
2
0
2

1
 I

E
E

E
/A

C
M

 4
3

rd
 I

n
te

rn
a
ti

o
n

a
l

C
o

n
fe

re
n

c
e
 o

n
 S

o
ft

w
ar

e
E

n
g

in
e
e
ri

n
g

 (
IC

S
E

)
| 9

7
8

-1
-6

6
5

4
-0

2
9

6
-5

/2
0

/$
3

1
.0

0
 ©

2
0

2
1
 I

E
E

E
 |

D
O

I:

1

0
.1

1
0

9
/I

C
S

E
4

3
9

0
2

.2
0

2
1

.0
0

1
0

5

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)

Bounded Exhaustive Search

of Alloy Specification Repairs
Simon Gutierrez B r id a l , German Regis*, Guolong Z heng ',

H am id B agheri', ThanhVu N guyen ', Nazareno A guirre*', M arcelo Frias'§

* Department of Computer Science, FCEFQyN, University of Rio Cuarto, Argentina

'National Council for Scientific and Technical Research (CONICET), Argentina

'Department of Computer Science & Engineering, University of Nebraska-Lincoln, USA

§ Department of Software Engineering, Buenos Aires Institute of Technology, Argentina

Abstract—The rising popularity of declarative languages and

the hard to debug nature thereof have motivated the need

for applicable, automated repair techniques for such languages.
However, despite significant advances in the program repair of
imperative languages, there is a dearth of repair techniques for

declarative languages. This paper presents BeAFix, an automated

repair technique for faulty models written in Alloy, a declarative

language based on first-order relational logic. BeAFix is backed

with a novel strategy for bounded exhaustive, yet scalable, ex-
ploration of the spaces of fix candidates and a formally rigorous,
sound pruning of such spaces. Moreover, different from the state-
of-the-art in Alloy automated repair, that relies on the availability

of unit tests, BeAFix does not require tests and can work with

assertions that are naturally used in formal declarative languages.
Our experience with using BeAFix to repair thousands of real-
world faulty models, collected by other researchers, corroborates

its ability to effectively generate correct repairs and outperform

the state-of-the-art.

I. In t r o d u c t i o n

Software has become ubiquitous, and many of our activities

depend directly or indirectly on it. Having adequate software

development techniques and methodologies that contribute

to producing quality software systems has therefore become

essential for many human activities. A well-established ap-

proach to achieving quality is to emphasize good problem

understanding and planning ahead of development, i.e., to put

an emphasis on the analysis and design phases of software

development [1]. These phases need to deal with descriptions

of software and problem domains, which are typically cap-

tured using specification, or modeling, languages. Techniques

and tools that allow users to analyze specifications are very

important, as they help developers in discovering flaws, such

as missing cases in the specifications, wrong interpretations

of requirements, etc. Two main problems arise in this phase:

correctly understanding the problem situation (thus capturing

the right problem), and correctly stating the problem in the

language at hand (thus capturing the problem right). In the

context of formal specification, where formalisms with for-

mal syntax and semantics are employed, the latter problem

is particularly relevant, as the developer has to master the

notation to correctly capture, in a formal way, a given software

description [2]. Even for experienced developers, many times

subtle errors arise, like mistakenly using the wrong expression

to capture a property, omitting an operator or using an operator

in place of another, leading to incorrect specifications that

do not capture the developer’s intentions [3]. These kinds of

mistakes share characteristics with program defects. Therefore,

techniques for dealing with these defects and, in general, to

assess or improve software quality (such as techniques for

bug finding and program debugging), are also relevant in the

context of software specifications. In particular, techniques

for improving debugging, e.g., via the automation of fault

localization or program repair, are pertinent in the context of

software specification.

This paper targets the problem of automatically repairing

formal specifications, more precisely, specifications in Alloy

[4], a formal language that has many applications in software

development and has been successfully applied in a number of

domains such as the discovery of design flaws in telecommu-

nication applications [5], the analysis of security mechanisms

in mobile and IoT platforms [6], [7], [8], the automation

of software testing [9], [10], [11], and the verification of

programs [12], [13], [14], among other applications [15].

While specifications share a number of characteristics with

programs, certain characteristics make it non-trivial to apply

the broad range of techniques for program repair, in the

context of specifications. For instance, as a way to tame the

space of candidates, various program repair techniques such as

GenProg [16] only use coarse-grained syntactic modifications,

such as block replacement, swapping, deletion and insertion,

but no intra-statement modifications are allowed. The rationale

is that good levels of repairability in programs are achieved via

coarse-grained modifications thanks to redundancies that are

present in code, especially in larger programs. Such redundan-

cies are not often seen in specifications, in particular due to the

relative conciseness of specifications compared to programs.

Other approaches to program repair, e.g., PAR [17], restrict the

modifications to patterns learned from human-written patches,

mined from large repositories categorizing fixes; such inputs

for the repair process are not available in the context of

formal specification, simply because, as opposed to source

code, there are no large repositories of specifications. Finally,

most program repair techniques rely directly or indirectly on

the availability of test cases; while there exist initiatives that

incorporate test cases to specifications [18], other forms of

checking, such as property satisfiability and verification, are

978-1-6654-0296-5/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE43902.2021.00105

1135

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2021 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

more naturally found in specifications.

