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Abstract—The rising popularity of declarative languages and 

the hard to debug nature thereof have motivated the need 

for applicable, automated repair techniques for such languages. 
However, despite significant advances in the program repair of 
imperative languages, there is a dearth of repair techniques for 

declarative languages. This paper presents BeAFix, an automated 

repair technique for faulty models written in Alloy, a declarative 

language based on first-order relational logic. BeAFix is backed 

with a novel strategy for bounded exhaustive, yet scalable, ex-
ploration of the spaces of fix candidates and a formally rigorous, 
sound pruning of such spaces. Moreover, different from the state- 
of-the-art in Alloy automated repair, that relies on the availability 

of unit tests, BeAFix does not require tests and can work with 

assertions that are naturally used in formal declarative languages. 
Our experience with using BeAFix to repair thousands of real- 
world faulty models, collected by other researchers, corroborates 

its ability to effectively generate correct repairs and outperform 

the state-of-the-art.

I. In t r o d u c t i o n

Software has become ubiquitous, and many of our activities 

depend directly or indirectly on it. Having adequate software 

development techniques and methodologies that contribute 

to producing quality software systems has therefore become 

essential for many human activities. A well-established ap-

proach to achieving quality is to emphasize good problem 

understanding and planning ahead of development, i.e., to put 

an emphasis on the analysis and design phases of software 

development [1]. These phases need to deal with descriptions 

of software and problem domains, which are typically cap-

tured using specification, or modeling, languages. Techniques 

and tools that allow users to analyze specifications are very 

important, as they help developers in discovering flaws, such 

as missing cases in the specifications, wrong interpretations 

of requirements, etc. Two main problems arise in this phase: 

correctly understanding the problem situation (thus capturing 

the right problem), and correctly stating the problem in the 

language at hand (thus capturing the problem right). In the 

context of formal specification, where formalisms with for-

mal syntax and semantics are employed, the latter problem 

is particularly relevant, as the developer has to master the 

notation to correctly capture, in a formal way, a given software 

description [2]. Even for experienced developers, many times 

subtle errors arise, like mistakenly using the wrong expression 

to capture a property, omitting an operator or using an operator

in place of another, leading to incorrect specifications that 

do not capture the developer’s intentions [3]. These kinds of 

mistakes share characteristics with program defects. Therefore, 

techniques for dealing with these defects and, in general, to 

assess or improve software quality (such as techniques for 

bug finding and program debugging), are also relevant in the 

context of software specifications. In particular, techniques 

for improving debugging, e.g., via the automation of fault 

localization or program repair, are pertinent in the context of 

software specification.

This paper targets the problem of automatically repairing 

formal specifications, more precisely, specifications in Alloy

[4], a formal language that has many applications in software 

development and has been successfully applied in a number of 

domains such as the discovery of design flaws in telecommu-

nication applications [5], the analysis of security mechanisms 

in mobile and IoT platforms [6], [7], [8], the automation 

of software testing [9], [10], [11], and the verification of 

programs [12], [13], [14], among other applications [15]. 

While specifications share a number of characteristics with 

programs, certain characteristics make it non-trivial to apply 

the broad range of techniques for program repair, in the 

context of specifications. For instance, as a way to tame the 

space of candidates, various program repair techniques such as 

GenProg [16] only use coarse-grained syntactic modifications, 

such as block replacement, swapping, deletion and insertion, 

but no intra-statement modifications are allowed. The rationale 

is that good levels of repairability in programs are achieved via 

coarse-grained modifications thanks to redundancies that are 

present in code, especially in larger programs. Such redundan-

cies are not often seen in specifications, in particular due to the 

relative conciseness of specifications compared to programs. 

Other approaches to program repair, e.g., PAR [17], restrict the 

modifications to patterns learned from human-written patches, 

mined from large repositories categorizing fixes; such inputs 

for the repair process are not available in the context of 

formal specification, simply because, as opposed to source 

code, there are no large repositories of specifications. Finally, 

most program repair techniques rely directly or indirectly on 

the availability of test cases; while there exist initiatives that 

incorporate test cases to specifications [18], other forms of 

checking, such as property satisfiability and verification, are
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more naturally found in specifications.

In this paper, we present BeAFix, a novel technique that 

automatically repairs faulty Alloy specifications. BeAFix has 

several features distinguishing it from the state of the art

[19]. Firstly, the technique does not depend on test cases, 

neither for fault localization nor for specification repair; it 

supports any kind of specification oracle, notably the typical 

assertion checks and property satisfiability checks found in 

Alloy specifications, as well as test cases. It is then more 

widely applicable in the context of formal specification, where 

test cases are rarely found accompanying specifications. Sec-

ondly, the technique tackles automated repair in a bounded 

exhaustive way, i.e., by exhaustively exploring all possible 

repair candidates, for a given set of mutation operators and 

maximum number of applications (on a set of identified 

suspicious specification locations). Thus, it either finds a fix, 

or guarantees that no fix is possible, within the provided bound 

and with the considered mutation operators over the identified 

faulty locations. This approach is natural to the context of 

Alloy, where users are accustomed to bounded exhaustive 

analyses.

BeAFix supports fine-grained mutations and is designed 

to enable the repair of multi-location specification defects. 

Since bounded exhaustive exploration suffers from inherent 

scalability issues, our technique features a number of prun-
ing strategies, that leverage the use of the Alloy Analyzer 

to soundly prune large parts of the candidate space. More 

precisely, given a candidate repair for a specific suspicious 

location, our technique exploits both a syntactic analysis of the 

specification and a semantic analysis using the Alloy Analyzer 

for checking the feasibility of this candidate, in the sense that 

applying this specific repair candidate to the corresponding 

location preserves the feasibility of the overall (multi-location) 

repair. When feasibility fails, it allows us to prune, in a sound 

way, i.e., without losing valid fixes, significant parts of the 

search space for repair candidates, thus reducing specification 

repair running times.

We evaluate our technique on a benchmark of Alloy speci-

fications, including specifications previously used in assessing 

ARepair [19], [20], and a large benchmark of faulty Alloy 

specifications produced by students [21]. ou r evaluation shows 

that our pruning technique significantly reduces specification 

repair running times, duplicating the number of repairs that 

can be produced within a 1-hour timeout, and reducing the 

repair time by 62X, on average. Moreover, when specifications 

feature typical assertions, and these are used as oracles, 

our technique shows a significant improvement in overfitting 

reduction, compared to the test-based technique ARepair.

