Plasma . . . . . . . . . . . . . . . . . . . . 39

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.1 Channel Manager . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.2 Channel Structure . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.3 Channel Fundation . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.4 Channel Turn Transition . . . . . . . . . . . . . . . . . . . . 42
5.3.5 Channel Conclusion . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.6 Force Move Challenge . . . . . . . . . . . . . . . . . . . . . 47
5.3.7 Plasma Chain Challenge . . . . . . . . . . . . . . . . . . . . 48

6 Conclusion 52

7 Appendix A - Implementation 54
7.1 Game Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2 Root chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 Side chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.4 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.5 Future improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8 Appendix B 62
8.1 Merkle Tree and Sparse Merkle Tree . . . . . . . . . . . . . . . . . 62

Bibliography 67

ii



List of Figures

3.1 SideChain visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Deposit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Token histories examples . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Example of ExitDatas for different histories . . . . . . . . . . . . . . . 17
3.6 Unchallengeable exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Challenge After . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8 Challenge Between . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9 Unanswerable Challenge Before . . . . . . . . . . . . . . . . . . . . . . 21
3.10 Answered Challenge Before . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Conflicts in branching history . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Operator misbehaving on a swap . . . . . . . . . . . . . . . . . . . . . 28
4.3 Revealing a secret on fraudulent swap . . . . . . . . . . . . . . . . . . . 29
4.4 Atomic Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Creation of SecretRevealingRootHash . . . . . . . . . . . . . . . . . . . 34

5.1 Channel States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Game Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Channel Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 Force Move Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Channel Challenge After . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.1 Merkle Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.2 Merkle Tree inclusion proof . . . . . . . . . . . . . . . . . . . . . . . . 63
8.3 Complete Merkle Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.4 Complete Merkle Tree inclusion proof . . . . . . . . . . . . . . . . . . . 65
8.5 Complete Merkle Tree omission proof . . . . . . . . . . . . . . . . . . . 65
8.6 Sparse Merkle Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

iii



Abstract

Decentralized gaming is one of the newest blockchain related developments
being researched nowadays since scalability solutions are required due to the inherit
confirmation time and cost of blockchains. This project explores two of these and
implements them in a proof-of-concept game. The first scalability solution, Plasma,
allows players to freely send in-game assets to one another. An additional feature
is proposed in which players are also able to trade these assets atomically. The
second scalability solution, Force Move Channels, allows users to do off-chain
computation in a PVP environment while relying in the blockchain for discrepancies.
While these two solutions have their intrinsic limitations, a working prototype is
proposed where users can purchase in-game assets and battle with them using
minimal costs compared to previous Ethereum’s implementations.
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CHAPTER 1. INTRODUCTION

Introduction
Before the concept of Ethereum existed, its author, Vitalik Buterin, was an

avid World of Warcraft player, a popular MMORPG at the time. It was not until
Blizzard, the company behind World of Warcraft, removed a component Vitalik
owned in the game that he realized the issues that centralized services can bring
1. Moving almost a decade to present time, the technology is getting closer to the
idea of decentralized gaming, a platform in which players are complete owners
of their in-game assets and can rest assure that the code being executed is fair for
everyone.

1.1 Blockchain
Historically, when two parties want to make a transaction over the internet, they

appeal to a mediator to act as an intermediary for the operation. The mediator’s
responsibilities involve tasks like keeping record of ownership and validate authentic-
ity of items and participants. However, in order to choose a middleman, first both
parties need to trust it, since it will have complete control over the transaction. This
raises the following question: is there a way of conducting a transaction without an
intermediary and without the need of trust? To answer that question, the concept
of blockchain gets introduced.

The first mention of the notion of blockchain comes from the publication of
Bitcoin’s whitepaper in 2008 [1], where a person, or a group of persons, behind
the pseudonym Satoshi Nakamoto detailed a peer-to-peer electronic cash system for
online payments without intermediaries. The real innovative technology behind this
payment system is what is today known as blockchain.

1https://about.me/vitalik_buterin

1
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CHAPTER 1. INTRODUCTION

Blockchain is a technology where records of transactions are distributed among
a network of computers, called nodes. Transactions are validated and added into
blocks, which are then chained together, hence the name, giving these transactions
a clear chronological order. After a block is created, it is distributed among the
network for the rest of the nodes to validate. When a block is validated by the
majority of the nodes, all the transactions inside it are officially valid, immutable
and sorted in time.

In order to submit blocks, and avoid spamming, members in the network, called
miners, must compete to validate transactions by solving complex coded problems,
where the first to solve it receives a reward. Each time a block is validated, this
problem changes, encouraging the network to move onto the next block and avoid-
ing hoarding of transactions. Additionally, each transaction provides a fee which
is distributed among miners as a reward for maintaining the network valid and secure.

To summarize, blockchains have the following properties:

Decentralization

Rather than having a unique trusted authority that centralizes all the records
and is in charge of all validations, blockchains distribute the information across the
network. In order to forge the blockchain, over 51% of the network processing power
is needed, meaning the cost of achieving such computing power outweighs greatly
the benefits gained from it. This prevents the network from being controlled by a
single entity.

Immutability

Every record in a blockchain is permanent, any attempt to change the history
will be rejected and any node deviating from the consensus will be excluded from
the network.

Transparency

All transactions are recorded and stored in every node and any participant can
see and check any transaction at any time.

2



CHAPTER 1. INTRODUCTION

1.2 Ethereum
Bitcoin pioneered the cryptocurrency world, taking the first steps and gaining

traction because of it. But multiple developers saw further potential in blockchain
and more cryptocurrencies emerged, many of them adding more capabilities to what
Bitcoin offered. One of those blockchains is Ethereum [2].

Ethereum provides a Turing-complete programming language that en-
ables the blockchain to retain a state and execute functions that may change it.
This state is replicated all over the network, and any code executed is executed the
same on every node, transitioning the state machine to the next state. After this,
everyone should end up in the same state, and if a node fails to do so, it is excluded
from the network.

All this capability is allowed by the creation of Smart Contracts that enclose
executable code. Any regular account (pair of private/public key) can create or
interact with these smart contracts. Just as any account, a smart contract also has a
public address, however, it can’t generate new transactions, only can react to them
using its inmutable code.

When a program is executed, it must run on every node on the Ethereum
Virtual Machine (EVM). The EVM has limited stack, volatile memory and
permanent storage as any regular virtual machine does. The key difference is that
the execution of bytecode inside the EVM is limited by the amount of gas provided.
Gas is a fee that the caller of the execution must provide to pay the miners running
the code, and will be consumed by the EVM for each instruction executed. If gas
is completely consumed before reaching the end, then the operation is reverted,
but if there is unused gas at the end of the execution it is returned to the caller
account. Since every node must execute the code, providing gas is essential to
prevent overloads or attacks to the network. Storage also consume gas because of
the same reasoning, since to store anything in the blockchain every node in the
network must store it.

3



CHAPTER 2. OBJECTIVE

Objective

2.1 Game concept
The purpose of this project is to showcase a working prototype of a decentralized

game. CryptoMonBattles is a collectible game where players buy monsters, called
CryptoMons, and then are able to trade and battle with them.

In CryptoMonBattles there are 151 different CryptoMon species to obtain
and collect, however, each CryptoMon instance has an unique set of stats, like
attack power, defense and speed, making each new CryptoMon different from the
previous one, generating scarcity. CryptoMons with better stats will be more valu-
able since they are able to have the upper hand in a battle. Adding this to the ability
to trade and sell CryptoMons, an economy can be created around these monsters.

When two players decide to battle, each one can decide which CryptoMon
to use. Cryptomon’s species define a mechanism close to Rock-Paper-Scissor in
which, for example, a Fire CryptoMon will have an advantage over a Grass one,
but a Grass one will have an advantage over a Water one. This means that no
sole CryptoMon can be better than the rest, as the situation in which they battle
affects its odds of winning.

Once the players agree on two CryptoMons to battle with, a bet is made
and the winner of the battle will be able to reclaim it. This gives CryptoMons
a real-life value as better CryptoMons will make more earnings. The battle
proceeds between the two players, taking turns making decisions, with some level of
randomness involved, until one of the two CryptoMons can’t continue battling,
declaring the surviving CryptoMon the winner.

4
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2.2 Ethereum Implementation
Building this application directly on top of Ethereum’s blockchain is possible

since it provides a Turing-complete programming language, but it would be very
inconvenient and costly. Firstly, for every transaction in the blockchain there is a fee
that must be paid to miners, that means that the more a user makes transactions,
the more money it will pay. These transactions involve purchasing a Cryptomon,
transferring a Cryptomon, trading a Cryptomon with another user, initiating a
battle, making a move in the battle, etc.

Secondly, Ethereum has scaling issues since the blockchain is only capable of
processing 15 transactions per second. This may lead to long confirmation times
and therefore slower response times. These confirmation times can range from 15
seconds to a couple a minutes. When playing a game, waiting for this can get tiring
for players as, in battles consisting of multiple rounds, each move’s confirmation
time will add up to a considerable amount.

For these reasons, the following scalability solutions will be looked into:

Plasma

An off-chain solution for free CryptoMon transfer while keeping the account-
ability of the Ethereum blockchain.

Atomic Swaps

A feature built on top of Plasma to allow it to support the trade of two
CryptoMons between two different users.

Force Move Channels

An off-chain PVP computation system where users can battle against one
another while using Ethereum as a judge of any discrepancies.

