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By means of theoretical analysis and numerical simulations, we show a tunable Raman gain which may find
applications in a variety of fields, ranging from mid-IR fiber Raman lasers and supercontinuum generation
to ultra-wideband slow-light Raman-based devices. In particular, by analyzing the interplay among Raman gain,
dispersion, and self-steeping (SE) in a full model of modulation instability (MI) in waveguides, we show that there
exists a range of pump powers where the gain spectrum is not only dominated by the Raman contribution,
but also, most strikingly, it can be fine-tuned at will. We present analytical and numerical results, in excellent
agreement, confirming this observation.

backscattered amplified spontaneous emission (ASE) [17].
Intuitively, one would expect the noise spectral density to
follow the Raman gain provided by the medium (as long as the
pump is weakly depleted). We show that this is indeed the case
in the normal dispersion region. However, in the anomalous
dispersion region an unexpected behavior emerges. Beyond the
MI cutoff power, where the medium response is dominated by
the Raman contribution, a tunable gain is observed. Moreover,
the central frequency of the gain spectrum can be tuned by
varying the pump power. We provide analytical results and
thorough numerical simulations, in excellent agreement, to
underscore this observation. As we explain in Section 2, this
effect, first reported in this work to the best of our knowledge,
is expected to become more apparent in waveguides in the mid-
IR spectral range, where the incidence of self-steepening is
greatly enhanced due to the smaller optical frequencies and
the high nonlinear coefficients typical of materials transparent
in this spectral window [18]. In this sense, this tunable Raman
gain may find application in mid-IR fiber lasers [19,20], super-
continuum generation, and ultra-wideband slow-light Raman-
based devices for all-optical signal processing [21–24].

We point out that the interplay between modulation insta-
bility and Raman scattering has previously been addressed in the
literature (see, e.g., [25,26] and references therein). In particular,
Dinda et al. [26] have thoroughly analyzed the interaction be-
tween MI and the delayed Raman response in optical fibers, but
they did not include the effect of self-steepening in their analysis.

The rest of the paper is organized as follows. In Section 2, we
briefly review the numerical model, based on the generalized

1. INTRODUCTION

The phenomenon of modulation instability (MI) has been 
known and thoroughly studied for many years in numerous 
areas of science. In the realm of optical fibers MI plays a 
fundamental role, as it is intimately connected to the appear-
ance of optical solitons and the phase-matching of four-wave 
mixing processes in the anomalous dispersion region [1–4]. 
Modulation instability also is at the heart of the occurrence 
of efficient parametric optical processes, which are relied upon 
to achieve bright and coherent light in various spectral ranges. 
In recent years, nonlinear phenomena such as supercontinuum 
generation [5,6] and rogue waves [7–12] have rekindled the 
interest in MI in optical fibers.

Full and tractable scalar models of MI in waveguides, see, 
e.g., [13,14] and references therein, can be used to analyze 
the complex interplay between high-order dispersion, Raman 
scattering, and self-steepening. In particular, Shukla and 
Rasmussen [15] revealed a pump power level that maximizes 
the MI gain, and De Angelis et al. [16] further revealed a power 
cutoff, enabled by self-steepening, above which the MI gain 
vanishes, leaving behind only the Raman contribution.

In this paper, we explore the region close to this MI cutoff 
power, at first seeking to characterize the Raman response of the 
transmitting waveguide. A direct measure of this response can 
be performed by injecting a CW pump together alongside 
wideband low-amplitude noise, a real-case scenario, as it ac-
counts for the finite signal-to-noise ratio of the pump laser. 
In a similar vein, Raman gain in optical fibers has been mea-
sured by fitting theoretical predictions to the spectrum of
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nonlinear Schrödinger equation, and revisit analytical expres-
sions for a full model of scalar modulation instability in wave-
guides. In Section 3, we discuss simulation results in the normal
and anomalous dispersion regimes and characterize the tunable
gain. Concluding remarks are presented in Section 4.

2. FULL MODEL OF THE SCALAR MODULATION
INSTABILITY GAIN

Wave propagation in a lossless nonlinear medium is well de-
scribed by the generalized nonlinear Schrödinger equation
(GNLSE) [27]
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where A�z; T � is the slowly varying envelope, z is the spatial
coordinate, and T is the time coordinate in a co-moving frame
at the group velocity (�β−11 ). β̂ and γ̂ are operators related to
the dispersion and nonlinearity, respectively, and are defined by
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Here, βm are the coefficients of the Taylor expansion of the
propagation constant β�ω� around a central frequency ω0.
Similarly, γn are the coefficients of the Taylor expansion of
the nonlinear parameter. It is usually sufficient to consider
the expansion up to the first term, that is, γ̂ � γ0�1� iτsh ∂

∂T�,
where τsh is a timescale related to self-steepening and shock
formation [27].

