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Abstract—The statistical properties of Synthetic Aperture
Radar (SAR) image texture reveal useful target characteristics. It
is well-known that these images are affected by speckle and prone
to extreme values due to double bounce and corner reflectors.
The g? distribution is flexible enough to model different degrees
of texture in speckled data. It is indexed by three parameters:
o, related to the texture, y, a scale parameter, and L, the number
of looks. Quality estimation of « is essential due to its immediate
interpretability. In this letter, we exploit the connection between
the g? and Pareto distributions. With this, we obtain six estima-
tors that have not been previously used in the SAR literature.
We compare their behavior with others in the noisiest case
for monopolarized intensity data, namely single look case. We
evaluate them using Monte Carlo methods for noncontaminated
and contaminated data, considering convergence rate, bias, mean
squared error, and computational time. We conclude that two of
these estimators based on the Pareto law are the safest choices
when dealing with actual data and small samples, as is the case
of despeckling techniques and segmentation, to name just two
applications. We verify the results with an actual SAR image.

Index Terms— g? distribution, speckle, parameter estimation.

I. INTRODUCTION

YNTHETIC APERTURE RADAR (SAR) is an active
sensing instrument able to measure the roughness, elec-
trical properties, and shape of the surface. It is widely used
in environmental monitoring and evaluation of damages in
natural catastrophes, among other applications. However, auto-
matic SAR image interpretation is difficult due to the presence
of speckle, making statistical modeling necessary.
Many statistical models have been proposed for monopo-
larized SAR image understanding. Gao [1] reviewed these

models and considered the amplitude GO distribution a break-
through for its tractability and expressiveness.
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Many applications employ the intensity version, the Q? law,
because it does not involve special functions other than the
Euler’s Gamma, and the ability to describe a wide variety
of targets [2]. Three parameters index the Q? distribution:
a, related to the texture, y, a scale parameter, and L, the num-
ber of looks which is related to the signal-to-noise ratio. The
last parameter may be known or estimated for the whole
image, while the others describe local characteristics.

The texture is a pivotal parameter in SAR image interpre-
tation; thus, precision and accuracy in the estimation of o are
basilar. This inference becomes critical when only a few sam-
ples are available, and when they are prone to contamination,
as with local statistical filters and segmentation.

We obtain estimators that have not been used by the
SAR community through a connection between the Q? and
Pareto laws. We analyze these estimation methods in terms
of bias, mean square error, convergence, and computational
time. We consider two situations: pure data and contaminated
observations. The latter describes the situation of a few large
values, e.g., from a double bounce or a corner reflector, with
respect to the background mean.

We evaluate maximum likelihood (ML), penalized ML
(PML), likelihood moments (LMs), probability weighted
moments (PWMs), maximum goodness of fit (MGF) with
different statistics, and minimum density power divergence
(MPD) estimators in the single look case (L = 1).

The ML estimator is widely used because of its asymptotic
properties, even though it has bias, and robustness problems
with small samples. Several attempts have been made to reduce
ML bias using analytic [3] and bootstrap methods [4], [S].
Frery et al. [6] proposed a technique to correct its tendency
to diverge with small samples.

Robustness is another desired property. Among the possible
deviations from the ideal situation of independent identically
distributed (i.i.d.) deviates, extreme values are frequent in
SAR imagery due to, for instance, corner reflectors and other
sources of double bounce. Such departures from the basic
model may compromise the performance of, for instance,
despeckling filters and segmentation techniques. Among the
robust proposals, M- and AM-estimators proved to be reliable
in the presence of corner reflectors [7], [8].

Gambini et al. [9] formulated a nonparametric method
which consists in minimizing the triangular distance between
the Q? density probability function and an empirical distri-
bution of the data computed with asymmetric kernels. This
proposal is robust but has high computational cost, and it
fails in the single look case. Wang er al. [10] developed
a robust estimator based on the random weighting method.
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They evaluated its performance for different values of L under
contamination, and they concluded that the bigger the number
of looks, the smaller the percentage of no convergence. For
these reasons, in this work, we study estimation methods for
L =1, the noisiest situation.

The Q? law is a Generalized Pareto type II distribution [11]
when L = 1. This law has been verified and studied in several
fields because of its flexibility to model different phenomena.
We take advantage of this fact by using estimators whose
good properties (bias corrected [3], low computational cost
and asymptotic efficiency [12]) have already been assessed
but that have not been used by the SAR community.

