
Analyzing public transport in the city of Buenos Aires
with MobilityDB

Juan Godfrid1 · Pablo Radnic1 · Alejandro Vaisman1 · Esteban Zimányi2

Abstract
The General Transit Feed Specification (GTFS) is a data format widely used to
share data about public transportation schedules and associated geographic
information. GTFS comes in two versions: GTFS Static describing the planned
itineraries and GTFS Realtime describing the actual ones. MobilityDB is a novel
and free open-source moving object database, developed as a PostgreSQL and
PostGIS extension, that adds spatial and temporal data types along with a large
number of functions, that facilitate the analysis of mobility data. Loading GTFS
data into MobilityDB is a quite complex task that, nevertheless, must be done in an
ad-hoc fashion. This work describes how MobilityDB is used to analyze public
transport mobility in the city of Buenos Aires, using both, static and real-time
GTFS data for the Buenos Aires public transportation system. Visualizations are
also produced to enhance the analy-sis. To the authors’ knowledge, this is the first
attempt to analyze GTFS data with a moving object database.

Keywords Moving objects · MobilityDB · Public transport · Mobility analysis · Big
data

 * Alejandro Vaisman
avaisman@itba.edu.ar

Juan Godfrid
jgodfrid@itba.edu.ar

Pablo Radnic
pradnic@itba.edu.ar

Esteban Zimányi
ezimanyi@ulb.ac.be

1	 Department of Information Engineering, Instituto Tecnológico de Buenos Aires, Lavardén 315,
C1437FBG Buenos Aires, Argentina

2	 Department of Computer and Decision Engineering (CoDE), Universite Libre de Bruxelles,
Avenue F. D. Roosevelt 50, 1050 Brussels, Belgium

http://orcid.org/0000-0002-3945-4187
http://crossmark.crossref.org/dialog/?doi=10.1007/s12469-022-00290-8&domain=pdf

1  Introduction

The ubiquity of GPS tracking devices and Internet of Things (IoT) technologies has
resulted in a collection of massive amounts of data that describe the temporal evolu-
tion of moving objects, like cars, trucks, and pedestrians, for government agencies
and private companies as well. Many applications exist for finding the best route
between multiple points of interest (PoIs), estimating the arrival time to some des-
tination, and even to predict the traffic on a certain route at a certain point in the
future (e.g., Google Maps1). However, most of these solutions are proprietary and
not available to the general public. For example, Google Maps APIs allow comput-
ing travel times and distances between locations, and determining the roads that a
certain vehicle is traveling. These functionalities are limited by the lack of a query
language, and, being proprietary, cannot be extended by the GIS community. This
is addressed by MobilityDB (Zimányi et al. 2020), an open-source PostgreSQL and
PostGIS extension that provides a set of functions and spatio-temporal datatypes
that, together with PostGIS capabilities, form a flexible tool set for querying mov-
ing objects. Besides, the General Transit Feed Specification (GTFS) is a common
format used to share public transportation schedules and real-time data, along with
associated geographic information. GTFS defines two standards, namely GTFS
Static, which is used to define schedules, and GTFS Realtime, which is used to com-
municate live positions of vehicles.

The present work shows how GTFS data can be used to analyze the public trans-
portation system of Buenos Aires using MobilityDB. It describes the software
developed to acquire, import, and load the data, and then to query and visualize the
results. The solutions described in this work cannot be generalized for importing
any GTFS dataset into MobilityDB, because of the different options that the GTFS
standard allows. However, many datasets of GTFS transit information may share the
same difficulties for importing the data, therefore this work can serve as a guide for
many other similar cases. All software developed for this project is publicly avail-
able.2 More precisely, the contributions of this work are as follows:

– A description of the data acquisition processes for GTFS Static and GTFS Real-
time data for the City of Buenos Aires, in Argentina.

– A description of the process of importing the data of both GTFS standards into
MobilityDB.

– A study on how MobilityDB can be used to analyze data about the public trans-
port system. This study is carried out using public transport data for Buenos
Aires, and includes, among others, a comparison of planned and actual sched-
ules, average delay per bus line, and average speed per line. The goal is to show
how MobilityDB makes these queries not only computationally efficient, but also
easy to express.

1 https:// www. google. com/ maps.
2 https:// github. com/ pablo ito/ MDB- Impor ter.

https://www.google.com/maps
https://github.com/pabloito/MDB-Importer

The remainder of this paper is organized as follows: Sect. 2 discusses related work
and provides the necessary background to make the paper self-contained. Section 3
describes MobilityDB and compares it against PostGIS as a solution for the study of
mobility data. Section 4 presents the case study, and also describes the data acquisi-
tion, preprocessing, and post-processing tasks. Section 5 presents the analysis tasks
and discusses the results. The paper concludes in Sect. 6.

2 � Background and related work

This section presents basic concepts concerning moving object databases, and also
their use in traffic analysis. Since the work in the present paper is based on the use of
MobilityDB, this database is presented in detail in Sect. 3.

2.1 � Moving object databases

Moving objects (MOs) are objects (e.g., cars, trucks, pedestrians) whose spatial fea-
tures change continuously in time (Güting et al. 2005). Moving objects are repre-
sented as sequences of spatio-temporal points, of the form (x, y, t). As defined in
Spaccapietra et al. (2013), MO data are typically divided into parts, called trajecto-
ries, defined within an interval [ts, tf] , where ts and tf represent the start and the end
time instants of the trajectory, respectively. Over these trajectories, different kinds of
analyses can be performed (e.g., pattern matching, semantic analysis). Although raw
data come in the form of discrete points, for many applications that need to simulate
and study the real movement of an object, a continuous representation of a trajectory
is needed, and this requires appropriate interpolation functions. When these func-
tions are provided, trajectories are called continuous, otherwise they are denoted
discrete. Moving object databases (MODs) are databases that store the positions of
MOs at any point in time, in other words, to represent a continuous function from
an instant to a point with signature f ∶ instant → (x, y) . To represent MOs, the defi-
nition of appropriate data types is needed. As explained in Vaisman and Zimányi
(2019); Zimányi et al. (2020), temporal types capture the evolution over time of base
types and spatial types. For instance, temporal floats may be used to represent how
the salary of a person evolves across time. Analogously, a temporal point may rep-
resent the evolution in time of the position of a vehicle or a pedestrian, reported by
a GPS device, yielding a temporal geometry of type point. In the sequel, follow-
ing Zimányi et al. (2020), a route denotes a certain spatial trajectory that a moving
object can take, without a specific date or time associated to it, and a trip denotes a
route repeatedly traversed at a certain time.

The first proposed MOD was SECONDO (Xu and Güting 2013), a MOD devel-
oped at the Fern Universität in Hagen, based on the model proposed by Güting et al.
(2005). SECONDO provides an extensible architecture that can support spatial and
spatio-temporal applications. This architecture has three main components, namely
the kernel, the optimizer, and a graphical user interface (GUI). The kernel, being
extensible, can implement a wide array of data models, through different algebra

modules that provide a collection of type constructors and operators. HErmES is a
MOD introduced by Pelekis et al. (2006); Pelekis and Theodoridis (2014), devel-
oped at the University of Piraeus, in Greece. In addition of being a MOD, HErmES
can also be used as a pure temporal or a pure spatial system. Its functionality is
achieved through a collection of abstract data types (ADT) and their corresponding
operations, developed and provided as a data cartridge that extends SQL with MO
semantics. One of the main features of SECONDO and HErmES is that they provide
support to different kinds of MOs that go beyond the basic types and the geometric
point type (for example, moving polygons are supported). However, SECONDO
and Hermes present several drawbacks to be used as a real-world analytical tool.
First, both prototypes are not easily integrated with relational databases. For exam-
ple, the HErmES cartridges mentioned above, that encapsulate the MO functionality,
extend the Oracle DBMS. Therefore, to build an application on top of the database,
the application developer must embed PL/SQL scripts into a source program (e.g.,
a Java program). These scripts are the ones that actually call the HErmES type con-
structors. Integrating SECONDO with existing DMBSs is even more complicated,
given that the former is a packed system.