II. An  Il l u s t r a t in g  Ex a m pl e

In this section, we introduce both Alloy and our tech-

nique by means of a motivating example. Alloy is a formal 

specification language, with a simple syntax and a relational 

semantics. The syntax of the language is rather small, and 

is compatible with an intuitive reading of specifications, or 

models, as they are typically called in the context of Alloy [4]

(we will use specification and model interchangeably in this 

paper). Specifications can resemble object-oriented notions 

that are familiar to developers. The basic syntactic elements 

of Alloy specifications are: signatures, which declare data 

domains; signature fields (akin to class attributes), that give 

structure to specifications and declare relations between sig-

natures; predicates, parameterized formulas that can be used 

to state properties, represent operations, etc.; facts, formulas 

that constrain the specifications and represent assumptions; 

and assertions, formulas that capture intended properties of 

the specification, i.e., properties that the user would like to 

verify. Formulas in Alloy are expressed in relational logic, 

a first-order logic extended with relational operators such as 

relational transpose, union, difference and intersection. Alloy 

supports various quantifiers ( a l l  and some are the usual 

universal and existential quantifiers, respectively, one and 

lo n e  are for “exists exactly one” and “exists at most one”, 

respectively). It also features additional important relational 

operators: relational join, a generalization of composition to 

n-ary relations, which can be used to express navigations as in 

object orientation; and transitive closure, which can be applied 

only to binary relations, and extends the expressiveness of 

Alloy beyond that of first-order logic.

consider the Alloy model in Figure 1, a modified version of 

an Alloy specification of linked lists, that is part of the bench-

mark used in [19]. This model declares domains for booleans 

(with its two constants captured via singleton relations), and 

signatures for nodes and lists. Nodes have a link (a set of 

nodes), and associated elements (a set of integers); lists have 

a header (a set of nodes). A fact constrains the cardinalities of 

these signature fields: lists have at most one header, and nodes 

have at most one successor node, and exactly one element 

(when applied to expressions, lo n e , one and no constrain a 

given expression to have a cardinality of at most one, exactly 

one, and exactly zero, respectively). Notice the additional fact, 

which is there for analysis purposes: it states that exactly one 

L i s t  is going to be considered in each instance of the model, 

and that all nodes present in an instance will be those in the 

list (no unreachable “heap” objects). Predicate Loop captures 

lists with a loop in its last node, saying that a list satisfies 

the predicate if it either has no header, or for exactly one of 

its nodes, the elements reachable in one or more steps from 

l i n k  are exactly the same reachable in zero or more steps 

through l i n k .  Predicate S o r te d  attempts to capture that lists 

are non-decreasingly sorted (this predicate is buggy though, 

as the order constraint is strict). Predicate RepOk is simply 

defined as the conjunction of Loop and S o r te d .  Predicate 

C o n ta in s  is used to model an operation on lists, namely, the 

operation for querying membership of an integer as an element 

of a node of a list. The result of the operation is captured by 

an additional Boolean parameter. This predicate is buggy, it 

does not correctly model the intended operation (e.g., it admits 

the predicate to return T ru e  despite the contents of the list).

Alloy specifications can be automatically analyzed, by an 

analysis mechanism that resorts to SAT solving, and is imple-

mented in a tool called Alloy Analyzer [4]. Two kinds of analy-
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abstract sig Boolean { }
one sig True, False extends Boolean { }

sig Node { 
link: set Node, 
elem: set Int
}

sig List { 
header: set Node
}

fact CardinalityConstraints { 
all l : List | lone l.header 
all n : Node | lone n.link 
all n : Node | one n.elem
}

fact IGNORE {
one List && List.header.*link = Node
}

pred Loop[This: List] { 
no This.header ||
one n : This.header.*link | n.'link = n.*link
}

pred Sorted[This: List] { // b u g g y  

all n: This.header.*link | n.elem < n.link.elem
}

pred RepOk[This: List] {
Loop[This] && Sorted[This]
}

run RepOk for 1 but exactly 3 Node expect 1 

/ /  b u g g y
pred Contains[This: List, x: Int, res: Boolean]{ 
RepOk[This] &&
((x !in This.header.*link.elem => res=False ) ||
res = True)
}

pred Count[This: List, x: Int, res: Int] {
RepOk[This] &&
res = #{ n:This.header.*link | n.elem = x }
}

assert ContainsCorrect { 
all l : List, i, j : Int |

(Count[l, i, j] && j > 0) iff Contains[l, i, True]
}

check ContainsCorrect for 10

Fig. 1. A (faulty) sample Alloy specification.

sis are possible: running a predicate and checking an assertion. 

Both are analyzed in bounded scenarios. Running a predicate 

searches for instances (scenarios) that satisfy all the constraints 

(cardinalities, facts, etc.), including the predicate being run. 

Assertion checking looks for counterexamples of the asserted 

properties. Analysis is performed up to a bound k (typically 

referred to as the scope of the analysis), meaning, e.g., that 

assertion checking will either find a counterexample within the 

given scope, or guarantee the validity of the formula within 

the bound (similarly, a predicate will be found to be satisfiable

within the provided scope, or not to have a satisfying instance 

within the scope). This bounded exhaustive analysis, of course, 

does not necessarily mean that the formula is valid (resp., 

satisfiable), as counterexamples (resp., instances) of greater 

size may exist if larger scopes are considered.

The Alloy language is the vehicle for defining abstract 

software models in a lightweight and incremental way, with 

immediate feedback via automated analysis [4]. Typically, the 

process of constructing an Alloy model, as the one in our 

example, starts very much in the same way one would proceed 

while eliciting requirements, or sketching an abstract software 

design: basic domains of the model are identified (signatures 

of the model), over which more structured components are or-

ganized (signatures equipped with fields). How these domains 

and components are constituted, the inherent constraints of the 

problem domain and the operations that represent the software 

model capacities, are all incrementally created, via a constant 

interaction with the Alloy Analyzer. This process eventually 

involves the use of assertions and predicates, that capture 

intended properties of the model, and that serve essentially 

as the oracle of the specification, i.e., the properties that 

would convey the acceptance of the model. Sometimes these 

properties can help find surprising counterexamples, that lead 

to refinements of the properties themselves, but more often 

they help one in “debugging” the core of the model, i.e., 

in getting the model “right”, adapting it until the intended 

properties result as expected. For instance, for the linked lists 

model, the developer would expect the representation invariant 

RepOk to be satisfiable, and the definition of C o n ta in s  

to have the relationship with C oun t captured in property 

C o n ta in s C o r r e c t .

While the intended properties are subject to defects too, they 

are typically significantly shorter and clearer than the “core” 

of the specification. They capture high level properties of the 

model, so they are expected to be simpler to write and get 

right. So, once the intended properties are set, the user may 

perform the corresponding analyses and use the results as an 

acceptance criterion for the specification, and the correspond-

ing design it conveys. That is, a model will be considered 

incorrect if any of the analyses of the intended properties 

fails, i.e., has a result that contradicts the user expectations. In 

Figure 1, for instance, the user may consider the consistency of 

RepOk, the assertion C o n ta in s C o r r e c t  and the auxiliary 

predicate C oun t as the oracle of the specification, meaning 

that when this intended property is found to be invalid, the 

user would start modifying the remainder of the specification, 

as an attempt to fix the error. BeAFix as well as other model 

repair techniques aim at reducing human intervention along 

this overall modeling process, by automatically fixing errors 

in incorrect models.