Our study compares parameter estimation techniques
according to their computational cost, convergence rate, bias,
and mean squared error (MSE) for data without contamination
using Monte Carlo methods. We use the influence function
to quantify the estimators’ robustness. We then apply these
methods to actual data with a corner reflector.

This letter unfolds as follows. In Section II some GY
distribution properties are recalled, and the state of art of the
selected estimators is revised. Sections III-A and III-B discuss
the results obtained with simulation. Section III-C shows
applications to actual data. Section IV discusses remarks and
presents recommendations for practical applications. Finally,
the Supplementary Material provides definitions, code, and
other details.

II. STATE OF ART

A. Single Look g? Model for Intensity Data
The Q? distribution is characterized by the following prob-
ability density function:
LET(L — a) 7Ll
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where —a, y > 0 and L > 1. We are interested in the noisiest

case, which corresponds to L = 1, called the single look case.
The probability density function becomes
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The generalized Pareto type II distribution, G P (u, g, )
has the following probability density function:
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so the Q?(a,y, 1) distribution is a particular case of this
distribution for 4 = 0, 0 = y and f = —a. Using this fact,
we take advantage of the extensive existing bibliography on
parameter estimation under the Pareto distribution, applying
the best estimators to solve our problem.

B. Parameter Estimation Methods

In this section, we comment some of the characteristics
of the methods reviewed in this work. Their implementation
and other details can be seen in the Supplementary Material.

TABLE I
ABBREVIATIONS LIST

Abbreviation  Estimator Notation

ML Maximum Likelihood QML
PML Penalized Maximum Likelihood QPML
Mom Moments QMom
PWM Penalized Weighted Moments apwM
LM Likelihood Moments arm
Med Median QMed
MPD Minimum Power Density Divergence QMPD
MGF Maximumm Goodness of Fit QMGF
ADR MGF with Anderson Darling Right Tail QADR

Table I shows the methods reviewed in this work, along with
their abbreviations.

Grimshaw [13] studied the properties of the ML estimator
under the generalized Pareto distribution (GPD) model. It is
asymptotically consistent, efficient, and normal, but in many
cases, it has not an explicit solution, and it diverges for small

samples.
Coles and Dixon [14] proposed maximizing the
log-likelihood plus a penalization function, the PML

method, in order to reach convergence for small samples.
For large sample sizes, PML inherits optimal properties from
ML, avoiding its limitations in small ones.

Method of Moments (Mom) estimators have asymptotic
normality, asymptotic efficient normality and, in some cases,
explicit solution. They can be generalized to PWM estima-
tors, as detailed in the Supplementary Material. Hosking and
Wallis [15] discussed some properties of Mom and PWM
estimators for the GPD distribution. They compared the per-
formance of Mom, ML, and PWM and observed that Mom
is asymptotically normal, but it frequently does not converge,
and it is sensitive to outliers. They showed that PWM is an
alternative to ordinary moments with advantages for small
sample sizes but with low asymptotic efficiency.

Zhang [12] proposed the LMs estimator by combining
ML and Mom techniques. The solution always exists and is
efficient and asymptotically normal.

Peng and Welsh [16] proposed the median (Med) estimator,
as a robust alternative, by solving an equation that relates
the sample and population likelihood score medians. It is
robust because of its bounded influence function, and it is
asymptotically normal, but in many cases, it does not have
good performance [17] being, thus, only advisable under the
presence of outliers.

The maximum power density divergence estimator is
another robust alternative. It has bounded influence function
and is indexed by a positive constant o, which controls
the tradeoff between efficiency and robustness. As w rises,
robustness increases and efficiency decreases, becoming ML
when w = 0. Judrez and Schucany [17] proved that ML is
more efficient for noncontaminated data but MPD outperforms
it under contamination with grossly outlying observations.

Lucefio [18] proposed MGF estimators. He showed their
consistency and asymptotic efficiency. The author proved its
superiority for heavy-tailed data.

Fig. 1 summarizes the main characteristics of the consid-
ered parameter estimation methods, where “Asymp. Norm,”



Asymp. Eff. Norm.

high

LM-ML-PML Mom-PWM

Fig. 1. Parameter estimation method characteristics.

“Asymp. Eff. Norm.” and “Exp. Sol.” mean asymptotic
normality, asymptotic efficient normality, and explicit solution,
respectively.

