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Abstract— This paper presents a control technique based on
distributed population dynamics under time-varying communi-
cation graphs for a multi-agent system structured in a leader-
follower fashion. Here, the leader agent follows a particular
trajectory and the follower agents should track it in a certain
organized formation manner. The tracking of the leader can
be performed in the position coordinates x, y, and z, and in
the yaw angle φ. Additional features are performed with this
method: each agent has only partial knowledge of the position of
other agents and not necessarily all agents should communicate
to the leader. Moreover, it is possible to integrate a new agent
into the formation (or for an agent to leave the formation task)
in a dynamical manner. In addition, the formation configuration
can be changed along the time, and the distributed population-
games-based controller achieves the new organization goal
accommodating conveniently the information-sharing graph in
function of the communication range capabilities of each UAV.
Finally, several simulations are presented to illustrate different
scenarios, e.g., formation with time-varying communication
network, and time-varying formation.

Index Terms— Unmanned aerial vehicles, distributed for-
mation control, population games, replicator dynamics, time-
varying communication network

I. INTRODUCTION

The multi unmanned aerial vehicle (UAV) formation has
been identified as a cooperative multi-agent control problem
of interest because of its complexity, and due to the fact
that this type of system can be implemented to perform
several tasks and missions, e.g., rescue applications or for
military purposes, among others [4]. The multi-agent system
formation problem commonly involves spacial constraints.
Moreover, UAV technological instruments impose physical
limitations such as communication range that constrains the
available information that each agent possesses, making their
coordinated control challenging. Several control strategies
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have been postulated to perform the formation task for multi-
UAV systems. For instance, a review of different control
techniques has been presented in [3], where approaches and
issues such as consensus, optimization aspects, distributed
tasks assignment and estimation have been discussed. In [8],
a cluster-space formulation has been presented for control
purposes of multi-agent systems. In [13], formation of UAVs
is addressed with optimal control using only information
from a fixed neighborhood set. Additionally, [13] discusses
the obstacles avoidance issue and the trajectory tracking
problem. Although many works consider a distributed com-
munication graph describing information sharing constraints,
many of them consider that this network remains constant
along the operation of UAVs. This assumption might not be
quite realistic, specially when time-varying tasks are taken
into account for the UAVs. For instance, in the formation
problem, if it is desired that the formation shape varies along
the time in a dynamical manner, then the communication
capabilities may make necessary to reconfigure the commu-
nication network appropriately. In [5] the formation problem
of autonomous vehicles is addressed with a receding horizon
control approach, and considering time-varying information
graphs describing how communication among agents is.

On the other hand, game theory has become a powerful
tool for engineering control design. The reason is that
game theory allows to model the interaction among different
decision makers. Moreover, in [7] a wide review about the
role of game theory in the distributed control field is made.
Regarding the formation problem, some game-theoretical
approaches have been proposed. For instance, a differential
game approach is proposed to perform a formation control
under distributed fixed communication networks in [6].

Evolutionary game theory, and more specifically popula-
tion games, have been used as a distributed solution for large-
scale systems control design. Game-theoretical properties
have been used in order to solve distributed constrained
optimization problems [2], to perform optimization based
on extremum seeking [10], and to solve resource allocation
problems [9][11], showing the versatility of this game-
theoretical approach. Furthermore, in [1], the distributed
population dynamics were presented with their correspond-
ing stability properties. As an alternative in the distributed
formation problem of UAVs, this work presents a distributed
population-games approach that solves this problem under
time-varying communication graphs.

The main contribution of this paper is to exploit the
features of distributed population dynamics presented in [1]



for a multi-agent system formation problem. Additionally to
what is discussed in [1], it is pointed out that the stabil-
ity analysis developed in [1] is extensible to time-varying
graphs representing strategy-constrained interactions. In this
regard, it is suitable to implement the distributed population
dynamics over engineering problems whose communication
network varies along the time. In order to illustrate these
powerful properties of distributed population dynamics, a
distributed formation problem for multi-agent systems under
time-varying communication network is proposed. To this
end, it is assumed that each agent has a limited commu-
nication range, implying that each agent only has partial
information about the entire set of agents. Furthermore, it
is considered that only few (or only one of the follower
agents) are (is) able to communicate to the leader agent
that operates as a spacial reference for the whole formation.
Additionally, it is shown that an agent can drop or enter
from/to the formation without having to modify controllers
of the remainder agents. As another relevant feature of the
proposed distributed control strategy, the formation shape
can be reconfigured dynamically along the time. Finally,
simulation results present the behavior of the formation for
two different scenarios. First, the case in which a new agent
enters the formation dynamically is tested. Secondly, the
performance of the proposed distributed controller when the
formation is modified along the time is shown.

