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Abstract

This paper presents a numerical study on the performance degradation of a batch bioreactor optimal control strategy when the 
model used to compute such strategy shows wide variations from the real process. The optimal control was computed using a 
model that, when exposed to large variations of the control inputs, presents large departures from real process behavior. An 
improved model based on published experiments was proposed. A new optimal policy was calculated and the behavior of this 
model when controlled with the earlier policy was studied. Although the earlier control showed a performance degradation with 
respect to the real optimal control, degradation was modest, and the results are superior to these obtained with other control 
strategies. 
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1. Introduction

Although the optimal operation of a process is al-
ways a desired feature, off-line computation of optimal
control policies has obtained dissimilar acceptance in
different disciplines. Optimal control has been used
mostly in fields where process models are well known
and are subject to negligible perturbations, but it has
had little acceptance in biological processes, where
model uncertainties and perturbations can be
significant.

It is for these reason that few results on optimal
control of batch bioreactors have been presented in the
literature [1]. Most used the logistic equation and the
Luedeking–Piret equation (or slight variations of them)
to model cell growth and the formation rate of the
desired metabolic product, respectively. For the few
published results of batch bioreactor optimal control,
the final fermentation time was usually fixed, the objec-

tive being to maximize the value of some component of
the state vector evaluated at this final time. The control
variable was either the broth temperature or the broth
pH.

Constantinides et al. [2] presented numerical results
obtained on applying optimal temperature control to a
penicillin batch fermentation. Their objective was to
achieve the maximum penicillin concentration at the
final fermentation time, and for that purpose they used
the logistic equation as the model for the cell growth
and a model for the penicillin formation rate different
from the Luedeking–Piret equation. The parameters
for both equations were functions of the temperature.
The simulation results were good, as they reported
increments of 14.7–16.0% in the final concentration of
penicillin when compared with the constant tempera-
ture operation. They did not present any evidence of
the application of optimal temperature control to a real
fermentation and gave no estimation of the degradation
of the results due to errors in the model. Furthermore,
it is evident from their results that the optimal control
derived was dependent on the model used.

Lee et al. [3] presented numerical and experimental
results of the optimal pH control of a curdlan produc-
tion batch culture. They used a fixed operation time of

* Corresponding author. Present address: Instituto Tecnológico de
Buenos Aires, Av. E. Madero 399, 1106 Buenos Aries, Argentina.
Tel.: +54-11-431-47778, ext. 242; fax: +54-11-431-40270.

E-mail address: dmarques@itba.edu.ar, dmarques@intec.unl.edu.ar
(D. Marqués).



380

120 h and values for the specific rates of cell growth,
substrate consumption, and curdlan production that
were functions of the pH and of the sucrose and
ammonium concentration. These functions were devel-
oped using data from experiments conducted at differ-
ent but constant pH, sucrose and ammonium
concentration values. They applied the computed pH
optimal profile to a batch fermentation, and obtained
results in good agreement with those predicted by the
model. The curdlan concentration was 78% higher than
the concentration obtained when operating with a con-
stant pH.

In a recent work Cacik et al. [4] presented optimal
control results for the production of xanthan gum. The
goal was to produce a desired amount of gum in
minimum time, and the manipulated variable was the
temperature of the culture medium. For that purpose a
model proposed by Shu and Yang [5], which is depen-
dent on the medium temperature, was used. The nu-
merical results showed the convenience of operating the
batch fermentor with a properly designed varying tem-
perature policy instead of the usual constant tempera-
ture procedure. Cacik et al. also showed the deviations
from the optimal results obtained when the model
parameters exhibited small constant departures from
the real parameters; such deviations were small and
acceptable and the performance degradation was
reasonable.

The general criticism of optimal control applications
comes from the great dependance of the results on the
quality of the model used. Shu and Yang presented
results for two fermentations with a non-constant tem-
perature profile, where the parameters behaved rather
differently than in their originally proposed model. As a
result, Cacik’s assumption that the parameters exhibit
small variations is not safely applicable.