The problems expressed above are overridden by MobilityDB, a database man-
agement system for moving object geospatial trajectories, such as GPS traces. Built
on top of PostgreSQL and its spatial extension PostGIS, MobilityDB adds support
for temporal and spatio-temporal objects to the PostgreSQL database. MobilityDB
can be run in distributed environments, as described in Bakli et al. (2019), there-
fore it is appropriate to support high data volumes. MobilityDB, like PostgreSQL, is
coded in the C programming language; therefore, it seamlessly extends the PostGIS
library with temporal data types, which is appropriate for the purpose of running
analytic indicators over relational databases. A current limitation of MobilityDB is
that it only supports moving points. However, for traffic analysis, moving points are
appropriate enough, as it will be shown in the next sections.

2.2 Using moving object data for traffic analysis

There is a wide array of works showing how moving object data can be used to
analyze traffic in road networks. A comprehensive study of mobility data analysis
problems is presented in Renso et al. (2013). Krogh et al. (2012) use GPS trajec-
tories to estimate speeds on road segments, and propose several indicators. Meng
et al. (2017) use loop detectors and taxi GPS trajectories for traffic analysis. Fu r-
ther, Hohmann et al. also study traffic from a user’s point of view (Hohmann and
Geistefeldt 2016). Data warehouses (Vaisman and Zimányi 2014) have been also
proposed for moving object analysis in general, and for traffic analysis in particular.
Andersen et al. (2014) propose the use of a data warehouse for analysing speeds,
fuel consumption, among others. Formal frameworks for trajectory analysis using
data warehouses are discussed in Leonardi et al. (2014) and da Silva et al. (2015).
Recently, Vaisman and Zimányi (2019) proposed the use of MobilityDB for building
trajectory data warehouses.

Although sometimes overlooked, the problem of preprocessing GPS data is cru-
cial to guarantee that analysis results are correct. For instance, Krogh et al. (2012)
only select trajectories that follow certain paths, and Meng et al. (2017) use map
matching just for inferring average speeds. To give an idea of the impact of this
step, this paper shows that a large portion of the data sets used here is cleaned out
for several reasons. Parent et al. (2013) propose a three-step trajectory preprocessing
methodology, consisting in a cleaning phase, followed by a map-matching task, and
finally a compression step. Data cleaning is studied in Yan et al. (2013), although
much of the task is generally performed manually, like discussed by Fu et al. (2016),
usually limiting to clean GPS signal errors. This paper discusses also other kinds of
errors.

As mentioned above, map matching is usually part of the data preprocess-
ing tasks. Map matching consists in transforming absolute GPS coordinates into a
sequence of road segments, matching raw GPS observations to the road network,
accounting for constraints like speed limits and traffic directions. Map matching can
be performed online or offline (Wei et al. 2013).

2.3 � The GTFS specification

The General Transit Feed Specification (GTFS) is a data format used to define pub-
lic transportation schedules and real-time data with associated geographic informa-
tion. The GTFS has two versions, Static and Realtime, the former being the most
widely used. GTFS Static3 is used to predefine trip schedules, while GTFS Real-
time4 is a feed of real-time data with the positions and timestamps of the data points
within trips and routes.

GTFS Static is composed of a series of text files with a CSV format that are
stored in a ZIP file. Each file determines a specific aspect about the public transpor-
tation schedules, such as stops, routes and trips. The GTFS Static reference contains
the following files:

– agency.txt. Lists the transit agencies that operate the transport routes.
– stops.txt. Lists the stops that compose the scheduled trips.
– routes.txt. Lists the routes in the public transport schedule.
– trips.txt. Lists the trips contained in the schedule.
– stop_times.txt. Links trips with stops, and adds the arrival time and depar-

ture time fields for each stop.
– calendar.txt and calendar_dates.txt. The file calendar.txt

contains a service identification number, and a field for each day of the week,
representing if the service is available that day. It also contains a start date and
an end date for the service; calendar_dates.txt adds service exceptions,
which can be additions or removals.

3  https://​devel​opers.​google.​com/​trans​it/​gtfs/​refer​ence.
4  https://​devel​opers.​google.​com/​trans​it/​gtfs-​realt​ime/​refer​ence.

https://developers.google.com/transit/gtfs/reference
https://developers.google.com/transit/gtfs-realtime/reference

– In addition to the above, there are several optional files. Some of these are
fare_attributes.txt (which includes trip prices and payment methods),
fare_rules.txt, shapes.txt (which includes data points that determine
the trajectory taken between stops), frequencies.txt, transfers.txt,
pathways.txt, levels.txt, feed_info.txt, etc.

GTFS Realtime is defined in a looser manner, compared against the static option. A
GTFS Realtime feed is served via the HTTP protocol, and should provide frequent
updates, although there are no constraints on how frequently these updates should be
served nor on the exact manner in which the feed is updated or retrieved. Any web
server can host and serve the data, and all transport protocols can be used as well. A
GTFS Realtime feed can support the following types of information:

– Trip updates: delays, cancellations, changed routes.
– Service alerts: events affecting a station, route or trip.
– Vehicle positions: information about the vehicles currently in service, with their

locations and other data such as the congestion level.

GTFS Realtime has two feed elements, messages and enums. The former represent
complex types and the latter represent a list of fixed values generally used to com-
municate certain events. The feed elements are used when the web server communi-
cation method is the Protocol Buffer, used by the real-time data feed API for the city
of Buenos Aires, which also uses a JSON format body within an HTTP response.
The API sends nested messages as fields in the JSON body. The ones used for Bue-
nos Aires are:

– FeedEntity. This message is sent on all HTTP requests, and provides an
update of an entity in the transit feed. It contains an identification field, a
TripUpdate message, a VehiclePosition message and an Alert mes-
sage. However, the Alert message is optional, and it is not implemented in this
case.

– TripUpdate. This message provides an update on the progress of a vehicle
along a trip. It contains a trip descriptor, a vehicle descriptor and fields to repre-
sent the delay and new stop time that is being alerted.

– VehiclePosition. This message provides real-time position information
of a given vehicle. It contains a trip descriptor, a vehicle descriptor, a position
described in latitude and longitude coordinates, a stop identifier of the current
stop, and a timestamp in POSIX time.

There is limited scientific literature around GTFS. Vuurstaek et al. (2020) describe
a bus stop mapping technique that combines the OpenStreetMap and GTFS open
data sources. Kaeoruean et al. (2020) present two approaches for measuring the dif-
ference between the demand and supply for public transit. de Queiroz et al. (2019)
analyze the conformity of GTFS routes and the actual bus trajectories in four cities
in Brazil. Wessel and Widener (2017) study the problem of schedule padding, which
is the extra time added to transit schedules to reduce the risk of delay. Regarding

visualization, Kunama et al. (2017) present a tool called GTFS-Viz for preprocess-
ing and visualizing GTFS data, and Bast et al. (2014) introduce a tool that shows a
worldwide live map of real-time public transit data based on freely available GTFS
timetable data and real-time delay information. Finally, Braga et al. (2014) describe
a web-based application aiming to simplify the creation and editing of public trans-
portation data. None of the works above includes the notion of moving objects in
the analysis of transportation networks. To the authors’ knowledge, this is the first
attempt to analyze GTFS data with a moving object database.