Let us describe how the technique works, assuming for 

the moment that the faulty locations in the model have been 

correctly identified. In order to attempt to repair the specifi-

cation, and assuming that for the first location the syntactic 

mutation operators lead to n  different fix candidates (for that 

specific location), and for the second location we have m
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different fix candidates, in the worst case we have to check 

n  x m  potential fixes, as we would want to consider all 
combinations of candidate fixes for each repair location. The 

model expectations, in our example the satisfiability of RepOk 

and the bounded validity of C o n ta in s C o r r e c t ,  will be the 

acceptance criterion fix repair, i.e., if a fix candidate “passes” 

these analyses, it will be considered a fix.

The automated repair process for the above faulty speci-

fication is then straightforward to describe: we have n  x m 

repair candidates (the combinations of fix candidates for 

the suspicious locations), and since we aim at exhaustively 

exploring this candidate space, we would run the oracles on 

each candidate, stopping as soon as we find one that “passes” 

all predicates and assertions.

Let us describe some situations that allow for sound pruning, 

i.e., pruning that only avoids invalid fix candidates.

Notice that, in our case, we have two defective lines, 

but these are not symmetric: the bugs in S o r te d  affect 

C o n ta in s ,  as C o n ta in s  depends on RepOk which in 

turn depends on S o r te d ,  but the latter does not depend 

(i.e., calls directly or indirectly) on C o n ta in s .  Thus, when 

checking a specific candidate for S o r te d  that does not pass 

an oracle involving S o r te d  but not C o n ta in s ,  as for 

instance the satisfiability of RepOK, we can stop analyzing 

the fix candidate for S o r te d  altogether, and not consider 

it in combination with any further candidates for the other 

location. Consider, for instance, the following combination of 

fix candidates for S o r te d  and C o n ta in s :

pred Sorted[This: List] {
all n: This.header.*link | n.elem != n.link.elem

}

pred Contains[This: List, x: Int, res: Boolean] { 
RepOk[This] &&
(x !in This.header.*link.elem => res = False) && 
res = True

}

Assuming that we consider the above described oracles for the 

specification, this combination does not pass the oracles, it is 

an invalid fix candidate. Moreover, if we leave the current 

fix candidate for S o r te d  and iterate over other candidates 

for C o n ta in s ,  the property check requiring RepOk to be 

satisfiable will continue to fail, as the unsatisfiability of RepOk 

cannot be solved by changing the definition of C o n ta in s .  

Thus, if we are able to identify this situation (as we explain 

later on, our technique does so), we can safely consider a 

different mutation for S o r te d ,  or equivalently, soundly skip 

all combinations of the current mutation to S o r te d  with all 

other mutations for C o n ta in s .

Now let us look at another situation, that will also allow us 

to soundly prune parts of the fix candidate space, even in the 

presence of bidirectional (or multi-directional) dependencies 

between faulty locations. Consider the above fix candidate for 

predicate C o n ta in s ,  that replaced | |  by &&. This “local” 

candidate that fails to pass an oracle such as the assertion 

on C o n ta in s  (in combination with a particular candidate 

for S o r te d )  does not allow us to discard it altogether,

as the failing cannot in principle be blamed on && on its 

own: it may be the case that this candidate “works” with a 

different candidate for S o r te d .  So in order to check the 

local feasibility of the candidate for C o n ta in s ,  we need 

to consider it in combination with any other candidate for 

S o r te d ,  of course, trying to avoid checking all candidates 

for this predicate. Assuming that we identified the body of 

the quantification of S o r te d  as the problematic part in that 

predicate (fault localization techniques for Alloy, in particular 

the one we use in this paper, can identify fine grained faulty 

locations, such as particular subexpressions), what we would 

need to intuitively check is whether there exists a (boolean) 

value for that location, that in combination with && would 

make the oracles pass:

pred Sorted[This: List] {
all n: This.header.*link | (??)

}

pred Contains[This: List, x: Int, res: Boolean] { 
RepOk[This] &&
(x !in This.header.*link.elem => res = False) && 
res = True

}

That is, can we replace the double question mark above by a 

value that would make oracles pass? If the answer is no, then 

we can blame &&, and try another candidate for C o n ta in s ,  

avoiding considering of && with candidates for S o r te d .  If we 

are able to correctly identify these situations, as our technique 

does and we describe later on in this paper, we can again safely 

prune a large number of candidates, namely all combinations 

of && with all the mutations for S o r te d .

It is worth remarking that we do not assume any particular 

format or characteristic, neither from the specification itself, 

nor from the oracle. This is in contrast with previous work 

on repairing Alloy specifications [19], which requires repair 

oracles to be provided as Alloy test cases. Alloy test cases 

define scenario-based expectations, similar to what one would 

capture with unit tests for source code. As an example, 

consider the evaluation of C o n ta in s  on a particular con-

crete structure, and its corresponding expected outcome (the 

expected outcome represents a boolean, 1 for “satisfiable” and 

0 for “unsatisfiable”):

pred ContainsFalseOnListTest[This: List] { 
some n0, n1: Node | {

This.header = n0 &&
nO.link = n1 && nO.elem = 0 &&
nl.link = n1 && n1.elem = 0 &&
Contains[This, 1, False]

}
}

run ContainsFalseOnListTest expect 1

While scenarios do participate in the Alloy modeling process, 

they typically do so as a result of analyzing properties. That 

is, tests are not a common explicitly described part of Alloy 

specifications. Recent proposals, notably [18], are starting 

to motivate the use of test cases in formal specification. 

As mentioned, our approach allows for any kind of oracle, 

including test-based oracles.
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Our approach to Alloy specification repair involves a series 

of tasks, for fault detection, fault localization, fix candidate 

generation, and fix candidate assessment. We describe these 

in more detail below.

A. Fault Detection and Fix Acceptance Criterion
In general, given an Alloy specification, we may say that 

such specification is faulty if at least one of the analysis 

commands in the specification has an outcome contrary to 

its corresponding expectation. This can be either a failing 

assertion (assertion with counterexamples), or a predicate that 

is unsatisfiable while the user expected it to be satisfiable, 

or vice versa. We may also allow for other flavors in com-

mands, in particular Alloy test cases, in the spirit of Aunit

[18]. The fault detection stage then resorts to SAT solving, 

the underlying analysis mechanism behind Alloy Analyzer, 

the tool for Alloy specification analysis [4]. Similarly, a fix 

candidate can be considered an acceptable patch when all the 

analysis commands in the specification have an outcome that 

coincides with the corresponding command’s expectations.

Our technique requires the user to identify the specification 

oracle, i.e., the assertions, predicates or tests that the technique 

will have to consider as fix acceptance criterion. The technique 

will then identify faults in the remainder of the specification 

(the oracle is left out of the analysis space for fault local-

ization), and generate fix candidates for the faulty locations. 

