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Abstract—1In this paper we present a criterion for the
uniform global asymptotic stability of switched nonlinear sys-
tems with time/state-dependent switching constraints but with
no dwell-time assumptions. This criterion is based on the
existence of multiple weak common Lyapunov functions and
on a detectability property of a reduced control system.

I. INTRODUCTION

A switched system is a family of continuous-time dynam-
ical subsystems and a usually time- or state-dependent law
—the switching signal— that rules the switching between
the subsystems. The stability issues of such systems are
sources of several interesting phenomena. For example, the
switched systems might not inherit the stability properties
of its subsystems. In consequence, in the last decades the
different stability properties of switched systems have been
extensively investigated (see [1]-[3] and references therein).

To determine the uniform asymptotic stability of switched
systems is one of the most important issues related to their
stability properties (see [1]) and, as in the case of non-
switched nonlinear systems, the existence of either strong
or weak Lyapunov functions is instrumental in that regard.
In fact, the existence of a common strong Lyapunov function
implies the global uniform asymptotic stability of switched
systems under arbitrary switching (the converse holds for
time-invariant switched systems [4]). Consequently, strong
Lyapunov functions are highly desirable, although finding
them (even for non-switched systems) is not an easy task.
On the other hand, the existence of weak Lyapunov func-
tions by itself gives no asymptotic stability guarantee. The
fact that only weak common Lyapunov functions (or weak
multiple Lyapunov functions) may exist for some switched
systems of practical interest, motivated the development of
several stability results for switched time-invariant systems:
extensions of LaSalle’s invariance principle (see [S5]-[11])
and other approaches (see [12]-[15]).

The concept of output-persistence of excitation (OPE)
plays a fundamental role in proving the uniform asymptotic
stability of a switched system, when a weak Lyapunov
function is available. Results in this connection for switched
time-varying nonlinear systems, are presented in [16]—-[21].
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An interesting feature of the approach followed in those
papers is that it does not involve any dwell-time assumption.
The importance of the OPE concept notwithstanding, it is
usually difficult to verify this property from its definition,
even in the case of time-invariant switched systems. This
difficulty motivated the search for sufficient conditions for
the OPE property that are easier to check. Those sufficient
conditions involve the concept of PE-pairs ( [17], [18])
and/or that of weak-zero state detectability (WZSD) ( [19],
[20]). In [19] it is proved that WZSD implies OPE, while in
[20] the authors obtain some criteria for the global uniform
asymptotic stability (GUAS) of switched systems assuming
the existence of a common zeroing output-system.

On the other hand, when dealing with stability issues
of switched systems, it must be taken into account that in
addition to the restrictions originated by the timing of the
switchings, restrictions on the set of admissible switching
signals of a certain switched system arise naturally from
physical constraints of the system, from design strategies
(e.g. discontinuous control feedback laws), or from the
knowledge about possible switching logic of the switched
system, e.g., partitions of the state space and their induced
switching rules (see [11] and references therein).

In this paper we give sufficient conditions for the WZSD
of switched time-invariant systems with a finite number of
modes and with time/state-dependent constraints, in terms
of the WZSD of an auxiliary control system. In order to
do so, we first assume that the switched system has a
switched time-invariant output also, and embed both into a
control-affine nonlinear system with outputs, whose controls
take values in a convex polytope. Next we introduce the
concepts of limiting trajectories and reduced control system,
and prove that under adequate hypotheses the WZSD of the
reduced control system implies that of the switched system.
In this way we obtain a criterion for the WZSD of the
switched system in terms of the behavior of the solutions
of a control system when its outputs are constrained to
be identically zero. This criterion incorporates the possible
time/state constrains the trajectories of the switching system
should satisfy. Finally, we give a criterion for the GUAS of
a switched system based on the existence of multiple weak
Lyapunov functions and of the WZSD of a reduced control
system whose outputs are related with the derivatives of the
Lyapunov functions along the trajectories of the subsystems
of the switched system. An interesting feature of the criterion
is that, as a difference with most criteria based on multiple
weak Lyapunov functions, no dwell-time assumptions on the



switching signals are required. In fact, we derive from it a
criterion for GUAS under arbitrary switchings.