3 � MobilityDB

This section first presents a brief overview of MobilityDB to make the paper self-
contained. Further details about MobilityDB can be found in Zimányi et al. (2020)
and in the system’s documentation.5 The second part of the section compares the
MOD solution based on MobilityDB, against the classic solution based simply in
PostGIS.

3.1 � MobilityDB Data types and functions

MobilityDB defines temporal types for handling objects whose value changes over
time, for example stock prices or temperature, among others. Temporal values are
initially built from a discrete set of values and associated timestamps (i.e., observa-
tions) and represent the evolution in time of the value. Since MO databases repre-
sent a continuous function, values between discrete time instants are interpolated
using either a stepwise or a linear function.

Temporal types are based on four time types: the timestamptz type provided
by PostgreSQL, and three new types, namely period, timestampset, and
periodset. The period type represents a set of timestamps between a lower
and an upper bound. The timestampset type is a collection of one or more
timestamptz values. The periodset is a non-empty collection of ordered and
non-overlapping period values.

MobilityDB provides four temporal alphanumeric types, namely tbool (tempo-
ral Boolean), tint (temporal integer), tfloat (temporal float), and ttext (tem-
poral text). Such temporal types are typically used to represent dynamic properties
of a moving object. A temporal Boolean can represent, for example, whether a car
is driving below the speed limit of the road segment on which it is located. A tem-
poral integer can be used to represent the gear of the car while a temporal float can
be used to represent its speed. Finally, a temporal text can be used to represent for
example the transportation mode of a moving person, such as walk, car, bicycle, etc.

MobilityDB also provides two spatio-temporal types, namely tgeompoint
(temporal geometry point) and tgeogpoint (temporal geography point), which
correspond to PostGIS types geometry and geography. The difference

5  https://​docs.​mobil​itydb.​com/​Mobil​ityDB/​master/​mobil​itydb-​manual.​pdf.

https://docs.mobilitydb.com/MobilityDB/master/mobilitydb-manual.pdf

between the two is the reference system: geometry points use a Cartesian refer-
ence system and allow calculation of speed and other distance-related metrics,
while geography points use a geodesic reference system, which implies more
complex operations.

MobilityDB includes a vast number functions to access and manage temporal
types. Examples of these functions are startTimestamp, endTimestamp,
timespan, speed, direction, cumulativeLength, nearestAp-
proachDistance and many more. Some examples illustrating how Mobili-
tyDB’s temporal types work are given next. For clarity, the results are given after
each query in all the examples.

Example 1  The query below constructs two tint values and applies temporal addi-
tion to them. The resulting value is a tint as well.

The result is obtained as follows. Since the value ‘1’ exists between 2001-01-01
and 2001-01-02, and ‘1’ exists between 2001-01-02 and 2001-01-04 (note the open
and closed intervals), ‘1’ and ‘2’ are added in the intersection of the intervals, that
is, 2001-01-02 and 2001-01-03.

Example 2  Now we illustrate the temporal intersection (tintersects) between a
temporal point and a geometry. The resulting value is a tbool.

2001-01-04

1

2

1 2 x3

y

2001-01-01

2001-01-02 2001-01-03

Fig. 1   Intersection between a tgeompoint and a polygon

Figure 1 depicts the result given as text above. We can see that the initial and
final positions of the temporal point do not intersect the polygon. However, per-
forming a linear interpolation, the moving point intersects the polygon at two loca-
tions at instants 2001-01-02 and 2001-01-03. The latter are indicated above
as t@2001-01-02 and t@2001-01-03. The former as f@2001-01-01 and
f@2001-01-04.

Example 3  We now show how we can create a table Trips containing a temporal
column, add data to it, and query the table using MobilityDB.

Now, we write a query that uses the table Trips defined above, and retrieves the
value of the temporal points at a specific timestamp, returning two points (note that
points (2,0) and (1,1) exist in the table at the timestamp mentioned in the WHERE
clause.

3.2 � MobilityDB vs. PostGIS

A question that immediately arises is the following: Why do we need a MOD
when existing tools, e.g., PostGIS, can also handle this problem? There are two
key advantages for the MOD approach. On the one hand, queries over moving
object data are more concise, easier to understand, and efficient. On the other
hand, moving object data can dramatically reduce the storage space. Below we
elaborate on these two issues.

3.2.1 � Expressing trajectory queries

Consider a table gpsPoint(tripID, pointID, t, geom), storing trajecto-
ries, represented using PostGIS.6 In this table, tripID and pointID are, respec-
tively, identifiers of the trip and the observation, t is a timestamp, and geom is the
geometry of each point. There is also another table pointOfInterest(poIID,
poIName, geom), containing points of interest (PoI). Using these tables, a query
asking for the points in the trajectory that are within 30 m from a point of interest
(PoI) reads:

Note however, that the query does not account for the time interval of the situa-
tion, that is, for how long the trajectory was within 30 m from the PoI. The PostGIS
query that solves this problem is quite more involved than the one above, as it can be
seen below.

The query above requires a deep understanding of SQL. It uses Common Table
Expressions (CTE) for defining temporary tables to incrementally compute the final
result of the query. Table pointPair stores every pair of consecutive points that
belong to the same bus trip into one tuple. For this computation, it uses window
functions, another advanced SQL feature. Table segment connects these pairs
of consecutive points with a line segment, thus performing a linear interpolation
between them. The locations where the bus starts/ends within 30 m from the PoI

6  This example is based on the post https://​techc​ommun​ity.​micro​soft.​com/​t5/​azure-​datab​ase-​for-​postg​
resql/​analy​zing-​gps-​traje​ctori​es-​at-​scale-​with-​postg​res-​mobil​itydb-​amp/​ba-p/​18592​78.

https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/analyzing-gps-trajectories-at-scale-with-postgres-mobilitydb-amp/ba-p/1859278
https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/analyzing-gps-trajectories-at-scale-with-postgres-mobilitydb-amp/ba-p/1859278

are computed in the approach table. The final query lists such points and com-
putes the time elapsed between them assuming constant speed. The complexity of
the query above arises from the problem it addresses: it attempts to represent a con-
tinuous movement by means of reconstructing discrete GPS data. On the other hand,
using a system that naturally handles continuous data may be a better option.

Consider now the solution using MobilityDB and the functions explained in
Sect. 3.1. We first create a table busTrip(tripID, trip), that stores the con-
tinuous trajectory. Attribute tripID is the trajectory identifier, while the attribute
trip is of type tgeompoint, which is the MobilityDB type for storing a com-
plete trajectory. The query above reads in MobilityDB as follows:

The nesting of the functions getTime, atValue, and tdwithin returns the
time periods during which a bus trip has been within a distance of 30 m from a PoI.
The function atPeriodSet restricts the bus trip to only these time periods. The
function asText converts the coordinates in the output to textual format.

As a conclusion, it clearly follows that a database that stores continuous trajec-
tories will allow more natural and simple queries than a spatial database based on
discrete data types. Furthermore, these queries will be more efficient, in particular
since a full trip will be brought to memory with a single database access, while as
illustrated above, multiple database accesses are required for the equivalent Post-
GIS query. Furthermore, more efficient algorithms can be defined for manipulating
the continuous trajectories. For example, since the points and associated timestamps
are stored in ascending order of time, MobilityDB uses binary search to efficiently
locate the position of a moving object at a given timestamp.