Therefore, our repair approach cannot fix any faulty situation, 

but only those where the developer is certain about some part 

of it (the oracle), and wishes to alter the remainder of the 

specification to pass it. Looking for solutions that may modify 

the specification and the criterion for acceptance would lead 

to fixes that may simply relax the acceptance criterion. Notice 

that, in this respect, we follow the same approach that ARepair 

and most test-based program repair techniques: the tests (the 

repair oracle) cannot be changed in the repair process. As 

described later on in this section, other trivial solutions such 

as changing a command’s expectations or simply removing 

a command are prevented, due to how the fault localization 

is performed (which cannot be blamed on commands) and 

how fix candidates are generated (only by mutating the faulty 

locations).

B. Fault Localization
Once a specification is deemed faulty, we need to identify 

the specific parts of the specification that are more likely 

to be blamed for the fault or faults. We do not deal with 

fault localization in this paper, and we assume an external 

technique/tool provides fault localization information. There 

exist techniques for fault localization that specifically tar-

get Alloy specifications, such as the spectrum-based fault 

localization mechanism behind ARepair [19], and our fault 

localization technique presented in [22]. While in principle 

any fault localization technique would fit our technique, as 

long as the employed fault localization can handle the oracles 

present in the faulty specification, it is worth to remark that the

III. Th e  Te c h n i q u e fault localization within ARepair inherently depends on having 

tests as oracles (acceptance criteria) for specifications [19]. 

Moreover, the fault localization in ARepair can dynamically 

change the identified faulty locations, as the specification is 

transformed during the repair process. Our technique, on the 

other hand, uses an offline process for fault localization: the 

faulty program is fed to the fault localization tool, and a 

number of suspicious specification locations are returned. This 

is the input to our specification repair approach, and the space 

of all possible patches for these locations, for a maximum 

depth in mutation application and a given set of mutation 

operators, will be considered.

For our experiments in Section IV, we use the FLACK 

fault localization technique [22]. While we do not describe 

in detail the fault localization technique in this paper (we 

refer the reader to [22]), let us remark a number of facts 

about FLACK: it supports arbitrary satisfiability checks and 

assertions, as well as tests, as specification oracles; it is based 

on the use of (partial) maximum satisfiability procedures, to 

process counterexamples of an Alloy model (witnessing the 

faulty status of the specification); and it can only identify 

faults within formulas and relational expressions, it cannot 

locate faults in data definitions, such as signature and field 

declarations, nor in commands (Alloy’s runs and checks).

C. Generation o f Fix Candidates
Once the suspicious expressions are identified, syntactical 

variants of these expressions are produced. We consider an 

ample set of mutation operations, including the obvious logical 

and relational operator insertion, removal and replacement, 

quantification mutation (e.g., changing a quantifier), multiplic-

ity constraint replacement, field/variable swap/replacement, 

etc., based on Alloy’s grammar. Our tool processes the speci-

fication to obtain some typing information, so that some legal 

expressions that necessarily lead to empty relation/contradic- 

tory formulas are disregarded, as well as innocuous operation 

application (e.g., double transitive closure). Two elements 

are important to highlight here, namely the use of join to 

produce navigation chains, using fields, signatures, etc., and 

the possibility of combining mutations, i.e., applying further 

mutations to an already mutated expression, akin the so called 

higher-order mutants [23] in mutation testing.

Both the mutation operators and the maximum depth, i.e., 

the number of cumulative mutations (hence, the higher order 

nature of the generated mutants) that can be applied to a 

given faulty location, are configurable. These are bounded- 

exhaustively generated as the space of fix candidates is tra-

versed (see below). In our experiments, we used 21 mutation 

operators in total, typically leading to roughly between 60 and 

260 1-level mutants per location.

D. Fix Candidate Space Traversal

Here we present our general repair approach. The two 

pruning techniques just introduced, are also described in more 

detail, and we argue about their soundness. The search space 

is organized as a search tree in a traditional search problem:
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the root is the original specification, with its faulty locations 

identified; and if a specification s is in the tree and s' can be 

obtained by applying a mutation to a faulty location, then s' 

is also in the tree, with the same locations marked as faulty 

(so that the mutation process can be iterated). This in principle 

leads to an infinite fix candidate space, which we explore up to 

a maximum depth. While any search strategy may be applied, 

we explore the state space in a breadth-first fashion.

1) Partial repair checking: Our first pruning strategy con-

sists of identifying one of the suspicious locations for which 

a current repair candidate fails, as established by an analysis 

check that does not depend on the remainder of the faulty 

locations. We will describe it in more detail, assuming two 

faulty locations, without loss of generality. Let Spec be an 

Alloy specification, Checki , . . . ,  Checkk its analysis checks 

used as oracles, and L0, L i  the suspicious locations identified 

by the fault localization phase. Each analysis check Checki  
refers to a specific part of Spec, which can be determined 

by a straightforward syntactic analysis: Checki  refers to the 

formula it directly mentions (the body of the corresponding 

predicate or assertion), all the facts (axioms of the specification 

that are implicitly involved in every analysis check), and the 

symbols directly and indirectly referred syntactically to by 

these (predicates called, relations used, etc.). This syntactic 

analysis can determine then, for every Checki , which of the 

suspicious locations L0 and Li it involves.

Most logics, and certainly Alloy’s relational logic, have a 

sort of syntactic locality property, that guarantees that the 

validity/satisfiability of a formula depends only on the symbols 

it refers to. (In the case of Alloy, since validity/satisfiability is 

actually bounded validity/satisfiability, it can also depend on 

the scope, the bound, of analysis; but since the bound of anal-

ysis cannot be modified in the patch generation phase, we can 

disregard it). Moreover, the logic is monotonic, meaning that 

adding more assumptions to a formula can never reduce the 

conclusions drawn originally from it. These properties allow us 

to make the following observation. Let m0 and n 0 constitute 

the modifications to locations L0 and Li , respectively, in the 

current fix candidate (i.e., be the expressions substituting the 

original expressions in locations L0 and Li of Spec) . If a 

failing satisfiability check Checki  refers to only one of the 

suspicious locations, say L0 and its current expression m 0, 

this means that the formula in Checki  is determined to be false 

independently of n 0. Then, for every alternative expression 

ni for location Li , the corresponding fix candidate (mo,ni) 

(the replacement expressions for locations L0 and Li) will 

still make Checki to be false, due to the monotonicity of 

the logic. In other words, the specification cannot be repaired 

by modifying location Li if the current fix for location L0 

is maintained. We can therefore exclude (prune from the 

checking) all (m0, n i) fix candidates as soon as we determine 

this situation, which in turn can be determined by a syntactic 

analysis of the specification, and the analysis outcome for fix 

candidate (m0,n 0).

We refer to this analysis and the corresponding pruning it 

enables as partial repair checking, due to the partiality of fix

candidates when these do not involve all suspicious locations.

2) Variabilization: Our second pruning strategy is called 

variabilization, due to the mechanism employed for prune 

checking, that requires introducing fresh variables to refer to 

fix candidates to specific locations, in a general way.