5



CHAPTER 3. PLASMA

Plasma

3.1 Introduction
Plasma is one of the early scalability solutions for Ethereum. It was concep-

tualized by Joseph Poon and Vitalik Buterin in 2017 [3]. Even though Plasma
has gone through many iterations since its early concept, the initial idea still holds
true. Plasma as a solution consists of a SideChain implementation operated by a
private user (known as the operator). This operator can be viewed as an untrusty
party, but that should not affect the functionality of Plasma. This SideChain
consists of UTXO-like transactions that are added to a Merkle Tree. As the name
describes Unspent Transaction Outputs means any transaction indicates spending a
previous transaction, which can only be spent once. This new transaction becomes
the latest UTXO waiting to be spent. A chain of these UTXO can be retrieved
to know the history of some funds, and thus, the true and latest owner, as every
transaction can be validated by the signature of the previous owner.

This is true on most blockchains, however, what sets apart a private-owned
blockchain from a decentralized one is the non-forgeability of its history. In a
decentralized blockchain, any particular individual looking to forge the past will
be excluded from the main consensus and not be taken into account, while in a
private operated one, the forgery could be accomplished. For this problem, Plasma
proposes using a decentralized blockchain as a way to provide enforceability for
a private blockchain: By providing the RootHash value of the transactions to
the decentralized blockchain when a block is submitted, the transactions can be
considered as consolidated, and any forgery in a past transaction of the private
chain wouldn’t match with the submitted value at the decentralized one. Also, this

6
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considerably reduces the amount of data submitted to the decentralized blockchain,
while still having its benefits.

3.2 Plasma Cash vs Plasma Debit
Plasma has suffered many changes during its lifespan. Many iterations have

occurred, such as Plasma MVP[4], Plasma Cash[5] and Plasma Debit[6], each
one with increased complexity. While Plasma MVP is an early concept using
UTXOs, Plasma Cash and Plasma Debit are more robust, and the main differ-
ence is that Plasma Cash is limited to transactions of Non-fungible tokens[7], while
Plasma Debit, still at early concept stages, allows the fungeability and merging of
funds.

As this project is focused on the scalability of Ethereum for gaming purposes,
fungeability of tokens is not required. This projects is limited to Non-fungible tokens
as they can represent a wide arrange of assets inside many gaming scenarios. For
this reason, Plasma Cash will be the main focus of the explanation and any future
considerations will be limited to Non-Fungible tokens.

3.3 Plasma SideChain
As explained before, Plasma attempts to use a decentralized blockchain as a

mean of enforceability. The first step would be to have a contract deployed in
Ethereum, known as the Founding Contract. This contract will have many
different tasks to enforce and validate everything happening off-chain. The first func-
tion the contract needs to support is the ability to receive and store RootHashes of
blocks with their respective timestamp. This RootHash will be the result of a Sparse
Merkle Tree (chapter 8) where the leaves are the transactions submitted to the
operator. The collection of these rootHashses will be known as the RootChain.
This results in 2 chains, the SideChain, managed by the operator in a private
manner, and the RootChain which is in charge of storing the RootHashes for future
verification, running on Ethereum.

7
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Interface FoundingContract {

RootChain::Map<BlockNumber, RootHash>

function submitBlock(BlockNumber, RootHash) onlyOwner

function validateInclusion(BlockNumber, slot, Proof)

function deposit(ERC721Token) (section 3.4.1)

function exit(slot, ExitData) (section 3.5)

function challenge(slot, ChallengeData) (section 3.6)

}

Interface Operator {

SideChain::Block[]

function transfer(txBytes, signature) (section 3.4.2)

function getHistory(slot)::Map<BlockNumber, Proof>

function getExitData(slot)::ExitData (section 3.5)

}

Interface Block { Interface Proof {

BlockNumber txBytes //null if no tx in block

RootHash signature //null if no tx in block

txBytes[] MerkleProof

} }

The SideChain is completely controlled by the operator. Decentralization of
the SideChain could be achieved, but would not accomplish much since Plasma
guarantees accountability even in a single node privately operated SideChain. With
the RootHash saved in Ethereum, any user can make a Merkle proof against it to
validate the inclusion of a transaction to a block. Once a RootHash is submitted
there is no going back, as Ethereum can’t be forged. This method comes with a
clear advantage: cost reduction. Submitting a single hash is multiple times cheaper
than submitting many transactions to Ethereum. What Plasma attempts to do
is mitigate costs by grouping and condensing a number of transactions into a single
value.

8
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Figure 3.1: SideChain visualization

3.4 Transactions
The main idea behind Plasma is to have tokens whose history and true owner

can be verified. Since every transaction of a token is backed up by a RootHash on
Ethereum, with the necessary proof, anyone could easily backtrack every single
transaction from the token’s origin to the last unspent transaction, to determine
the owner of that token is. While doing this, invalid transactions can appear, as
the transactions are only checked by the operator who should be treated as an
untrusted party. Nonetheless, thanks to some mechanisms that are explained later,
these invalid transactions can be skipped as if they never happened, and are not
taken into account in a token’s history to determine the owner.

9



CHAPTER 3. PLASMA

3.4.1 Deposit

Plasma offers a way for users to transfer tokens from one to another for free.
However, it has no ability to create tokens. If creation of a token on the SideChain
was allowed, then the operator would have complete control over the generation
of these tokens, and the token intrinsic value would decrease. For this, a token will
always have to be created on Ethereum under the rules of a ERC-721 Non-Fungible
Token[7] contract. This way, tokens are created in a fair known decentralized way
and people can rest assure that no token was created out of this set of rules.

After creating a token on Ethereum, the user would have to deposit it into
the SideChain, to be able to use it on Plasma. A deposit is basically an ERC-721
transfer to the Founding Contract that will start a chain of events (fig. 3.2):

1. After the transfer, the ownership of the token is passed to the Founding
Contract and it remains locked while transactions are being generated on
the SideChain, so that if needed, the true owner can reclaim it at any point.
Since the contract has already defined what can and can’t do with that token,
a mechanism to recover a token is always available (see section 3.5).

2. This deposit will create an identifier (known as the slot) for this token. This
slot is a number up to 264 that has to be unique every time a token is deposited.

3. The Founding Contract generates a new block on the RootChain.The
RootHash of this block will be represented by the hash of the slot and the
number of the block will be the following one to the last submitted block. This
block will be used as the first UTXO transaction of the slot. Since these types
of transactions are generated out-of-nowhere, it makes sense they can only be
generated directly in Ethereum.

4. When the block is generated on the RootChain, an event is emitted and
listened by the operator. The operator now makes notice of this slot and a
deposit block is saved on the SideChain for future validations.

10
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Figure 3.2: Deposit

3.4.2 Transfer

Besides deposit blocks, the rest of the blocks are generated by the operator.
The RootHashes of these blocks are submitted to the RootChain to be considered
valid. These block numbers increase making steps of 1000, so that every non-deposit
block is a multiple of 1000, and any deposit block is not. This makes it easier
since whenever a deposit block is generated, it is simply added to the list of blocks,
without the fear that another block with the same blockNumber was already created
in the SideChain due to some race condition.

The main transactions of these blocks are transfers. A transfer from an owner
to a recipient of a specific slot can be represented by the following structure:

11
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Slot : The slot number of the token to be transfered

BlockSpent :
The block number of the last unspent transaction,

where the owner received the slot

recipient : The Ethereum address of the recipient of this transfer

A transfer consists of the following events (fig. 3.3):

1. The owner signs a message to the operator indicating the attempt of transfer.
This message is an RLP-encoded[2, Appendix B] array of bytes determined by
the following structure:

TX = RLP ([slot, blockSpent, receiver])

2. The operator validates the message received and proceeds to add the transfer
to a queue of transactions.

3. When the operator decides to submit a block, a set of transactions are
selected to be included in it. The RootHash of a Sparse Merkle Tree is
calculated, where the leaf of the tree are the transactions added to the block.

4. The operator creates a block in the SideChain, saving its transactions
and its RootHash. Then submits the RootHash with the blockNumber to the
RootChain

5. The RootChain stores this RootHash as a new block and now everyone is
able to validate all the submitted transactions against it using a Merkle Proof,
the hash of the transaction and the signature. The transaction’s hash is simply
the keecak[8] output of the transaction’s bytes.

12
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Figure 3.3: Transfer

For a transfer transaction to be valid, the following conditions must occur:

• There must be a valid transaction of the slot on blockSpent.

• The tx hash must be signed by the receiver of the slot in the blockSpent.

• The tx must be added in the slot position of the Sparse Merkle Tree.

• There must not be another valid transaction between blockSpent and this
transaction’s current block for the slot.

One key feature is the requirement for a transaction to be included inside the
number slot leaf of the Sparse Merkle Tree. This forces that only one transaction
of a slot per block can be valid, as two transactions could not share the same leaf.
This also allows users to check if a certain block contains no transaction for a certain
slot. If a Merkle proof can be done against Hash(null) in a certain slot, no
transaction spending that slot was added to that block. This is useful as one of
the requirements for a valid transaction involves having no previous transaction
that spends that block. Then, an easy validation could be done by checking the
Merkle Proof with each block between the blockSpent and the current block against
Hash(null) at that slot. With these conditions, and the required proof, any slot’s
owner can be determined with irrefutable proof.