A possible way to estimate the robustness of the
optimal control policy when subject to small parameter
variations is to compute the departure of the perturbed
objective functional in terms of quantities associated
with the nominal model [6] or associated with the
solution of the nominal problem [7], when the optimal
solution and the associated adjoint variables are differ-
entiable function of the model parameters [8]. Another
way, although rather elementary, is to simulate the
behavior of a reasonable perturbed model when the
nominal optimal control is applied. This course is fol-
lowed in this work because it is simple and there are
available data that permit the building of a reasonable
perturbed model.

This work presents a numerical study on the behav-
ior of the computed ‘optimal’ strategy when applied to
the ‘real process’. In this context the ‘real process’ is a
new model that fits those two shifted-temperature fer-
mentations results better than the original model of Shu
and Yang. The application of different control strate-

gies presented in Cacik et al. to this ‘real process’ is
compared in order to assess their robustness with re-
spect to model errors. It turns out that the original
optimal operation performs positively better than other
strategies and the degradation with respect to the ‘true’
optimal is small.

2. Optimal control of batch bioreactors

2.1. Penicillin batch fermentation

Constantinides et al. [2] obtained an optimal temper-
ature profile that maximizes the final penicillin concen-
tration when the model describes the variations of cell
concentration X and product concentration P at the
temperature T with the following equations:

dX
dt

=b1(T)
�

1−
X

b2(T)
�

X (1)

dP
dt

=b3(T)X−b4(T)P (2)

They computed diverse optimal temperature profiles,
using different sets of parameters, obtained from vari-
ous experiments. For the first set of parameters, that
conforms (together with Eqs. (1) and (2)) what they call
the general model 1F, they assumed, based on results
obtained from one fermentation performed at a con-
stant temperature of 25 °C and on several consider-
ations, that b1, b2, and b3 have a parabolic dependance
on the temperature, with vertical symmetry axes and
maximums at 30 °C for b1 and b2, and at 20 °C for b3.
For b4 they adopted an Arrhenius type relationship.

For the second and third set of parameters, which
together with Eqs. (1) and (2) conform to what they call
the particular models C2 and S2, they interpolated the
parameter values obtained from fermentation runs per-
formed at four and three different constant tempera-
tures, respectively, assuming that, in the intervals
defined by the temperatures of those experiments, the
logarithm of the parameter values are linear function of
the reciprocal of the absolute temperature. It can be
seen that simple linear functions of the temperature give
similar results than the interpolations used by Constan-
tinides when computed in the temperature ranges
defined by their fermentation experiments.

Fig. 1 show the values of the parameters for models
1F, C2 and S2 plotted against the temperature. Differ-
ent scales were used for the models because their origi-
nal experimental data were expressed in different units.
It is evident from Fig. 1 that the behavior of most of
the parameter bi for model 1F is different from the
behavior for models C2 and S2. As a consequence,
when computing the optimal control, a different tem-
perature profile is obtained with each model, as can be
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seen in Eqs. (3), (5) and (8) of the original paper [2].
Unfortunately, in this case there are no applications of
the optimal temperature profiles to the real plant, nor
any quantification of the optimal results degradation
due to model mismatch. As a result, it is not possible to
conclude in this case that the optimal temperature
profile computed under such model uncertainty will be
an improvement over the traditional constant tempera-
ture operation.

2.2. Curdlan batch fermentation

Lee et al. [3] developed a model for the batch produc-
tion of curdlan, where the cell growth rate and the
curdlan production rate were functions of the values of
the pH, the sucrose concentration and the ammonium
concentration. They computed the pH profile that max-
imizes the curdlan concentration at the final time (120
h) using the minimum principle of Pontriagyn. This
optimizing profile shows two distinct zones, a cell
growth phase, where the pH is maintained at a value of
7, and a curdlan production phase, where the pH is
maintained at a value of 5.5. As the cell growth phase
extends until the available nitrogen is depleted, the pH
switching time is the time at which the ammonium
concentration approaches zero. This feature gives a
robust form to decide the switching time if the ammo-
nium concentration values are readily available.

The reported experimental implementation of the
optimal profile shows results in good agreement with
these predicted by the model, and improving the final
concentration of curdlan by 78% with respect to a
fermentation operated at a pH constant value.

