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a b s t r a c t

In this work, it is shown that the output sequence of a well-known cryptographic generator, the so-called
self-shrinking generator, can be obtained from a simple linear model based on cellular automata. In fact,
such a cellular model is a linear version of a nonlinear keystream generator currently used in stream
ciphers. The linearization procedure is immediate and is based on the concatenation of a basic structure.
The obtained cellular automata can be easily implemented with FPGA logic. Linearity and symmetry
properties in such automata can be advantageously exploited for the analysis and/or cryptanalysis of this
particular type of sequence generator.
1. Introduction

Nowadays, stream ciphers are the fastest among the encryption
procedures so that they are implemented in many technological
applications e.g. algorithms A5 in GSM communications (see GSM
webpage) or the encryption algorithm E0 (see Bluetooth specifi-
cations). From a short secret key (known only by the two inter-
ested parties) and a public algorithm (the sequence generator),
stream cipher procedure consists in generating a long sequence of
seemingly random bits. Such a sequence is called the keystream se-
quence. For encryption, the sender executes a bit-wise XOR opera-
tion among the bits of the plaintext and the keystream sequence.
The result is the ciphertext that is going to be sent. For decryp-
tion, the receiver generates the samekeystream, executes the same
bit-wise XOR operation between the received ciphertext and the
keystream sequence and recovers the original message.
Most keystream generators are based on maximal-length Lin-

ear Feedback Shift Registers (LFSRs) (Golomb, 1982) whose output
sequences (the PN-sequences) are combined in a nonlinear way.
Combinational generators, nonlinear filters, clock-controlled gen-
erators, multi-speed generators are just some of the most popular
sequence generators with applications in cryptography. All these
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structures produce keystream sequences with high linear com-
plexity, long period and good statistical properties (see Caballero-
Gil & Fúster-Sabater, 2004; Fúster-Sabater, 2004).
On the other hand, bit sequences generated by a kind of one-

dimensional linear binary Cellular Automata (CA) have been found
(Cattell & Muzio, 1996) to be exactly the same PN-sequences as
those of the LFSRs abovementioned. In this sense, maximal-length
linear binary CA can be considered as alternative generators to
the maximal-length LFSRs, as shown in Chang, Lee, Kim, and Song
(1997). In fact, the current interest of these CA stems from the lack
of correlation between the bit sequences generated by adjacent
cells, see Cho, Un-Sook, and Yoon-Hee (2004).
The relevance of the one-dimensional binary linear CA used in

this letter is due to the fact that some cryptographic generators
designed as LFSR-based nonlinear structures can be modeled as
CA-based linear structures. Such a result was first stated in Fúster-
Sabater and Caballero-Gil (2006). Indeed, that paper might be
considered a preliminary and general study where no specific gen-
erator was analyzed. On the other hand, a well known crypto-
graphic generator, the so-called Self-Shrinking Generator (SSG)
(Meier & Staffelbach, 1994) was first analyzed in Fúster-Sabater,
Caballero-Gil, and Delgado (2008) with tools that are similar to the
ones used here. However, this letter constitutes an advanced for-
malization where difference equations are defined in combination
with the CA-based linearization of the SSG. In fact, the lineariza-
tion procedure to convert a given SSG into a linear cellular model
here proposed is quite immediate as it is to implement the cellular
automaton with simple FPGA logic.
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The proposed idea can be generalized to other cryptographic
generators similar to the SSG. Therefore, discrete synchronous neu-
ral networks, as a generalization of CA, might also be used for
modeling since the local transition of a neural network applied in
parallel and synchronously to all cells leads to a global transforma-
tion of the vector that describes the state of the networks, which is
similar to the global map of CA.

2. Fundamentals and basic notation

First of all, different features of the two basic structures (SSG
and linear binary CA) considered in this paper are briefly intro-
duced.