The remainder of this paper is organized as follows. Sec-
tion II develops the problem statement corresponding to the
multi-agent system to achieve a desired formation.Then, Sec-
tion III introduces the proposed approach to achieve a forma-
tion goal in the leader-follower configuration. Moreover, this
section presents preliminary concepts of population games,
introduces the distributed replicator dynamics, and describes
the general hierarchical control scheme. Afterwards, Section
IV exhibits a case study involving six UAVs and simulation
results show the formation control performance for two
different scenarios. Finally, concluding remarks are drawn
and further work is proposed in Section V.

Notation: Column vectors are denoted by bold style,
e.g., p. Matrices are denoted by bold upper case, e.g., A.
Differently, scalars are denoted by non-bold style, e.g., n.
The sets are denoted by calligraphic upper case, e.g., A.
The diagonal matrix of the vector x is denoted by diag(x).
Finally, real numbers are denoted by R, and all the non-
negative, and strictly positive real numbers are denoted by
R≥0, and R>0, respectively. Throughout the paper sub- and
super-indices are used. A sub-index refers to a strategy in
the game-theoretical context, or to an agent involved in
the formation problem in the control context, e.g., in pdi ,
i refers to the ith strategy or agent. A super-index refers to a
population in the game-theoretical context, or to a position
parameter x, y, z, or φ in the control context, e.g., in pdi , d
refers to the dth population or position parameter.

II. PROBLEM STATEMENT OVER INFORMATION GRAPHS

Consider a set of finite agents (UAVs) denoted by
A = {1, . . . , n}, where n ≥ 2. One of the agents is a

leader denoted by l ∈ A, which influences decisions of the
entire set of other agents known as followers, i.e., the set of
follower agents is F = A\{l}, and notice that F 6= ∅. Each
agent i ∈ A is located in the positive orthant space, i.e.,
at non-negative measurable coordinates denoted by cxi , c

y
i ,

and czi ∈ R≥0; and with a measurable yaw angle denoted
by cφi ∈ R≥0 that is considered to be also non-negative.
All these measurements are collected in a vector denoted
by ci = [cxi cyi czi cφi ]>, for all i ∈ A. In addition, let
D = {x, y, z, φ} be the set of all possible position parameters
for all the agents from the set A.

On the other hand, it is assumed that each agent can
communicate to all other agents, which are located within
a communication range radius denoted by ψi ∈ R>0, for
all i ∈ A. This situation leads to a time-varying commu-
nication network depending on the spacial distribution of
agents. This communication network is represented by an
undirected graph denoted by G(t) = (A, E(t),A(t)) (the
graph is considered to be undirected since each link is
assumed to be a bidirectional channel), where A is the set of
nodes corresponding to each agent, E(t) is the set of links
describing the communication network among agents, and
A(t) = [aij(t)] is the adjacency matrix whose elements
aij(t) = 1 if the ith agent share information with the
jth agent, and aij(t) = 0, otherwise. More precisely, the
element aij(t) depends on the communication range given
by the ψi, and on the Euclidean distance in R3 as follows:
ξij =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2, and aij(t) =

max (0, sgn [ψi − ξij ]), where aij(t) = aji(t). Then, the
constructed adjacency matrix A(t) implies that each agent
i ∈ A has a time-varying set of neighbors with whom it can
communicate. The set of neighbors for the ith agent is given
by Ni(t) = {j : (i, j) ∈ E(t)}.

Assumption 1: In order to achieve the tracking to the
leader satisfying a desired formation shape in a distributed
manner, the communication graph should be a connected
graph. ♦

The leader agent l ∈ A follows a pre-established trajec-
tory, and constitutes a spacial reference for all the follower
agents i ∈ F to perform a desired formation, i.e., the
follower agents i ∈ F track the trajectory of the leader l ∈ A
in an organized manner maintaining a required formation.
Furthermore, notice that, depending on the engineering ap-
plication, the interpretation of the leader might be changed
for a target agent, which is wanted to be tracked preserving
a formation.

The objective formation is established by assigning desired
reference Euclidean distances from each follower i ∈ F to
the leader l ∈ A independently for each coordinate x, y,
and z, and a rotation angle for the yaw φ. These desired
distances to achieve the formation are denoted by rdi , for
all i ∈ F , and d ∈ D. Each agent has information about
the formation reference distance represented by the vector
ri = [rxi ryi rzi rφi ]>, for all i ∈ F .

