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Abstract
Chemical modification of bacterial cellulose (BC) through carboxymethylation was carried out to prepare a low-cost 
highly stable lead adsorbent material (CMBC). Aiming to maximize its adsorption capacity, the effect of the 
carboxymethylation extent conferred to BC on the lead retention ability of the insoluble CMBC products obtained was 
studied. Results evidenced a strong linear correlation between the lead retention capacity of CMBC samples and their 
degree of substitution, highlight-ing a key role on the biobased adsorbents performance of the amount of negatively 
charged carboxylate groups available for an ion-exchange-governed lead adsorption process. Proper tuning of the 
carboxymethylation extent conferred to BC thus allowed maximizing its lead adsorption capacity, reaching values (i.e. 
127.2 mg  g−1) that doubled those previously reported.
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Introduction

Human health risks associated with the consumption of 
water contaminated with heavy metals are well known [1]. 
For instance, lead (Pb) is a toxic metal that affects multi-
ple body systems, being children the most vulnerable ones 
to its neurotoxic effects [2, 3]. From this perspective, and 
considering that lead can be found in aqueous systems due 
to the lixiviation of mining areas and industrial effluents, 
the WHO has limited the lead concentration for drinking 

water in 0.01 mg  L−1 [1]. To fulfill this requirement, meth-
ods to remove lead from contaminated water are needed, 
e.g. coagulation-flocculation, reverse osmosis, ion exchange,
precipitation, membrane filtration, solvent extraction, and
adsorption. Among them, and based on its low cost, simplic-
ity, flexibility and versatility, adsorption is recognized as a
particularly attractive lead removal method [4–6].

Heavy metals adsorbents can be derived from both 
synthetic and natural polymers, being the latter especially 
attractive due to their abundance and renewable origin, as it 
is the case of alginates, starch, chitosan and cellulose [7–29]. 
Among cellulose sources, bacterial cellulose (BC) has the 
advantage of being produced with high purity, thus avoiding 
the use of the chemical reagents needed to isolate cellulose 
from plant sources [30, 31]. Chemical modification of cel-
lulose hydroxyl groups may result in numerous derivatives 
with different properties and a variety of applications, but 
for the purpose of heavy metal adsorption cellulose water 
insolubility needs to be guaranteed.

In this context, we recently demonstrated the suitability 
of water insoluble carboxymethylated bacterial cellulose 
(CMBC) with a DS of 0.17 (DS = average number of sub-
stituted hydroxyl groups per anhydroglucose unit (AGU)) 
for effectively removing lead from water [7]. Results also 
showed that: i) the adsorption of lead onto CMBC was fast, 
reaching the equilibrium in less than one hour, ii) it followed 

 * María Laura Foresti
mforesti@fi.uba.ar

1 Grupo de Biotecnología Y Materiales Biobasados, 
Instituto de Tecnología en Polímeros Y Nanotecnología 
(ITPN-UBA-CONICET), Facultad de Ingeniería, 
Universidad de Buenos Aires, Buenos Aires, Argentina

2 Consejo Nacional de Investigaciones Científicas Y Técnicas 
(CONICET), Buenos Aires, Argentina

3 Departamento de Ingeniería Industrial, Facultad de 
Ingeniería, Universidad de Buenos Aires, Buenos Aires, 
Argentina

4 Departamento de Ingeniería Química, Instituto Tecnológico 
de Buenos Aires (ITBA), Buenos Aires, Argentina

5 Departamento de Ingeniería Química, Facultad de Ingeniería, 
Universidad de Buenos Aires, Buenos Aires, Argentina

http://orcid.org/0000-0002-2552-5853
http://crossmark.crossref.org/dialog/?doi=10.1007/s10965-021-02565-3&domain=pdf


the pseudo-second-order kinetic model and the Langmuir 
isotherm model, iii) the maximum lead retention capacity at 
room temperature was close to 60 mg  g−1, and iv) adsorp-
tion was governed by ionic interactions between lead cations 
and the carboxylate anions of CMBC. Besides, it was dem-
onstrated that CMBC could be efficiently regenerated and 
reused for more than 50 cycles [7], highlighting its potential 
as a low-cost biobased lead adsorbent, and triggering further 
studies devoted to enhancing its retention capacity.

In this framework, the aim of this contribution was to 
maximize the lead retention ability of CMBC. With this 
purpose, and bearing in mind that the water insolubility of 
carboxymethylated cellulose strongly depends on its DS 
(with DS values higher than 0.40 resulting in water solu-
ble derivatives [32–34]); CMBC samples with varying DS 
values within the 0.11–0.40 interval were prepared, tested 
for their insolubility, and assayed for their maximum lead 
adsorption capacity under previously established conditions.

Materials and methods

Materials

Sodium monochloroacetate (NaMCA, Sigma-Aldrich), isopro-
panol, sodium hydroxide, methanol (Cicarelli, San Lorenzo, 
Argentina) and glacial acetic acid (Merck) were used as received 
in the carboxymethylation of BC. All reagents used were of ana-
lytical grade.