Let Checki be a failing assertion (validity) check that refers 

to suspicious locations L0 and Li , and let (m0,n 0) be the 

current failing fix candidate. Notice that since Checki is a 

failing validity check, we have a counterexample CEXi as a 

result of the violation. That is, we have that:

CEXi  =  Spec[m0,n 0] ^  Checki ,

where Spec[m0,n 0] denotes the fix candidate obtained by 

replacing L0 and Li by m 0 and n 0 , respectively, in Spec. The 

purpose of variabilization is to check whether the current fix 

for L0 , i.e., m 0 , may work with some candidate for Li (other 

than n 0 , of course, which we already know it does not work). 

For technical reasons, we actually check whether some fix for 

Li may work in combination with m 0 , for counterexample 

CEXi. Let us describe the process for performing this check.

Notice that fault locations can be subexpressions of a 

formula; let us refer by F i to the formula (predicate, fact, 

etc) containing Li . Also, let T be the most general type for 

Li in context F1 (in Alloy, this most general type will depend 

on the arity required by Li in F i , the context in which Li 

may depend upon, and will use the most general unary type, 

the universe u n iv ). Let SpecL i  be the specification obtained 

by replacing F1 in Spec by

3li : T|Fi[1i/Li]

i.e., we substitute Li by an existentially quantified variable of 

type T (hence the name variabilization). We now can check:

CEXi  =  SpecLo [m0] ^  Checki ,

i.e., whether there exists a value of type T that can be 

put in place of location Li , so that CEXi  ceases to be a 

counterexample. If this is the case, then local fix m 0 works 

as a fix for L0 , at least as far as CEXi  is concerned, and we 

may traverse the space of local candidates for Li to attempt 

to find a complete fix. But, on the other hand, if the above 

check fails, then there is no value that can be put in place 

of Li such that the local fix m 0 would work (CEXi  would 

still be a counterexample). Therefore, we can again exclude 

(prune from the checking) all (m0,n i) fix candidates if the 

check fails.

One may argue why not check the “variabilized” spec-

ification in the general case, instead of doing so only for 

counterexample CEXi . The reason has to do with the type T 

of location Li . When this type is a relation of an arity greater 

than one, variabilization leads to a higher-order quantification, 

that Alloy cannot handle as a general analysis check, but it can 

do so for the specific counterexample CEXi .
To clarify this variabilization process, and especially the 

reason why we typically have higher-order quantification, 

let us consider the example introduced in Section II, where
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one local fix candidate is applied and the other was 

generalized with question marks. Assuming that assertion 

C o n ta in s C o r r e c t  failed, a counterexample CEX was gen-

erated from this fix. To check whether variabilization pruning 

can be applied, we turn the question marks into existen-

tial quantifications. Intuitively, the corresponding variabilized 

specification would then be as follows (we are abusing the 

notation below, using Boolean for the type of the variabilized 

formula within S o r te d ) :

pred Sorted[This: List] { 
some b: Boolean | all n: This.header.*link | b
}

pred Contains[This: List, x: Int, res: Boolean]{ 
RepOk[This]
(x !in This.header.*link.elem => res=False )
&& res = True
}

However, we need to take into account that the variabilization 

context, the place where the location being variabilized occurs, 

depends in this case both on T h is  and n. Thus, the actual 

variabilization for the check is as follows (we are again 

abusing the notation for the sake of clarity):

pred Sorted[This: List] { 
some b: List -> Node -> Boolean |

all n: This.header.*link | b[This, n]
}

pred Contains[This: List, x: Int, res: Boolean]{ 
RepOk[This]
(x !in This.header.*link.elem => res=False )
&& res = True

We cannot check C o n ta in s C o r r e c t  over this specification 

due to the higher-order quantification in S o r te d ;  but we can 

check it for CEX.

It is worth remarking that the above check, if successful, will 

produce a relational value for b  that makes the variabilized 

specification work. It will not produce an expression to put in 

place of the body of the quantification, as a local fix candidate. 

It would not even produce a relational value that can be “hard-

wired” as a local fix of the corresponding location, since it is in 

principle just a relational value that works for counterexample 

CEX. But its existence is what enables us to decide that a local 

fix for Li (S o r te d )  may be possible, considering the current 

local fix for L0 (the && in C o n ta in s ) . Our check essentially 

corresponds to only checking for feasibility of a local fix with 

respect to other locations.

An alternative to the above would be to attempt to turn 

the relational value bound to b into a relational expression, 
that can be considered a local fix candidate. Such a process 

would correspond to a synthesis procedure, which would 

require a grammar for expressions, so that the solver can 

attempt to work out an instance (an actual expression) during 

the satisfiability process. While it is technically feasible, it 

is also significantly more costly than our simpler query for 

satisfiability, which we solely use for pruning.

We now assess our technique for automated repair of Alloy 

specifications. Our evaluation is based on two benchmarks of 

real faulty Alloy specifications, one taken from [3] and used in 

the evaluation of ARepair [19], and the other originated in the 

Alloy4Fun project [21], which includes 6 new models, with a 

total of 1936 faulty variants (considering different specification 

assignments resolved by different students). All the presented 

experiments were run on a 3.6GHz Intel Core i7 processor 

with 16 GB RAM, running GNU/Linux. We used a 1 hour 

timeout for each repair analysis instance.

Our evaluation considers the following research questions:

• RQ1 What is the impact of the pruning strategies in the 

performance of our technique?

• R Q 2 How does our technique compare to previous work 

on automated repair for Alloy specifications?

For R Q 1 , notice that the pruning strategies only apply to 

specifications with multiple faulty locations. We then evaluate 

our technique, with pruning enabled vs. pruning disabled, over 

the following cases:

• From ARepair’s benchmark (we will refer in this way to 

the benchmark used in the original evaluation of [19]), 

we consider 18 specifications out of the 38 that are part 

of the benchmark. We disregard cases that have exactly 

one bug (20 in total in the benchmark), as these will not 

make pruning checks, nor trigger the pruning.

• From Alloy4Fun, we consider a total of 273 faulty 

specifications. To build these specifications, we tracked 

the models with multiple assignments, and identified the 

cases in which a given model was submitted with more 

than one bug by the same student. (While the student id is 

not reported as part of the Alloy4Fun dataset, submissions 

are organized as chains of interaction ids, that correspond 

to a same student session. We use this information to 

organize submissions based on student sessions.)

The results are summarized in Table I. This table shows, for 

each of the benchmarks, the number of cases, how many 

were repaired with pruning enabled and disabled (recall the 

1 hour timeout), and the average time for those cases that 

were repaired within the timeout (time is in milliseconds). We 

also report the increased repairability, and improved efficiency, 

obtained by pruning. We considered the cases that were not 

repaired with pruning disabled, but were repaired with pruning 

enabled, as if they were repaired in 1 hour. So, the increased 

efficiency is actually a lower bound of the actual improve-

ment. For reference, we also report the range of efficiency 

improvement along all cases in each benchmark.

For R Q 2 , we compare our technique with the only other 

approach for repairing Alloy models, namely ARepair [19]. 