Notation: For x € R", |z| denotes its Euclidean norm.
An indexed family of sets x = {x;}}_, is a closed covering
of R™ if x; is a closed subset of R™ for each 7 and
R" = UN x;. Given a subset A of R™, co(A) is the
convex hull of A and A denotes its closure. For any matrix
B, B’ denotes its transpose. L (R) (L (R)) is the set of
Lebesgue measurable functions ¢ : R — RY which are
Lebesgue integrable (essentially bounded). We write o € KC
if o : Ry>o — Ryq is continuous, strictly increasing and
a(0) =0, and « € K if, in addition, « is unbounded. We
write 8 € KL if 5 : R>g X R>g = R>q, B(+, 1) € K for
any t > 0 and, for any fixed » > 0, 3(r,t) monotonically
decreases to zero as t — oo.

II. BASIC DEFINITIONS AND PROBLEM
STATEMENT

In this work we consider the nonlinear switched system
with outputs

fz(t),0(t)) (D
h(x(t),o(t)) 2
where for t € R, z(t) € R", y(t) € R? and ¢ : R — T,
with Z = {1,..., N} the index set, is a switching signal,
i.e. o is piecewise constant (it has at most a finite number of
jumps in each compact interval) and is continuous from the
right. We assume that f : R* xZ - R" and h: R" x 7 —
RP are continuous in z € R™ for every fixed 7+ € Z and
write f;(-) = f(-,4) and h;(-) = h(-,7). We denote by S
the set of all the switching signals. A (forward) solution of
(1) corresponding to a switching signal o € S is a locally
absolutely continuous function x : [to(x),t¢(z)) — R™, with
0 <to(z) < ts(x), such that &(t) = f(z(t),o(t)) for almost
all ¢ € [to(x),tr(z)). A solution z : [to(x),tr(x)) — R”
corresponding to ¢ € § is maximal, if there does not exists
a solution Z : [to(Z),ts(Z)) — R™ corresponding to o such
that to(z) = to(Z), ty(Z) > ty(x) and Z(t) = z(t) for all
t € [to(x),ty(x)). A pair (z,0) is a trajectory of (1) if z is a
maximal solution of (1) corresponding to o € S. A trajectory
(x,0) is forward complete if ¢ (z) = +oo.

In many cases one is not interested in all the possible
trajectories of (1) but in a subset 7 of them. For example, one
can be interested only in those trajectories whose switched
signals have some minimun (or maximum) dwell-time, or
in those whose switchings verify some time/state-dependent
rule. One of the main issues in the theory of switched
systems is the analysis of the stability properties of a given
family of trajectories 7T, in particular of the global uniform
stability (GUS) and of the global uniform asymptotic stability
(GUAS) properties which we define below. Note that due to
time invariance we can assume, without loss of generality,
that the initial time of any trajectory (x,o) of the family
under analysis is to(x) = 0.

Definition 2.1: Let T be a family of trajectories (x, o) of
(D).

1) T is GUS if there exists @ € K such that for any
(x,0) € T we have |z(t)| < a(Jz(s)]) forall 0 < s <
t<ts(x).

2) T is GUAS if there exists 8 € KL such that for any
(x,0) € T we have |z(t)] < B(Jz(s)|,t — s) for all
0§S§t<tf(1').

Remark 2.1:

1) The stability properties defined above can be equiva-
lently formulated in the classical € —¢ form as is done,
for example, in [16, Defn.1].

2) By using standard arguments of the theory of differ-
ential equations it can be proved that if 7 is GUS or
GUAS then every trajectory in 7 is forward complete.

Remark 2.2: For non-switched time-invariant systems, i.e.
systems of the form @ = f(x), GUAS is equivalent to global
asymptotic stability (GAS) that is, GUS plus the global
attractiveness of the zero solution (z(t) — 0 as ¢t — oo
for every solution z). This equivalence is no longer true for
families of trajectories of switched systems. For example,
consider the switched system in R? with two subsystems:
fi(x) = [x2 — x1]) and fo(x) = —z. Let T be the family
of trajectories (x,0) with o € S*, where S* is the set of
switching signals defined as follows: o € &* if there exists
t? > 0 such that o(¢) = 1 whenever ¢ < ¢t and o(t) = 2
otherwise. It is easy to see that such a family 7 is GAS but
not GUAS. The nonequivalence between GAS and GUAS
makes it harder to prove the GUAS of a family T, since one
has to prove in addition that the attractiveness of the zero
solution is uniform.