Preparation of BC culture medium

BC culture medium was prepared as previously reported 
using anhydrous dextrose, disodium phosphate.12  H2O 
(Biopack, Zarate, Argentina), yeast extract, meat peptone 
(Britania, Laboratorios Britania S.A., CABA, Argentina), 
citric acid (Merck, Carlos Spegazzini, Argentina), and glyc-
erol (Sintorgan, Villa Martelli, Argentina) [30].

Preparation of lead solutions

Aqueous solutions of Pb (II) were prepared using ultrapure 
water (18MΩ quality) and solid Pb(NO3)2 p.a. (Merck). Lead 
concentration was measured by use of an air-acetylene flame 
type atomic absorption spectrometer (Thermo Scientific, 
Model iCE 3000). Pb (II) standard solutions were prepared 
from 1000 mg  L−1 Pb standard solution (Merck).

Production of BC

BC production was carried out using a strain from Glucon-
acetobacter xylinus NRRL B-42. Inocula were cultured in 
Erlenmeyer flasks containing Hestrin and Schramm 
medium 

(volume "medium/flask" = 1/5) [35] and statically incubated 
at 28 °C during 72 h. Afterwards, the Erlenmeyers were vor-
texed and aliquots of the broths were transferred (10% v/v) 
to 250 mL fermenters with 50 mL of Hestrin and Schramm 
medium containing glycerol instead of glucose.

Fermenters were kept in static conditions at 28 °C for 
15 days. After that time, the BC pellicles produced were 
harvested, exhaustively washed out with distilled water, 
homogenized in a blender with KOH solution (5% w/v) 
during 5 min and finally left unattended in the alkali solu-
tion during 14 h. After this period, the BC suspension was 
repeatedly rinsed with distilled water till neutralization.

Carboxymethylation of BC

Carboxymethylation of BC was performed as previ- 
ously described [36]. Briefly, a BC isopropanol suspension 
(6.2 mmol AGU, 100 mL) was prepared by proper solvent-
exchange from water, and then 35% w/v NaOH solution was 
added dropwise while stirring (300 rpm) at a NaOH:AGU 
molar ratio of 3:1. The system was then kept at 30 °C during 
1 h with stirring (300 rpm), followed by the addition of vary-
ing amounts of sodium monochloroacetate that guaranteed 
predefined NaMCA:AGU molar ratios in the 0.1:1–0.4:1 
interval. The reaction system was then kept at 55 °C during 
2 h with stirring. After this period, the crude product was fil-
tered off, resuspended in 75 mL of methanol, and neutralized 
with glacial acetic acid using phenolphthalein as end-point 
indicator (pH 8). The CMBC produced was then washed 
with 70% v/v ethanol, dried in an oven (60 °C, overnight), 
and ground to powder.

Characterization of CMBC samples

Determination of DS values

The DS values of the CMBC samples were determined by 
conductometric titration [37] after drying (110 °C, 3 h). 
Samples (0.6 g) were suspended in 15 mL of 70:30 v/v 
methanol/water at room temperature and allowed to soak 
during 10 min. After this interval, 200 mL of cold  CO2-free 
distilled water and 5 mL of 0.3 M NaOH were added, fol-
lowed by titration with 0.1 M HCl.

Fourier transform infrared spectroscopy (FT‑IR)

Fourier Transform Infrared spectra of properly dried 
(110 °C, overnight) BC and CMBC samples (sample:KBr 
weight ratio: 1:20) were acquired in an IR Affinity-1 Shi-
madzu FT-IR Spectrophotometer in absorbance mode with a 
spectral resolution of 4  cm−1. Measurements were conducted 
in the 650–4000  cm−1 interval, and data was normalized 
against the 1168  cm−1 band as described previously [7, 38].



Thermogravimetric analysis (TGA)

Thermogravimetric analyses were performed in a TGA-50 
Shimadzu instrument. Properly dried (110 °C, 1 h) BC and 
CMBC samples (5 mg) were heated from 25 °C to 600 °C 
at 10 °C  min−1 under a nitrogen atmosphere (30 mL  min−1, 
2  kg   cm−2).  Tonset (5 wt.% weight loss after moisture 
removal) and  Tmax values (greatest rate of change on the 
weight loss curve) were calculated and compared among 
samples.

Solubility of CMBC

Quantitative water solubility assays of CMBC samples 
were performed by immersion of properly dried (110 °C, 
2 h between disks) and weighted films in 50 mL of distilled 
water during 24 h at 25 °C; followed by samples recovery, 
drying and weighting (110 °C, 2 h).

Lead adsorption studies

The maximum lead adsorption capacity of CMBC samples 
was determined in triplicate at the experimental conditions 
adjusted in our previous work [7]. Briefly, each sample 
(25 mg) was suspended in lead aqueous solutions (150 mg 
 L−1, 50 mL) at pH 7 and 25 °C, and stirred at 400 rpm dur-
ing 2 h. After this time, suspensions were filtrated and the 
Pb concentration in the supernatant was determined by flame 
type atomic absorption.