The GPD is the limiting law of normalized excesses over
a threshold [19]. Thus, the choice of threshold is crucial for
accurate estimation. We assessed the performance of the esti-
mators above with the following threshold selection methods:
1) up which considers the whole sample; 2) u,,, which uses
the 90% largest values; 3) ug,, which considers the 80%
largest values; 4) uyiy based on the Hill plot; 5) uap which
is an automated threshold selection based on the p-values of
the attention display (AD) goodness of fit test.

In order to decide the most suitable threshold for each esti-
mator, we generated 1000 samples of sizes 25, 49, and 81, for
all combinations of a € {—8, -5, -2} and y € {0.1, 1, 10}.
We concluded that ug,, is the best threshold for n = 49,
for MPD and ML methods. In other cases, the choice is ug.
Also, we compared the following goodness-of-fit test statistics:
Anderson Darling left tail, Kolmogorov Smirnov, Cramer von
Mises, square Anderson Darling, and Anderson Darling right
tail. We obtained the best results with the latter, so this is the
only method we present here. We do not report the results
with Mom and Med estimators due to their relatively poor
performance.

III. SIMULATION EXPERIMENTS AND RESULTS

We compared the following estimation methods: MGF with
Anderson Darling right tail (ADR), LM, ML, MPD, PML, and
PWM by their MSE, convergence rate, bias and computational
time, for noncontaminated and contaminated data. We also
present the results of applying the methods to actual data.

The Supplementary Material shows the numerical evidence
that led to the conclusions we present in Sections I1I-A-III-C.

A. Noncontaminated Data

We considered 1000 samples from the g?(a, y, 1) distri-
bution, of sizes {25, 49, 81, 121, 500} without contamination
combining the parameter values a € {—8,—5,—2} and
y € {0.1, 1, 10, 100}. We obtained the samples following the
guidelines presented in [20].

For small samples, we observed the best convergence rate
for ADR. Except for PML, the rest of the considered estima-
tors reach good convergence rate with large samples and an
adequate one with small samples. LM outperforms the other
methods for lower texture values. See the convergence rate
for high, medium, and low texture and for y = {1, 10} in
Fig. SM-1 (Supplementary Material).
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Fig. 2. Support vector machine (SVM) image classification with and
without corner reflector. (a) Simulated image with two regions. (b) SVM
image classification using PWM Method, accuracy: 0.82. (c) SVM image
classification using PWM with a corner reflector, accuracy: 0.77. (d) SVM
image classification using MPD with a corner reflector, accuracy: 0.81.

For low texture values, all the methods underestimate and
for high texture values, they overestimate. We note that,
for « = —8, PML outperforms the others even for small
samples. PWM enhances its performance as the texture value
decreases. LM stands out in some cases; meanwhile, all esti-
mators achieve good accuracy in sample sizes larger than 121.
Figs. SM-2 and SM-3 (Supplementary Material) show the bias
according to the texture, and that the performance is the same
for all the candidates. The lack of monotonicity of some curves
is due to the randomness and to the heavytailedness of the
model.

Multiple comparisons of Tukey honestly significant differ-
ence (HSD) test point out that the PWM method is the fastest.
Fig. SM-4 (Supplementary Material) shows the time consumed
in milliseconds by each method for 1000 samples of size 500
for all parameter combinations.

B. Contaminated Data

The presence of outliers may cause gross errors in the
parameter estimation. We generated contaminated random
samples in order to assess the estimators under contamination.

Let B be a Bernoulli random variable with a probability
of success 0 < € <« 1. We are interested in a contaminated
random variable Z = BC 4 (1 — B)W, where C € R4 and
W ~ g?(a’ Vs 1)

As a way of measuring the impact of this contamina-
tion, we constructed stylized empirical influence functions
(SEIFs) [8] for samples of sizes n € {25,49, 81, 121}, for
each estimator considering all parameter combinations. Such
function measures how much a single observation is able
to drag the estimate away from its ideal value. Fig. SM-5
(Supplementary Material) shows such functions for a = —5
and y = 100. With this, the expected value of the background
is 25; the contamination C spans from 25 to 1000. We fixed
€ = (n+ 1)~', where n is the sample size.

With this approach, we verified that: 1) MPD is the least
sensitive estimator to large contamination and 2) the most
sensitive is PWM. Judrez and Schucany [17] proved that the
influence of outliers over MPD is bounded.