We analyze both tools in their corresponding abilities to repair 

specifications in our considered benchmarks. For ARepair’s 

benchmark, we used the models’ corresponding assertions as 

oracles for BeAFix, and automatically generated test suites, 

using Aunit [18], for ARepair. Recall that ARepair requires 

tests as oracles for the repair process; we actually follow the

IV. Ev a l u a t i o n
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TABLE I
Im p a c t  o f  p r u n i n g  in  r e p a i r a b i l i t y .

Benchmark Total
cases

Pruning Disabled
Repaired Cases Avg. Time

Pruning Enabled
Repaired Cases Avg. Time

Improved repairability/efficiency
Repaired Cases Avg. Time [Range min - max]

ARepair's benchmarks
balancedBST 2 0 0 - -

cd 1 1 1765 1 540 1. 0 0 x 3X [3X - 3X]

dll 3 2 290366 2 2756 1. 0 0 x 80X [26X - 133X]

farmer 1 0 0 - -

fsm 1 0 0 - -

student 10 0 5 184030 5.00x 26x  [1X - 81X]

Total: 18 3 146066 8 62442 2. 6 6 x 37X [1X - 133X]

Alloy4Fun's benchmarks
Graphs 22 6 409667 16 6821 2. 6 6 x 123X [9X - 387X]

LTS 33 0 1 1983 1. 0 0 x 181X [181X - 181X]

Trash 23 7 94960 15 8084 2.14x 46X [2X - 107X]

Production 2 0 0 - -

Classroom 169 14 755978 32 138447 2.28x 82X [1X - 433X]

CV 24 0 0 - -

Total: 273 27 420201 64 38833 2.36x 85x  [1X - 433X]

procedure suggested in [19], as test cases are not commonly 

found accompanying Alloy specifications. Notice then that the 

results reported in [19] do not coincide with those reported 

here for ARepair’s benchmark, as we use the same models 

with different test suites. The test suites used in [19] include 

manually designed cases, to help ARepair in overcoming 

overfitting. In our evaluation, we favored a comparison in 

which only the original assertions are available, and thus we 

generated test cases automatically, with Aunit (using the best 

performing criterion, predicate coverage [18]).

From the Alloy4Fun dataset, we generated a benchmark 

consisting of: (i) every faulty submission of the dataset as 

a single specification (these correspond to every intermediate 

specification submitted for analysis check in Alloy4Fun); and 

(ii) the specifications combining all modifications within a 

single user session, that we used for R Q 1 . The total number 

of faulty specifications in this benchmark is 2209 (1936 faulty 

submissions, plus 273 sessions combining submissions of the 

same user). For BeAFix, we used the models’ corresponding 

assertions as oracles. Since we do not have tests for these 

specifications, and ARepair inherently requires tests as repair 

oracles, we generated tests automatically using AUnit [18] 

(with predicate coverage as a target criterion), using the 

specification assertions, and employed these generated test 

suites for running ARepair.

In all of the above cases, we contrasted the obtained repairs 

against correct versions of the corresponding specifications, 

using Alloy Analyzer, to account for overfitting. The results 

for ARepair and Alloy4Fun benchmarks are summarized in 

Tables II and III, respectively. For each model, we report the 

number of cases, and for each tool, the number of fixes found 

(percentage also reported), and how many of these are correct 

and incorrect (the latter, due to overfitting) patches. We also 

report the percentage of correct and incorrect patches, with 

respect to the total number of cases, and the average repair

time in milliseconds, for each tool (these are the averages only 

for the repaired cases).

A. Discussion
Let us discuss the evaluation results. For R Q 1 , the results 

are conclusive: the impact of pruning is significant. Let us 

remark that the efficiency speed up is better than the increase 

in repairability (38X to 85X speed up, as opposed to roughly 

2.5X increase in repairability). This may be explained by the 

timeout that we have set: 1 hour may be a small timeout for 

specification repair using BeAFix: increasing it may show a 

repairability increase closer to the speed up. Another important 

issue about these results is that the semantic check that we 

need to perform for pruning using variabilization, does in fact 

pay off. In other words, the variabilization checks, that require 

additional calls to the SAT solver, implied a time saving thanks 

to pruning that improved the overall analysis time. This, of 

course, is relative to the considered case studies. We did not 

observe any case where the overhead caused by pruning made 

the tool to actually take longer to repair a faulty specification, 

which may in fact happen for a specification, if most feasibility 

checks succeed, consuming time and leading to no pruning. 

The benchmarks were taken from other authors’ work; we 

did not purposely look for specifications that may favor or 

harm the pruning strategies. We plan to design synthetic 

specifications, and extend the set of case studies, to further 

assess the effect of pruning.

Regarding R Q 2 , the comparison between BeAFix and 

ARepair can be analyzed along various dimensions. Let us 

first consider the evaluation over ARepair’s benchmark. For 

this benchmark, the test suites used for running ARepair 

are solely composed of automatically generated tests, using 

AUnit with predicate coverage. As a result, the number of 

correct specification fixes differ from the experiments in [19], 

where manually designed test cases helped the tool from 

overfitting. In our current experiments, ARepair is affected
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TABLE II
Ex p e r i m e n t s  t a k e n  f r o m  ARe p a i r ’s  b e n c h m a r k s .

Model
Total
Cases

ARepair B eAFix

R epaired  (%)
Avg.
time

C orrect (%) Incorrect  (%) R epaired  (%)
Avg.
tim e

C orrect (%) Incorrect  (%)

addr 1 1 (100%) 9010 1 (100%) 0 (0%) 1 (100%) 351 1 (100%) 0 (0%)
arr 2 2 (100%) 7651 2 (100%) 0 (0%) 2 (100%) 2394 2 (100%) 0 (0%)
balancedBST 3 2 (67%) 120276 1 (33%) 1 (33%) 1 (33%) 358 1 (33%) 0 (0%)
bempl 1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
cd 2 2 (100%) 3302 0 (0%) 2 (100%) 2 (100%) 742 2 (100%) 0 (0%)
ctree 1 1 (100%) 6774 1 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
dll 4 3 (75%) 22585 0 (0%) 3 (75%) 3 (75%) 2624 3 (75%) 0 (0%)
farmer 1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
fsm 2 2 (100%) 6068 2 (100%) 0 (0%) 1 (50%) 313 1 (50%) 0 (0%)
grade 1 1 (100%) 124797 0 (0%) 1 (100%) 0 (0%) 0 (0%) 0 (0%)
other 1 0 (0%) 0 (0%) 0 (0%) 1 (100%) 3120 1 (100%) 0 (0%)
student 19 12 (63%) 76120 9 (47%) 3 (16%) 13 (68%) 71197 13 (68%) 0 (0%)
Total: 38 26 (68%) 41843 16 (42%) 10 (26%) 24 (63%) 10137 24 (63%) 0 (0%)

TABLE III
Ex p e r i m e n t s  t a k e n  f r o m  Al l o y 4Fu n ’s  b e n c h m a r k s .