In many practical cases the family of trajectories 7 admits
common or multiple weak Lyapunov functions, i.e. positive
definite functions whose total derivative along the trajectories
of 7 are nonpositive. In these cases the GUS of 7 can be
straightforwardly asserted ( [10]). Once the GUS property is
established, the GUAS property of 7 can be obtained under
additional conditions. A set of such additional conditions
involves the use of an auxiliary output— which is often related
to the total derivative of the weak Lyapunov functions used
for establishing the GUS of 7— and the concept of weak
zero-state detectability which we next recall (see [20]).

Definition 2.2: Let f and h be as in (1) and (2) respec-
tively and let 7 be a family of trajectories of (1). The pair
(h, f) is weak zero-state detectable (WZSD) with respect
to (wrt) 7T if for any 0 < ¢ < 1 there are no sequences
{(zk,0k)} in T and {t;} C R such that for each k € N the
following hold:

o k<t < tf(xk) —k;
o £ <|zp(tp +1)| <1/e for all ¢t € [—k, kl;
o For almost all t € R

lim h(zy(ty +1t), 0%ty +1)) = 0.
k—o0

Assumption 1 below plays an important role in checking
GUAS of (1) with the help of the output (2) as discussed in
[16].

Assumption 1: For any 0 < € <1 and any p > 0 there



exists M = M(e,u) > 0 such that for every (z,0) in T
and every 0 < s < t < ty(x) such that for all 7 € [s,1]
e < |z(7)] < 1, we have
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The following result follows from [16, Thm.1] and the fact
that the WZSD of a pair (h, f) w.r.t. 7 implies that (h, f)
is output-persistently exciting w.r.t. 7 (see [20, Lem.1]).

Theorem 2.1: Let T be a GUS family of trajectories of
(1). Suppose that Assumption 1 holds and that the pair (h, f)
WZSD w.r.t. 7. Then T is GUAS.

In the applications of Theorem 2.1 the more difficult task
is to check the WZSD of (h, f) w.rt. 7. Although some
results for checking that property were given in [20] much
remains to be investigated.

In many cases one knows, a priori, that the set of
trajectories 7 under analysis satisfies some type of time-
dependent constraint, for example its switching signals verify
some dwell-time condition, and/or some state-dependent
constraint, such as the invariance of 7~ w.r.t. a closed covering
X = {Xi}iez of R™. We recall that T is invariant w.r.t. y
if for all (z,0) € T, x(t) € Xy for all t € [0,t5(x)), or,
equivalently, o(t) € T, for all ¢ € [0,¢5(x)), where, for a
given ¢ € R™,

Te={i€T: €€y} )

This additional information may be useful for checking the
WZSD of (h, f) wrt. T.

The precedent discussion motivates one of the problems
the paper deals with: the search of easier to check sufficient
conditions for the WZSD of a pair (h, f) w.rt a family
of trajectories 7, which take into account the time/state-
dependent constraint the family must satisfy (see Section III).
The other problem we consider is finding sufficient condi-
tions for the GUAS of T based on weak Lyapunov functions
and the sufficient conditions for the WZSD obtained (see
Section 1IV).

III. WZSD OF SWITCHED SYSTEMS VIA WZSD OF
REDUCED CONTROL SYSTEMS

In this section we study the WZSD of the pair (h, f) w.r.t.
a given family of trajectories 7 of (1) through the limits of
sequences like those appearing in Definition 2.2. For defining
and characterizing those limits, we need to embed system
(1)-(2) into the control-affine system with outputs

&= F(z)u ®)
y=H(z)u (6)

where F(¢) = [f1(€)... fn(€)] € RN and H(¢) =
[h1(€)...hn(&)] € RPN for all ¢ € R". We assume
that the admissible controls of (5) belong to U, the set of
all the Lebesgue measurable functions u : R — U, where
U = co(U*), with U* = {ey,...,en}, and where ¢; € RY
denotes the i-th canonical vector of RY.