13
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Figure 3.4: Token histories examples

3.5 Exit
Up to this point, is easy to see how Plasma can be a great way to economize

transaction fees. With grouped and condensed transactions, the operator is only
charged by submitting one RootHash value for any amount of transactions in a
block. The operator could then monetize in some other way the necessary funds
for maintaining this chain, and have transfers be free for every user. However, the
token is locked in the Founding Contract and that creates a need for a mechanism
that allows the true owner to retrieve it. Even if there is a fullproof way of validating
a slot’s history (fig. 3.4) and true owner, since the operator is an untrusted party,
there is no guarantee that transfers are not going to be censored by it, rendering

14
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the user’s ability to transfer its slot invalid. The same problem can be found if the
operator refuses to provide the necessary proof for a slot’s history, as no-one but
the true owner can know for sure who the last owner of the slot is. For this case, a
method to return the token to Ethereum when needed is provided.

An Exit of a slot is the process that a token has to go trough in order to
leave the Plasma chain and be freed into Ethereum. At the end of it, the token
corresponding to that slot is transferred to the true owner, leaving the lock and
becoming available for any other Ethereum-related uses. Since the slot’s owner
could have changed during its lifetime in the SideChain, only the latest true owner
should be able to exit the token.

For this a challenge period is defined, since Ethereum has no way of knowing
who the true owner is as it only contains RootHashes. Making it go through a
complete slot’s history would defeat the purpose of Plasma, for this reason at first,
the RootChain will believe any user wanting to exit any slot. However, during a
7-day period, any other user has the ability to challenge (all challenge types are
detailed in section 3.6) this statement with the necessary proof. If the challenge is
successful, the exit is cancelled, if not, the token is released to the user after the
period has expired.

The process starts as follows: User A is interested in exiting a slot. Directly
against Ethereum, A calls one of the following functions on the Founding Con-
tract to set that slot’s state to exit and start the challenge period:

(a) If the user claims no transactions where made on the SideChain, then start-
DepositExit should be called. This function will validate that the msg.sender
of the call is the same as the user that deposited the token in the first place.
After that, the slot’s state is set to exiting and the challenge period starts.

function startDepositExit(uint64 slot)

external payable isBonded isState(slot, State.NOT_EXITING);
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(b) If the user claims at least one transaction was made on the SideChain, then
startExit should be called. This function’s parameters, also known as the
ExitData (fig. 3.5), are a little more complex, and are broken down as follows:

function startExit(

uint64 slot,

bytes calldata prevTxBytes,

bytes calldata exitingTxBytes,

bytes calldata prevTxInclProof,

bytes calldata exitingTxInclProof,

bytes calldata signature,

uint256[2] calldata blocks

) external payable isBonded isState(slot, State.NOT_EXITING);



slot : The slot to be exited

prevTxBytes : The previous-to-last transaction of the slot

exitingTxBytes : The last transaction of the slot

prevTxInclProof : The previous-to-last transaction’s Merkle proof

exitingTxInclProof : The last transaction’s Merkle proof

signature : The last transaction’s signature

blocks : The number of the 2 last transactions’ blocks

With the given proof, the Founding Contract is able to check that both
transactions were added to the RootChain and that the receiver of prevTx signed
exitingTx. It also does some more basic checks like that the slot is the same on
both transactions. Since the operator can’t be trusted, each user should save their
slots’ histories to be able to create an ExitData when needed.

Both of these function calls must be accompanied with a Bond. This bond is a
determined value that will be locked in the Founding Contract. If no challenges
are generated during the 7-day period, then the bond is returned to the owner with
the token. If there is a challenge however, the bond is lost and is credited to the
challenger as a bounty. This helps dissuade any fraudulent actor to try to exit
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another user’s slot, since if challenged, the bond will be lost, with nothing gained.

Figure 3.5: Example of ExitDatas for different histories

In summary, to exit a slot a user has to:

1. Use either startDepositExit or startExit, with its corresponding ExitData,
and provide a bond.

2. The slot is blocked in an exiting state until either the challenge period
ends or a challenge is successfully sumbitted.

17



CHAPTER 3. PLASMA

3. After the challenge period ends, the user will gain ownership of the token
in Ethereum and the bond will be retrieved. If a successful challenge occur
before that time, the exit is cancelled and the bond is given to the challenger.

3.6 Challenges
Challenges are a key factor of Plasma. Without challenges, anyone could reclaim

any slot. A challenge is a proof that the exitor of a slot is lying about its ownership
and it can be done by anyone wanting to reclaim the bond. If the exitor is the true
last owner and the ExitData is correct, no challenge will succeed against it.

Figure 3.6: Unchallengeable exit

However, under any fraudulent scenario, there is at least one challenge that will
succeed. The challenges can be classified as follows:

3.6.1 Challenge After

A Challenge After prevents a user from trying to exit an already spent trans-
action (fig. 3.7).

function challengeAfter(

uint64 slot,

bytes calldata txBytes,

bytes calldata proof,

bytes calldata signature,

uint256 blockNumber

) external isState(slot, State.EXITING);
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slot : The slot being exited

txBytes : The transaction spending the exiting transaction

proof : The transaction’s Merkle proof

signature : The transaction’s signature

blockNumber : The transaction’s block

If a transaction that spends the exiting block exists, anyone can provide it to
the Founding Contract and reclaim the bond, canceling the exit.

Figure 3.7: Challenge After
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3.6.2 Challenge Between

A Challenge Between prevents a user from trying to exit a double spend
(fig. 3.8). If a transaction that happened before the exiting transaction exists,
and it spends the prevTransaction’s block, then the operator allowed a double
spend. This double spend means the exitingTx is invalid, and the exit is canceled,
providing the bond to the challenger.

function challengeBetween(

uint64 slot,

bytes calldata txBytes,

bytes calldata proof,

bytes calldata signature,

uint256 blockNumber

) external isState(slot, State.EXITING);



slot : The slot being exited

txBytes : The transaction spending the prevTransaction

proof : The transaction’s Merkle proof

signature : The transaction’s signature

blockNumber : The transaction’s block

Figure 3.8: Challenge Between
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3.6.3 Challenge Before

A Challenge before is the most complex challenge as it requires interaction
between the exitor and the challenger. To begin, the challenger exhibits an old
transaction, claiming this to be the true last transaciton (for example, in fig. 3.9,
the transfer in from D to E in block 5000). This exhibit is also bonded, to dissuade
fraudulent actors to attempt erroneous challenges. If the exitor is not able to provide
a transaction that spends this exhibited transaction in the 7-day period, then there
is an irregularity in the slot’s history, and the exitor is not the true owner of the
slot. The exit is cancelled after the period ends and the challenger is rewarded with
the exit bond.

function challengeBefore(

uint64 slot,

bytes calldata txBytes,

bytes calldata proof,

uint256 blockNumber

) external payable isBonded isState(slot, State.EXITING);

slot : The slot being exited

txBytes : The tx claimed to be the slot’s last tx, previous to the exitingTx

proof : The transaction’s Merkle proof

blockNumber : The transaction’s block

Figure 3.9: Unanswerable Challenge Before

However, if the challenge is issued with a valid transaction in the slot’s history,
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it can be answered so that the exit continues and the challenge bond is credited
to the responder (fig. 3.10).

function respondChallengeBefore(

uint64 slot,

bytes32 challengingTxHash,

uint256 respondingBlockNumber,

bytes calldata respondingTransaction,

bytes calldata proof,

bytes calldata signature

) external;

Many challenges before can be queued against an exit, and they are removed
from the queue as are answered. If at least one of them stays when the window
ends, then the oldest challenge is the one credited with the exiting bond. This
prevents someone from making an unlawful challenge before and answering it just
as the challenge window finishes. If all the challenges were answered, then the
exit is finalized as usual and the token is released.

Figure 3.10: Answered Challenge Before

3.7 Considerations and limitations
Plasma is under no conditions a full-proof solution for Ethereum and it has

its clear downsides. Plasma works under the presumption that a check against the
RootChain is done at least once a week for unlawful exits. Although the operator
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is the most interested party in having the SideChain work as intended and also
has the full history of every slot, then it will probably be the first challenger to any
unlawful exits.

Some issues start appearing as the trust to the operator diminishes. Even
though a token will never be able to be stolen, for this to be avoided, the user with
the token must be connected to Ethereum at least once a week. Moreover, the
user must store all the slot’s history to be able to challenge an exit. These two
tasks are not easy to achieve for day-to-day users, however, the fact that it can be
done is a big deterrant for anyone trying to cheat the system.

Another issue is regarding the cost of depositing and exiting a token. A deposit’s
cost is a simple transaction, however, an exit’s cost is not only the computational
issue, but also the bond a user has to freeze for a week and the time the token has
to wait until the user can recover it. If the operator misbehaves allowing an invalid
transaction to go through, the user has to exit the slot or else that transaction can
then be used as a challenge before in the future. There are some proposals on
how to punish the operator if an invalid transaction is committed, however due to
scope issues, they were not investigated in this project.

This comes to the realization that, if the operator misbehaves in some way,
then some of the incentives to have tokens deposited on the plasma chain are lost,
and a mass exit of the slots for users may start. As a starting point for a scalability
solution is a good step in the right direction, but there is still a long way until it
becomes more robust.
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Atomic Swaps

4.1 Introduction
Once a Plasma Chain is working and being used, one of the key features

missing is the ability to swap slots between users. Transferring slots is great as a
starting point, however when expecting something in return, that can’t be validated
by the transaction under these initial conditions. This limits the situations in which
a slot transfer could be used, as there must be some other mechanism outside the
side-chain to validate an equal exchange of goods or services. This is no problem in
blockchains such as Bitcoin, since money exchange is viewed as a "pay first - receive
good and services after" transaction in the world. But if a market place of sorts is
to be implemented, there has to be a way to validate both ends of the agreement.