In this paper, we present BeAFix, a novel technique that

automatically repairs faulty Alloy specifications. BeAFix has

several features distinguishing it from the state of the art

[19]. Firstly, the technique does not depend on test cases,

neither for fault localization nor for specification repair; it

supports any kind of specification oracle, notably the typical

assertion checks and property satisfiability checks found in

Alloy specifications, as well as test cases. It is then more

widely applicable in the context of formal specification, where

test cases are rarely found accompanying specifications. Sec-

ondly, the technique tackles automated repair in a bounded

exhaustive way, i.e., by exhaustively exploring all possible

repair candidates, for a given set of mutation operators and

maximum number of applications (on a set of identified

suspicious specification locations). Thus, it either finds a fix,

or guarantees that no fix is possible, within the provided bound

and with the considered mutation operators over the identified

faulty locations. This approach is natural to the context of

Alloy, where users are accustomed to bounded exhaustive

analyses.

BeAFix supports fine-grained mutations and is designed

to enable the repair of multi-location specification defects.

Since bounded exhaustive exploration suffers from inherent

scalability issues, our technique features a number of prun-
ing strategies, that leverage the use of the Alloy Analyzer

to soundly prune large parts of the candidate space. More

precisely, given a candidate repair for a specific suspicious

location, our technique exploits both a syntactic analysis of the

specification and a semantic analysis using the Alloy Analyzer

for checking the feasibility of this candidate, in the sense that

applying this specific repair candidate to the corresponding

location preserves the feasibility of the overall (multi-location)

repair. When feasibility fails, it allows us to prune, in a sound

way, i.e., without losing valid fixes, significant parts of the

search space for repair candidates, thus reducing specification

repair running times.

We evaluate our technique on a benchmark of Alloy speci-

fications, including specifications previously used in assessing

ARepair [19], [20], and a large benchmark of faulty Alloy

specifications produced by students [21]. ou r evaluation shows

that our pruning technique significantly reduces specification

repair running times, duplicating the number of repairs that

can be produced within a 1-hour timeout, and reducing the

repair time by 62X, on average. Moreover, when specifications

feature typical assertions, and these are used as oracles,

our technique shows a significant improvement in overfitting

reduction, compared to the test-based technique ARepair.

II. An Il l u s t r a t in g Ex a m pl e

In this section, we introduce both Alloy and our tech-

nique by means of a motivating example. Alloy is a formal

specification language, with a simple syntax and a relational

semantics. The syntax of the language is rather small, and

is compatible with an intuitive reading of specifications, or

models, as they are typically called in the context of Alloy [4]

(we will use specification and model interchangeably in this

paper). Specifications can resemble object-oriented notions

that are familiar to developers. The basic syntactic elements

of Alloy specifications are: signatures, which declare data

domains; signature fields (akin to class attributes), that give

structure to specifications and declare relations between sig-

natures; predicates, parameterized formulas that can be used

to state properties, represent operations, etc.; facts, formulas

that constrain the specifications and represent assumptions;

and assertions, formulas that capture intended properties of

the specification, i.e., properties that the user would like to

verify. Formulas in Alloy are expressed in relational logic,

a first-order logic extended with relational operators such as

relational transpose, union, difference and intersection. Alloy

supports various quantifiers (a l l and some are the usual

universal and existential quantifiers, respectively, one and

lo n e are for “exists exactly one” and “exists at most one”,

respectively). It also features additional important relational

operators: relational join, a generalization of composition to

n-ary relations, which can be used to express navigations as in

object orientation; and transitive closure, which can be applied

only to binary relations, and extends the expressiveness of

Alloy beyond that of first-order logic.

consider the Alloy model in Figure 1, a modified version of

an Alloy specification of linked lists, that is part of the bench-

mark used in [19]. This model declares domains for booleans

(with its two constants captured via singleton relations), and

signatures for nodes and lists. Nodes have a link (a set of

nodes), and associated elements (a set of integers); lists have

a header (a set of nodes). A fact constrains the cardinalities of

these signature fields: lists have at most one header, and nodes

have at most one successor node, and exactly one element

(when applied to expressions, lo n e , one and no constrain a

given expression to have a cardinality of at most one, exactly

one, and exactly zero, respectively). Notice the additional fact,

which is there for analysis purposes: it states that exactly one

L i s t is going to be considered in each instance of the model,

and that all nodes present in an instance will be those in the

list (no unreachable “heap” objects). Predicate Loop captures

lists with a loop in its last node, saying that a list satisfies

the predicate if it either has no header, or for exactly one of

its nodes, the elements reachable in one or more steps from

l i n k are exactly the same reachable in zero or more steps

through l i n k . Predicate S o r te d attempts to capture that lists

are non-decreasingly sorted (this predicate is buggy though,

as the order constraint is strict). Predicate RepOk is simply

defined as the conjunction of Loop and S o r te d . Predicate

C o n ta in s is used to model an operation on lists, namely, the

operation for querying membership of an integer as an element

of a node of a list. The result of the operation is captured by

an additional Boolean parameter. This predicate is buggy, it

does not correctly model the intended operation (e.g., it admits

the predicate to return T ru e despite the contents of the list).