The embedding of (1) into (5) is performed by identifying
the set S of all the switching signals with the set U, of
all controls u € U that take values in U* and are piecewise
constant and continuous from the right, by means of the
bijection 0 > u,, Uy () = €,(.). We note that the solutions
of (1) corresponding to a switching signal o are, respectively,
the same as those of (5) which correspond to the control u,.
It also holds that for any solution z : [0,¢;(z)) — R™ of (1)
corresponding to a switching signal o,

he(t), o () = H@®)ua(t) Vte0,t;(). ()

So, in what follows we will identify every switching signal
o with the corresponding control u,,, and write o in place of
u, without risk of confusion. In other words, depending on
the context, o will represent either a switching signal or the
corresponding piecewise constant control u,. We will also
identify the set S with U,,. and any family 7" of trajectories
(z,0) of (1) with the corresponding family of trajectories
(x,uy) of (5).

A. Limiting trajectories

In order to define the concept of limiting trajectory of
a family T of trajectories of (1), we need to consider
the following notion of weak-convergence in U: given a
sequence {uy} in &/ and u € U, we say that u; — w if
for all f € LY (R)

klim / F@) up(t) dt = / F() u(t) dt.
0 J o0 —00

The next result about the sequential compactness of I/ will
be used along the paper.

Lemma 3.1: For every sequence {uy } in U there exist u €
U and a subsequence {uy,} such that up, — u.

Next we define the notion of limiting trajectory of a set
T of trajectories of the switched system (1).

Definition 3.1: A pair (Z,u), with Z : R — R™ and w € U
is a limiting trajectory of 7 corresponding to the unbounded
sequence v = {t} of positive real numbers if there exists a
sequence {(xy, o)} of trajectories in 7 and a compact set
K C R" such that:

1) For every k, zx(t) € K forall t € [t — k,tp + k] C
[0,t(zk)), and {zx(tx+ )} converges to Z uniformly
on [T, T] for all T > 0; and

2) op(ty + ) — a.

Note that for any limiting trajectory (Z,u) of 7, T is a
limiting solution of 7 in the sense given in [16, Defn. 2].
Lemma 3.2 below shows that if the trajectories of T
are invariant w.r.t. a closed covering x, then the limiting
trajectories of 7 also satisfy a state-dependent constraint. For
stating the type of constraint the limiting trajectories satisfy
we define for £ € R™ the following set of control values:

Ue = co{e; 1 € Ie}, 3
with Z;¢ given by (4).



Lemma 3.2: Let T be a family of trajectories of (1) which
is invariant w.r.t. a closed covering x. Let (Z, @) be a limiting
trajectory of 7. Then u(t) € Uz for almost all ¢ € R.

B. Reduced control system

Now we introduce the notion of reduced control system
for a family of trajectories 7 of (1)-(2). We will assume in
the following that 7 is invariant w.r.t. some closed covering
x. This assumption does not imply any loss of generality
since any family of trajectories 7 is always invariant w.r.t.
the trivial covering x = {x;}X;, where y; = R" for all i.

Let St ={o € S: 3z st (z,0) € T} and let S5 be the
set of all the controls u € U for which there exist {t;} € R,
with ¢, — 400 and {01} C St so that oy () + ) — u.

Then the reduced control system with outputs associated
to the family of trajectories 7 of (1)-(2) is:

. { & = F(z)u

y=H(@u=0" ueST

uelU, (9

We say that (z,u) is a complete trajectory of ¥ if x :
R — R™ is locally absolutely continuous, u € SF and,
for almost all ¢t € R, u(t) € Uy, 2(t) = F(x(t))u(t) and
H(z(t))u(t) = 0.

Remark 3.1: The reduced control system 3 is actually a
differential-algebraic equation (DAE) with some additional
constraints. For a DAE, existence and uniqueness of solutions
is a nontrivial problem. However, this fact will not be an issue
in our context, since we will not need to solve the equation
but check that its solutions, if any, satisfy a certain condition
which we specify later.