For instance, Figure 1(a) shows a diagonal shape whose
formation references are given by ri = [i − i 0 0]>,
for all i ∈ F , and Figure 1(b) shows a triangular shape whose
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Fig. 1. Two different possible formations with the same yaw angle φi, and
the same zi coordinate, for all i ∈ F , an l ∈ A. (a) diagonal formation,
and (b) triangular formation.

formation references are given by r1 = [2 0 0 0]>, r2 =
[0 2 0 0]>, r3 = [4 0 0 0]>, r4 = [2 2 0 0]>,
r5 = [0 4 0 0]>. These formation references play an
important role in the design of the distributed population-
games-based formation control presented in Section III.

III. LEADER-FOLLOWER BASED ON DISTRIBUTED
POPULATION GAMES

Having stated the formation control problem, a distributed
strategy based on population games is presented and its
main properties and advantages are discussed. Preliminary
concepts are introduced, the methodology to address the
problem with this approach is presented, and detailed control
schemes are explained. Also, an illustrative example for a
linear formation is shown for clearness.

A. Background

Consider four different populations composed of a large
and finite number of rational decision makers involved in a
strategic interaction. Each population represents a possible
position parameter, i.e., the set of populations is given by
D = {x, y, z, φ}. These decision makers select among n
different available strategies, which represent each one of
the agents, i.e., the set of available strategies is given by
A = {1, . . . , n} for all d ∈ D. Similarly as in Section II,
and for notation clearness, F = A\{l} that is also a subset
of strategies, where l ∈ A is a fictitious strategy as in [9]
corresponding to the leader agent. This mentioned strategy is
fictitious due to the fact that there is not a desired position
and yaw rotation for the leader agent since it has a pre-
established trajectory.

The scalar value pdi ∈ R≥0 is a portion of decision makers
selecting the strategy (agent) i ∈ F in the population d ∈ D.
Moreover, the portion of decision makers pdi is associated
to the corresponding desired position of the ith agent in the
position parameter d ∈ D. In this regard, notice that the
desired position and yaw rotation for the agents is given by
pi = [pxi pyi pxi pφi ]> ∈ R4

≥0, for all i ∈ F . Besides,
there is a portion of decision makers selecting the fictitious
strategy as in [9] denoted by pdl ∈ R≥0, where l ∈ A, /∈ F .

On the other hand, pd = [pd1 . . . pdn]> ∈ Rn≥0 is a
vector that collects all the portions of decision makers in
the population d ∈ D. This vector is also known as the
population state or the strategic distribution in the respective

population. The set of possible strategic distributions for the
population d ∈ D is given by a simplex defined as follows:

∆d =

{
pd ∈ Rn≥0 :

∑
i∈A

pdi = md

}
, (1)

where md ∈ R>0 represents the population size. Fur-
thermore, the population size is associated to the con-
strained space for the corresponding coordinates (x, y,
or z) or rotation (φ) that agents should respect. Addi-
tionally, the interior of the simplex ∆d is defined as
int∆d =

{
pd ∈ Rn>0 :

∑
i∈A p

d
i = md

}
. Notice that the

simplex in (1) implies that all the decision makers, cor-
responding with the follower agents, are constrained to be
within a space characterized by∑

i∈F
pdi ≤ md, (2)

which means that it is desired that UAVs positions
satisfy a constrained space [cxi cyi czi cφi ]> ≤
[mx

i my
i mz

i mφ
i ]>, for all i ∈ F . Decision makers in

the population d ∈ D select among the different strategies
in order to enhance their benefits. These benefits are
described by a function denoted by fdi , and whose mapping
is fdi : ∆d 7→ R, for all i ∈ A. Besides, let Fd be the
vector of fitness functions whose mapping is given by
Fd : ∆d 7→ Rn.

From an evolutionary-game-theoretical perspective, the
objective is to achieve convergence to a Nash equilibrium,
which is defined next.

Definition 1: (adapted from [12]) pd∗ ∈ ∆d, in the
population d ∈ D, is a Nash equilibrium if each used
strategy entails the maximum benefit for the proportion of
agents selecting it, i.e., the set of Nash equilibria is given
by {pd∗ ∈ ∆d : pd∗i > 0 ⇒ fdi (pd∗) ≥ fdj (pd∗)}, for all
i, j ∈ A. ♦

Besides, Definition 1 means that if there is not extinction
of populations, i.e., pdi > 0, for all i ∈ A, then p∗ ∈ int∆d,
and fdi (pd∗) = fdj (pd∗), for all i, j ∈ A.