We carried out the following experiment in order to illustrate
the importance of using more than one estimator.
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Fig. 4. (a) Single-look E-SAR image with a corner reflector, used to estimate
the a-parameter, (b) its equalized version, and (c) ten Regions of Interest of
different sizes used to estimate the texture parameter.

1) A simulated SAR image is generated sampling from
the G¥(=5,1, 1) and GY(-2, 1, 1) distributions for the
central region and for the edge zone, respectively; one
of these images is shown in Fig. 2(a). The mean values
are 4 and 1.

2) An image of estimates is built using the PWM method,
then a classification is performed using the SVM super-
vised method and a linear kernel. Fig. 2(b) shows the
result.

3) We add an outlier at the center of the original image to
obtain a contaminated image. The outlier is one pixel
with value equal to 100.

4) We repeat the procedure: estimate by PWM, then SVM
classification. Fig. 2(c) shows the result.

5) We make an image of estimates with MPD, then classify
it with the same SVM method and obtain the results
shown in Fig. 2(d).
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Fig. 5. Texture estimates using the samples from Fig. 4(c).
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Fig. 6. Two classes segmentation using a parameter estimation and

k-means classification method. (a) k-means classification in two regions using
LM method. (b) k-means classification in three regions using LM method.
(c) k-means classification in two regions using ML method. (d) k-means
classification in three regions using ML method.

It can be observed that the parameter estimation method
depends strongly on the structure of the image. In the above
experiment, we notice that in the absence of the corner reflec-
tor, the PWM method provides good classification results, but
in the presence of the corner reflector it is necessary to use
another method. The classification accuracy is shown in Fig. 3.

Fig. 3 shows the accuracy of the classification with each
estimation method, with and without corner reflector. MPD has
one of the basilar properties of a good robust estimator: being
acceptable when there is no contamination, and not producing
unacceptable results under the presence of outlying data.

C. Actual SAR Data

Fig. 4(a) shows an intensity single-look L-band HH polar-
ization E-SAR image with a corner reflector used to compute
the estimates. Fig. 4(b) shows the equalized SAR image from
Fig. 4(a). It can be observed the complex texture structure of
the image. Fig. 4(c) shows the regions used for estimating the
texture parameter. The estimates are presented in Fig. 5 where
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Fig. 7.  Estimation performance by texture: high (H), medium (M) and
low (L). Green and red blocks mean appropriate and poor performance,
respectively.

the dashed black line shows the considered true value as the
asymptotic limit of the ML estimator.

All estimates approach the hypothesized true value, but at
very different rates; some underestimate it (ADR and LM),
while others overestimate it (ML, MPD, PML, PWM). Besides
the rate of convergence, the behavior is quite different from
that of small samples. The following application shows the
impact of such behavior in a classification process.

Fig. 6 shows the results of applying a two-step segmentation
to the image in Fig. 4(a): first a parameter estimation with
LM and ML methods using windows of size 21 x 21 pixels,
followed by a k-means classification with & = 2,3. The
classification obtained with LM estimates outlines quite well
the structure observed in Fig. 4(a). This is due to the robustness
of the estimation procedure before the presence of a corner
reflector.

IV. CONCLUSION

In this letter, we compared six parameter estimation meth-
ods with and without contamination. We evaluate MSE, con-
vergence rate, bias, and computational time. The i.i.d. model
assumed for noncontaminated data does not hold in case of
the presence of a corner reflector, which can be considered a
contamination. We analyzed the impact of such contamination
by means of stylized empirical influence curves. Hence, when
the image is susceptible to having this type of contamination,
it is recommended to consider robust techniques.

ML and MPD converge for large samples but present a
significant bias in small samples, so we consider that PWM,
PML and LM outperform them in this case. Also, PWM
consumes the lowest computational time.

In addition, we observed that the performance of the esti-
mation methods strongly depends on the texture characteristics
of the region of interest. For this reason, it is very important
to use more than one estimator, so as to improve the results
of the automatic interpretation of actual images. Fig. 7 shows
a scheme summarizing our recommendations.

APPENDIX

Simulations were performed using the R language and
environment for statistical computing version 3.3 [21], in a
computer with processor Intel Core, i7-4790K CPU 4-GHz,
16-GB RAM, system type 64-bit operating system.
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