Remark 3.2: The reduced control system X incorporates
the time/state-dependent constraints the family of trajectories
T satisfies. On one hand the invariance of 7~ w.r.t. the cover-
ing  is taken into account through the restriction v € U,. On
the other hand the restriction o € §7 allows us to take into
account the time-dependent constraints that the switching
signals of the trajectories of 7 satisfy. For example, if the
switching signals in Sy have common average dwell-time
7p > 0 and chattering bound Ny € N (see [1]), then
the controls in 87 are controls in ;. which have average
dwell-time 7p > 0 and chattering bound Ny € N. This
assertion follows from the facts that S, as a subset of
Uy, is a subset of U[Tp, Ny], the set of all controls in U,
which have average dwell-time 7p > 0 and chattering bound
Ny € N, and that U[Tp, No| is invariant for time-translations
and sequentially compact w.r.t. the weak convergence. That
U[tp, Ny| is sequentially compact w.r.t. the weak conver-
gence follows from the fact that it is sequentially compact
with respect to the almost everywhere convergence. More
generally, it can be proved that if Sy is contained in a
set V C U, which is invariant for time-translations and
sequentially compact with respect to the almost everywhere
convergence then 83 C V (see [11], [22] for examples of
such a sets V).

C. A criterion for WZSD of T

Next we give a criterion for the WZSD of a pair (h, f)
w.r.t. a family of trajectories 7 of (1)-(2). This criterion is
formulated in terms of the WZSD of the reduced control
system we introduced above.

Definition 3.2: The reduced control system X defined in
(9) is WZSD if every complete trajectory (z,u) of X with
x bounded satisfies: infyeg |2(t)] = 0.

Theorem 3.1: Let T be a family of trajectories of (1)-(2)
which is invariant w.r.t. a closed covering y. Then the pair
(h, f) is WZSD w.r.t. T if the reduced control system ¥ in
(9) is WZSD.

The complete proof of Theorem 3.1 is omitted due to space
constraints. Nevertheless we give a sketch of it.

Sketch of the proof of Theorem 3.1. We prove it by
contradiction. Suppose the pair (A, f) is not WZSD w.r.t.
T Then there exist a sequence {t;} in R>o and a sequence
{(zk,0k)} in T verifying the conditions in Definition 2.2. By
using Arzela-Ascoli Theorem and Lemma 3.1, and passing
to a subsequence if necessary, it can be proved the existence
of a limiting trajectory (Z, @) of 7 such that x4 (t, +) = T
uniformly on [—7, 7] for all 7 > 0 and o (tx + ) — @. In
addition Z is bounded and stays away from zero. On the other
hand, it can be proved that the limiting trajectory (Z, u) is a
complete trajectory of the reduced control system . Since
¥ is assumed WZSD, inf;cgr |Z(¢)| = 0, which contradicts
the fact that = stays away from zero. |

IV. A CRITERION FOR THE GUAS OF SWITCHED
SYSTEMS

In this section we give a criterion for the GUAS of a family
T of trajectories of (1). This criterion assumes the existence
of weak multiple Lyapunov functions for a family 7 which
is invariant w.r.t. a closed covering Y.

Assumption 2: There exists a function V : R" xZ — R>g
such that:

1) There exist ¢1, ¢2 € Koo, such that for all £ € x; and
allieZ

P1(l8]) < V(€. 1) < da(I€]);

2) for all i € Z, V;(-) = V(-,4) is continuously differen-
tiable and for all £ € x; and all i € 7

Vi(€) = VVi(€) fi(&) < —ni(€),

where 7; : R™ — R>( is a continuous function;
3) for every (z,0) € T and every 0 < t < s < ty¢(x)
such that o(t) = o(s) = ¢ we have that

Vi(x(t)) = Vi(x(s)).
The following criterion is a consequence of Theorems 2.1

and 3.1 and well-known results of the stability theory of
switched systems.

(10)

Y

Theorem 4.1: Let T be a family of trajectories of (1)
which is invariant w.r.t. a closed covering x. Suppose that



Assumption 2 holds and let & in (2) be defined by h(&,i) =
/1 (€) for all £ € R™ and all ¢ € .

Then 7 is GUAS if the reduced control system X defined
in (9) is WZSD.
Sketch of the proof. Assumption 2 implies that 7 is GUS and
that Assumption 1 holds for the output map h. The fact that ¥
is WZSD implies that (h, f) is WZSD w.r.t. T according to
Theorem 3.1. Then, that 7 is GUAS follows from Theorem
2.1. ]

Remark 4.1: As a difference with most GUAS results
based on multiple weak Lyapunov functions, Theorem 4.1
does not involve any dwell-time assumption on the switching
signals of the trajectories of the family 7. In fact, it can be
used for proving the GUAS of families of trajectories whose
switching signals do not satisfy any dwell-time condition
(see Example 4.1). Even more, from Theorem 4.1 we will
derive a criterion for GUAS under arbitrary switchings (see
Corollary 4.1 below).