Moreover, this work guarantees convergence to the pre-
viously defined Nash equilibrium under a class of games
known as stable game. This class of games imposes con-
ditions over the fitness functions design as shown in the
Definition 2.

Definition 2: (adapted from [12]) The game Fd in the
population d ∈ D is a stable game if it satisfies the following
condition:

(pd − qd)>
(
Fd(pd)− Fd(qd)

)
≤ 0, (3)

for all pd,qd ∈ ∆d. Alternatively, condition (3) may be
expressed by using the Jacobian matrix of Fd(pd), i.e.,
DFd(pd). If Fd is continuously differentiable, then Fd is
stable if and only if zd>DFd(pd)zd ≤ 0, for all zd ∈ T∆d,
and pd ∈ ∆d, where T∆d is the tangent space of the simplex
∆d, defined by T∆d = {zd ∈ Rn : zd

>
1n = 0}. ♦

There is a relationship between stable games and a type
of population games known as full-potential game that is
presented in Definition 3.



Definition 3: (adapted from [12]) If there exists a con-
tinuously differentiable function V (pd), known as potential
function, such that Fd(pd) = ∇V (pd), for all pd ∈ ∆d,
then Fd is a full-potential game. ♦

B. Distributed replicator dynamics and their properties

The distributed replicator dynamics are one of the fun-
damental distributed population dynamics presented in [1],
which are given by

ṗdi = pdi

fdi (pd)
∑
j∈Ni

pdj −
∑
j∈Ni

pdjf
d
j (pd)

 , (4)

for all i ∈ A, and d ∈ D. Alternatively, (4) can be compacted
as

ṗd =diag
(
pd
)

×
[
diag

(
Fd(pd)

)
Apd −Adiag

(
Fd(pd)

)
pd
]
, (5)

for all d ∈ D, where diag
(
pd
)
∈ Rn×n≥0 . The equilibrium

points p∗ ∈ ∆ of the distributed replicator dynamics
equation (4) implies that the portion of decision makers
is pi = 0 for some i ∈ A (there is an extinction for a
strategy), or that fdi (pd∗) = fdj (pd∗), for all i, j ∈ A, d ∈ D.
Consequently, notice that if p∗ ∈ int∆, and if there is not
extinction for any strategy, then the equilibrium point implies
that fdi (pd∗) = fdj (pd∗), for all i, j ∈ A, d ∈ D.

Then, it is shown that the equilibrium point p∗ ∈ int∆d

is asymptotically stable under the distributed replicator dy-
namics.

Theorem 1: (presented in [1]) Let F d be a full-potential
game with strictly concave potential function fd(pd), and
let pd∗ ∈ int∆d be a Nash equilibrium. If the graph
G = {A, E ,A} is connected and pd∗ ∈ ∆d, then
pd∗ is asymptotically stable under the distributed replicator
dynamics (5).

Proof: The proof for this theorem has been presented
in [1] using the following Lyapunov function:

EV (pd) = V (pd
∗
)− V (pd), (6)

where V (pd) is the potential function of the potential game
Fd (see Definition 3).

In Corollary 1, it is highlighted that Theorem 1 also
holds for time-varying communication sharing, broadening
the spectrum in engineering applications to implement dis-
tributed population games.

Corollary 1: The asymptotic stability of pd
∗ ∈ int∆d

under the distributed replicator dynamics (4) stated in
Theorem 1 holds for connected time-varying graphs
G(t) = (A, E(t),A(t)), i.e., for time-varying neighborhood
Ni(t) for all i ∈ A. This statement can be seen from
Theorem 1 since the Lyapunov function (6) considered in
[1] is a common function for all possible connected graph
topologies. ♦

Furthermore, the simplex ∆d is an invariant set under the
distributed replicator dynamics (4). This can be seen from the

fact that (4) may be re-written in function of the adjacency
matrix, i.e.,

ṗdi =
∑
j∈A

aijp
d
i p
d
jf

d
i (pd)−

∑
j∈A

aijp
d
jp
d
i f

d
j (pd), (7)

for all i ∈ A, and d ∈ D. It follows that
∑
i∈A ṗ

d
i = 0, for

all d ∈ D, due to the fact that aij = aji. This makes the first
and second term in (7) equal showing invariance property of
the simplex ∆d, for all d ∈ D. This property also guarantees
that the constraint in (2) is satisfied along the time.