4.2 Atomic Swap Transaction
The basic idea of an atomic swap is a set of transactions between A and B where

A’s slot must change ownership to B if, and only if, B’s slot changes ownership to
A. For retro-compatibility and simplification purposes, the new swap transactions
should be compatible with previous definitions of Plasma’s transactions, only
varying in its encoding and validation. This means the ExitData can be viewed
as TxBytes, ProofBytes and Signature. Moreover, it must maintain the core
attributes of a Plasma transaction: They must both spend a previous block and
have the ability be spent by a future block.
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4.3 The branching history dilema
One of the key aspects of Plasma is history validation. Before receiving

a slot, to consider it as a valid transaction, the user must first validate the true
ownership of that slot. The history must be validated as explained before: The
inclusion and omission of transactions for each block must be checked for that slot
to be considered valid. This task, while still big enough for day-to-day purposes,
remains O(n) time complexity regarding the blocks mined since the token’s deposit.
For Plasma to be feasible, this O(n) complexity can’t increase.

However, taking a look at the initial definition, an atomic swap should be ren-
dered invalid if the ownership of the slots did not change. Let say A is swapping
its token 1 with B’s token 2, however, B is not the true owner of token 2, as it was
forged by the operator or a transaction spending token 2 was already committed.
Then, if a swap is created, that swap is considered invalid, as the true owner of
token 2 can challenge the exit. This case is illustrated in figure 4.1, where B swaps
token 2 with token 3 supposedly owned by C, but really owned by D. If B tries to
exit to token 3, then D would be able to challenge it.

Following the previous example, if now B tries to transfer token 1 (which is
an invalid transfer since the swap was invalidated), the receiver must now check
token 1 ’s history. Token 1 ’s history appears to be normal, however, if the receiver
proceeds to check whether the swap was valid or not, he now must check all of token
2 ’s history as well, determining now that token 2 ’s history is invalid, thus the swap
was invalidated, thus B is not the owner of token 1.

It is easy to see then how this history validation can fall under a O(2n) com-
plexity as swaps generate branching factors in which the receiver must also verify
the swapping slot. If those slots had swaps, it has to also verify those swapping
slots, so long and so forth. This is not acceptable for Plasma since the history
validation is one of the founding blocks of the concept, and keeping it under a
reasonable computable time is crucial for its success.
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Figure 4.1: Conflicts in branching history26
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4.4 Secret Revealing Swaps
The next logical step is to rely the validation of every swap to the interested

parties. If one of the interested users fails to validate a history before using a swap,
is no one but that user’s fault, and the swap should be valid for one of the parts.
This completely removes the issue with branching history, as when validating a swap,
the other slot’s history is not taken into account for that slot’s validity. This way
if A and B swap token 1 and token 2 respectively, and token 2 is forged, since A
accepted the swap without validating token 2 ’s history, A now looses the ownership
of token 1 while not getting anything in return, since the true owner of token 2 can
always challenge an exit.

However, under these conditions, there is a situation in which a user can validate
a history, accept the swap, and still find itself under the loosing end of the agreement
(fig. 4.2). Continuing with the example, A’s token 1 is being traded with B’s token
2. A validates token 2 ’s history and up to that time, B is the true owner of it. A
and B proceed to sign a swap and send it to the operator. Before including the
swap to the chain, the operator, after it has received the swap, decides to commit
a transfer of token 2 from B to C, signed by B. If this transfer is committed before
the swap, then C is the new owner of token 2 and the token 2 ’s part of the swap is
invalid, since B is no longer the true owner when the swap is submitted. However,
token 1 ’s part of the swap is still valid, thus resolving in C keeping token 2 and B
receiving token 1, all due to timing decided at the end on the operator, with no way
for A to prevent this from happening.

To avoid this, and keep the lineal history, a commit-reveal mechanism is pro-
posed[9]. Cryptography has been using commit-reveal mechanism for a long time to
get around this kind of situations. The basic idea of it is: The user A generates a
random secret, keeping it safe from being revealed. Provides the interested party of
the commit the hash output of that secret. After the commit is accepted by every
party, the secret can be revealed to seal the deal, if the secret is not revealed, the
transactions is invalid.
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Figure 4.2: Operator misbehaving on a swap

This concept can be tied to a swap transaction to avoid the issue with history
changing in between the submission to the operator and the commit it makes
to the RootChain. With this, a secret can be embedded into the swap until it is
committed to the side-chain. Once committed, the users are free to then validate
the other party’s slot up until the committed block. If the history validation
is correct, then the secret can be revealed. The swap is only considered valid if both
secrets are revealed withing a day of the submission of the block. If an alteration
to the history is tried to be sneaked in before the swap is committed the user will
notice it, thus never revealing the secret, and letting the swap expire after a day.

If the user fails to validate the history after the swap was committed, and still
reveals the secret, then his token is lost with nothing in return, as the true owner
of the slot that the user received can challenge an exit, but this is only because of
the user’s fault. This method maintains the history lineal as a token’s validity only
depends on its previous transactions.
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Figure 4.3: Revealing a secret on fraudulent swap
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4.5 Secret Revealing Chain
The Secret Revealing Chain is a collection of blocks, just like the RootHashes

of the RootChain that are also saved in the Founding Contract. Unlike the
RootChain, this new chain has no restrictions on the order of the submissions
or the interval between them. The only restriction is that a block with the same
blockNumber must have been submitted to the RootChain within the day for the
submission. The contents of this chain are also RootHashes of Spare Merkle Trees,
however unlike the RootChain, the leafs of these trees are not transactions, but
rather secrets.

Interface FoundingContract {

SecretRevealingRootChain::Map<BlockNumber, RootHash>

function submitSecretRevealingBlock(BlockNumber, RootHash) onlyOwner

}

Interface Operator {

SecretRevealingSideChain::Map<BlockNumber, (slot, secret)[]>

function swap(swapTxBytes, signature) (section 4.6)

function revealSecret(slot, BlockNumber, secret)

}

Interface SwapProof: Proof {

inTxBytes (section 4.6)

signature,

AtomicProof, (section 4.7)

SecretA,

SecretB

}

For every swap of slot N and slot M in the block B in the RootChain, there
should be one secret in the Nth position and another on the Mth position of the
Sparse Merkle Tree whose RootHash is submitted on the Bth Secret Revealing
Block. These secrets must match, after hashing them, with the secret hashes
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submitted in the swap. This way, whenever any amount of swaps are condensed into
one RootHash, the same amount of secrets are condensed into another RootHash,
preventing the operator from having to submit multiple secrets at a time.

This block is limited to a day after the original RootChain block was submitted
so in case a user wants to cancel a swap, it will expire after a day. Otherwise, there
would be no way to be sure if a swap is invalid or will become valid when reveling a
token history.

4.6 Implementation
Let A and B be the parties interested in the swap of their respectives slots located
in SlotA and SlotB.

Let SecretA and SecretB be a random 32-bytes number for each respective party,
secured from being discovered until revealed.

Let HashSA and HashSB defined as:

HashSA = Keccak256(SecretA)

HashSB = Keccak256(SecretB)

Let TxA and TxB be the transaction components for each party defined as:

TxA = RLP ([slotA, blockspentA, HashSA, B, slotB])

TxB = RLP ([slotB, blockspentB, HashSB, A, slotA])

Let HashA and HashB be the keecak output of these bytes.

let SignA and SignB the signature proof of each party defined as:

SignA = signECDSA(HashA, PkA)

SignB = signECDSA(HashB, PkB)
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Figure 4.4: Atomic Swap
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As show in the figure 4.4, the process to swap two tokens between A and B is
the following:

1. Both parties send to the operator the transaction component and the signature
announcing an intent of swap. The operator must verify their correctness, and
wait for when it possesses both swap components. If both transactions are not
submitted in a reasonable time frame, the operator is free to remove them from
the queue.

2. When both of the transactions are received, then their hashes are added to the
Sparse Merkle Tree of a block, each hash in their corresponding slot. The
RootHash of the block is then submitted to the RootChain.

3. There is now an intermediate proof that the operator must provide to the users
for them to check that both hashes are added to the RootChain correctly. Also the
intermediate txBytes (inTxBytes) have to be provided so the users can check
the opposing hash was generated correctly. Any party will only need one of the
intermediate txBytes to be able to validate the counterpart against the RootChain.

inTxBytesA = RLP ([slotA, blockspentA, HashSA, B, slotB, blockspentB, HashSB, A, signB])
inTxBytesB = RLP ([slotB, blockspentB, HashSB, A, slotA, blockspentA, HashSA, B, signA])

4. Once both transactions are verified by the respective parts, then the parts proceed
to reveal the secret to the operator. The operator has a 1 day period to submit a
SecretRevealing RootHash for the corresponding block. After that, the contract
will not accept any new SecretRevealing RootHash for that block and the swap will
be invalid. Once the SecretRevealing RootHash is submitted, the transaction is
considered valid.