A. A criterion for GUAS under arbitrary switching

We say that (1) is GUAS under arbitrary switching if the
family 7™ of all the trajectories of (1) is GUAS. A criterion
for GUAS under arbitrary switching can be easily derived
from Theorem 4.1 assuming the existence of a common weak
Lyapunov function.

Assumption 3: There exists a continuously differentiable
function V' : R™ — Rx>( such that:

1) There exist ¢1, ¢2 € Ko, such that for all £ € R™ for
all £ e R™

P1([€]) < V(€) < pa([€));

2) for each ¢ € Z there exists a continuous function 7; :
R™ — R>¢ such that

Vi(§) = VV(&)£i(€) < —mi(6)- (13)
Corollary 4.1: Let Assumption 3 hold for system (1). Let
h in (2) be defined by h(£,i) = \/n;(§) for all £ € R™ and
all 7 € Z. If the reduced control system
o z=F(z)u
"l y=H(z)u=0 "
is WZSD, then (1) is GUAS under arbitrary switching.
The following criterion for GUAS under arbitrary switch-

ing, which was recently obtained in [20, Thm. 4], is a
straightforward consequence of Corollary 4.1.

12)

uel (14)

Corollary 4.2: Suppose that Assumption 3 holds for sys-
tem (1). Suppose in addition that there exist continuous
functions f. and g1,...,gn such that for all : € 7

D fi=fe+gis
2) gi(§) = 0 when 7;(&) = 0.

Let h* = Hil n;. Then (1) is GUAS under arbitrary
switching if the following reduced system is WZSD
* T = fc(x)
¥ { y=h(2)=0

B. Example

In the following example we apply Theorem 4.1 for
asserting the GUAS of a family of trajectories which satisfy
a state-dependent constraint but whose switching signals do
not verify any dwell-time condition.

Example 4.1: Consider the switched system (1) in R?
with three modes, i.e. Z = {1, 2,3}, given by

fi(§) = { _5152_ & } . fa(8) = [ 51‘21 13 ]

and 36, 1 5¢

1 2

f3(£) - |: _5§1 _352 :| .

We will show that the family 7 of all the forward complete
trajectories of (1) which is invariant w.r.t. the covering x =
{xa}i—i, where x1 = xo = {£ € R* : £ > 0} and x3 =
{€ € R?: ¢ < 0} is GUAS. Let V : R2 x Z — R be
defined via V3 (&) = V(&) = 567 + 5€3 and V3(€) = 57 +
6£1&2 + 5E3. Tt is clear that V' satisfies Assumption 2 with
(&) = 1063, n2(€) = 10&3 and n3(€) = 0. If we consider
the output (2) with i defined by h; = /m; for i € Z, we
have that the reduced control system defined by (9) is

. 3
w. = > i1 uifi()
y=3" uhi(z) =0’
where Ug = {es} if {1 < 0, Ue = cof{er, e} if & > 0 and
Ue = co{er, ez, e3} if & = 0.

Let (z,u) be a complete trajectory of 3 such that x(¢t) # 0
for all £ € R. We consider two possible cases.

Case I. There exits ¢ such that z(t) € x§ = {£: & > 0}
In this case, by continuity, z(¢) € x§ on some interval [£, T},
with T > ¢, and hence u(t) € co{e1,es} for almost all
t € [t,T]. Then, for almost all ¢ € [¢, T

#(t) = ui () f1(2(1)) + ua(t) f2(2(1)),
wy (8)|@o(t)] 4+ ug(t)|xy (8)]3 = 0, uy(t) + ua(t) = 1 and
> 0 for ¢ = 1,2. Since z1(t) > 0 for all ¢t € [¢t,T],
= 0 for almost all ¢ € [t, T]. Therefore, for almost all
t € [t,T] we have that

o(t) = fi(z(t))

Since f; and x are continuous, the equalities above hold for
every ¢ € [¢,T]. This implies that z:1(t) = 0 for all ¢ € [t, T
which is a contradiction. So, case I is not possible.

ueSH uel,

and x5(t) = 0.