3.2.2 � Trajectory representation

As seen above, PostGIS represents the trajectory as a sequence of GPS points,
each one stored on a single row. On the contrary, MobilityDB makes a more
efficient use of the storage space taking advantage of the continuous trajectory
notion. That is, for example, if an object moves in straight line at constant speed
during a portion of the trajectory, only the starting and ending points of this seg-
ment need to be stored. All the intermediate points can be discarded. This can
be seen in Fig. 2,7 which compares both options. Note that the MobilityDB rep-
resentation only used the points highlighted in green. As another example, when
a moving object does not move, e.g., when it is stopped due to a traffic light or a
traffic jam, MobilityDB will remove redundant observations and will only keep
two of them when the stopped and when the object started to move again.

7  Figure borrowed, with kind permission of the authors, from http://​docs.​mobil​itydb.​com/​pub/​Mobil​
ityDB_​PGVis​ion20​21.​pdf.

http://docs.mobilitydb.com/pub/MobilityDB_PGVision2021.pdf
http://docs.mobilitydb.com/pub/MobilityDB_PGVision2021.pdf

Experiments performed over the Moscow public transportation system
showed a dramatic reduction in the storage space required to store transportation
data: 10 billion rows a day (around 500 MB per day), are represented in Mobili-
tyDB by 15,000 rows (around 5 MB per day).

Fig. 2   Trajectory compression

1 2 3 X

Y

1

2 RouteT1

RouteT2

8:00

8:15

8:15

8:20

8:25

8:05

3

Fig. 3   Graphical representation of the trajectories of two buses

3.3 � Other MobilityDB applications

Consider now two buses moving in a city, as shown in Fig. 3, call them RouteT1
and RouteT2, respectively. We can see, for instance, that it takes 15 minutes to
the first bus to go from point (0,0) to point (3 3). Then it stopped for 10 minutes at
that point. We assume a constant speed between consecutive pairs of points. Thus,
RouteT1 travelled a distance of

√

18 = 4.24 in 15 minutes, while RouteT2 trav-
elled a distance of

√

5 = 2.23 in the first 10 minutes and a distance of 1 in the fol-
lowing 5 minutes.

In MobilityDB, the operation trajectory projects moving geometries into the
spatial plane. The projection of a temporal point into the plane may consist of points
and lines, the projection of a temporal line into the plane may consist of lines and
regions, and the projection of a temporal region into the plane consists in a region.
In our example, trajectory(RouteT1) would result in the leftmost line in
Fig. 3, without any temporal information.

This raises an interesting question and illustrates another key feature of using
MOD for mobility analysis. If we want to study how close to each other are two bus
lines at any time, the spatial information would not be enough. We must compute
the distance between the two lines at any time instant. Thus, the ST_Distance
function in PostGIS would not be enough. We would need the MobilityDB function,
distance(RouteT1, RouteT2), which returns a temporal real value, shown

t

1

2

8:108:05 8:15 8:20

d

Fig. 4   Distance between the trajectories of the two vehicles in Fig. 3

q1@t1’

p1@t1

p4@t4

q5@t5’

p2@t2

p3@t3q2@t2’ q3@t3’

q4@t4’pi1@t2’ qi3@t3

x

y

p3@t1

p@t

p2@t1 p2@t2

p1@t2

q@t

Fig. 5   Computing the temporal distance between two moving objects. Left: synchronization of the two
trajectories. Right: computing the turning point for each segment of the synchronized trajectories

in Fig. 4. It can be seen, for instance, that this function has value 1.5 at 8:10 and 1.41
at 8:15.8

We now briefly explain why this feature is not easily performed in PostGIS (or
any spatial database). Consider the two moving points p and q on the left-hand side
of Fig. 5. In order to compute the distance between these objects, we first need to
temporally synchronize them, as the figure shows. This synchronization is performed
internally by MobilityDB, restricting the two trajectories to their common time span
(from t1 to t′

5
 ), and adding the intermediate synchronization points represented by

the dashed vertical lines. In the figure, the solid circles represent the observations
while the hollow circles represent the interpolated points added for synchronization.
Two interpolated points are highlighted in the figure, shown within a box. Then,
the computation of the temporal distance is performed for each synchronized seg-
ment. For this, we compute the distance at the beginning and the end of the seg-
ment but in addition we need to determine whether there is a turning point, which is
the timestamp at which the distance between the two trajectories is minimal. These
are represented in the figure by the dotted lines. In this figure, we have two turning
points where the two objects are at the same point at the same time, and thus the
distance between them is zero.

On the right-hand side of Fig. 5 we illustrate the general case of two synchronized
segments, where the two objects are at the same point p2 at two different time
stamps. In the figure, p moves from p2@t1 to p1@t2, while q moves from p3@t1
to p2@t2. The turning point is indicated with the dotted line and in this case, oppo-
site to the case above, the distance between the trajectories at the turning point is not
zero. Therefore, the result of the temporal distance for this segment would be com-
posed of three values: ST_Distance(p2,p3)@t1, ST_Distance(p,q)@t,
and ST_Distance(p2,p1)@t2. This computation must be performed for every
pair of synchronized segments. Therefore, the reader could understand intuitively
that computing the temporal distance in PostGIS (i.e., without the MobilityDB tem-
poral point data type) would be very complex and inefficient.

4 � Case study

This section describes the use of MobilityDB for analyzing GTFS data, both Static
and Realtime. For this, data of the public transportation system in Buenos Aires,
Argentina are used. The area under study includes the city of Buenos Aires and its
outskirts, known as the Metropolitan Area of Buenos Aires (AMBA).

The AMBA public transportation system consists of three main branches.
The subway system, contained in the city itself, the metropolitan railway system,
which connects Buenos Aires with its suburbs, and the bus system, composed of
hundreds of municipal and provincial bus lines from all across the urban area.
The open data site of the city of Buenos Aires9 provides both, the itineraries
for all branches of the AMBA transport system as well as real-time information

9  https://​data.​bueno​saires.​gob.​ar/​datas​et?​groups=​movil​idad.

8  Notice that the distance is a quadratic function and MobilityDB approximated it with a linear function.

https://data.buenosaires.gob.ar/dataset?groups=movilidad

on the moving vehicles. For the present work, the information referred above is
loaded and analyzed using MobilityDB to obtain, for example, the average speed
for each hour, for each day of the week, vehicles passing close to a PoI, and aver-
age delay for each bus. Visualizations like transport delay heat maps are also
produced.

The data acquisition and preprocessing tasks are described next. The use of
these data for analysis is described in Sect. 5.

4.1 � Data model

The input data must be converted into MobilityDB’s native spatio-temporal types.
Thus, the output of the import process is a relational table called trips_mdb
with the following columns:

– trip_id: The identifier of a particular trip.
– vehicle_id: The identifier of a particular vehicle in service.
– startdate: The starting date of the trip.
– starttime: The starting time of the trip.
– trip: The location and time information for the whole trip represented using

MobilityDB tgeompoint data type. This is the column used in most of the
queries below.

– traj: The spatial trajectory of the trip represented using PostGIS geome-
try data type. In other words, this is the spatial projection of the trip. This
column is used for representing the trajectories of the trips graphically, e.g.,
using QGIS.

As discussed in Sect. 3.2, the MobilityDB type tgeompoint keeps the discrete
set of points and associated timestamps (i.e., the observations) for a complete trip in
a single value. All these observations would be stored in multiple rows in PostGIS.
By collecting all the points and timestamps of a trip in a single value, MobilityDB
is able to simulate continuous spatio-temporal data assuming a linear interpolation
between subsequent observations. Therefore, in this work, GTFS data are turned into
spatio-temporal continuous trajectories, such that, for GTFS Static they represent
the planned itineraries while for GTFS Realtime they represent the actual mobility
data in real time. Therefore, this case study shows the advantages of using moving
object (i.e., continuous) data, instead of the classic solution that uses discrete data.