A SecretRevealing RootHash of block X is the RootHash of a Sparse Merkle
Tree (SMT) with the same depth as the original SMT, but where the leaf S correspond
to the secretS of the slotS in an atomic swap added in the block X. This tree will be
called SecretRevealingMerkleTree of Block X (SRMT(X)) (fig. 4.5).
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Figure 4.5: Creation of SecretRevealingRootHash

SecretRevealing RootHash of Block X = RootHash(SRMT(X))

SRTM(X) = Sparse Merkle Tree with each leaf S:

LeafS =


Hash(null) Leaf S of SMT of Block X is not an Atomic-Swap

SecretS Leaf S of SMT of Block X is an Atomic-Swap

4.7 Validation
In order for an atomic swap be validated, the following values must be provided:

TxBytesA = RLP ([slotA, blockspentA, SecretA, B, slotB, blockspentB, SecretB, A, SignB])

AtomicProofA = RLP ([proofInclA, proofInclB, proofInclSecretA, proofInclSecretB])
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SignA = ECDSASign(HashA, PkA)

BlockNumber = BlockNumber which included the swap

With these values, the following criteria must be met:

• The SecretRevealing RootHash has been commited

• HashSA = Keecak(SecretA)

• HashSB = Keecak(SecretB)

• TxHashA = Keccak256(slotA, blockspentA, HashSA, B, slotB)

• TxHashB = Keccak256(slotB, blockspentB, HashSB, A, slotA)

• SignA validates for TxHashA, A

• SignB validates for TxHashB, B

• An inclusion proof is done with TxHashA and proofInclnA in the rootHash of
the SMT of blockNumber for the leaf SlotA

• An inclusion proof is done with TxHashB and proofInclB in the rootHash of the
SMT of blockNumber for the leaf SlotB

• An inclusion proof is done with SecretA and proofInclSecretA in the rootHash of
the SRMT(blockNumber) for the leaf SlotA

• An inclusion proof is done with SecretB and proofInclSecretB in the rootHash of
the SRMT(blockNumber) for the leaf SlotB

4.8 Attempts of attack
The following cases are taken into account using this method.

• If the operator hoards the transaction for future use, just as any other plasma
transaction, an exit can be performed. Also any new transaction that also spends
the blockSpent renders this transaction invalid.

• If the operator does not include one of the 2 parts of the swap, the transaction
is invalid.
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• If the operator submits only one secret, the transaction is invalid for both
parties.

• If one of the coins is spent before the swap is committed, the parties can validate
this and not reveal the secret, invalidating both parts of the transaction 1 day
later.

• If the operator does not provide the necessary proof to validate the coins, the
parties never reveal the secret, invalidating the transaction 1 day later.
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Force Move Channels

5.1 Definitions

5.1.1 Turn-Based game

A turn-based game is defined as any game in which the players take turns making
decisions that modify in some way the state of the game. For this project, the focus
will be limited to any 2-player game in which the decisions made are selected from
a closed set of decisions. Many games of this sort are required for both players to
make the decision simultaneously, such as Rock-Paper-Scissor. For this, an easy
work around will be explained later.

5.1.2 State-Transitioning game

A state-transitioning game is defined as any game in which at any point can be
described as a serializable state. This state serves as stand alone starting point to,
give the decisions, transition to the next state. There must exist 3 deterministic
functions regarding this serialized state. IsStartStateValid will determine whether
a state could be considered a starting point for a game. IsValidTransition will
determine the validity of a transition from a state A to a state B. IsEndState will
determine whether a state could be considered as the final state and the game is
considered concluded. It should be noted that given these restrictions, any games
that require a look-back functionality of more than 1 state to determine a transition
can not be valid.
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5.2 Game Channel

5.2.1 Basics

In order to allow users to have a continuous experience when playing, transactions
should be quicker and cheaper, even free, as a great deterrent from blockchain gaming
is confirmation times and transactions fees. A way to overcome these problems are
Game Channels. A Game channel is a scalability solution in which a PVP (Player
vs Player) computation is done outside of the blockchain while at any moment
having the accountability for it. Similar to other scalability solutions for offline
computing, for this method to work a Game Channel consists of 3 basic components.

A founding transaction in which both (or more) parties agree on the stakes in
play, the game conditions, rules, initial state and more. Any stakes at play must be
locked in a contract in which both parties authorization is needed in order to release
it. A state transition mechanism in which the parties agree on how states must be
handled and signed to one another in order to proceed with the game. An exiting
condition in which the winning party could prove, giving a signed state, that both
parties have reached an ending state and thus reclaim the earnings, without the
need of all the intermediate computation. Both the founding transactions and the
exiting condition must be done in the blockchain, as are needed to handle the assets,
while the intermediate state transitions can be handled offline between the interested
parties.

5.2.2 Force Move Channel

Diferentiating from other scalability solutions, where any current state can con-
sidered as final and can be exited, some games can’t be exited in intermediate states
as there is no way to determine the winner of the exchange during these. As such, a
mechanism in which a player can’t disappear from a game when the odds are not
in its favor is needed in order to avoid these behaviours. For that, the only valid
intermediator is the Blockchain itself, in which any player can request a move from
the other player within a challenging window time. If a player fails to respond,
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the win is conceded to the player who made the challenge.

As there is no way to determine if a player is doing this challenge because the
opponent failed to answer or because they fail to accept a valid answer, there is
no way to determine who should be punished in this situation, because of that
no punishment could be applied other than the transaction fees required for both
players to require and answer the challenge.

5.2.3 Integration with Plasma

In order to validate the idea of Plasma as a scalability solution to be imple-
mented for blockchain gaming, more than mere trading should be possible to be
done when locking tokens on the side-chain. For this to work, any owner of a plasma
token should, by the same process in which an exit is created, claim to own a token
when creating the channel, and having the challenge period just the same way an
exiting a token has. Since the downside of not challenging a token is less severe (no
token can be stolen this way) the challenge periods can be shortened in order to
maintain the streamlined aspect of a match.

The basic idea is to generate exit datas, without the actual exit, for every token
being used in the channel. Each of these exit datas can be challenged independently
the same way a plasma exit can be challenged. If the challenge is successful, then
the stakes are given to the challenger as a reward.

5.3 Implementation

5.3.1 Channel Manager

One of the most expensive parts of creating a channel is deploying the Funda-
tion Contract. In this case, the user may not only pay the fees of the creation of a
contract but at the same time have access to the code that will be used. Also both
parties must have that code validated and audited. These costs can be diminished
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when there is an interested party in having others use these channels, as is the case
of an operator with its game. Having a main contract do the parts of a Channel
Manager for multiple channels means less fees, more trust on the code and an
easier onboarding process. This way, a structure can be created to represent a
channel, and have all these channels sharing the same contract code. Moreover, this
channel manager allows users to watch their tokens being used by another players
in a centralized address and challenge them when that happens.

5.3.2 Channel Structure

A channel can be defined as a data structure composed of:

• channelId which should be unique.

• ChannelType which determines the address of the game rules.

• FundedTimestamp which determines when the channel was funded.

• Stake which determines the bet amount.

• Players that determine the interested address on the channel.

• PublicKeys that determine the keys to be used to sign the states.

• InitialArgumentsHash used as reference when submitting an initial state.

• ChannelState representing the stage of the channel (fig. 5.1):

– INITIATED: A player proposed a game, locking its stake.

– FUNDED: An opponent answered the proposal agreeing and locking the
stake.

– SUSPENDED: A challenge before is undergoing and must be answered.

– CLOSED: The game concluded and the stake was given to the winner.

– CHALLENGED: The game concluded due to a faulty exit being challenged.

• ForceMoveChallenge representing a current force move request if any.

• Exits ExitData for all tokens used in the channel.

• Challenges representing all challenges against the channel’s exits.
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Figure 5.1: Channel States

5.3.3 Channel Fundation

In order for a channel to be funded, both parties must agree on the initial state
and deposit the stake. For this one user (from now on known as player) will call
the function on the Channel Manager which initiates a channel. This function
needs to validate the channelType to be correct, the stake to be deposited to the
Channel Manager and the initialGameAttributes to be a valid start state with
the isValidStartState function on channelType. Providing to this function the
ExitData, the corresponding Exit structures are generated for the player’s tokens.

function initiateChannel(

address channelType,

address opponent,

address key,

uint stake,

bytes calldata initialGameAttributes,

bytes calldata exitData

) external payable;
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function validateStartState(

bytes calldata state,

address[2] calldata players,

uint exitDataIndex,

bytes calldata exitData

) external view returns (RootChain.Exit[] memory);

The exitDataIndex indicates whether the ExitData corresponds to the player
or the opponent, as each one provides their own ExitData. At this stage, the
channel is in the INITIATED state.

For this channel to be used, the opponentmust then fund the channel, accepting
the conditions and providing its share of the stake. It also provides the key he will
be using, as well as the ExitData necessary to create the exit structures.

function fundChannel(

uint channelId,

address key,

bytes calldata initialGameAttributes,

bytes calldata exitData

) external payable channelExists(channelId);

The exitData required for the opponent’s tokens are provided as well as the
public key to check signatures. Once this function ends correctly, the channel is now
FUNDED which means the stake is secured and the players can proceed to play
starting from the initial state.

5.3.4 Channel Turn Transition

The main advantage of using a game channel is the ability to have computation
off-chain, which is free. In a PVP game, the outcome of the game is calculated on
both users’ machines. However, this comes with a myriad of inconveniences as there
is no way to trust the party on the other end of the channel. For this, users will
take turns deciding their move, signing the states to the other party, so that both
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users have proof on an agreement.

States contain the following structure:

• channelId the Id of the channel being used.

• channelType the address of the game rules.

• participants the players signing the states.

• turnNum the number of the turn.

• gameAttributes the serialized game state

When a state is created, the hash of the state is calculated using all of the
previous values. This hash is then signed with the private key generated by the
user for this game. The channelId and turnNum values served as a prevention of a
repetition attack. A state signed by a player can’t be used later on or on another
game, as the channelId and turnNum won’t match.