2.1. The self-shrinking generator

The SSGwas designedbyMeier& Staffelbach for potential use in
stream cipher applications. The SSG is attractive by its simplicity as
it involves a unique LFSR in a very simple way. This generator con-
sists of a maximal-length LFSR (Golomb, 1982) of L stages whose
PN-sequence {cn} is self-decimated giving rise to the self-shrunken
sequence {aj} or output sequence of the SSG. The decimation rule
is quite simple. In fact, let (c2i, c2i+1) (i = 0, 1, 2, . . .) be pairs of
consecutive bits of the sequence {cn}, then we proceed as follows:
If c2i = 1, then aj = c2i+1.
If c2i = 0, then c2i+1 is discarded.
The key of this generator is the initial state of the LFSR and the

feedback polynomial (also recommend as a part of the key). Peri-
ods, linear complexities and statistical properties (Meier & Staffel-
bach, 1994) make the self-shrunken sequences very adequate for
their application in stream cipher. In brief, the SSG is a simpli-
fied version of the Shrinking Generator, suggested by Coppersmith,
Krawczyk and Mansour (1993), which satisfies the same decima-
tion rule but includes two maximal-length LFSRs.

2.2. Cellular automata

CA are particular forms of finite state machines defined as uni-
form arrays of identical cells in an n-dimensional space (Kari,
2005). The cells change their states (contents) synchronously at
discrete time instants. The next state of each cell depends on the
current states of the neighbor cells according to a state transition
rule. In this work, our attention is focused on one-dimensional lin-
ear CA with binary contents whose time evolution is determined
by two simple linear transition rules:

• rule 90 → xit+1 = x
i−1
t ⊕ x

i+1
t

• rule 150 → xit+1 = x
i−1
t ⊕ xit ⊕ x

i+1
t

where Wolfram’s (1986) notation has been used.
Indeed, xit+1is the content of the i-th cell at time t + 1 for

(i = 1, . . . ,N) where N represents the automaton’s length and
the symbol ⊕ the XOR logic operation. Recall that both rules
are linear and that just involve the addition of either two bits
(rule 90) or three bits (rule 150). The state of the automaton at
time t is the binary content of the N cells at such an instant.
Moreover, the CA here considered will be hybrid (different cells
evolve under different transition rules) and null (cells with null
content are adjacent to the automaton extreme cells). For a cellular
hybrid null extreme automaton of length N = 6 cells, transition
rules (90, 150, 90, 150, 150, 90) and initial state (0, 0, 0, 1, 1, 1),
Table 1 illustrates the behavior of this structure: the formation of
its output sequences {xit} (i = 1, 2, . . . , 6) (binary sequences read
vertically) as well as the state succession (binary configurations of
6 bits read horizontally). All the output sequences in a state cycle
have the same period, linear complexity as well as characteristic
polynomial, see Fúster-Sabater and Caballero-Gil (2006).
Table 1
A linear 90/150 automaton of 6 cells.

90 150 90 150 150 90

0 0 0 1 1 1
0 0 1 0 1 1
0 1 0 0 0 1
1 1 1 0 1 0
1 1 1 0 1 1
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A natural form of representation for this kind of automaton is
a binary N-tuple (rule vector), notated ∆N = (d1, . . . , dN), where
di = 0 if the i-th cell satisfies the rule 90 while di = 1 if the i-th
cell satisfies rule 150. In fact, the characteristic polynomial PN(x) of
an N-cell automaton can be easily obtained from its rule vector as
PN(x) = (x+ d1)(x+ d2) . . . (x+ dN). In addition, PN(x) is also the
characteristic polynomial of the output sequences and determines
their recurrence linear relationship.

3. Modeling the SSG in terms of CA

First self-shrunken sequences are presented as solutions of
linear difference equations. Then the CA that linearize the class of
SSGs are introduced.