Alloy specifications can be automatically analyzed, by an

analysis mechanism that resorts to SAT solving, and is imple-

mented in a tool called Alloy Analyzer [4]. Two kinds of analy-

1136

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2021 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

abstract sig Boolean { }
one sig True, False extends Boolean { }

sig Node {
link: set Node,
elem: set Int
}

sig List {
header: set Node
}

fact CardinalityConstraints {
all l : List | lone l.header
all n : Node | lone n.link
all n : Node | one n.elem
}

fact IGNORE {
one List && List.header.*link = Node
}

pred Loop[This: List] {
no This.header ||
one n : This.header.*link | n.'link = n.*link
}

pred Sorted[This: List] { // b u g g y

all n: This.header.*link | n.elem < n.link.elem
}

pred RepOk[This: List] {
Loop[This] && Sorted[This]
}

run RepOk for 1 but exactly 3 Node expect 1

/ / b u g g y
pred Contains[This: List, x: Int, res: Boolean]{
RepOk[This] &&
((x !in This.header.*link.elem => res=False) ||
res = True)
}

pred Count[This: List, x: Int, res: Int] {
RepOk[This] &&
res = #{ n:This.header.*link | n.elem = x }
}

assert ContainsCorrect {
all l : List, i, j : Int |

(Count[l, i, j] && j > 0) iff Contains[l, i, True]
}

check ContainsCorrect for 10

Fig. 1. A (faulty) sample Alloy specification.

sis are possible: running a predicate and checking an assertion.

Both are analyzed in bounded scenarios. Running a predicate

searches for instances (scenarios) that satisfy all the constraints

(cardinalities, facts, etc.), including the predicate being run.

Assertion checking looks for counterexamples of the asserted

properties. Analysis is performed up to a bound k (typically

referred to as the scope of the analysis), meaning, e.g., that

assertion checking will either find a counterexample within the

given scope, or guarantee the validity of the formula within

the bound (similarly, a predicate will be found to be satisfiable

within the provided scope, or not to have a satisfying instance

within the scope). This bounded exhaustive analysis, of course,

does not necessarily mean that the formula is valid (resp.,

satisfiable), as counterexamples (resp., instances) of greater

size may exist if larger scopes are considered.

The Alloy language is the vehicle for defining abstract

software models in a lightweight and incremental way, with

immediate feedback via automated analysis [4]. Typically, the

process of constructing an Alloy model, as the one in our

example, starts very much in the same way one would proceed

while eliciting requirements, or sketching an abstract software

design: basic domains of the model are identified (signatures

of the model), over which more structured components are or-

ganized (signatures equipped with fields). How these domains

and components are constituted, the inherent constraints of the

problem domain and the operations that represent the software

model capacities, are all incrementally created, via a constant

interaction with the Alloy Analyzer. This process eventually

involves the use of assertions and predicates, that capture

intended properties of the model, and that serve essentially

as the oracle of the specification, i.e., the properties that

would convey the acceptance of the model. Sometimes these

properties can help find surprising counterexamples, that lead

to refinements of the properties themselves, but more often

they help one in “debugging” the core of the model, i.e.,

in getting the model “right”, adapting it until the intended

properties result as expected. For instance, for the linked lists

model, the developer would expect the representation invariant

RepOk to be satisfiable, and the definition of C o n ta in s

to have the relationship with C oun t captured in property

C o n ta in s C o r r e c t .

While the intended properties are subject to defects too, they

are typically significantly shorter and clearer than the “core”

of the specification. They capture high level properties of the

model, so they are expected to be simpler to write and get

right. So, once the intended properties are set, the user may

perform the corresponding analyses and use the results as an

acceptance criterion for the specification, and the correspond-

ing design it conveys. That is, a model will be considered

incorrect if any of the analyses of the intended properties

fails, i.e., has a result that contradicts the user expectations. In

Figure 1, for instance, the user may consider the consistency of

RepOk, the assertion C o n ta in s C o r r e c t and the auxiliary

predicate C oun t as the oracle of the specification, meaning

that when this intended property is found to be invalid, the

user would start modifying the remainder of the specification,

as an attempt to fix the error. BeAFix as well as other model

repair techniques aim at reducing human intervention along

this overall modeling process, by automatically fixing errors

in incorrect models.

Let us describe how the technique works, assuming for

the moment that the faulty locations in the model have been

correctly identified. In order to attempt to repair the specifi-

cation, and assuming that for the first location the syntactic

mutation operators lead to n different fix candidates (for that

specific location), and for the second location we have m

1137

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2021 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

different fix candidates, in the worst case we have to check

n x m potential fixes, as we would want to consider all
combinations of candidate fixes for each repair location. The

model expectations, in our example the satisfiability of RepOk

and the bounded validity of C o n ta in s C o r r e c t , will be the

acceptance criterion fix repair, i.e., if a fix candidate “passes”

these analyses, it will be considered a fix.

The automated repair process for the above faulty speci-

fication is then straightforward to describe: we have n x m

repair candidates (the combinations of fix candidates for

the suspicious locations), and since we aim at exhaustively

exploring this candidate space, we would run the oracles on

each candidate, stopping as soon as we find one that “passes”

all predicates and assertions.

Let us describe some situations that allow for sound pruning,

i.e., pruning that only avoids invalid fix candidates.