After a player transitions the state and signs it, this new state is now sent to
the other player. The second player receives it, and now is his turn to transition
to the next state, signing it. This goes back and forth between the parties until
an end state is reached. Every odd-numbered state will be signed by one player
and every even-numbered state will be signed by the other. Once a player receives
a signed state, the result of any valid transition that player decides to do is con-
sidered a valid and agreed new state. This means that any consecutive pairs of
states, given the condition that their transition is valid, and their signatures, can
be considered as a consensus between the two parties of the game state at some point.

The transition of the state is always the same: ChannelId, channelType and
participants remain the same and turNum is increased by one. However the tran-
sition from one gameAttributes to another is more complex and is validated on a
game-to-game basis. As an example we’ll consider a turn-based game where each
player makes a decision concealed from the other, until both are revealed at the
same time and they result in some outcome.
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Lets define some gameAttributes as an RLP-encoded array of values, where the
first values represent The Game State, the values that are changed after each
round.

The Initial Game State only contains the initial values that were agreed in
during the creation and funding of the channel. This will be the starting point for
the game. Since the second player, the opponent, is the one funding the challenge,
he will be the first to make a transition.

Each player has to make a decision, however this decision must be concealed so
no player has a decision advantage, as both decisions will trigger simultaneous, just
like in Rock-Paper-Scissor. This comes with an issue due to the fact that players
take turns signing the states, and there is no way to have them simultaneously
sign something. For this, a commit-reveal mechanism is used. If the opponent
makes a decision and hashes it, it can easily provide the hash to the player. The
player can now make a decision without knowing the opponent’s decision, but
it can know for sure that the opponent already made a decision and it cannot
be changed, since changing it won’t validate with the provided hash. After that,
the opponent can simply reveal his decision, also proceeding with any calculations
necessary now that both decisions are known.

Since the decision pool is limited, just hashing it wouldn’t be secure enough,
since an easy way to know what decision was made is just hashing all possible
decisions and check by equality which decision resulted in the provided hash. To
avoid this, a random salt can be generated when the decision is made, and then
hash these together. This way, there is no way to brute-force the correct decision,
and at the end, the salt is provided with the original decision for hash verification.

This salt can be used for other purposes as well, such as random number genera-
tion. Since this is a PVP environment, there is no way to get a trust full random
number, since one of the parties will calculate it, and nothing stops it from cherry
picking a favoured number. The workaround of this is getting some entropy from
both parties, if both parties provide part of the entropy, then the random number
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Figure 5.2: Game Transitions

will be known and it can’t be selected by one of the two. However, it fails under the
same issue with the simultaneous decisions. If one party selects part of the entropy,
the other can iterate during many possible entropy counterparts until one generates
the desired number, selecting them. But when using the salt to obfuscate the
decision, then the player can select a random salt knowing that the opponent’s
salt was already selected and can’t be changed, since that would invalidate the hash
making the transition invalid.

This back and forth of rounds, with simultaneous decisions and randomness, can
go indefinitely until an end state is reached. Once a state can be considered finalized,
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the winning user can provide the necessary data to the Channel Manager to
unlock and retrieve the bets, all of this without having to pay for any intermediate
computational fee during the game lifespan.

5.3.5 Channel Conclusion

In order to close a channel (fig. 5.3), the Channel Manager needs proof that
both parties agreed on a conclusion. For this, the following function is provided:

function conclude(

uint channelId,

State.StateStruct memory prevState,

State.StateStruct memory lastState,

bytes[] memory signatures

) public channelExists(channelId) isFunded(channelId);

By providing the two last states of the channel, and their corresponding signatures,
the Channel Manager can, validating the correct transition between the two, know
that an agreement was arrived. There can’t be a way for two consecutive states,
signed and with a valid transition, to not be an agreed game state. If the winner is
the player who signed the prevState, then lastState was signed by the other party,
so it agrees with it. If the winner however signed the lastState, then the other
party signed the prevState and, since the transition is validated on the blockchain,
therefore agrees to the lastState.

Figure 5.3: Channel Conclusion
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5.3.6 Force Move Challenge

With most off-chain channels, such as the lighting network in Bitcoin and
raiden network in Ethereum, users can opt-out at any moment from the channel,
splitting the funds according to the current state. Taking a closer look, that does
not apply to this case, since a game channel there is no way of knowing the winner
of a channel unless that channel reached the final state.

The issue comes when a player sees their irreversible loss ahead of them and
refuses to answer a state, or simply disappears, there needs to be a way to force
some player to make a move, or else, to forfeit the channel. The idea of Force
Move Channels was conceptualized [10] so that the only trusted intermediate is
the decentralized blockchain, and it must be the one forcing a player to make a
move. At any point a player can, providing the last two known states, force a move
calling the following function.

function forceMove(

uint channelId,

State.StateStruct memory fromState,

State.StateStruct memory toState,

bytes[] memory signatures

) public channelExists(channelId) isSenderAllowed(channelId);

Given this game state as a starting point, the challenged player must provide
an answer to the Channel Manager in a 10-minute window, or else the channel is
forfeited and the challenger receives the rewards. If the challenge is answered, then
the game can continue from that point onward. This completely removes the issue
of a non-responding party.

function respondWithMove(

uint channelId,

State.StateStruct memory nextState,

bytes memory signature

) public channelExists(channelId);

47



CHAPTER 5. FORCE MOVE CHANNELS

Figure 5.4: Force Move Challenge

This raises one more issue of having a challenge be issued to an old or a branching
state. If one of the users decides some path the game is taking is not of his convenience,
using an older state signed by his opponent, he could sign a response to that, altering
the past, and forcing a move on those states. However, if the opponent answers,
then it will agree to that game state. To counter this the following function is
provided.

function refuteChallenge(

uint channelId,

State.StateStruct memory refutingState,

bytes memory signature

) public channelExists(channelId);

To refute a challenge, a refutingState can be provided, which is any state signed
by the challenger that has a higher turnNum or equal turnNum and different
hash. If there is such a state, that means the challenger issued a challenge with an
old or a different state and can be punished for that, loosing his bet and closing the
channel.

5.3.7 Plasma Chain Challenge

For every channel, a user must declare which tokens will be used for the game.
Since there is no way for the Channel Manager to know who the true owner of a
token is, as they are deposited in Plasma, the same procedure as when exiting a
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slot can be used. When creating the channel, the exit data is provided and an Exit
Data Structure is generated for those tokens. If any player attempts to start a
channel using another user’s token, just as trying to exit another user’s slot, the exit
data provided is challengeable. These simulated exits can be challenged by anyone
as long as the channel is still open, and if succeeded, then the bets of the fraudulent
participant will be provided to the challenger, and the rest released to the owner.
The functions to challenge look a lot like the ones to challenge an exit, with one key
difference. Since there are many Exit Data Structures per channel, an index is
indicated to which of them is the one being challenged.

function challengeAfter(

uint channelId,

uint index,

bytes calldata txBytes,

bytes calldata proof,

bytes calldata signature,

uint256 blockNumber)

external channelExists(channelId) isFunded(channelId);

function challengeBetween(

uint channelId,

uint index,

bytes calldata txBytes,

bytes calldata proof,

bytes calldata signature,

uint256 blockNumber)

external channelExists(channelId) isFunded(channelId);

One main difference is the fact that no transaction created after the foundation
of the channel can be used as a challenging transaction. The requirement is to be
the owner of the token at the start of the channel. This streamlines the challenging
cases and removes some complications, while keeping the essence of Plasma.
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Figure 5.5: Channel Challenge After

Just as when challenging an exit, a Challenge Before can be issued. If this is
the case, the same mechanism is used, where the challenger must provide a bond
that if responded, will be lost. A channel may contain many unanswered challenges,
just as before, they are removed from the queue as they are answered. When a
channel contains a Plasma challenge, its state is changed to SUSPENDED.
While in suspended, the channel cannot be interacted with. No force moves, and
no conclusions until all the challenges are answered. If after a day the channel’s
challenges wasn’t answered, the fraudulent user’s stakes are given to the challenger.

function challengeBefore(

uint channelId,

uint index,

bytes calldata txBytes,

bytes calldata proof,

uint256 blockNumber

) external payable channelExists(channelId) isChallengeable(channelId)

Bonded;
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function respondChallengeBefore(

uint channelId,

uint index,

bytes32 challengingTxHash,

uint256 respondingBlockNumber,

bytes calldata respondingTransaction,

bytes calldata proof,

bytes calldata signature

) external channelExists(channelId) isSuspended(channelId);
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Conclusion

Plasma and other scalability solutions are still in the early stages of development.
In the cryptocurrencies world, decentralized applications are a small share of it, and
decentralized gaming almost a niche. However, in the past couple of years, more
and more interest has been put into decentralizing gaming since it adds some clear
value to the experience.

A developer must be sure of the technology being used and the purpose of it
before venturing into creating something on it. While the term blockchain is greatly
used nowadays, it is usually misused as a way to attract interest solely because of
its revolutionary aspect. The fact of the matter is, blockchain contains more flaws
than strengths. Is costly, ineffective, slow and troublesome to work on.

Nevertheless, where blockchain succeeds in, it does it in spades. No other
technology has been able to provide the level of ownership and accountability that
blockchain accomplishes. For this, only applications that exploit this advantage
are truly worth developing on blockchain.