4.2 � Data acquisition and preprocessing

This section reports the work required to acquire, import, process, and load data
into MobilityDB structures. The study is divided into two sections: GTFS static and
GTFS Realtime data.

4.2.1 � GTFS static

Although GTFS Static data sets for the city of Buenos Aires can be obtained for
trains, metro, and buses, the latest data set that can be found on the government’s
official website is from August 2019. Thus, we decided to use a more recent data-
set from OpenMobilityData10 that spans from April 20 to October 20, 2020, for the
city’s bus system. The downloaded data for the bus system in Buenos Aires, includes
the following files: agency.txt, calendar_dates.txt, routes.txt,
shapes.txt, stop_times.txt, stops.txt, and trips_txt. These files
are described in Sect. 2.3 above. We remark that, although train and metro static
data are available, since this is not the case for real-time data (see below), only bus
data are considered for the present study.

The bus system data present an anomaly which raises issues during interpola-
tion: there are cases where two distinct stops are very close to each other, and the
feed specified the arrival time to be the same for both stops. This is illustrated in
Fig. 6, where we can see two rows with the same arrival_time and different
stop_id.

The GTFS Static Pipeline is split in two steps, namely, preprocessing and data
importing. The preprocessing pipeline includes two scripts:

– Data pruner: a Python script that removes unused columns from GTFS data.
– Data wrangler: a Go script that finds anomalies in arrival times and modifies val-

ues to allow interpolation.

Once the data are preprocessed, the data importing phase takes place. This is
depicted in Fig. 7, and includes three scripts:

– GTFS Importer: an SQL script that loads preprocessed data into auxiliary tables.
– Dates Importer: an SQL script that loads service dates into auxiliary tables

depending on the availability of the files calendar_dates.txt and/or
calendar.txt.

– MDB Importer: an SQL script that populates the trips_mdb table. It takes
care of generating the geometry of every trip’s route, calculating arrival times of
all trip stops, and finally generating the tgeompoint from the GTFS informa-
tion.

trip_id,arrival_time,departure_time,stop_id,stop_sequence,timepoint,shape_dist_traveled
10803-1,08:31:52,08:31:52,6441112744,100,0,18927
10803-1,08:32:12,08:32:12,6441112685,101,0,19139
10803-1,08:32:12,08:32:12,6441112778,102,0,19161
10803-1,08:32:34,08:32:34,6441112773,103,0,19408

Fig. 6   Bus system anomaly

10  https://​openm​obili​tydata.​org/l/​401-​buenos-​aires-​auton​omous-​city-​of-​buenos-​aires-​argen​tina.

https://openmobilitydata.org/l/401-buenos-aires-autonomous-city-of-buenos-aires-argentina

All agencies reported in the transit feed use UTC-3 Timezone, thus, timestamps are
loaded with America/Argentina/BuenosAires timezone.

4.2.2 � GTFS Realtime

The Transportation Ministry of the city of Buenos Aires provides a GTFS Realtime
API that allows users to track the state of the public transportation vehicles.11 This
API provides endpoints that expose the status of both, trains and buses in the city
and its outskirts. The endpoints are updated at an interval of thirty seconds, and sup-
port both Protocol Buffers and JSON responses. At the moment of writing this work,
there is no endpoint for querying subway lines in real time, and during the week of
polling, the train endpoint did not return any values. Therefore, the data extraction is
limited to the bus system. However, for the goals of this work, the bus data suffices.

BA Catcher A scraper, called BA Catcher, that polls the transportation sys-
tem at the update interval, has been developed. The scraper is run against the

Fig. 7   GTFS-Static importing pipeline

11  https://​www.​bueno​saires.​gob.​ar/​desar​rollo​urbano/​trans​porte/​apitr​anspo​rte/​api-​doc.

https://www.buenosaires.gob.ar/desarrollourbano/transporte/apitransporte/api-doc

JSON endpoint starting August 18 and ending August 25, 2020. Figure 8 shows
the architecture of the BA Catcher, composed of the following services:

– BA Transport API: Transport API provided by the Buenos Aires Trans-
port Ministry.

– Polling Service: Service responsible for setting up the recurring JSON
requests, parsing the response, and validating the values.

– Position DAO: It is responsible for persisting values to the database,
removing duplicate values.

– Position Database: a PostgreSQL database that contains a single table
Positions where all relevant information of the observations is persisted.

For exploratory data analysis, the query below, expressed using PostgreSQL,
produces a bar chart showing the number of timestamped locations reported for
each trip. Figure 9 depicts the barchart, where it can be seen that there is a large
portion of trips where less than 10 locations have been reported.

Fig. 8   BA Catcher Architecture Diagram

bucketNo | bucketRange | freq | bar

1 | [0,2) | 2523 | ��
2 | [2,10) | 15279 | ���������
3 | [10,50) | 44475 | ������������������������
4 | [100,200) | 58034 | �������������������������������
5 | [200,500) | 54060 | �����������������������������
6 | [500,1000) | 22445 | �������������
7 | [1000,100000) | 7644 | �����

Fig. 9   Timestamped location frequency barchart

Table buckets defines a set of buckets, whose bounds were selected after
executing some exploratory queries on the data. Table tripCount stores for
each trip_id the number of observations in the data set. This table is joined
with its corresponding bucket in table bucketTrip, according to the no_
observ value. Then, the histogram table associates each bucket with the
number of trips in the bucket. The final SELECT statement outputs this informa-
tion to the terminal alongside a simple ASCII bar chart to improve readability.

Data structure The fields stored from the HTTP requests for obtaining the real-
time data are the following:

– trip_id: The identifier of the trip that the moving object is performing.
This identifier coincides with the identifier used in the static data.

– vehicle_id: The identifier of the vehicle in service.
– instant: A timestamp for the data being sent, in POSIX time.
– latitude: The latitude of the vehicle at the instant, in the UTM coordinate

system.
– longitude: The longitude of the vehicle at the instant, in the UTM coordi-

nate system.
– startdate: The date in which the trip started, in YYYYMMDD format.
– starttime: The time in which the trip started, in 24h format.
– direction_id: The direction of travel for a trip, can be a 0 or 1, e.g., out-

bound or inbound.

There are several rows with positive latitude and longitude values, which are not
coherent with the geographical location of the city of Buenos Aires. These values
correspond to points somewhere in the Atlantic Ocean. When these points are plot-
ted with negative values, they match the current trip.

Data acquistion and preprocessing Figure 10 illustrates the pipeline created to
import the GTFS Realtime data used in this study. The BA Catcher component
has been previously explained. The BA Exporter.sql program uses the data
that BA Catcher stores, and creates a CSV file that is used for preprocessing.
A Python program, Coordinate Corrector.py fixes the errors in the coor-
dinate values mentioned above. The BA Importer.sql module creates a table
called positions with the direct import of the fields mentioned above. With this
table, the script creates points of the geometry type using the PostGIS function
ST_MakePoint. The SRID of the geometry is set to 4326 (the WGS84 standard
longitude and latitude coordinates on the Earth’s surface), since that is the format in
which data come. Then, the table described at the beginning of the section is cre-
ated, and the data from the table positions is imported. The following code cre-
ates the tgeompoint of a trip.

The function tgeompoint_inst creates a tgeompoint with a single point
at a certain instant, and by aggregating these with array_agg, they can be passed
to tgeompoint_seq to create a tgeompoint that represents the whole trip,
which is added to the trips_mdb table. The additional field traj is filled using
the MobilityDB function trajectory, which returns the PostGIS geometry
trajectory that a tgeompoint contains.