Notice that, in our case, we have two defective lines,

but these are not symmetric: the bugs in S o r te d affect

C o n ta in s , as C o n ta in s depends on RepOk which in

turn depends on S o r te d , but the latter does not depend

(i.e., calls directly or indirectly) on C o n ta in s . Thus, when

checking a specific candidate for S o r te d that does not pass

an oracle involving S o r te d but not C o n ta in s , as for

instance the satisfiability of RepOK, we can stop analyzing

the fix candidate for S o r te d altogether, and not consider

it in combination with any further candidates for the other

location. Consider, for instance, the following combination of

fix candidates for S o r te d and C o n ta in s :

pred Sorted[This: List] {
all n: This.header.*link | n.elem != n.link.elem

}

pred Contains[This: List, x: Int, res: Boolean] {
RepOk[This] &&
(x !in This.header.*link.elem => res = False) &&
res = True

}

Assuming that we consider the above described oracles for the

specification, this combination does not pass the oracles, it is

an invalid fix candidate. Moreover, if we leave the current

fix candidate for S o r te d and iterate over other candidates

for C o n ta in s , the property check requiring RepOk to be

satisfiable will continue to fail, as the unsatisfiability of RepOk

cannot be solved by changing the definition of C o n ta in s .

Thus, if we are able to identify this situation (as we explain

later on, our technique does so), we can safely consider a

different mutation for S o r te d , or equivalently, soundly skip

all combinations of the current mutation to S o r te d with all

other mutations for C o n ta in s .

Now let us look at another situation, that will also allow us

to soundly prune parts of the fix candidate space, even in the

presence of bidirectional (or multi-directional) dependencies

between faulty locations. Consider the above fix candidate for

predicate C o n ta in s , that replaced | | by &&. This “local”

candidate that fails to pass an oracle such as the assertion

on C o n ta in s (in combination with a particular candidate

for S o r te d) does not allow us to discard it altogether,

as the failing cannot in principle be blamed on && on its

own: it may be the case that this candidate “works” with a

different candidate for S o r te d . So in order to check the

local feasibility of the candidate for C o n ta in s , we need

to consider it in combination with any other candidate for

S o r te d , of course, trying to avoid checking all candidates

for this predicate. Assuming that we identified the body of

the quantification of S o r te d as the problematic part in that

predicate (fault localization techniques for Alloy, in particular

the one we use in this paper, can identify fine grained faulty

locations, such as particular subexpressions), what we would

need to intuitively check is whether there exists a (boolean)

value for that location, that in combination with && would

make the oracles pass:

pred Sorted[This: List] {
all n: This.header.*link | (??)

}

pred Contains[This: List, x: Int, res: Boolean] {
RepOk[This] &&
(x !in This.header.*link.elem => res = False) &&
res = True

}

That is, can we replace the double question mark above by a

value that would make oracles pass? If the answer is no, then

we can blame &&, and try another candidate for C o n ta in s ,

avoiding considering of && with candidates for S o r te d . If we

are able to correctly identify these situations, as our technique

does and we describe later on in this paper, we can again safely

prune a large number of candidates, namely all combinations

of && with all the mutations for S o r te d .

It is worth remarking that we do not assume any particular

format or characteristic, neither from the specification itself,

nor from the oracle. This is in contrast with previous work

on repairing Alloy specifications [19], which requires repair

oracles to be provided as Alloy test cases. Alloy test cases

define scenario-based expectations, similar to what one would

capture with unit tests for source code. As an example,

consider the evaluation of C o n ta in s on a particular con-

crete structure, and its corresponding expected outcome (the

expected outcome represents a boolean, 1 for “satisfiable” and

0 for “unsatisfiable”):

pred ContainsFalseOnListTest[This: List] {
some n0, n1: Node | {

This.header = n0 &&
nO.link = n1 && nO.elem = 0 &&
nl.link = n1 && n1.elem = 0 &&
Contains[This, 1, False]

}
}

run ContainsFalseOnListTest expect 1

While scenarios do participate in the Alloy modeling process,

they typically do so as a result of analyzing properties. That

is, tests are not a common explicitly described part of Alloy

specifications. Recent proposals, notably [18], are starting

to motivate the use of test cases in formal specification.

As mentioned, our approach allows for any kind of oracle,

including test-based oracles.

1138

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2021 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

Our approach to Alloy specification repair involves a series

of tasks, for fault detection, fault localization, fix candidate

generation, and fix candidate assessment. We describe these

in more detail below.

A. Fault Detection and Fix Acceptance Criterion
In general, given an Alloy specification, we may say that

such specification is faulty if at least one of the analysis

commands in the specification has an outcome contrary to

its corresponding expectation. This can be either a failing

assertion (assertion with counterexamples), or a predicate that

is unsatisfiable while the user expected it to be satisfiable,

or vice versa. We may also allow for other flavors in com-

mands, in particular Alloy test cases, in the spirit of Aunit

[18]. The fault detection stage then resorts to SAT solving,

the underlying analysis mechanism behind Alloy Analyzer,

the tool for Alloy specification analysis [4]. Similarly, a fix

candidate can be considered an acceptable patch when all the

analysis commands in the specification have an outcome that

coincides with the corresponding command’s expectations.

Our technique requires the user to identify the specification

oracle, i.e., the assertions, predicates or tests that the technique

will have to consider as fix acceptance criterion. The technique

will then identify faults in the remainder of the specification

(the oracle is left out of the analysis space for fault local-

ization), and generate fix candidates for the faulty locations.