Total ARepair B eAFix
Model Cases

R epaired  (%)
Avg.
tim e C orrect (%) Incorrect  (%) R epaired  (%)

Avg.
time C orrect (%) Incorrect  (%)

Graphs 305 276 (90%) 2625 18 (6%) 25 8 (85%) 248 (81%) 6734 248 (81%) 0 (0%)
LTS 282 165 (59%) 8729 7 (2%) 158 (56%) 42 (15%) 5999 42 (15%) 0 (0%)
Trash 229 220 (96%) 4077 68 (30%) 152 (66%) 199 (87%) 4915 199 (87%) 0 (0%)
Production 63 47 (75%) 6232 8 (13%) 39 (62%) 56 (89%) 4124 56 (89%) 0 (0%)
Classroom 1168 911 (78%) 95717 92 (8%) 819 (70%) 418 (36%) 82856 418 (36%) 0 (0%)
CV 162 132 (81%) 4966 4 (2%) 128 (79%) 82 (51%) 2805 82 (51%) 0 (0%)
Total: 2209 1751 (79%) 20391 197 (9%) 1554 (70%) 1045 (47%) 17905 1045 (47%) 0 (0%)

by overfitting: 16 out of the 26 produced fixes are correct 

fixes. BeAFix outperforms ARepair in terms of the number 

of repaired models: 16 models repaired by ARepair, against 

24 repaired by BeAFix (a 21% difference in the number 

of repaired models, over the size of the benchmark). It is 

worth remarking that the two techniques complement each 

other in terms of the repaired models: ARepair is able to 

repair models that BeAFix does not repair (see for instance 

c t r e e  and fsm), and BeAFix repairs models that ARepair 

is not able to repair (see for instance s t u d e n t  and o th e r ) .  

In terms of efficiency, both tools show comparable running 

times. The average time to produce a repair is however just 

a reference, since the tools perform different kinds of tasks. 

BeAFix does not include fault localization, so the times here 

account for absolute repair times, given that the faults have 

been localized offline. ARepair, on the other hand, includes 

both the time to localize faults and perform the repair. Let us 

remark however that, in ARepair, on average 62% of the time 

corresponds to repair and 38% to fault localization. Unlike 

ARepair, that alternates between patching and calling fault 

localization, BeAFix calls fault localization only once, before 

triggering repair. As such, the proportion of time devoted to 

fault localization is much less. In our experiments, when we

consider the combination of fault localization and BeAFix, on 

average 4% is devoted to fault localization (in the worst case, 

Student6, the fault localization time was 13% of the total time). 

Further details can be found in the tool’s site (see below).

Now let us consider the Alloy4Fun benchmark. For this 

benchmark, we did not have any choice but to automatically 

generate test cases, as these were not available for these 

models. We generated test cases automatically, using AUnit

[18] (again, using the best performing generation criterion, as 

reported in [18]). ARepair is able to repair a significant number 

of models: 1751 out of 2209. However, only 197 were correct 

fixes; the remaining 1554 were overfitting cases, that passed 

the automatically generated tests, but were not correct fixes for 

the corresponding specifications. BeAFix, on the other hand, 

produced a smaller number of fixes: 1042 out of the 2209. But 

since it uses Alloy assertions as repair oracles, instead of test 

cases, it showed no overfitting issues for these specifications. 

As a result, BeAFix shows a better effectiveness in repair: 

47% of correctly repaired models by BeAFix, against 9% of 

correctly repaired models by ARepair. Regarding the cases 

themselves, again, the tools complement each other: there are 

cases correctly repaired by one tool that were not repaired by 

the other, and vice versa.

1143

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2021 at 00:37:00 UTC from IEEE Xplore.  Restrictions apply. 



The observed overfitting is an important difference between 

the two tools and their approaches, and confirms our intuition 

and motivation regarding the use of stronger repair oracles, 

that naturally come in specifications. Clearly, one may argue 

that ARepair’s performance, in terms of overfitting, can be 

improved by feeding the tool with different/stronger test suites. 

We fully agree, and in fact, this is confirmed with ARepair’s 

benchmark: if the test suites used in [19] are fed to ARepair 

(which, as we mentioned, include manually crafted tests), then 

26 out of 38 models are repaired, compared to the 14 out of 

38 repaired models obtained with just automatically generated 

tests (effectiveness is increased from 42% to 68%). Writing 

the right set of test cases for specification repair is a time 

consuming task, that would require a manual design of a test 

suite for each of the models, to improve the tool’s results. The 

overfitting problem is an inherent problem of using tests as 

specifications, and thus it is expected of tools such as ARepair.

It is important to remark that we do not claim that our 

technique leads to no overfitting, since this will depend on 

the oracle being used, and how faithfully it captures the de-

veloper’s intentions. In the case of our controlled experiments, 

where we had the ground truths as oracles (which would not be 

the general case in formal specification), we had no overfitting, 

although overfitting may still have been observed due to the 

bounded nature of the analysis. In any case, being forced to 

use test cases as opposed to more general properties makes it 

more prone to overfitting.

Other attributes of the generated patches may be considered. 

One of these is readability. We can remark that candidate 

patches are built out of mutations of the faulty expressions, 

and the space of faulty expressions is visited in breadth-first. 

Therefore, simpler/shorter fix candidates are considered first. 

While we did not evaluate readability in a systematic fashion, 

BeAFix’s patches can be simpler and clearer than manual, 

human-written ones. For instance, for Production.Inv4 in the 

Alloy4Fun benchmark, the faulty expression:

all c: Component |
(c.parts).position in (c.position)."~next

is manually fixed by a student with the following expression:

all c: Component |
((c.'parts) & Component).position not in 
(c.position).^next or no (c.^parts & Component)

BeAFix on the other hand, produces the following:

all c : one Component |
c.parts.position in c.position.~*next

Another dimension to consider is efficiency of our tech-

nique, compared with manual repairs. In Alloy4Fun we can 

measure the effort of human patches, by considering the time 

of the sessions of a same student, from defect introduction to 

its fixing. On average, it takes a student about 10 minutes to fix 

a defect, once it is introduced. On the other hand, the average 

time to repair in the case of BeAFix is about 10 seconds. For 

instance, for the above faulty specification, it took the student 

a total of 49 minutes to get it right. BeAFix repaired it in 3 

seconds. Due to space reasons, we do not present here a more

detailed comparison. The benchmarks, the tool’s output with 

further statistical information, and the tool itself, can be found 

in the tool’s site (see below).