3.1. Self-shrunken sequences and difference equations

According to Meier and Staffelbach (1994), over GF(2) the
characteristic polynomial of the self-shrunken sequence generated
by a maximal-length LFSR of length L can be written as:

P(x) = (x+ 1)p 2L−2 < p ≤ 2L−1. (1)

This implies a linear recurrence relationship of the form:

(E + 1)p an = 0. (2)

E being the one-sided shift operator that acts on the sequence
terms (i.e. Ean = an+1, Eka = an+k). The Eq. (2) represents a linear
binary constant coefficient difference equation whose characteris-
tic polynomial (1) has a unique root λ = 1 with multiplicity p. The
solutions of this equation are binary sequences {an}whose generic
term (Lidl & Niederreiter, 1986) is given by:

an =
(
n
0

)
c01+

(
n
1

)
c11+ · · · +

(
n
p− 1

)
cp−11, (3)

where ci ∈ GF(2) are binary coefficients, 1 is the root with multi-
plicity p and the

(
n
i

)
i ≥ 0 are binomial coefficients mod 2. In fact,

each binomial coefficient defines a succession of binary valueswith
a constant period Ti. Table 2 depicts the first binomial coefficients
with their corresponding binary sequences and periods.
The 2p possible choices of coefficients ci provide us with the

different binary sequences {an} that satisfy the Eq. (2). Particular
choices of the ci give rise to the self-shrunken sequences generated
by SSGs of L stages. Recall that all the solutions of the difference
equation (2), included the self-shrunken sequences, are just the
bit-wise sum of the basic sequences coming from the binomial
coefficients and weighted by the coefficients ci.

3.2. Self-Shrinking Generators and CA

Now in order tomodel Self-ShrinkingGenerators in terms of CA,
we proceed as follows.



Table 2
Binomial coefficients, binary sequences and periods.

Bin. coeff. Binary seq. Ti(
n
0

)
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . 1(

n
1

)
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, . . . 2(

n
2

)
0, 0, 1, 1, 0, 0, 1, 1, 0, 0, . . . 4(

n
3

)
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, . . . 4(

n
4

)
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, . . . 8(

n
5

)
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, . . . 8(

n
6

)
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, . . . 8

. . . . . . . . .

Since the characteristic polynomial of a shrunken sequence is a
unique factor (x+1)multiplied by itself p times, it seems quite nat-
ural to construct its corresponding automaton by p successive con-
catenations of the basic automaton associated to the factor (x+1).
In fact, in Fúster-Sabater and Caballero-Gil (2006) it is proved the
following relationship between corresponding characteristic poly-
nomials PL(x)2

i
and rule vectors∆2iL:

PL(x)→ ∆L = (d1, d2, . . . , dL)
PL(x)2 → ∆2L = (d1, d2, . . . , dL, dL, . . . , d2, d1)
PL(x)4 → ∆4L = (d1, . . . , dL, dL, . . . , d1, d1, . . . , dL, dL, . . . , d1)
....

Notice that the basic automaton∆L associated to the factor (x+1)
is concatenated with its reversal version after the complementa-
tion of the last rule. Then, successive applications of this result pro-
vide us with CA of characteristic polynomials:

PL(x)2, PL(x)2
2
, PL(x)2

3
, . . . , PL(x)2

q

and their corresponding lengths:

2L, 22L, 23L, . . . , 2qL.

As the automaton corresponding to (x+1) is a simple rule 150 that
is ∆1 = (1), then the application of the previous result allows us
to derive the following relationships polynomials-rule vectors:

(x+ 1)→ ∆1 = (1)
(x+ 1)2 → ∆2 = (0, 0)
(x+ 1)4 → ∆4 = (0, 1, 1, 0)
(x+ 1)8 → ∆8 = (0, 1, 1, 1, 1, 1, 1, 0)
...

(x+ 1)2
L−1
→ ∆2L−1 = (0, 1, 1, . . . , 1, 1, 0).