Therefore, our repair approach cannot fix any faulty situation,

but only those where the developer is certain about some part

of it (the oracle), and wishes to alter the remainder of the

specification to pass it. Looking for solutions that may modify

the specification and the criterion for acceptance would lead

to fixes that may simply relax the acceptance criterion. Notice

that, in this respect, we follow the same approach that ARepair

and most test-based program repair techniques: the tests (the

repair oracle) cannot be changed in the repair process. As

described later on in this section, other trivial solutions such

as changing a command’s expectations or simply removing

a command are prevented, due to how the fault localization

is performed (which cannot be blamed on commands) and

how fix candidates are generated (only by mutating the faulty

locations).

B. Fault Localization
Once a specification is deemed faulty, we need to identify

the specific parts of the specification that are more likely

to be blamed for the fault or faults. We do not deal with

fault localization in this paper, and we assume an external

technique/tool provides fault localization information. There

exist techniques for fault localization that specifically tar-

get Alloy specifications, such as the spectrum-based fault

localization mechanism behind ARepair [19], and our fault

localization technique presented in [22]. While in principle

any fault localization technique would fit our technique, as

long as the employed fault localization can handle the oracles

present in the faulty specification, it is worth to remark that the

III. Th e Te c h n i q u e fault localization within ARepair inherently depends on having

tests as oracles (acceptance criteria) for specifications [19].

Moreover, the fault localization in ARepair can dynamically

change the identified faulty locations, as the specification is

transformed during the repair process. Our technique, on the

other hand, uses an offline process for fault localization: the

faulty program is fed to the fault localization tool, and a

number of suspicious specification locations are returned. This

is the input to our specification repair approach, and the space

of all possible patches for these locations, for a maximum

depth in mutation application and a given set of mutation

operators, will be considered.

For our experiments in Section IV, we use the FLACK

fault localization technique [22]. While we do not describe

in detail the fault localization technique in this paper (we

refer the reader to [22]), let us remark a number of facts

about FLACK: it supports arbitrary satisfiability checks and

assertions, as well as tests, as specification oracles; it is based

on the use of (partial) maximum satisfiability procedures, to

process counterexamples of an Alloy model (witnessing the

faulty status of the specification); and it can only identify

faults within formulas and relational expressions, it cannot

locate faults in data definitions, such as signature and field

declarations, nor in commands (Alloy’s runs and checks).

C. Generation o f Fix Candidates
Once the suspicious expressions are identified, syntactical

variants of these expressions are produced. We consider an

ample set of mutation operations, including the obvious logical

and relational operator insertion, removal and replacement,

quantification mutation (e.g., changing a quantifier), multiplic-

ity constraint replacement, field/variable swap/replacement,

etc., based on Alloy’s grammar. Our tool processes the speci-

fication to obtain some typing information, so that some legal

expressions that necessarily lead to empty relation/contradic-

tory formulas are disregarded, as well as innocuous operation

application (e.g., double transitive closure). Two elements

are important to highlight here, namely the use of join to

produce navigation chains, using fields, signatures, etc., and

the possibility of combining mutations, i.e., applying further

mutations to an already mutated expression, akin the so called

higher-order mutants [23] in mutation testing.

Both the mutation operators and the maximum depth, i.e.,

the number of cumulative mutations (hence, the higher order

nature of the generated mutants) that can be applied to a

given faulty location, are configurable. These are bounded-

exhaustively generated as the space of fix candidates is tra-

versed (see below). In our experiments, we used 21 mutation

operators in total, typically leading to roughly between 60 and

260 1-level mutants per location.

D. Fix Candidate Space Traversal

Here we present our general repair approach. The two

pruning techniques just introduced, are also described in more

detail, and we argue about their soundness. The search space

is organized as a search tree in a traditional search problem:

1139

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2021 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

the root is the original specification, with its faulty locations

identified; and if a specification s is in the tree and s' can be

obtained by applying a mutation to a faulty location, then s'

is also in the tree, with the same locations marked as faulty

(so that the mutation process can be iterated). This in principle

leads to an infinite fix candidate space, which we explore up to

a maximum depth. While any search strategy may be applied,

we explore the state space in a breadth-first fashion.

1) Partial repair checking: Our first pruning strategy con-

sists of identifying one of the suspicious locations for which

a current repair candidate fails, as established by an analysis

check that does not depend on the remainder of the faulty

locations. We will describe it in more detail, assuming two

faulty locations, without loss of generality. Let Spec be an

Alloy specification, Checki , . . . , Checkk its analysis checks

used as oracles, and L0, L i the suspicious locations identified

by the fault localization phase. Each analysis check Checki
refers to a specific part of Spec, which can be determined

by a straightforward syntactic analysis: Checki refers to the

formula it directly mentions (the body of the corresponding

predicate or assertion), all the facts (axioms of the specification

that are implicitly involved in every analysis check), and the

symbols directly and indirectly referred syntactically to by

these (predicates called, relations used, etc.). This syntactic

analysis can determine then, for every Checki , which of the

suspicious locations L0 and Li it involves.