Case II. z(t) € x3 for all ¢ € R. Since while = remains
in x§ = {€ : & < 0}, = is a solution of the linear
differential equation & = f3(z), and the orbits of that system
are clockwise ellipses, there exists ¢ € R such that z(f) €
Oxs = {€: & = 0}. Suppose z(t) € dx3 for all t > ¢. Since
x2(t) # 0 for all ¢ > t because we suppose that z(¢) # 0 for
all t € R, it follows that u; (¢) = 0 for almost all ¢ € [, c0).
In consequence @(t) = ua(t)fo(x(t)) + us(t)f5(x(t)) for
almost all ¢ € [t,00). Since z1(t) = 0 for all ¢ € [t,00), it
follows that 0 = @1 (t) = [—u2(t) + Sug(t)]x2(t) must hold



almost everywhere on [f,00). So uz(t) = 5/6 and ug(t) =
1/6 for almost all ¢ € [t, 00). Therefore, @2 (t) = —3/6x2(t)
for almost all ¢ > £, and x5(t) = z2(f)e~3/6(=1)_ The latter
shows that z(t) — 0 as t — 400 and inf;cg |2(t)| = 0.

Suppose that = does not remain in dx3 for all t > t. We

will consider two cases.
i) z2(t) > 0. There exists t' > ¢ such that z(t) € dx;3 for all
t € [t,t'] and a sequence {t} such that ¢, \, ¢’ and z(t;) €
X3- Note that by continuity and the fact that z(t) # 0 for all
t € R, xo(t') > 0. Since ¢, \ t' and x(t}) € X3, for each k
there exists d; > 0, with §; — 0 such that (¢t — dx) € Ox3
and z(t) € x§ for all ¢ € (tx — O, ). Then xo(ty, — ) <O
for all k, since z is a solution of & = f5(z) on (t5 — O, ti]
and the nontrivial solutions of this equation are clockwise
ellipses. So xa(t') = limg_y00 2(tx — d) < 0, which is a
contradiction. So, case i) is impossible.

ii) z2(t) < 0. Since x leaves Oxs, there exists ¢/ > t
such that z:(¢') € x$. Then, by using the facts that while
remains in x§ = {€ : & < 0}, z is a solution of the linear
differential equation & = f3(z), and the solutions of that
equations are clockwise ellipses, there exists ¢ > ¢’ such
that x(t") € Jxs and z2(t”) > 0. Then, reasoning as in
case i), we conclude that case ii) is also impossible.

We have then proved that for every complete trajec-
tory (z,u) of the reduced control system > it holds that
infier |2(t)| = 0. So X is WZSD and the T is GUAS.

Remark 4.2: To establish the GUAS of the family of
trajectories 7 considered in Example 4.1 is challenging.
On one hand, it seems difficult to find a family of strong
Lyapunov functions V; that satisfy the conditions in As-
sumption 2, which are standard conditions for establishing
GUAS by means of multiple strict Lyapunov functions.
On the other hand, the existing results based on multiple
weak Lyapunov functions, namely extensions of LaSalle’s
invariance principle or of the Krasovskii-LaSalle theorem,
cannot be applied to this example since they assume the
trajectories of switched system satisfy some kind of dwell-
time constraint, and the trajectories of 7 do not satisfy any
of them. Neither the results in [20], which do not make any
dwell-time assumption, can be applied to this example since
the system does not have a CZOS. The only results we are
aware of, that could be applied to our example are those
in [18], but they require to find an additional Lyapunov-
like function W verifying condition (H2) in [18] and such
that the pair ((h, W), f) be output-persistently excited (or
WZSD) w.r.t. 7, that in this case seems a nontrivial task
due to the facts that f5 is stable, but not asymptotically.

V. CONCLUSIONS

In this paper we have obtained a sufficient condition for the
WZSD of time-invariant switched systems with outputs and
time/state-dependent constraints. This condition is formu-
lated in terms of the WZSD of a reduced control system with
outputs, being this condition easier to check than the WZSD
of the switched system itself. We have also derived a criterion

for the GUAS of that kind of systems. This criterion is based
on the existence of multiple weak Lyapunov functions and
the WZSD of a reduced control system with an output related
to the derivatives of the Lyapunov functions, and does not
require any dwell-time assumption. As a byproduct of this
result a criterion for GUAS under arbitrary switching was
obtained. Finally, we have given an example for illustrating
the use of the GUAS criterion.
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