Games are usually not the case. Historically, games were regarded as media
software, whose sole purpose was entertainment. A single-player experience with
no real-life impact has no way to make use of blockchain’s strengths. However,
gaming applications have been evolving at an increasing pace, reaching the highest
grossing media industry, and taking on shapes that were unthinkable when the first
Pong game was conceptualized.

Going into a world of game as a service, an always connected gaming men-
tality, having games provide assets and rewards with scarcity, such as the Steam
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Marketplace where items can be bought and sold, with people living of not only
developing but also playing games, there is a line not too far in the future where
blockchain and gaming can meet. For this, pushing the technology forward is a
must, as having the technology available is the first step into opening design spaces
for developers to create on.

Plasma is not the all-around solution we had in mind when starting this project.
When digging into it, its limitations are clear. Only transfers are possible on it, users
have to be constantly checking for a possible steal and the process and integration
into the market is difficult. But even the many flaws Plasma cash has, it is
considered a great step in the right direction.

With this project, a real-life game where players can truly feel owners of their
assets, can be achieved with minimal costs. Being able to have player’s trust on
the actual code being run, improves some aspects of the game such as involving
real-money that players are mindful of.

The technology has still a long path to go before it is used at a large scale, and
many improvements and scalability solutions may be found in the future. However,
the findings that were shown in this project serve as a good base from where to
work on and a good glimpse of what can be achieved with it.
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Appendix A - Implementation

In order to showcase an example of all the described technology, CryptoMon-
Battles was developed. The project is divided in three main components: the Root
Chain, all the deployables contracts to the blockchain. the Side Chain, a backend
in charge of block creation, run by the operator, and the Client, a web interface
with which users will be able to interact. These components work together in order
to provide the player a truly decentralized gaming experience.

7.1 Game Rules
There is a total of 151 different CryptoMons species with their own base

stats and types, however every instance of them has its own additional stats that
make them truly unique, there is even 1/1024 chances to have a special colored
CryptoMon.

While the species of the CryptoMon define its looks, type and base stats, each
CryptoMon is unique in health points, attack power, special attack power, defense,
special defense and speed. Each CryptoMon can be of one or two of the follow-
ing types based on the specie: Normal, Fighting, Flying, Poison, Ground, Rock,
Bug, Ghost, Steel, Fire, Water, Grass, Electric, Psychic, Ice, Dragon, Dark and Fairy.

In CryptoMonBattles, battles have a turn-based system where each player
selects a move and then calculations are made to reflect these decisions on the
CryptoMon’s health points. When one of the CryptoMon’s health points reach
0, the battle ends, awarding the winner to the surviving CryptoMon.
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When deciding a move, a player must select from the following pool of choices:

• Attack (one for each type)

• Special Attack (one for each type)

• Status (one for each type)

• Protect

• Shield Break

• Cleanse

• Recharge

Each player has a maximum of 3 charges that will be consumed when using
any move other than Recharge or Protect and a charge can be acquired by using the
move Recharge. For this players must be cautious on when the best time to recharge
is, since your opponent will have the advantage on that turn.

Both Attack and Special Attack inflict damage, although they use a different
formula to calculate it involving different stats of both CryptoMons. There are
also five levels of effectiveness between types, as some attack types are or less
effective against other defensive types. For example a fire attack to a grass Cryp-
toMon is much more effective than against a water one. On top of that, there is a
chance for a critical strike, that will amplify the damage by 50%.

The Status move is named differently according the the CryptoMon’s type
and its effect varies. For example, the grass status move is called Leech Seed, which
absorbs health points from the opponent and restores life by the same amount.
Hurricane, the flying status, hits the opponent at the end of each turn but also
increase the player’s CryptoMon speed by 50%.

It is possible to use Protect to nullify an opponent’s attack, making him waste
a charge, but if the opponent uses the Shield Break move in the same turn then
the Cryptomon takes damage equal to 30% of its maximum health. This attack
prevents people from spamming Protect and making the battle non-interactive.
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7.2 Root chain
Several contracts were created and deployed to an Ethereum blockchain. The

key ones are the RootChain, which servers as the Founding Contract of the
Plasma Chain, CryptoMon, which is in charge of creation and distribution of the
CryptoMons, PlasmaCM, also known as the Channel Manager and CryptoMon-
Battles, which contains the necessary logic for all CryptoMonBattles’ calculations.
The contracts are written in Solidity, a language that can run on top of the
Ethereum Virtual Machine. The mentioned contracts, alongside with some
other libraries, dependencies and interfaces, enclose all the functionality the project
needs, described in previous sections. RootChain is in charge of all basic Plasma
functionalities like deposits, transfers, exits, challenges and also the added swap
feature. The other two contracts, PlasmaCM and CryptoMonBattles, manage the
Force Move Channels for starting and concluding battles, besides handling the
battle’s challenges.

For testing purposes, a local blockchain was simulated and all contracts were
deployed locally. This local blockchain can be run using Ganache CLI1, and it can
be configured to run in a deterministic way by setting a mnemonic, that means in
every execution the tokens, accounts and transactions hashes will be the same. This
feature combined with a debugger allowed the development to be more streamlined.

7.3 Side chain
Since Plasma Cash allows users to not trust the operator, the implementation

of the side chain is a centralized API run by a unique node. The API is
implemented in Node.js and persists all the needed data in a Mongo database. As
defined by Plasma, the operator has complete control of what happens inside it.
The side chain must also listen to events from the blockchain to update the stored
information accordingly.

1https://github.com/trufflesuite/ganache-cli
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Deposits

Every time a deposit is made to the CryptoMon contract an event is emitted
and listened by the operator. A new block is immediately created with the deposit
transaction. Deposits blocks’ block numbers are always between two regular values of
the regular increment, that means that deposit_block_number \% 1000 != 0, being
1000 the regular increment for any non-deposit block. A deposit transaction is easily
identified because the previous owner of the token is the address 0x0.

Transactions

Periodically, every 20 seconds by default but configurable, a block is mined
with the waiting and valid transactions inside it and its RootHash is submitted to
the RootChain. Each one of these blocks’ number is a multiple of the regular
increment, in this case 1000, meaning that block_number \% 1000 = 0.

Swaps

When the side chain receives a swap request and its signed confirmation, then it is
able to include both transactions inside the same block. However, these transactions
are invalid until both secrets are revealed. When all of the block’s secrets are
revealed, and the operator validates them successfully, then a RootHash to the
Secret Revealing Chain is submitted and the previously submitted transactions
representing the swap are valid.

Proofs and history

The operator provides anyone the neccesary proof and history for any slot. The
proof will contain all the necessary information for a Merkle Proof and check the
inclusion or non-inclusion of the slot inside the block. If anyone needs to verify
the history of a slot the side chain provides the proof and transaction bytes for
every block since the deposit, the requester should then check the inclusion and
non-inclusion of the slot in every one of them to validate the history and confirm
the ownership.
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Battles

When two players battle, there is no need for a third party to be involved, since
the calculations occur on both ends of the connections. But in favor of simplifying
process, the operator acts as an intermediate for two reasons:

• To avoid implementing PvP battles (i.e. a peer to peer connection between
players), each one of them connects to the API vía websocket which just acts as
a middleman validating turns and sending to the opponent the new state of the
battle.

• To allow disconnections and reconnections. TheAPI knows every state submitted
by the players and store the last two states (two states are needed for a force
move). When one of the players reconnects to the battle, he immediately receives
the last two states of the battle and he is able to continue with it, either by
providing the next move, emitting a force move or wait for the other player to
finish its turn.

Because the operator works as a middleman of the battle, he also listens to
events emitted in a force move and force move response to update the battle
state correctly since these moves are sent directly to Ethereum.

Other features

Because the side chain has all the information about transactions and it is
listening to events from Ethereum it is able to know when an unlawful exit is being
made, therefore it will automatically challenge any misbehaviour and probably be
the first one to do it and receive the corresponding bond.

7.4 Client
The client is a web-based user interface implemented with React that allows

players to interact in a human way. It is in charge of showing visual representations
of the CryptoMons and interact with both the SideChain and the RootChain
(for transactions, swaps, exits, challenges, start battles, etc.). The client also listens
to events emitted by contracts like a new block being mined, swap and battle requests
among other things.
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Frequently, when there is a need to call certain contract methods or sign a
payload, the user must use its private key. For easier management of private keys
and signatures, the client relies on an extension that manages all those tasks like
Metamask 2. Each time the private key is required, a Metamask popup will appear
with the corresponding action that requires the user’s attention.

Plasma capabilities

The client application allows to deposit, transfer, swap, exit, challenge and
validate the history of tokens. For the first three, there will be a direct interaction
between the client and the operator or the contracts as detailed in previous sections.
since the client doesn’t keep track of every submitted block, to validate the history
of a slot it must request to the operator the necessary proof for it.

When doing exits and challenges, in order to generate the exitData required,
the client fetches this information from the operator. In an ideal scenario, this
kind of information should be kept offline, ready for access in case of need. However,
due to scope constraints, the project relies on the operator to provide it.

Battles

As mentioned before, battles must be started and concluded with calls to the
blockchain. The interaction can be done peer-to-peer without the operator’s
intervention. However, in this implementation the operator acts as an intermediator
between the clients connecting to them via WebSocket. The clients provide state
updates where every new state must be signed before submission. To avoid signing
via Metamask for every move, a new public/private key pair is generated, which is
then used to sign every state automatically, to provide a seamless interaction with
the interface.