V. Re l a t e d  W o r k

The problem of automatically repairing software defects has 

received great attention in the last decade, and a variety of 

techniques have been proposed to tackle it, including generate- 

and-validate techniques (e.g., based on evolutionary computa-

tion [16] or other forms of search in the space of candidates), 

techniques based on patch synthesis (e.g., techniques that 

gather constraints for correct program behavior and produce 

patches from these [24]) and techniques driven by data (e.g., 

techniques based on learning [25]). The emphasis is largely 

targeted at programs, rather than specifications. As explained 

earlier in this paper, the context of formal specification has 

some significant differences with programs (source code), that 

render many of these techniques not applicable, or at least 

difficult to adapt, to repairing specifications. The problem of 

dealing with the explosion of repair candidates has been dealt 

with in different ways, in the context of automated program 

repair. Some approaches attempt to bring down the branching 

factor in the search space by using a single mutation (e.g.,

[26]); others consider a very small set of mutators (e.g., 

based on patterns of human-written fixes [17]), or consider 

coarse grained mutations (e.g., no intra-statement program 

modifications [16]). Most of these approaches perform non-

exhaustive heuristic searches, as opposed to our technique, 

that proposes safely pruning the search space.

o u r technique produces fine-grained repair candidates that 

are akin to mutations [27], such as operator and operand 

replacements, etc., or more generally, combinations of muta-

tions (as in higher order mutations in the context of mutation 

testing [28]). The motivation for this decision is based on a 

number of issues, that seem to impact the effectiveness of 

larger-grained modifications (such as the copying, deletion and 

swapping of whole expressions) as operations to build repairs 

in the context of specification (for instance, for the case studies 

presented in [20], our manual inspection showed no case where 

one may repair the specification by deleting, swapping or 

copying whole expressions within the specification). Firstly, 

specifications do not seem to feature the same level of reuse 

that programs have. For instance, in text books on formal 

specification with more traditional languages such as Z [29] 

or B [30], one does not see modularization mechanisms (e.g., 

schema/machine composition) being used for reuse across 

different specifications, with the exception of the reuse of 

some general purpose specifications of sets, sequences, etc. 

Rather, modularization mechanisms seem to be exploited 

mainly for specification organization, with little impact in 

reuse. Secondly, most declarative specification languages are 

order-insensitive (the order of declarations and statements is 

irrelevant, as opposed to operational languages, making order-

changing modifications ineffective). Thirdly, specifications are 

significantly shorter than source code, and therefore less 

redundancy that could be exploited for repairs is observed.

1144

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2021 at 00:37:00 UTC from IEEE Xplore.  Restrictions apply. 



While most work on automated repair applies to programs, 

there are some notable exceptions [31], [19], [20]. The tool 

AutoFix [31] targets contract-equipped programs, and can 

produce repairs that make the programs satisfy their contracts 

(at least as far as a test suite can determine). The technique can 

modify contracts as well as the code itself, and therefore can 

be considered as a specification repair technique. The approach 

differs from ours in many respects: it applies to specifications 

at the source-code level, as opposed to the more abstract 

specifications we target in this paper; it is not constrained 

to specifications, it can indistinguishably alter programs and 

specifications; and the specification is not the oracle for repair, 

the tests are. An approach closely related to ours, as it applies 

to Alloy specifications too, is ARepair [19], [20]. ARepair 

repairs faulty Alloy specifications by combining a number 

of techniques, including a technique for synthesis known as 

sketching [32], and mutation-based repairs, as in program 

repair. ARepair can fix specifications with multiple buggy 

locations, and is able to do so considering a manageable set of 

candidates, thanks to an effective fault localization approach 

(and resorting to sketching rather than arbitrary mutations). 

In effect, ARepair is guided by its own fault localization 

approach, and the whole process is supported by Alloy tests. 

Our approach, on the other hand, is not coupled with fault 

localization, and can use different techniques (e.g., [33], [22], 

as long as they can be used with the fault localization oracle 

at hand) for fault localization. Alloy tests are similar to unit 

tests for source code: they provide specific scenarios with an 

expected outcome when evaluating specific parts of an Alloy 

specification, e.g., a predicate. The tool has been successfully 

applied to repair specifications taken from a benchmark of 

Alloy models [3] very efficiently, by being combined with 

techniques for automated Alloy test generation (as tests are 

necessary for repair). As for program repair techniques which 

use tests as acceptance criteria, they are subject to overfitting, 
the problem that arises when a candidate passes all tests, but is 

not a true repair, i.e., there are situations in which the program 

(in this case, specification) fails to comply with the intended 

behavior. This, as usual, is strongly related to the quality of 

the provided test suite, and many of the cases from [3] were 

repaired thanks to additionally, manually provided, test cases

[19], [20]. ARepair inherently depends on test cases, while our 

technique works on arbitrary Alloy specification oracles. See 

the previous section for a more detailed comparison of BeAFix 

with ARepair, from a more experimental point of view.

Our technique uses Alloy counterexamples to weakly check 

variabilization feasibility, since fully checking feasibility re-

quires dealing with higher-order quantification. To perform 

this higher-order checking, one may use Alloy* [34]. We 

experimented with this approach, but due to performance 

issues, we favored our current counterexample-based mecha-

nism. Also in this line, one may profit from Alloy* to capture 

Alloy’s grammar and semantics into Alloy*, and use the solver 

to encode the whole repair approach. In this way, Alloy* would 

function as a synthesis engine, with the solver doing the search 

for repairs, as in some semantic program repair approaches

(e.g., [24]). In our initial attempts we did not manage to obtain 

results, due to the available heap space being exceeded, for 

fragments of Alloy’s grammar significantly smaller than what 

we are considering with our ad-hoc search approach. We plan 

however to further investigate this possibility.

VI. Co n c l u s io n

Software specification and modeling are crucial activities 

of most software development methods. Getting a software 

specification right, i.e., capturing correctly a software design, 

the constraints and expected properties, etc., especially when 

the language to capture these is formal, is very challenging. 

Thus, techniques and tools that help developers in correctly 

specifying software is highly relevant. In this paper, we have 

presented a technique that helps precisely in this task, in the 

context of formal specification using the Alloy language [4]. 

Our technique has a number of characteristics that distinguish 

it from related work [20]. Firstly, it does not require any 

particular form of the oracles, i.e., the properties to be used for 

assessing fix candidates (as opposed to existing work which 

require such oracles to be expressed in terms of test cases). 

Secondly, it bounded exhaustively explores the state space of 

fix candidates, thus finding a specification fix, or guaranteeing 

that such a fix is impossible within the established bounds, 

for the identified faulty locations, and with the provided 

mutation (syntactic modification) operators. This is suitable 

in an Alloy context, where users are accustomed to bounded- 

exhaustive analyses. This bounded-exhaustive exploration of 

fix candidates demands then appropriate mechanisms to make 

the search more efficient. Our technique comes with two sound 

pruning strategies, that allow us to avoid visiting large parts 

of the state space for fix candidates, which are guaranteed 

not to contain valid fixes. We have assessed our technique 

on a large benchmark of Alloy specifications, and shown that 

the pruning strategies have an important impact in analysis. 

The technique has an efficiency comparable to that of the 

previous work [20], it complements the latter in terms of the 

fixes it is able to generate, and is less prone to overfitting, 

as it naturally supports stronger oracles based on assertion 

checking and property satisfiability, that usually accompany 

Alloy specifications.

VII. Da t a  Av a il a b i l i t y

BeAFix, all benchmark data, further statistical information 

and the instructions to replicate the experiments in this paper, 

are available at [35]. A snapshot of the tool and benchmark, 

as used in the paper, is available at [36].
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