Results and discussion

Synthesis and characterization of CMBC

As already described, carboxymethyl celluloses with DS 
values higher than 0.40 have proved to be water soluble 
[32–34]. Thus, aiming to tailor the extent of carboxym-
ethylation of BC within the water insoluble interval, the 
NaMCA:AGU molar ratio used to prepare the CMBC 
samples was herein varied within the 0.10–0.40 interval, 
while all other conditions were kept at predefined values 
(Sect. Carboxymethylarion of BC). CMBC samples with 
DS values of 0.11, 0.13, 0.20, 0.28, 0.35 and 0.40 were thus 
obtained.

Carboxymethylation of BC was confirmed by FT-IR spec-
troscopy (Fig. 1). All spectra showed absorbances typical of 
cellulose I [39, 40]; whereas in the FT-IR spectra of CMBC 
samples the stretching vibration of the carbonyl (C = O) pre-
sent in the carboxylate groups  (COO−) was also observed 
at 1606  cm−1 [41]. Besides, a progressive increase of this 
absorbance was observed in accordance with the evolution 
of the DS determined by conductometric titration.

Thermal decomposition curves of BC and CMBC samples 
with varying DS are shown in Fig. 2. In all samples a first 
weight loss associated to samples dehydration was observed 
between room temperature and 135 °C. The following weight 
loss event exhibited in the thermograms corresponds to cel-
lulose decomposition. As evidenced from Fig. 2, a progres-
sive reduction in the thermal stability of cellulose took place 
upon carboxymethylation, as inferred from  Tonset and  Tmax 
values up to 65 °C lower than those measured for pristine BC 

Fig. 1  (a) FT-IR spectra of BC and CMBC samples with varying DS; (b) Evolution of the intensity of the stretching vibration band of the car-
boxylate groups  (COO−)



depending on the DS of the sample (Table 1). The reduction 
of the thermal stability of cellulose and other polysaccha-
rides as a consequence of carboxymethylation has been previ-
ously reported [33, 41–44]; and sometimes associated with 
the breaking of hydrogen bonds due to carboxymethylation 
which accelerates the degradation of the modified polymer. 
In any case, the thermal stability reduction extent of CMBC 
herein measured is not at all expected to affect the materi-
als properties within the operation/regeneration temperature 
interval involved in the proposed application (usually not 
higher than 40 °C).

Lead adsorption studies

All CMBC samples were assayed for water solubility at 
room temperature and only the sample with a DS of 0.40 
exhibited partial solubilization (i.e. 6%, 24 h, 25  °C). 
Insoluble water samples with DS values within the 
0.11–0.35 interval were tested as lead adsorbents from 
aqueous solutions under conditions defined on the base of 
previous results of our group [7]. As it is shown in Fig. 3, 
the maximum lead adsorption capacities of the CMBC 

samples increased linearly with the samples’ DS. A maxi-
mum value of 127.2 mg  g−1 was obtained for the adsorbent 
with the highest level of substitution that still guaranteed 
its water insolubility. This value doubled that previously 
reported for this material [7], and it was actually higher 
than those of many lead biobased adsorbents described in 
the literature (Table 2).

The linear relationship observed in Fig. 3 is in accordance 
with an adsorption process governed by ionic interactions 
between lead cations and the carboxylate groups present in 
the modified BC, in line with the thermodynamic param-
eters calculated for the current adsorption process in a previ-
ous work [7]. As it is expected for an ion-exchange process, 
higher carboxymethylation extents conferred to BC (i.e. 
higher DS values) result in more carboxylate groups avail-
able to retain lead cations on the adsorbent’s surface.

Fig. 2  (a) TG curves, (b) DTG curves, and (c)  Tonset and  Tmax values determined for BC and CMBC samples with varying DS

Table 1  Tonset and  Tmax values determined for BC and CMBC sam-
ples with varying DS

Samples DS Tonset (°C) Tmax (°C)

BC 0.00 334 354
CMBC 0.11 292 329
CMBC 0.13 273 317
CMBC 0.20 267 311
CMBC 0.28 282 297
CMBC 0.35 278 312
CMBC 0.40 267 305

Fig. 3  Lead adsorption capacity of CMBC samples with varying DS. 
CMBC dosage: 25 mg per 50 mL; lead concentration: 150 mg  L−1; 
pH: 7; contact time: 2 h



Conclusions

In this work CMBC samples with DS values in the 
0.11–0.40 interval were obtained and the materials that 
resulted insoluble in water (i.e. DS values between 0.11 
and 0.35) were assayed for their lead removal capacity. 
Results demonstrated the existence of a linear relationship 
between the adsorption capacity of CMBC and its sub-
stitution level. In this way, the lead retention capacity of 
CMBC was maximized at a DS of 0.35 (i.e. 127.2 mg  g−1), 
with a value that doubled that previously reported for this 
material, and which was actually higher than those of 
many lead biobased adsorbents described in literature.
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