Both Static and Realtime values come in SRID 4326, which is a geodetic coor-
dinate system. To calculate distance, speed, and other metrics, a plannar reference
system is needed. Thus, the SRID 5345 is used, which is a Cartesian system that
encompasses all of Argentina and its surroundings. To change the reference system,
a MobilityDB function is executed over the loaded data. As another preprocessing
action, bus lines with less than eleven real-time observations are removed to guaran-
tee that they are useful for data analysis.

Finally, to compare the real-time and static bus feeds, all bus lines not present in
the real-time feed are removed from the static feed, and, conversely, all bus lines not
present in the static feed are removed from the real-time feed.

4.3 � Map matching

To improve the results, offline map matching was applied to the data. For this,
we used Barefoot,12 an open-source Java library for online and offline map
matching with OpenStreetMap. However, several problems were found, namely:
(a) The offline map matching provided by Barefoot can only correct one route
per thread. At the scale of thousands of trips like in the city of Buenos Aires,
this constraint demands a parallel pipeline which would handle the workload;
(b) Even though the BA Transport API documentation states that the response is
updated every thirty seconds, this statement does not seem to be true for every

Fig. 10   GTFS Realtime importing pipeline

12  https://​github.​com/​bmwca​rit/​baref​oot.

https://github.com/bmwcarit/barefoot

line. In practice, the average interval between two adjacent samples for a given
line was about 130 seconds, but the interval variance is very high, reaching a
value up to 600 seconds. In this study, where both the uncertainty (given by the
interval) and the scale (given by the size of the transport network) are very high,
alternative solutions for the map-matching problem are explored, and described
next.

Although real-time data suffer from inaccuracies due to both GPS signal errors
and sampling frequency, these problems are not present in static data. The static
input data are provided already map-matched. Therefore, the problem of match-
ing the real-time trajectories to the physical route network equals matching the
real time trajectories to the static ones. In order to test this hypothesis, an example
of a trajectory that clearly displays the problem is shown next. The bus line #152
is an example of this issue, since during its trajectory it goes by the presidential
house, along a large roundabout, and thus, with the current real-time frequency,
MobilityDB is unable to create an adequate route, as shown on the left-hand side
of Fig. 11.

The trajectory generated from the data points goes across the park, because the
sampling frequency is not high enough to create a route that matches the static one.
A manual map-matching algorithm is developed, and explained below. The code
shown in Listing 1 produces such a match.

Fig. 11   Left: Bus line #152, static route (blue), real time data points (red), generated route (pink); Right:
Trajectory corrected with the map-matching algorithm

The subquery on Line 9 returns the line of the static trajectory that is contained
between the two points closest to the red points (the extreme points, obtained with
the API, that can be seen in the figure). This trajectory is referred as line. The
query also returns dump, an array of points that are contained in the previously
mentioned trajectory. The WHERE clause (Line 45) specifies the exact trip that is
shown in Fig. 11. To obtain line and dump, the function ST_ClosestPoint
is invoked with the trajectory and the red point shown in the figure. This returns the
point within the trajectory, closest to the red one. With the function ST_LineLo-
catePoint, the percentage of the trajectory in which the mentioned point is found
is obtained. By calling ST_LineSubstring with both points obtained, and the

trajectory, the trajectory contained within both data points is retrieved. With line
and dump, the MobilityDB function nearestApproachInstant is used to
generate the tgeompoint, and thus obtain the map matched route, shown on the
right-hand side of Fig. 11. It can be noted that now the pink route matches the origi-
nal route spatially.

In conclusion, the results obtained with the simple map-matching solution imple-
mented in MobilityDB are reasonably good. Furthermore, this approach is consider-
ably much more efficient than the one followed by Barefoot, which uses a Hidden
Markov Model map-matching implementation. In this particular case, the method
yields better results because it takes advantage of the expected route data. Obviously,
this functionality can be implemented in PostGIS but this would require to follow an
approach similar to the one sketched in Sect. 3.2 to connect subsequent observa-
tions, and rewrite in SQL all the functionality natively provided by MobilityDB for
computing the turning points of the distance function (e.g., function nearestAp-
proachInstant above) between the planned and the actual trajectories.

5 � Analysis and results

This section shows the use of MobilityDB for analyzing static and real-time public
public transport in the city of Buenos Aires. First, GTFS Static data are analyzed
and the results displayed by means of visualizations. Then, analyses that use both
GTFS Static and Realtime datasets together are carried out. The section concludes
with a discussion of the results.

To create the visualizations reported below, Grafana,13 a web application that
allows creating dashboards with data from multiple databases, is used. For the
visualizations that contain maps, QGIS14 is used. The maps are obtained from
OpenStreetMap.15

5.1 � GTFS Static

Figure 12 shows a portion of the trajectories for the real time bus feed. The trajec-
tories are computed using MobilityDB, as the spatial projection of the continuous
spatio-temporal trajectories produced from the schedules and stops data. From these
spatio-temporal trajectories, interesting analyses can be performed, as shown next.

Query 1  List the trajectories and their bus identifiers, that pass at a distance less
than 200 m away from Colón Theater.

MobilityDB utility functions are used to compute and visualize the trajectories
for all buses that pass close to a PoI, in this case, trajectories that pass at a distance

13  https://​github.​com/​grafa​na/​grafa​na.
14  http://​qgis.​org.
15  https://​www.​opens​treet​map.​org.

https://github.com/grafana/grafana
http://qgis.org
https://www.openstreetmap.org

less than 200 m away from the Colón Theater, a world-famous opera venue. Results
are displayed in Figs. 13 and 14. Comparing the density of the trajectories displayed
in Fig. 12, and considering that the Colón Theater is located downtown in the city,
the radial design of the public bus system becomes evident: a large part of the lines
go from the suburbs to downtown Buenos Aires.

Listing 2 depicts the query, which defines the table trip_distances, where
the bus line and the shortest distance to the point of interest are stored. In order to
calculate the latter value, MobilityDB functions are used, in particular shortest-
Line, which receives a tgeompoint and a geompoint, and returns the shortest

Fig. 12   GTFS Static bus lines trajectories

line that connects the two figures. Online web tools are used to find the coordinates of
the PoI (in SRID 5345). These coordinates are passed on to the function ST_Make-
Point. The PostGIS function ST_Length retrieves the desired metric. The final
SELECT statement simply provides the data in a format readable by Grafana. Since a
single bus line may be associated to many trip_ids, the final output averages the
minimum distance from all trips for the given bus line. Figure 14 also shows, using a
red gradient, the relative average distances between each bus line and the theater.

5.2 � GTFS Static and Real‑time comparison

Figure 15 shows a portion of the positions of buses registered in the week of 18–25
August. By identifying the individual bus lines with the trip_id it is possible to
query both, real-time and static feeds, for the different trips of a particular bus line,
as shown in Fig. 16. Figure 17 shows the comparison for Line #152A, between real
time and planned trajectories. It can be seen that both are similar.

Queries on real-time data stored as continuous data can be efficiently and easily
expressed using MobilityDB functions. An example is shown next.

Query 2  Compute the average speed of the vehicles by starting hour and day.

Listing 3 shows the MobilityDB queries that solve the problem.

With the trip field as a tgeompoint, the MobilityDB function twavg()
computes the average speed of a trip. This function receives a list of numbers with a
temporal value and computes the time-weighted average of these numbers. By using
another MobilityDB function, speed(), in conjunction with twavg(), the aver-
age speed of the trips is obtained. Figure 18 displays the result, comparing real-time
and static data. It can be noticed that the buses are moving considerably faster than
in the planned itinerary. It also seems that the itinerary does not take into account
the traffic congestion changes occurring during the day, while in the real-time data
obtained, higher speeds are registered at midnight every day. The average speed of
buses oscillates between 18km/h and 27km/h. When grouped by day, in both real-
time and itinerary data, the average speed rises on weekends, and remains constant
on weekdays. This is expected, since there are less commuters on weekends that
may create traffic jams and congestion in the streets (see Agarwal 2004).