C. Fitness functions design

Once the preliminary concepts of population games have
been introduced and the distributed replicator dynamics
have been presented, the design of the fitness functions is
explained and discussed.

The distributed formation problem can be seen as a
distributed control in charge of maintaining certain desired
distances among a set of agents as presented in Section II
(see Figure 1). In this regard, if each agent is controlled in a
manner that tracks the leader agent maintaining constant its
distance with it, then the formation objective is achieved.

Taking advantage of the asymptotic convergence to a Nash
equilibrium pd

∗ ∈ int∆d under the distributed replicator
dynamics, the fitness functions are designed. Let fdl = −cdl
be the fitness function assigned to the portion of decision
makers selecting the fictitious strategy associated to the
leader agent l ∈ A, /∈ F . Now, let fdi (pdi ) = rdi − pdi , for
all the portion of decision makers selecting strategies related
to follower agents i ∈ F . First, notice that these fitness
functions collected in the vector Fd(pd) satisfy the condition
for a stable game (see Definition 2). The matrix DFd(pd)
is a non-positive diagonal matrix, and with only one null
element over the diagonal corresponding to the leader l ∈ A.

Assuming that there is not extinction of portion of decision
makers, it is known that the equilibrium point pd∗ ∈ int∆d

implies that fdi (pd∗) = fdj (pd∗), for all i, j ∈ A, d ∈ D.
Then, fdl (pd

∗
) = fdi (pd

∗
), and −cdl = rdi − pdi

∗, for all
i ∈ F , d ∈ D,

pdi
∗

= cdl + rdi , for all i ∈ F , d ∈ D. (8)

The equilibrium point condition in (8) shows that all the
portion of decision makers for the follower agents i ∈ F
converges to values such that the formation references are
met for all the coordinate positions and yaw angle d ∈ D
(see Figure 1). Besides, the portion of decision makers pdl ,
for all d ∈ D, and for the fictitious strategy, adopts a value
that satisfies the simplex ∆d.

Remark 1: Notice that it is not necessary that all the
follower agents i ∈ F have communication to the leader
agent l ∈ A, l /∈ F (this fact depends on the non-centralized
communication topology given by G). Nonetheless, all the
follower agents –also those without communication to the
leader– converge to the appropriate position to achieve the
formation with a spacial reference given by the leader agent.
. ♦
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Fig. 2. Different control stages with their information dependence. (a) Local PID position controller for each agent. It requires information from the
distributed population-game-based controller of the strategy i ∈ A, i.e., pdi , for all d ∈ D. (b) Population-games-based formation control for the fictitious
strategy representing the leader agent. It requires information from its neighboors, i.e., {fj , pj : j ∈ Nl(t)}, and the current position of the leader agent
cdl , for all d ∈ D. (c) Population-games-based formation control for all the follower agents i ∈ F . They require information from their neighboors, i.e.,
{fj , pj : j ∈ Ni(t)}. (d) Collection of all the set-points for the local position control.

D. Distributed control scheme
It is assumed that all the follower agents have already

a designed local controller in charge of achieving a refer-
ence position given by pi = [pxi pyi pxi pφi ]> ∈ R4

≥0
within the positive orthant space. In this paper, these local
controllers can be PID as presented in Figure 2(a).

Moreover, depending on the current position of the agents,
there is going to be a connected graph G(t) representing the
communication network and possible information sharing.
Then, the leader agent disposes of the information given
by {fl, pl} ∪ {fj , pj : j ∈ Nl(t)}, and the follower agents
i ∈ F have information given by {fi, pi} ∪ {fj , pj : j ∈
Ni(t)}. Figure 2(b) shows the replicator-dynamics-based
formation control for the fictitious strategy corresponding to
the leader agent l ∈ A, for all d ∈ D. Figure 2(c) presents
the replicator-dynamics-based formation control for all the
follower agents i ∈ F , and for all d ∈ D. The formation
control in Figure 2(c) generates the appropriate position set-
points, which are collected as presented in Figure 2(d), i.e.,
pi = [pxi pyi pxi pφi ]>, which are established to the local
controllers presented in Figure 2(a). Then, the general control
structure composed of local position controllers for each
agent, and the distributed formation control, constitutes a
hierarchical scheme.

Distributed formation control based
on population dynamics

Leader agent Follower agents

Local position
control (PID)

Local position
control (PID)

ri, ∀i ∈ F

l ∈ A, /∈ F

cl

clul

pi

∀i ∈ F
ciui

l ∈ A, /∈ F

j ∈ A

∀i ∈ F

pre-established
trajectory

pl

Fig. 3. Hierarchical control scheme for the distributed multi-agent
formation.