Most logics, and certainly Alloy’s relational logic, have a

sort of syntactic locality property, that guarantees that the

validity/satisfiability of a formula depends only on the symbols

it refers to. (In the case of Alloy, since validity/satisfiability is

actually bounded validity/satisfiability, it can also depend on

the scope, the bound, of analysis; but since the bound of anal-

ysis cannot be modified in the patch generation phase, we can

disregard it). Moreover, the logic is monotonic, meaning that

adding more assumptions to a formula can never reduce the

conclusions drawn originally from it. These properties allow us

to make the following observation. Let m0 and n 0 constitute

the modifications to locations L0 and Li , respectively, in the

current fix candidate (i.e., be the expressions substituting the

original expressions in locations L0 and Li of Spec) . If a

failing satisfiability check Checki refers to only one of the

suspicious locations, say L0 and its current expression m 0,

this means that the formula in Checki is determined to be false

independently of n 0. Then, for every alternative expression

ni for location Li , the corresponding fix candidate (mo,ni)

(the replacement expressions for locations L0 and Li) will

still make Checki to be false, due to the monotonicity of

the logic. In other words, the specification cannot be repaired

by modifying location Li if the current fix for location L0

is maintained. We can therefore exclude (prune from the

checking) all (m0, n i) fix candidates as soon as we determine

this situation, which in turn can be determined by a syntactic

analysis of the specification, and the analysis outcome for fix

candidate (m0,n 0).

We refer to this analysis and the corresponding pruning it

enables as partial repair checking, due to the partiality of fix

candidates when these do not involve all suspicious locations.

2) Variabilization: Our second pruning strategy is called

variabilization, due to the mechanism employed for prune

checking, that requires introducing fresh variables to refer to

fix candidates to specific locations, in a general way.

Let Checki be a failing assertion (validity) check that refers

to suspicious locations L0 and Li , and let (m0,n 0) be the

current failing fix candidate. Notice that since Checki is a

failing validity check, we have a counterexample CEXi as a

result of the violation. That is, we have that:

CEXi = Spec[m0,n 0] ^ Checki ,

where Spec[m0,n 0] denotes the fix candidate obtained by

replacing L0 and Li by m 0 and n 0 , respectively, in Spec. The

purpose of variabilization is to check whether the current fix

for L0 , i.e., m 0 , may work with some candidate for Li (other

than n 0 , of course, which we already know it does not work).

For technical reasons, we actually check whether some fix for

Li may work in combination with m 0 , for counterexample

CEXi. Let us describe the process for performing this check.

Notice that fault locations can be subexpressions of a

formula; let us refer by F i to the formula (predicate, fact,

etc) containing Li . Also, let T be the most general type for

Li in context F1 (in Alloy, this most general type will depend

on the arity required by Li in F i , the context in which Li

may depend upon, and will use the most general unary type,

the universe u n iv). Let SpecL i be the specification obtained

by replacing F1 in Spec by

3li : T|Fi[1i/Li]

i.e., we substitute Li by an existentially quantified variable of

type T (hence the name variabilization). We now can check:

CEXi = SpecLo [m0] ^ Checki ,

i.e., whether there exists a value of type T that can be

put in place of location Li , so that CEXi ceases to be a

counterexample. If this is the case, then local fix m 0 works

as a fix for L0 , at least as far as CEXi is concerned, and we

may traverse the space of local candidates for Li to attempt

to find a complete fix. But, on the other hand, if the above

check fails, then there is no value that can be put in place

of Li such that the local fix m 0 would work (CEXi would

still be a counterexample). Therefore, we can again exclude

(prune from the checking) all (m0,n i) fix candidates if the

check fails.

One may argue why not check the “variabilized” spec-

ification in the general case, instead of doing so only for

counterexample CEXi . The reason has to do with the type T

of location Li . When this type is a relation of an arity greater

than one, variabilization leads to a higher-order quantification,

that Alloy cannot handle as a general analysis check, but it can

do so for the specific counterexample CEXi .
To clarify this variabilization process, and especially the

reason why we typically have higher-order quantification,

let us consider the example introduced in Section II, where

1140

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2021 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

one local fix candidate is applied and the other was

generalized with question marks. Assuming that assertion

C o n ta in s C o r r e c t failed, a counterexample CEX was gen-

erated from this fix. To check whether variabilization pruning

can be applied, we turn the question marks into existen-

tial quantifications. Intuitively, the corresponding variabilized

specification would then be as follows (we are abusing the

notation below, using Boolean for the type of the variabilized

formula within S o r te d) :

pred Sorted[This: List] {
some b: Boolean | all n: This.header.*link | b
}

pred Contains[This: List, x: Int, res: Boolean]{
RepOk[This]
(x !in This.header.*link.elem => res=False)
&& res = True
}

However, we need to take into account that the variabilization

context, the place where the location being variabilized occurs,

depends in this case both on T h is and n. Thus, the actual

variabilization for the check is as follows (we are again

abusing the notation for the sake of clarity):

pred Sorted[This: List] {
some b: List -> Node -> Boolean |

all n: This.header.*link | b[This, n]
}

pred Contains[This: List, x: Int, res: Boolean]{
RepOk[This]
(x !in This.header.*link.elem => res=False)
&& res = True

We cannot check C o n ta in s C o r r e c t over this specification

due to the higher-order quantification in S o r te d ; but we can

check it for CEX.

It is worth remarking that the above check, if successful, will

produce a relational value for b that makes the variabilized

specification work. It will not produce an expression to put in

place of the body of the quantification, as a local fix candidate.

It would not even produce a relational value that can be “hard-

wired” as a local fix of the corresponding location, since it is in

principle just a relational value that works for counterexample

CEX. But its existence is what enables us to decide that a local

fix for Li (S o r te d) may be possible, considering the current

local fix for L0 (the && in C o n ta in s) . Our check essentially

corresponds to only checking for feasibility of a local fix with

respect to other locations.