In this way, rule vectors corresponding to 90/150 CA whose
characteristic polynomials are products of (x + 1) are easily ob-
tained. The last rule vector corresponds to the required automa-
ton. In this way, we have obtained a linear cellular automaton able
to generate the self-shrunken sequences generated by SSGs of L
stages.
Let us see an illustrative example.

Example. Let {aj} = {0, 0, 0, 1, 1, 1, 1, 0} be the shrunken
sequence generated by a LFSR of length L = 4, feedback polynomial
x4+ x+ 1 and initial state (1, 0, 0, 0). The sequence {aj} has period
T = 8, linear complexity LC = 5 and characteristic polynomial
P(x) = (x+ 1)5, see Meier and Staffelbach (1994).
Table 3
A linear 90/150 automaton generating a self-shrunken sequence.

90 150 150 150 150 150 150 90

0 0 0 1 0 1 1 1
0 0 1 1 0 0 1 1
0 1 0 0 1 1 0 1
1 1 1 1 0 0 0 0
1 1 1 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 1 0 0 1 0
0 0 0 0 1 1 1 1

According to the previous results, the 90/150 linear cellular au-
tomaton that generates such a sequence has as rule vector ∆8 =
(0, 1, 1, 1, 1, 1, 1, 0) and the self-shrunken sequence is a particu-
lar solution of the difference equation:

(E + 1)8 an = 0.

Table 3 depicts the automaton’s state succession, starting at the
state (0, 0, 0, 1, 0, 1, 1, 1), for which the sequence {aj} is generated
at the most left cell (in bold) under law 90. Recall that the adjacent
cell (law 150) generates exactly the same sequence but shifted one
position upwards. The reverse initial state would generate at the
most right cell the same sequence {aj}.
It must be also noticed the symmetry of these CA, since se-

quences produced at symmetric cells are the same sequences but
shifted T/2 positions.

Now, different considerations regarding the realization of these
CA can be stated:
(1) Notice that the forms of the computed CA are standard: rule

90 at the extremes and rule 150 at all intermediate positions.
(2) The automaton ∆2L−1 generates all the sequences that are

solutions of the difference equation:

(E + 1)2
L−1
xn = 0. (4)

That is:

xn =
2L−1−1∑
i=0

(
n
i

)
ci1. (5)

Thus, the self-shrunken sequences are just particular solutions
with ci = 0 ∀i ≥ p.
(3) The automaton ∆2L−1 generates all the self-shrunken se-

quences produced by all maximal-length LFSRs of length L. In this
case, the LFSR feedback polynomial is not necessary as the automa-
ton is exactly the same. Thus, the knowledge of such a polynomial
which is a part of the key is useless.
(4) The automaton ∆2L−1 generates all the self-shrunken se-

quences corresponding to LFSRs of lengths< L. That is the longest
automaton always includes all the sequences corresponding to
shorter automata by starting at symmetric initial states.
(5) The implementation of these 90/150 linear models is easy

and very adequate for FPGA logic. This characteristic makes it
suitable for developments where time execution is relevant as in
stream ciphers and in communication systemswith high transmis-
sion rates.
(6) The linearity of the CA-based model as well as the en-

countered symmetries (see Table 3) can be exploited to mount a
cryptanalytic attack based on the (partial) reconstruction of the
keystream sequence from portions of intercepted sequence.



4. Conclusions

Self-shrunken sequences are particular solutions of linear dif-
ference equations and can be generated by means of a particular
kind of CA. In this way, a popular cryptographic sequence gen-
erator the Self-Shrinking Generator conceived and designed as a
nonlinear LFSR-based generator can be linearized in terms of cel-
lular models. The key idea is that the characteristic polynomial of
these sequences is a unique factor multiplied by itself a number of
times. Therefore, the concatenation of the cellular automaton as-
sociated to such a factor allows one to easily determine the cel-
lular model. Since this is the case for many other cryptographic
sequences, the so-called interleaved sequences, the linearization
procedure is general and can be applied tomany cryptographic ex-
amples in a range of practical applications.
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