Another query, relevant for traffic analysis is shown next.

Query 3  Compute the average delay by bus line.

The query must compute the average delays, grouped by bus lines. This is shown
in Listing 4 and results are depicted in Fig. 19.

MobilityDB’s function timespan computes the duration of the trip. Then, the
query uses pure PostgreSQL syntax. By calculating the difference between the dura-
tion of both tgeompoints it is possible to compute the delay for the whole trip,
which is depicted in Fig. 19). It can be observed that only two lines have delays
with respect to the itinerary. This is coherent with the speed data computed above.
Results are expressed in minutes.

Query 4  Compute a heatmap comparing real and planned trajectories for different
bus lines.

With the real-time and static tgeompoints, the trip_id is used to find both,
the theoretical and real trajectories of every bus in the system. Taking advantage
of MobilityDB’s functions to find regions of proximity between spatio-temporal
objects, a delay heatmap for every bus in the system is built. Listing 5 shows a por-
tion of the code for this, that is, the queries for the definition and population of the
heatmap tables. The result is depicted in Fig. 20 for two different lines. Segments of

Fig. 13   Bus trajectories close to Colón Theater

Fig. 14   IDs of bus lines that pass at a distance less than 200m from Colón Theater

Fig. 15   Actual trajectory of buses

the route where both, the realtime and static buses are close to each other are painted
green, as the theoretical and real buses move away from each other the segment
changes color towards red. Using MobilityDB syntax the segments for which the
real-time and static buses were near each other up to a given tolerance are selected.
The function tdwithin generates a continuous boolean temporal type which has
value TRUE when the temporal points are within a given distance from each other.
Combining this with the atPeriodSet function it is possible to discard all seg-
ments from the tgeompoint where the trips are farther away than the given toler-
ance. The WHERE clause allows improvement of the performance of the query by
taking advantage of the topological operator && (overlaps) which launches an index
search.

mobilitydb=# SELECT startTimestamp(trip), endTimestamp(trip) FROM trips_mdb
mobilitydb=# WHERE trip_id = ’10000-1’;

starttimestamp | endtimestamp

2020-08-18 12:42:00+00 | 2020-08-18 14:24:56+00
2020-08-19 12:42:00+00 | 2020-08-19 14:24:56+00
2020-08-20 12:42:00+00 | 2020-08-20 14:24:56+00
2020-08-21 12:42:00+00 | 2020-08-21 14:24:56+00
2020-08-24 12:42:00+00 | 2020-08-24 14:24:56+00
2020-08-25 12:42:00+00 | 2020-08-25 14:24:56+00

(6 rows)
mobilitydb=# SELECT startTimestamp(trip), endTimestamp(trip) FROM trips_mdbrt
mobilitydb=# WHERE trip_id = ’10000-1’;

starttimestamp | endtimestamp

2020-08-25 15:43:54+00 | 2020-08-25 17:08:24+00
2020-08-20 15:43:24+00 | 2020-08-20 17:03:58+00
2020-08-19 15:46:22+00 | 2020-08-19 17:12:56+00
2020-08-21 17:24:54+00 | 2020-08-21 17:44:24+00

(4 rows)

Fig. 16   Comparing static and real-time feeds

Fig. 17   Bus line #152A trajectory comparison

Five tables are created, each one containing the trip segments for different
degrees of tolerance. Once visualized in an application such as QGIS, the stepped-
tolerance creates a heatmap-like visualization. These visualizations are shown in
Figs. 20 and 21.

As a final discussion, many visualizations confirm significant differences
between the real location of the buses and their static itineraries. These differ-
ences are to be expected by any person who uses public transport in her daily life.

However, it is interesting to observe that in the cases reported here, these differ-
ences are not delays but, on the contrary, the real bus time is ahead of its itiner-
ary. In any other year this observation would most likely lead to conclude that
the data are erroneous. However, due to the extremely unusual events that have
taken place in 2020, it is believed that the cause for this result is different. The
sampled data corresponds to August in Argentina, when the city of Buenos Aires
and its outskirts were going through a strict lockdown due to the SARS-CoV-2
pandemic, except for public transportation. Many studies have already been ana-
lyzing the effects of the lockdown on traffic and circulation. Amongst them are
those given by the Google Mobility Report, shown in Fig. 22. It can be observed
there, that the results obtained in the use case reported here are explained by the
traffic reduction in the streets of Buenos Aires.

6 � Conclusion

This work shows how MobilityDB, an open-source moving object database, can
be used to analyze mobility data, in particular, public transport data. For this, the
city of Buenos Aires, Argentina, is used as a case study. Public data about bus,
train, and subway schedules are available compliant with the GTFS Static stand-
ard. Further, real-time data for buses are also available. These data are captured,
preprocessed and loaded into a PostgreSQL database provided with the PostGIS

Fig. 18   Average speed grouped by hour and date comparison

and MobilityDB extensions, and used to analyze schedules, itineraries, delays,
and other typical questions of interest for transport planners. The processes car-
ried out and software developed for all the tasks involved, like capturing data, are
also discussed (software is also publicly available). Further, a novel map match-
ing method is also proposed, that uses MobilityDB to match real-time trajectories
to roads using the planned trajectories, and considering that the latter represent
the actual roads to which the former ones must be matched.

The processes described in this paper cannot be replicated and generalized
for importing any GTFS dataset into MobilityDB, because of the wide spec-
trum of formats that the GTFS standard allows. However, this study is a valuable

Fig. 19   Average delay by bus
line BusLine | Delay

312R3 | 3.20468363784589
532A | 2.55
299A | -1.04480389047468
299S | -1.64213011542494
59C | -2.06060606060607
15K | -2.08333333333334
514R4 | -2.39485631219942
17A | -3.02439832468638
68B | -3.20222222222222
354B | -3.69773278560318
500DA | -3.72171972986006
299M | -3.90768947755683
500DI | -4.4161150259806
299C | -4.51627358490561
324T5F | -4.53900343642612
506R1 | -4.74761137162968
524A | -5.26533639338713
461B | -5.34165852069052
506R2 | -6.14219698453121
59A | -6.14947412081952
318D | -6.25016418287456
263BC | -6.45578938681213
634D | -6.74409590198573
276D | -7.64290448343078
526A | -7.8562386775354

reference for similar cases. The queries displayed in the analysis section illustrate
how transit data can be queried in MobilityDB, and displayed using visualization
tools. Although Grafana was used in this paper, any other similar tool could be
used to visualize the results.

MobilityDB is continuously evolving in several directions. In particular, to be
able to process the massive amounts of movement data that are currently being
generated, a distributed version of MobilityDB that works in cloud environments

Fig. 20   Heatmaps for bus lines #271P (left) and #80B (right)

Fig. 21   Heatmaps for bus line 152A

such as Azure, AWS, or Google Cloud Platform, is under development. As
another direction, GTFS Static represents periodic movement data that are valid
during a certain time interval (Behr et al. 2006). The current approach used in
this paper requires to “instantiate” these periodic data to represent each actual
occurrence. For instance, a service occurring every Monday at 8 am will be rep-
licated for each Monday in the period of analysis. To avoid this, it is planned to
implement in MobilityDB a new data type to account for periodic movements.

Acknowledgements  Alejandro Vaisman was partially supported by Project PICT 2017-1054, from the
Argentinian Scientific Agency.