2https://metamask.io
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Hacks

The client contains a section called "Hacks". In this section it is possible to act
as a malicious user and introduce operator mistakes (or misbehaviours). The
available hacks are:

• Force old exit: If the user used to have in its possession a slot but then
transferred it, this slot is eligible to an old exit. An exit attempt is done
providing the old and expired exitData when the user was the owner. This hack
is easly challengeable with a Challenge After.

• Create double spend exit: If the user used to have in its possession a slot
but then transferred it, a new transaction to itself can be created, spending the
block that was already transferred. This generates a double spent on that block,
and an exit can be generated with this exitData. This hack is challengeable
with a Challenge Between.

• Create non-existent transaction and exit: As the name implies, this hack
will create two transactions transferring the token from the user to itself. The
first transaction, since is not validated in the exit, comes from an unknown source.
This hack is challengeable with a Challenge Before without any chance to
respond with a valid counter proof.

There are similar hacks to start battles with a not-owned token and they can be
challenged similarly. Finally, in this section it is also possible to start a challenge
before that will be respondable.

7.5 Future improvements
Due to scope limitations, some features had to be put aside and not implemented,

which help reduce the trust needed on the operator while playing this game.

The first feature that would decrease the trust put into the operator is an offline
client that should listen to events from the blockchain and keep track of all mined
transaction. With that information, this offline client would be able to create its
own proofs to validate histories or to make an exit without the need of the Side
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Chain. Currently, if the operator decides to hide information to prevent a user
from exiting one of his tokens, it can do so.

Moreover, the SideChain stands between both parties during battles and stores
the information of the last two state of each battle. However, this means that the
client only works correctly if the operator is behaving correctly as well. Clients
should be able to establish a peer-to-peer connection without the need of a third
party, only submitting to the RootChain when needed.

Another improvement to the project would be to provide the ability to pun-
ish the operator on misbehaviours. With the current implementation, the only
incentive for the operator to act righteously, is to avoid a massive exit due to
loosing its users trust, rendering the SideChain pointless. One of the proposals is
to freeze a large bond into the Founding Contract, and in case of misbehaviour,
the operator will loose it automatically.
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Appendix B

8.1 Merkle Tree and Sparse Merkle Tree
A Merkle tree is a data structure conceptualized by Ralph Merkle in 1988 [11].

He presented a data structure with the ability to provide proof of existence and
non-forgery of an unlimited amount of messages, while reducing it to a single hash
output. For this to work, the tree is defined as follows:

MerkleTree =


Hash(Messagei) : for any Leafi

Hash(LeftChild||RightChild) : for any Parent Node

Figure 8.1: Merkle Tree

The root of this tree, also known as the RootHash, is then provided for future
verification. This is extremely useful in blockchain as it means there is an unlimited
amount of messages that can be included in a block by providing a single hash
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output. These messages usually translate as transactions.

For this to work, the interested user would have to gather all the leaf messages,
and their order, and re-create the RootHash. If the RootHash generated is the same
as the one provided, then there was no forgery done at any of the transactions.
However, it is not efficient for a user to recreate the whole tree for a verification of
a single message. For this, a Merkle proof can be provided, which if successful,
proves the inclusion of a message in a Merkle Tree. To validate the proof the user
receives the inner nodes necessary to recreate the path to the root, starting from
the interested message. This proof involves every sibling of the nodes in the path
to the root. These siblings are then concatenated with the intermediate calculated
hashes to generate the parent node, until the root is reached and the proof can be
validated.

Figure 8.2: Merkle Tree inclusion proof

In Bitcoin and other blockchains, Merkle Trees are used as a way to store vali-
dation of transaction inclusions to a block. If a proof can be verified against the
RootHash of the block, then the transaction can be considered as included in that
block. However, if a proof can’t be validated there can’t be a way to tell whether
the transaction is or is not included. With standard merkle trees, only inclusion
is provable, while omission is not. The Merkle Tree to be used during this project
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must have the ability to validate omission of transactions. For this, a Complete
Merkle Tree is required.

Complete M.Tree =


Hash(null) : for any Leafi where Messagei is not included

Hash(Messagei) : for any Leafi where Messagei is included

Hash(LeftChild||RightChild) : for any Parent Node

Figure 8.3: Complete Merkle Tree

A complete Merkle tree of n levels is a tree able to contain up to 2n messages
where each leaf is a slot available for a message. Then, a convention is needed for
a message to self-define in which slot number it must be present for it to be valid.
This way, a Merkle Proof could be used to prove its inclusion against the message
itself, or prove its omission against Hash(null) in that slot.

On the downside, a Complete Merkle Tree is a huge data structure. A Complete
Merkle Tree of 264 slots requires an outstanding 265 − 1 hash computations, an
amount that, if possible, would nullify the hash function all together. For that, an
intrinsic value of a Complete Merkle Tree can be used as an advantage: Repetition.
The fact that any empty slot uses the same value (Hash(null)) makes it obvious how
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Figure 8.4: Complete Merkle Tree inclusion proof

Figure 8.5: Complete Merkle Tree omission proof

complete branches can be pre-calculated if all of their leaves are empty. Defining
the following Sparse Hash function:

Sp.Hashn(x) =

Hash(x) : n = 0
Hash(Sp.Hashn−1(x)||Sp.Hash−1(x)) : n > 0

With this function, the Sp.Hash of each level can be easily calculated. When creating
the RootHash, only the messages added to the tree are required. Whenever a node is
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needed, whose branch was not taken into account, the Sp.Hash of that level can be
calculated to get its value. This also reduces the proof size, as many of the required
nodes to recreate the path are also instances of Sp.Hash, which can be indicated
with a single boolean.

Figure 8.6: Sparse Merkle Tree

66



BIBLIOGRAPHY

Bibliography
[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system”, http://

bitcoin.org/bitcoin.pdf, 2008.

[2] V. Buterin and D. G. Wood, “Ethereum white paper: A next-generation smart
contract and decentralized application platform”, https://github.com/
ethereum/wiki/wiki/White-Paper, 2013.

[3] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart contracts”,
https://www.plasma.io/plasma.pdf, 2017.

[4] V. Buterin, “Minimal viable plasma”, https://ethresear.ch/t/minimal-
viable-plasma/426, 2018.

[5] V. Buterin, “Plasma cash: Plasma with much less per-user data checking”,
https://ethresear.ch/t/plasma-cash-plasma-with-much-less-per-

user-data-checking/1298, 2018.

[6] D. Robinson, “Plasma debit: Arbitrary-denomination payments in plasma
cash”, https://ethresear.ch/t/plasma-debit-arbitrary-denomination-
payments-in-plasma-cash/2198, 2018.

[7] W. Entriken, D. Shirley, J. Evans, and N. Sachs, “Eip 721: Erc-721 non-fungible
token standard”, https://eips.ethereum.org/EIPS/eip-721, 2018.

[8] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “The keccak sha-3
submission”, https://keccak.team/files/Keccak-submission-3.pdf,
2011.

[9] V. Buterin, “Plasma cash minimal atomic swap”, https://ethresear.ch/t/
plasma-cash-minimal-atomic-swap/3409, 2018.

[10] T. Close and A. Stewart, “Forcemove: An n-party state channel protocol”,
https://magmo.com/force-move-games.pdf, 2018.

[11] R. C. Merkle, “A digital signature based on a conventional encryption function”,
Advances in Cryptology — CRYPTO ’87. doi:10.1007/3-540-48184-2_32. 1988.

67

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.plasma.io/plasma.pdf
https://ethresear.ch/t/minimal-viable-plasma/426
https://ethresear.ch/t/minimal-viable-plasma/426
https://ethresear.ch/t/plasma-cash-plasma-with-much-less-per-user-data-checking/1298
https://ethresear.ch/t/plasma-cash-plasma-with-much-less-per-user-data-checking/1298
https://ethresear.ch/t/plasma-debit-arbitrary-denomination-payments-in-plasma-cash/2198
https://ethresear.ch/t/plasma-debit-arbitrary-denomination-payments-in-plasma-cash/2198
https://eips.ethereum.org/EIPS/eip-721
https://keccak.team/files/ Keccak- submission- 3.pdf
https://ethresear.ch/t/plasma-cash-minimal-atomic-swap/3409
https://ethresear.ch/t/plasma-cash-minimal-atomic-swap/3409
https://magmo.com/force-move-games.pdf

	Contents
	List of Figures
	Abstract
	Introduction
	Blockchain
	Ethereum

	Objective
	Game concept
	Ethereum Implementation

	Plasma
	Introduction
	Plasma Cash vs Plasma Debit
	Plasma SideChain
	Transactions
	Deposit
	Transfer

	Exit
	Challenges
	Challenge After
	Challenge Between
	Challenge Before

	Considerations and limitations

	Atomic Swaps
	Introduction
	Atomic Swap Transaction
	The branching history dilema
	Secret Revealing Swaps
	Secret Revealing Chain
	Implementation
	Validation
	Attempts of attack

	Force Move Channels
	Definitions
	Turn-Based game
	State-Transitioning game

	Game Channel
	Basics
	Force Move Channel
	Integration with Plasma

	Implementation
	Channel Manager
	Channel Structure
	Channel Fundation
	Channel Turn Transition
	Channel Conclusion
	Force Move Challenge
	Plasma Chain Challenge


	Conclusion
	Appendix A - Implementation
	Game Rules
	Root chain
	Side chain
	Client
	Future improvements

	Appendix B
	Merkle Tree and Sparse Merkle Tree

	Bibliography