An alternative to the above would be to attempt to turn

the relational value bound to b into a relational expression,
that can be considered a local fix candidate. Such a process

would correspond to a synthesis procedure, which would

require a grammar for expressions, so that the solver can

attempt to work out an instance (an actual expression) during

the satisfiability process. While it is technically feasible, it

is also significantly more costly than our simpler query for

satisfiability, which we solely use for pruning.

We now assess our technique for automated repair of Alloy

specifications. Our evaluation is based on two benchmarks of

real faulty Alloy specifications, one taken from [3] and used in

the evaluation of ARepair [19], and the other originated in the

Alloy4Fun project [21], which includes 6 new models, with a

total of 1936 faulty variants (considering different specification

assignments resolved by different students). All the presented

experiments were run on a 3.6GHz Intel Core i7 processor

with 16 GB RAM, running GNU/Linux. We used a 1 hour

timeout for each repair analysis instance.

Our evaluation considers the following research questions:

• RQ1 What is the impact of the pruning strategies in the

performance of our technique?

• R Q 2 How does our technique compare to previous work

on automated repair for Alloy specifications?

For R Q 1 , notice that the pruning strategies only apply to

specifications with multiple faulty locations. We then evaluate

our technique, with pruning enabled vs. pruning disabled, over

the following cases:

• From ARepair’s benchmark (we will refer in this way to

the benchmark used in the original evaluation of [19]),

we consider 18 specifications out of the 38 that are part

of the benchmark. We disregard cases that have exactly

one bug (20 in total in the benchmark), as these will not

make pruning checks, nor trigger the pruning.

• From Alloy4Fun, we consider a total of 273 faulty

specifications. To build these specifications, we tracked

the models with multiple assignments, and identified the

cases in which a given model was submitted with more

than one bug by the same student. (While the student id is

not reported as part of the Alloy4Fun dataset, submissions

are organized as chains of interaction ids, that correspond

to a same student session. We use this information to

organize submissions based on student sessions.)

The results are summarized in Table I. This table shows, for

each of the benchmarks, the number of cases, how many

were repaired with pruning enabled and disabled (recall the

1 hour timeout), and the average time for those cases that

were repaired within the timeout (time is in milliseconds). We

also report the increased repairability, and improved efficiency,

obtained by pruning. We considered the cases that were not

repaired with pruning disabled, but were repaired with pruning

enabled, as if they were repaired in 1 hour. So, the increased

efficiency is actually a lower bound of the actual improve-

ment. For reference, we also report the range of efficiency

improvement along all cases in each benchmark.

For R Q 2 , we compare our technique with the only other

approach for repairing Alloy models, namely ARepair [19].

We analyze both tools in their corresponding abilities to repair

specifications in our considered benchmarks. For ARepair’s

benchmark, we used the models’ corresponding assertions as

oracles for BeAFix, and automatically generated test suites,

using Aunit [18], for ARepair. Recall that ARepair requires

tests as oracles for the repair process; we actually follow the

IV. Ev a l u a t i o n

1141

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2021 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

TABLE I
Im p a c t o f p r u n i n g in r e p a i r a b i l i t y .

Benchmark Total
cases

Pruning Disabled
Repaired Cases Avg. Time

Pruning Enabled
Repaired Cases Avg. Time

Improved repairability/efficiency
Repaired Cases Avg. Time [Range min - max]

ARepair's benchmarks
balancedBST 2 0 0 - -

cd 1 1 1765 1 540 1. 0 0 x 3X [3X - 3X]

dll 3 2 290366 2 2756 1. 0 0 x 80X [26X - 133X]

farmer 1 0 0 - -

fsm 1 0 0 - -

student 10 0 5 184030 5.00x 26x [1X - 81X]

Total: 18 3 146066 8 62442 2. 6 6 x 37X [1X - 133X]

Alloy4Fun's benchmarks
Graphs 22 6 409667 16 6821 2. 6 6 x 123X [9X - 387X]

LTS 33 0 1 1983 1. 0 0 x 181X [181X - 181X]

Trash 23 7 94960 15 8084 2.14x 46X [2X - 107X]

Production 2 0 0 - -

Classroom 169 14 755978 32 138447 2.28x 82X [1X - 433X]

CV 24 0 0 - -

Total: 273 27 420201 64 38833 2.36x 85x [1X - 433X]

procedure suggested in [19], as test cases are not commonly

found accompanying Alloy specifications. Notice then that the

results reported in [19] do not coincide with those reported

here for ARepair’s benchmark, as we use the same models

with different test suites. The test suites used in [19] include

manually designed cases, to help ARepair in overcoming

overfitting. In our evaluation, we favored a comparison in

which only the original assertions are available, and thus we

generated test cases automatically, with Aunit (using the best

performing criterion, predicate coverage [18]).

From the Alloy4Fun dataset, we generated a benchmark

consisting of: (i) every faulty submission of the dataset as

a single specification (these correspond to every intermediate

specification submitted for analysis check in Alloy4Fun); and

(ii) the specifications combining all modifications within a

single user session, that we used for R Q 1 . The total number

of faulty specifications in this benchmark is 2209 (1936 faulty

submissions, plus 273 sessions combining submissions of the

same user). For BeAFix, we used the models’ corresponding

assertions as oracles. Since we do not have tests for these

specifications, and ARepair inherently requires tests as repair

oracles, we generated tests automatically using AUnit [18]

(with predicate coverage as a target criterion), using the

specification assertions, and employed these generated test

suites for running ARepair.