References

Agarwal A (2004) A comparison of weekend and weekday travel behavior characteristics in urban areas.
Master thesis, Department of Civil and Environmental Engineering, University of South Florida.
https://​digit​alcom​mons.​usf.​edu/​cgi/​viewc​ontent.​cgi?​artic​le=​1935&​conte​xt=​etd

Andersen O, Krogh BB, Thomsen C, Torp K (2014) An advanced data warehouse for integrating large
sets of GPS data. In: Proceedings of the 17th international workshop on data warehousing and
OLAP, DOLAP ’14. ACM, pp 13–22

Bakli MS, Sakr MA, Zimányi E (2019) Distributed moving object data management in MobilityDB. In:
Proceedings of the 8th ACM SIGSPATIAL international workshop on analytics for big geospatial
data, BigSpatial@SIGSPATIAL 2019. ACM, pp 1:1–1:10

Bast H, Brosi P, Storandt S (2014) Real-time movement visualization of public transit data. In: Proceed-
ings of the 22nd ACM SIGSPATIAL international conference on advances in geographic informa-
tion systems. ACM, pp 331–340

Behr T, de Almeida VT, Güting RH (2006) Representation of periodic moving objects in databases. In:
14th ACM international symposium on geographic information systems, ACM-GIS 2006, Novem-
ber 10–11, 2006, Arlington. ACM, pp 43–50

Braga M, Santos MY, Moreira AJC (2014) Integrating public transportation data: creation and editing
of GTFS data. In: New perspectives in information systems and technologies, vol 2 WorldCIST’14,
Advances in Intelligent Systems and Computing, vol 276. Springer, pp 53–62

da Silva MCT, Times VC, de Macêdo JAF, Renso C (2015) SWOT: a conceptual data warehouse model
for semantic trajectories. In: Proceedings of the 18th ACM international workshop on data ware-
housing and OLAP, DOLAP 2015, pp 11–14

de Queiroz ARM, Santos VB, Nascimento DC, Pires CES (2019) Conformity analysis of GTFS routes
and bus trajectories. In: XXXIV Simpósio Brasileiro de Banco de Dados, SBBD 2019. SBC, pp
199–204

Fu Z, Tian Z, Xu Y, Qiao C (2016) A two-step clustering approach to extract locations from individual
GPS trajectory data. ISPRS Int J Geo-Inf 5(10):166

Güting RH, Schneider M (2005) Moving objects databases. Morgan Kaufmann, San Francisco
Hohmann S, Geistefeldt J (2016) Traffic flow quality from the user’s perspective. Transp Res Proc

15:721–731. International Symposium on Enhancing Highway Performance (ISEHP)

Fig. 22   Google Mobility Report Buenos Aires 25-Aug-2020

https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=1935%26context=etd

Kaeoruean K, Phithakkitnukoon S, Demissie MG, Kattan L, Ratti C (2020) Analysis of demand-supply
gaps in public transit systems based on census and GTFS data: a case study of Calgary, Canada.
Public Transp 12(3):483–516. https://​doi.​org/​10.​1007/​s12469-​020-​00252-y

Krogh B, Andersen O, Torp K (2012) Trajectories for novel and detailed traffic information. In: Proceed-
ings of the 3rd ACM SIGSPATIAL international workshop on geostreaming, IWGS ’12. ACM, pp
32–39

Kunama N, Worapan M, Phithakkitnukoon S, Demissie MG (2017) GTFS-Viz: tool for preprocessing
and visualizing GTFS data. In: Proceedings of the 2017 ACM international joint conference on per-
vasive and ubiquitous computing and proceedings of the 2017 ACM international symposium on
wearable computers, UbiComp/ISWC. ACM, pp 388–396

Leonardi L, Orlando S, Raffaetà A, Roncato A, Silvestri C, Andrienko GL, Andrienko NV (2014) A gen-
eral framework for trajectory data warehousing and visual OLAP. GeoInformatica 18(2):273–312.
https://​doi.​org/​10.​1007/​s10707-​013-​0181-3

Meng C, Yi X, Su L, Gao J, Zheng Y (2017) City-wide traffic volume inference with loop detector data
and taxi trajectories. In: Proceedings of the 25th ACM SIGSPATIAL international conference on
advances in geographic information systems. ACM. https://​doi.​org/​10.​1145/​31399​58.​31399​84

Parent C, Spaccapietra S, Renso C, Andrienko G, Andrienko N, Bogorny V, Damiani ML, Gkoulalas-
Divanis A, Macedo J, Pelekis N, Theodoridis Y, Yan Z (2013) Semantic trajectories modeling and
analysis. ACM Comput Surv 45(4):42:1-42:32

Pelekis N, Theodoridis Y (2014) Mobility data management and exploration. Springer, New York. https://
doi. org/ 10. 1007/ 978-1- 4939- 0392-4

Pelekis N, Theodoridis Y, Vosinakis S, Panayiotopoulos T (2006) Hermes—a framework for location-
based data management. In: Proceedings of the 10th international conference on extending database
technology, EDBT 2006, Lecture Notes in Computer Science, vol. 3896. Springer, pp 1130–1134

Renso C, Spaccapietra S, Zimányi E (eds) (2013) Mobility data: modeling, management, and understand-
ing. Cambridge University Press, Cambridge

Spaccapietra S, Parent C, Spinsanti L (2013) Trajectories and their representations. In: Renso C, Spac-
capietra S, Zimányi E (eds) Mobility data: modeling, management, and understanding. Cambridge
University Press, pp 3–22

Vaisman A, Zimányi E (2014) Data warehouse systems: design and implementation. Springer, New York
Vaisman AA, Zimányi E (2019) Mobility data warehouses. ISPRS Int J Geo-Inf 8(4):170
Vuurstaek J, Cich G, Knapen L, Ectors W, Yasar A, Bellemans T, Janssens D (2020) GTFS bus stop map-

ping to the OSM network. Future Gen Comput Syst 110:393–406
Wei H, Wang Y, Forman G, Zhu Y (2013) Map matching: comparison of approaches using sparse and

noisy data. In: Proceedings of the 21st ACM SIGSPATIAL international conference on advances in
geographic information systems. ACM, pp 444–447

Wessel N, Widener MJ (2017) Discovering the space-time dimensions of schedule padding and delay
from GTFS and real-time transit data. J Geogr Syst 19(1):93–107

Xu J, Güting RH (2013) A generic data model for moving objects. GeoInformatica 17(1):125–172
Yan Z, Chakraborty D, Parent C, Spaccapietra S, Aberer K (2013) Semantic trajectories: mobility data

computation and annotation. ACM Trans Intell Syst Technol 4(3):49:1-49:38
Zimányi E, Sakr MA, Lesuisse A (2020) MobilityDB: a mobility database based on PostgreSQL and

PostGIS. ACM Trans Database Syst 45(4):19:1-19:42

https://doi.org/10.1007/s12469-020-00252-y
https://doi.org/10.1007/s10707-013-0181-3
https://doi.org/10.1145/3139958.3139984
https://doi.org/10.1007/978-1-4939-0392-4
https://doi.org/10.1007/978-1-4939-0392-4

	Analyzing public transport in the city of Buenos Aires with MobilityDB
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Moving object databases
	2.2 Using moving object data for traffic analysis
	2.3 The GTFS specification

	3 MobilityDB
	3.1 MobilityDB Data types and functions
	3.2 MobilityDB vs. PostGIS
	3.2.1 Expressing trajectory queries
	3.2.2 Trajectory representation

	3.3 Other MobilityDB applications

	4 Case study
	4.1 Data model
	4.2 Data acquisition and preprocessing
	4.2.1 GTFS static
	4.2.2 GTFS Realtime

	4.3 Map matching

	5 Analysis and results
	5.1 GTFS Static
	5.2 GTFS Static and Real-time comparison

	6 Conclusion
	Acknowledgements
	References