The function R�T � includes the instantaneous (electronic)
and delayed Raman response of the medium:

R�T � � �1 − f R�δ�T � � f RhR�T �; (3)

where f R weights the two contributions. In the simulations, we
use the damped-oscillator approximation for the time-domain
delayed response function hR�t� characterized by the time
constants τ1 and τ2 and given by [27]
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where Θ�t� is the unit step function.
A straightforward way to characterize the Raman response of

the transmission waveguide consists in launching a continuous
wave (CW) pump along with broad-bandwidth noise. We ex-
pect noise to “copy” the gain spectrum after propagation over
some characteristic length and as long as the pump is weakly
depleted (i.e., a linear amplifier in the small input-signal re-
gime). In our case, the gain provided by the medium depends
upon the interplay between MI and Raman, and, as such, the
actual dispersion profile of the waveguide plays a pivotal role. In
the normal dispersion region gain is provided only through the
Raman response, and noise amplification is described by the
Raman coefficient gR�Ω�, proportional to the imaginary part
of h̃R�Ω� � F fhR�t�g [28] (where F stands for the Fourier
transform):
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where Ω � ω − ω0 is the relative frequency, ω2
1 � τ21�τ22

τ21τ
2
2and ω2 � τ−12 .

Now we turn our attention to the anomalous dispersion re-
gion, where the waveguide provides both modulation instabil-
ity and Raman gain. The instability gain is obtained as [14]

g�Ω� � −2ImfK 1;2�Ω�g; (6)

where K 1;2�Ω� is given by
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even and odd dispersion operators, respectively. In the absence
of Raman (f R � 0), the self-steepening effect imposes a cutoff
power, above which the MI gain is suppressed, given by [16]
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γ0τ
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when higher-order dispersion terms are neglected. In terms of
the normalized power p � P0

Pcutoff
, this means that there is no sig-

nificant MI gain for p > 1 even when f R > 0. The self-
steepening term can be thought of as an additional dispersive
term that depends on both P0 and ω0. This leads to the
“effective” dispersion taking positive values, thus canceling
the MI gain.

Because the cutoff power decreases with increasing nonlin-
earity (γ0), and τsh is usually well approximated by ω−1

0 , we
expect the MI cutoff phenomenon to be more relevant for
highly nonlinear waveguides and for longer wavelengths. For
this reason, we focus on the mid-IR range and use parameters
consistent with those of waveguides made of chalcogenide
glasses, which have low absorption coefficients in the mid-IR
and Kerr nonlinear coefficients up to a thousand times higher
than that of silica (see [18] and references therein).

The effect of the MI cutoff is portrayed in Fig. 1 for a pump
in the mid-IR (λ0 � 5 μm).

Propagation is simulated using the GNLSE for a generic
waveguide of constant effective area, whose physical parameters
are consistent with those found in the literature. These
are γ0 � 100 W−1 km−1, τsh � ω−1

0 , β2 � −50 ps2∕km, and,
for the sake of simplicity, βk � 0 for k > 2. The chosen value
of γ0 is consistent with that of a chalcogenide waveguide in the
mid-IR around 5 μm [18]. For the Raman response, we use
Eqs. (3) and (4) with f R � 0.031, τ1 � 15.5 fs and τ2 �
230.5 fs, values in agreement with those found in the literature
for chalcogenide glasses [29].

Because there is no significant MI gain for p > 1, we expect
to recover the same results as in the normal dispersion regime
when injecting pump plus noise into the waveguide. Because
we only consider the effect of dispersion up to the second order,
β2, we may rewrite Eq. (7) in terms of p as
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Hence, the instability gain is given by

g�Ω; p� � −2ImfK 1;2�Ω; p�g: (10)

As we are interested in the amplification of the output signal
after a traveled distance L into the waveguide, we compute
the total power gain G � e2g�Ω;p�L as a function of the normal-
ized pump power p. Results are displayed in Fig. 2, where
different spectra are shown at a constant total power gain.
The corresponding Raman gain, i.e., e2gR�Ω�L, is also shown

for comparison. It can be readily observed that we are in the
presence of a power-controlled gain that approaches the Raman
gain as p increases. This in fact can be thought of as a pump-
tunable Raman gain.