2.3. Xanthan gum batch fermentation

Several models have been proposed by different au-
thors to describe the dynamics of the xanthan gum
fermentation. The usual state variables are the cell,
gum, and main substrate concentrations. The most

common approach to describe the dynamics of the
biomass in a batch culture is to use a Monod-type
specific growth rate coefficient or to use the logistic
growth equation. The dynamics of the gum production
and the carbon substrate consumption are usually de-
scribed by relations of the Luedeking–Piret type. Weiss
and Ollis [9] presented a thorough analysis proposing
the logistic equation, the Luedeking–Piret equation,
and a modified Luedeking–Piret equation to describe
the biomass, product, and substrate behaviors, respec-
tively. Pons et al. [10] proposed the use of a less
empirical model for the product and substrate dynamics
than the Luedeking–Piret equation to take into ac-
count some of the earlier results and limitations in the
oxygen transfer rate. This model includes the principal
metabolic pathways and needs a more detailed knowl-
edge of the system, which is not always available,
particularly for on-line control purposes. Georgieva
and Patarinska [11] presented a model that takes into
account the dissolved oxygen concentration. Peters et
al. [12] proposed a more elaborated equation for the
biomass dynamics, using a Monod-type factor that
relates to the ammonium as a growth-limiting sub-
strate, and considering the normal death rate and the
death rate induced by oxygen deficiency. For substrate
consumption they proposed a different equation, dis-
criminating the usage of the carbon substrate for
growth, maintenance and gum production.

Most of the published reports on xanthan gum pro-
duction suggest the operation of batch reactors at
constant temperature, and the effects of temperature
levels on the gum production have received little atten-
tion. The influence of the temperature on the main
processes of the xanthan gum production has been
studied by Shu and Yang [5,13]. They experimentally
found the production rates of biomass and gum at
different temperatures. As a result, they proposed equa-
tions of the same type as those used by Weiss and Ollis
[9] but with their parameters being functions of the
temperature T,

dX
dt

=k(T)
�

1−
X

Xs(T)
�

X (3)

dP
dt

=a(T)
dX
dt

+b(T)X (4)

dSc

dt
= −

�
�(T)

dX
dt

+�(T)X
�

(5)

where the state variables are the cell concentration X,
the product concentration P, and the carbon substrate
concentration Sc. The functional forms of the parame-
ters k, Xs, a, b, �, and � are shown in Shu and Yang [5].
As a result of their experiments, they suggested the
convenience of using one temperature level (27 °C) for
the trophophase and another level (32 °C) for the
idiophase in order to increase the gum production.

Fig. 1. Parameter functions proposed by Constantinides et al. Models
1F (—), C2 (– – –), and S2 (- - - -); experimental data 1F (�), C2
(�), and S2 (�).
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Using the model proposed by Shu and Yang, the
application of a procedure to compute the temperature
operating policy that produces a given amount of xan-
than gum in minimum time was presented [4]. The
computational experiments showed that the fermenta-
tion time required to produce 15 g of gum per litre of
medium is, as a result of the application of the men-
tioned procedure, 16.3% shorter than the fermentation
time necessary when the usual constant temperature is
used and 12% shorter than the fermentation time neces-
sary when the two-temperatures strategy of Shu and
Yang is used.

In order to assess the sensibility of the optimization
method to small errors in the parameters, several com-
putations of the optimal temperature profile were per-
formed, where the parameters of Eqs. (3) and (4) had a
constant offset (one parameter at a time) from the
values of the original model. These runs were called the
perturbed model parameter runs. Table 3 of Cacik et al.
shows the degradation of the operation obtained when
these resulting temperature profiles were applied to the
original model. The observed degradation in the fer-
mentation time was negligible, which suggests near
optima behavior when confronted with moderate errors
in the parameters.

As Shu and Yang [5] performed further experimental
fermentations with a temperature step change and re-
ported that their model did not predict correctly the cell
concentration dynamics in this case, they re-evaluated
the parameters for each of the constant temperature
time periods (27 and 32 °C) and found new sets of
parameter values. Some of the parameters (mainly Xs,
but also b) of Eqs. (3) and (4) show strong departures
at 32 °C from their originally proposed values. As a
result, the results on sensibility of the optimal control
to small errors presented by Cacik et al. do not indicate
that a near optimum will be achieved with the obtained
trajectory, where a steep increase in the temperature is
employed. A simple variation of the Shu and Yang
model that fits better the last experimental runs is
proposed here. The optimal control operation for this
modified model is computed and the outcome obtained
when the controls obtained for the original problem are
applied to this modified model is studied.