Figure 3 presents the overall hierarchical control scheme
for the distributed replicator-dynamics-based formation con-
troller with time-varying communication network. It can be
seen that the leader agent has a local position controller
whose reference describes a pre-established trajectory. On
the other hand, all the follower agents have a local position
controller whose position references pi, for all i ∈ F , come
from the upper layer, which is the distributed replicator-
dynamics-based formation control. At this upper layer, all
the position references pi, for all i ∈ F , are computed

in a distributed manner by using only information about
the leader position ci and the formation references ri,
for all i ∈ F . Notice that the replicator-dynamics-based
formation control is distributed since each position reference
is computed by using local and partial information.

IV. SIMULATION RESULTS

In order to illustrate the performance of the population-
games approach in the formation control, two different sce-
narios are considered for n = 6 agents. For these scenarios,
and due to the fact that any agent from the set A may be
the leader, it is selected arbitrarily to be l = 6. Scenarios are
defined as follows:

1) The first scenario consists in a linear formation (see
Figure 1(a)). Moreover, a follower agent 5 ∈ F is
initially located out from the communication range of
all other agents. The leader trajectory is established
in a way that it passes by certain coordinates, such
that along the time, the set of agents A can detect the
isolated member including it automatically to the for-
mation. This scenario allows to illustrate the behavior
of the distributed game-theoretical approach when a
new agent is integrated into the problem.

2) The second scenario consists in a linear formation
(see Figure 1(a)) that switches to the triangle forma-
tion (see Figure 1(b)) along the time. This scenario
allows to show the performance of the distributed
game-theoretical approach for time-varying formation
objectives.

Figure 4(a) shows the agents trajectory for the linear
formation. Figures 4(b)-4(c) show the evolution of the com-
munication network. It can be seen that, at the beginning,
the follower agent 5 ∈ F is isolated and is not able to
communicate to any other agent. Consequently, this agent
remains without moving in the positive orthant space until
time t = 138 s, when it can communicate to agents three
and four. Then, agent five is dynamically integrated to the
formation problem.

On the other hand, Figure 5(a) shows the agents trajectory
for the time-varying formation. First, a linear formation is
established and, after this objective is achieved, the objective
is changed to a triangular formation at time t = 300 s.
Figures 5(b)-5(c) show the evolution of the communication
network. It can be seen that, when the formation is varied,
the communication network is accommodated conveniently
according to the communication range of the agents.
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Fig. 4. Formation result for a line (see Figure 1(a)), range communication ψi = 3 m, for all i ∈ A, and illustrating the modularity of the distributed
replicator-dynamics-based formation control, i.e., incorporating a new agent to the formation problem along the time. (a) Trajectories of the agents achieving
the desired formation. (b)-(c) Evolution of the communication graph for 10 different time instants every 50 seconds, where sequences are as follows: (1)
t = 5 s, (2) t = 55 s, . . . , (10) t = 455 s.

(a) (b) (c)

Fig. 5. Results for changing of topology along the time, from a line (see Figure 1(a)) to a triangle (see Figure 1(b)) with change at t = 300 s, range
communication ψi = 2.5 m, for all i ∈ A. (a) Trajectories of the agents achieving the desired formation for the line, and then for the triangle. (b)-(c)
Evolution of the communication graph for 12 different time instants every 50 seconds, where sequences are as follows: (1) t = 5 s, (2) t = 55 s, . . . ,
(12) t = 555 s.

V. CONCLUSIONS AND FURTHER WORK

A novel distributed formation control based on population
games has been presented. It has been shown that the
formation is achieved by using non-centralized communi-
cation structures among the agents. In addition, it has been
shown that the proposed distributed controller can deal with
time-varying formation objectives, and that the information-
sharing network can be varied conveniently as a function of
the communication range for each agent. Under this time-
varying graph scenario, it has been highlighted that stability
remains as connectivity of the graph is preserved. Besides, a
degree of modularity has been discussed, where a new agent
can be incorporated or removed to/from the formation prob-
lem in a dynamical manner without affecting the controllers
of other agents. As further work, it is proposed to extend the
control strategy presented in this paper to consider obstacles
located arbitrarily in the positive orthant space including
the whole set of agents. Additionally, in order to identify
advantages of the proposed formation control, a comparison
analysis with other approaches for formation control with
time-varying communication graphs is proposed as future
work.
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