3. NUMERICAL RESULTS

We solve the propagation equation [Eq. (1)] using the em-
bedded fourth-order Runge–Kutta in the interaction picture
method [30]. In Fig. 3 we show simulations results of launch-
ing a CW pump along with white Gaussian noise (pump-
to-noise ratio is set at 40 dB.) The spectrum shown is the aver-
age over 50 noise realizations. The input pump power is
P0 � 1000 W, and the waveguide parameters are the same
as those used for Fig. 1, except for the dispersion coefficient
β2 � 50 ps2∕km, which is purposely chosen to greatly reduce
the efficiency of four-wave mixing interactions. The waveguide
length was set to L � 10 mm. We must note that, although
pump powers of the order of the kilowatt may be unrealistic
in the CW regime, they can be easily achieved in a quasi-
CW regime, i.e., with nano- or picosecond pulses [31,32].

We can readily observe that the noise spectral distribution
closely follows that expected from the Raman gain. Indeed, we
can fit the normalized noise output and use it to obtain the
characteristic parameters of the Raman gain spectrum. From
the numerical fit, we obtain ω1∕2π � −10.36 THz and
ω2∕2π � 0.67 THz, in excellent agreement with the assumed
Raman response (ω1∕2π � −10.29 THz and ω2∕2π �
0.69 THz), validating this scheme as a way to measure the
unknown Raman response of an arbitrary waveguide.

Now we turn our attention to the anomalous regime
(β2�−50 ps2∕km). Results for two different normalized pump
powers are shown in Figs. 4 and 5. In both cases, the length
of the waveguide is 7 LMI , where LMI � �maxfg�Ω; p�g�−1 is
the modulation instability length. Interestingly, the noise

Fig. 2. MI gain for some values of p and for f < 0 (relative
frequency from the Raman-gain peak). Observe that the gain profile
is essentially that of Raman but rendered tunable.

Fig. 3. Output spectrum averaged over 50 noise realizations,
numerical fit of the average spectrum, and normalized Raman gain
coefficient, gR .

Fig. 1. Modulation instability gain versus p in the frequency range
of interest. Frequency at 0 THz corresponds to a pump wavelength
of 5 μm.



output spectrum continues to follow the Raman gain profile;
therefore, Raman response data can still be inferred from it,
but it appears shifted in frequency. The higher the pump
power, the closer the peak gain approaches that of the normal
dispersion regime.

For pump levels much lower than the MI cutoff power, the
gain spectrum is dominated by MI, and launching noise along
with the pump cannot be effectively used to determine the
Raman response of the waveguide. However, close to and above
the cutoff power, the spectral signature is driven by the Raman

response, centered at different frequencies. This behavior is
further illustrated in Fig. 6, where we show analytical results
for the Raman-gain peak shift [obtained from Eq. (10)] and
numerical simulations, averaged over many noise realizations,
as a function of the normalized pump power p. Note that fluc-
tuations observed in the numerical results are due to the chosen
frequency discretization and the limited number of averaged
noise realizations. In all cases, the propagated distance is 7 LMI .

An interesting example of an application of this tunable gain
is shown Fig. 7, where a strong pump is launched into the
waveguide together with two seed signals, which are expected

Fig. 4. Average spectrum, numerical fit, and normalized Raman
gain for p � 1.1.

Fig. 5. Average spectrum, numerical fit, and normalized Raman
gain for p � 7.

Fig. 6. Raman frequency shift versus normalized power, p.

Fig. 7. Output spectra after a propagated distance of 3.6 mm. The
input to the waveguide is a pump plus two small seed signals (40 dB
below pump level to avoid pump depletion). p � 1.1 (top) and
p � 3.0 (bottom). The pump power is used to select which signal
is favored via Raman amplification.



to be amplified by the pump via Raman interaction. The seed
signal power was chosen at 40 dB below the pump level in
order to remain within the undepleted approximation and also
to avoid the appearance of four-wave mixing products at the
propagated distance of 3.6 mm. The pump power was chosen
such that p � 1.1 (top panel) and p � 3.0 (bottom panel). We
observe that the pump power can be effectively used to select
which signal will grow the most by tuning the Raman peak gain
to the frequency of interest.

4. CONCLUSIONS

In summary, in this paper we put forth an analysis of the inter-
play among Raman gain, dispersion, and self-steeping in a full
model of modulation instability in waveguides. The effect of
self-steepening enables a power cutoff above which the gain
is expected to be dominated by the Raman response of the
medium. A close examination of the region around this cutoff
revealed a striking feature, namely, that there exists a range of
pump powers where the Raman spectrum can be tuned at will.
Analytical and numerical results, in excellent agreement, were
presented to confirm this, as far as we know, original observa-
tion. We expect this effect to be of relevance in a wide number
of applications, ranging from mid-IR fiber Raman lasers and
supercontinuum generation, to ultra-wideband slow-light
Raman-based devices for all-optical signal processing.
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