3. A modified model

Equations for Xs and b proposed by Shu and Yang
are,

Xs=
1.58+2.02e(29−T)

1+e(29−T) (6)

b=1.61×1013e9.58×103Ta
(7)

Fig. 2. Xs and b values as functions of the temperature T. (�), values
from experiments with temperature shift.

where T is the medium temperature expressed in °C and
Ta is the medium absolute temperature expressed in °K.
For two fermentations with temperature shifts from 27
to 32 °C results were obtained for values of the parame-
ters Xs and b at the higher temperature level that differ
markedly from the values predicted by their proposed
Eqs. (6) and (7).

With the main intention of building a different model
useful to measure the sensibility of the obtained control
to model errors, the equations proposed by Shu and
Yang are replaced by simple equations for Xs and b
that fit better the experimental data for runs with
temperature shift. For that purpose, as there are avail-
able values of the parameters at those two tempera-
tures, the following linear function of the temperature is
suggested,

Xs= −3.52+0.21T (8)

b=0.028+0.006T (9)

Fig. 2 shows the values of the parameters Xs and b
obtained by Shu and Yang from their experimental
fermentations with temperature shifts and listed in their
Table 4 [5], the values computed using the model
expressed by Eqs. (6) and (7), and the values computed
using the linear Eqs. (8) and (9) that are proposed in
this work. It is evident from the figure that the equa-
tions proposed by Shu and Yang to model the parame-
ters as a function of the temperature represents poorly
the behavior of the parameters for runs with tempera-
ture shifts.

4. Numerical results with the modified model

4.1. Numerical comparison of model beha�ior

To validate the proposed models for the temperature
dependence of Xs and b, numerical results obtained
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with the original model of Shu and Yang and with the
modified model were compared with their correspond-
ing experimental data, all for the case when the temper-
ature shift from 27 to 32 °C is performed at 25 h.

Fig. 3 shows Shu and Yang’s experimental results for
the fermentation with the temperature shift at 25 h and
the results of two computer simulations with similar
temperature changes, the first simulation uses the origi-
nal Eqs. (6) and (7) for the parameters Xs and b, and
the second simulation uses the linear Eqs. (8) and (9) to
compute the values of those parameters. These results
manifest, for runs with temperature rises, a better
model behavior when using the linear equations than
when using the original equations.

Eqs. (8) and (9), together with Eqs. (3) and (4) and
the original equations of Shu and Yang for parameters
k and a, will be used in the following sections as the
‘real process’, both to compute the ‘real’ optimal con-
trol, and to compute the performance of the control
trajectories presented in the earlier work [4] when they
are applied to the ‘real process’.

4.2. Optimal temperature trajectory

The optimal temperature control T* was computed
using the model expressed by Eqs. (3) and (4) with the
parameters Xs and b given by Eqs. (8) and (9). An
iterative procedure to solve the variational problem was
applied, as it was done in Cacik et al [4] and outlined in
the Appendix, to obtain the temperature trajectory that
minimizes the final fermentation time. Such an optimal
temperature trajectory is shown in Fig. 4 together with
the resulting cell and gum concentration histories. The
optimal temperature profile obtained shows a different
shape to the optimal temperature profile T** computed
earlier using the original Shu and Yang model, which is
also shown in Fig. 4. It can be seen that T* is an
increasing temperature profile (as T** is most of the
time), favoring cell growth during the initial part of the
fermentation with relative medium temperatures, and
favoring gum production during the final part with
higher temperatures. This optimal control T* enables a

Fig. 4. Optimal operation of the ‘real process’.

final gum concentration of 15 g/l to be produced in 27.8
h when the initial cell concentration is 0.05 g/l. This
time is 20% shorter than that required when operating
at the usual constant temperature of 28 °C.

4.3. Performance of the different control strategies

The temperature trajectories computed and used in
Cacik et al., where the models for the parameters Xs

and b were not appropriate for fermentations with wide
temperature variations, were applied to this new model
in order to assess the robustness of such optimal con-
trol and compare with the outcomes for other control
strategies. The times required to reach the desired gum
concentration obtained from these simulations are
shown in Table 1. The time necessary to reach the final
gum concentration with the earlier optimal temperature
profile is only 6.5% longer than the time necessary with
the optimal control computed with the improved
model. It can also be seen that the earlier optimal
temperature profile, when applied to the ‘real process’,
reaches the final gum concentration in a time period
14.7% shorter than the constant temperature strategy
and 15.9% shorter than the two temperatures strategy
of Shu and Yang.

5. Conclusions

The purpose of this work was to study the robustness
of the optimal control of a batch bioreactor with
respect to model errors. The optimal control under
study was the temperature trajectory obtained using the
original model, where this model deviates considerably

Fig. 3. Fermentation results with temperature shift at 25 h. Experi-
mental data, biomass (�) and gum (�) concentrations. Simulation
results: Xs and b computed with Eqs. (6) and (7) (—), Xs and b
computed with Eqs. (8) and (9) (- - -).

Table 1
Different control strategies applied to the ‘real’ model

Temperature strategy Final time (h)

34.7Constant temperature (28 °C)
35.2Two temperatures (27 °C�32 °C)
29.6Optimal strategy for original model (T**)

Near-optimum 29.2
Optimal strategy for improved model (T*) 27.8
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from the experimental results when a temperature tra-
jectory with sharp increases, as the optimal one, is
applied.

To assess the robustness of that control, an improved
model was obtained approximating the behavior of
some parameters of the model with simple equations
obtained using experimental data presented by other
authors.

Numerical simulations were performed applying to
the improved model both, the optimal control and
other control strategies used or proposed by different
authors. The results were compared between them, and
against the ‘real optimal control’ computed with the
modified model. It can be concluded that in this case
the optimal operation strategy proposed by Cacik et al
[4] provides a robust control, showing a modest degra-
dation of the sought objective, and superior results
when compared with other operation modes.
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Appendix A. Optimal control formulation

The optimal temperature trajectory for the system is
obtained as the solution of the following minimum time
problem,

min
T(t)

tf

subject to, the system equations

dX
dt

= k(T)
�

1−
X

XS(T)
�

X

dP
dt

=a(T)
dX
dt

+b(T)X

the initial conditions

X(t0)=X0

P(t0)=P0=0

the desired final condition

P(tf)=Pf

and constraints in the inputs

Tl�T(t)�Tu

The Hamiltonian for this problem is defined as,

H= −1+� �f= −1+�1k(T)
�

1−
X

Xs(T)
n

X

+�2
�

a(T)k(T)
�

1−
X

Xs(T)
�

X+b(T)X
n

where the vector f is the right hand side of the system
equations and � is the vector of co-states. Conse-
quently, the adjoint equations, defined as d�/dt=
− (�H/�x)� (where x is the state vector, whose compo-
nents are the state variables X and P), are,

d�1

dt
= −

�
�1k(T)

�
1−

2X
Xs(T)

�
+�2

�
a(T)k(T)

�
1−

2X
Xs(T)

�
+b(T)

�n
d�2

dt
=0

with the following boundary conditions,

�1(tf)=0

�2(tf)=�2f=
�

a(T)k(T)
�

1−
X(tf)
Xs(T)

�
X(tf)+b(T)X(tf)

n−1

The temperature T*(t) that satisfies the problem is a
trajectory such that the state and adjoint equations are
satisfied and the Hamiltonian can not be improved,

�H
�T

=0 if Tl�T*(t)�Tu

�H
�T

�0 if T*(t)=Tl

�H
�T

�0 if T*(t)=Tu

Such trajectory was obtained using the following itera-
tion scheme:
1. Adopt a temperature profile T(t) that satisfies the

temperature constraints.
2. Solve the system equations from t= t0 up to the

time tf such that P(tf)=Pf.
3. Solve the adjoint equations from t= tf to t= t0.
4. Verify the convergency criteria, if it is not met, T(t)

is updated using the gradient of the Hamiltonian
(�H/�T) in such a way that the updated tempera-
ture profile satisfies the constraints and the func-
tional value is improved, and steps 2–4 are
repeated.
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