In all of the above cases, we contrasted the obtained repairs

against correct versions of the corresponding specifications,

using Alloy Analyzer, to account for overfitting. The results

for ARepair and Alloy4Fun benchmarks are summarized in

Tables II and III, respectively. For each model, we report the

number of cases, and for each tool, the number of fixes found

(percentage also reported), and how many of these are correct

and incorrect (the latter, due to overfitting) patches. We also

report the percentage of correct and incorrect patches, with

respect to the total number of cases, and the average repair

time in milliseconds, for each tool (these are the averages only

for the repaired cases).

A. Discussion
Let us discuss the evaluation results. For R Q 1 , the results

are conclusive: the impact of pruning is significant. Let us

remark that the efficiency speed up is better than the increase

in repairability (38X to 85X speed up, as opposed to roughly

2.5X increase in repairability). This may be explained by the

timeout that we have set: 1 hour may be a small timeout for

specification repair using BeAFix: increasing it may show a

repairability increase closer to the speed up. Another important

issue about these results is that the semantic check that we

need to perform for pruning using variabilization, does in fact

pay off. In other words, the variabilization checks, that require

additional calls to the SAT solver, implied a time saving thanks

to pruning that improved the overall analysis time. This, of

course, is relative to the considered case studies. We did not

observe any case where the overhead caused by pruning made

the tool to actually take longer to repair a faulty specification,

which may in fact happen for a specification, if most feasibility

checks succeed, consuming time and leading to no pruning.

The benchmarks were taken from other authors’ work; we

did not purposely look for specifications that may favor or

harm the pruning strategies. We plan to design synthetic

specifications, and extend the set of case studies, to further

assess the effect of pruning.

Regarding R Q 2 , the comparison between BeAFix and

ARepair can be analyzed along various dimensions. Let us

first consider the evaluation over ARepair’s benchmark. For

this benchmark, the test suites used for running ARepair

are solely composed of automatically generated tests, using

AUnit with predicate coverage. As a result, the number of

correct specification fixes differ from the experiments in [19],

where manually designed test cases helped the tool from

overfitting. In our current experiments, ARepair is affected

1142

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2021 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

TABLE II
Ex p e r i m e n t s t a k e n f r o m ARe p a i r ’s b e n c h m a r k s .

Model
Total
Cases

ARepair B eAFix

R epaired (%)
Avg.
time

C orrect (%) Incorrect (%) R epaired (%)
Avg.
tim e

C orrect (%) Incorrect (%)

addr 1 1 (100%) 9010 1 (100%) 0 (0%) 1 (100%) 351 1 (100%) 0 (0%)
arr 2 2 (100%) 7651 2 (100%) 0 (0%) 2 (100%) 2394 2 (100%) 0 (0%)
balancedBST 3 2 (67%) 120276 1 (33%) 1 (33%) 1 (33%) 358 1 (33%) 0 (0%)
bempl 1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
cd 2 2 (100%) 3302 0 (0%) 2 (100%) 2 (100%) 742 2 (100%) 0 (0%)
ctree 1 1 (100%) 6774 1 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
dll 4 3 (75%) 22585 0 (0%) 3 (75%) 3 (75%) 2624 3 (75%) 0 (0%)
farmer 1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
fsm 2 2 (100%) 6068 2 (100%) 0 (0%) 1 (50%) 313 1 (50%) 0 (0%)
grade 1 1 (100%) 124797 0 (0%) 1 (100%) 0 (0%) 0 (0%) 0 (0%)
other 1 0 (0%) 0 (0%) 0 (0%) 1 (100%) 3120 1 (100%) 0 (0%)
student 19 12 (63%) 76120 9 (47%) 3 (16%) 13 (68%) 71197 13 (68%) 0 (0%)
Total: 38 26 (68%) 41843 16 (42%) 10 (26%) 24 (63%) 10137 24 (63%) 0 (0%)

TABLE III
Ex p e r i m e n t s t a k e n f r o m Al l o y 4Fu n ’s b e n c h m a r k s .

Total ARepair B eAFix
Model Cases

R epaired (%)
Avg.
tim e C orrect (%) Incorrect (%) R epaired (%)

Avg.
time C orrect (%) Incorrect (%)

Graphs 305 276 (90%) 2625 18 (6%) 25 8 (85%) 248 (81%) 6734 248 (81%) 0 (0%)
LTS 282 165 (59%) 8729 7 (2%) 158 (56%) 42 (15%) 5999 42 (15%) 0 (0%)
Trash 229 220 (96%) 4077 68 (30%) 152 (66%) 199 (87%) 4915 199 (87%) 0 (0%)
Production 63 47 (75%) 6232 8 (13%) 39 (62%) 56 (89%) 4124 56 (89%) 0 (0%)
Classroom 1168 911 (78%) 95717 92 (8%) 819 (70%) 418 (36%) 82856 418 (36%) 0 (0%)
CV 162 132 (81%) 4966 4 (2%) 128 (79%) 82 (51%) 2805 82 (51%) 0 (0%)
Total: 2209 1751 (79%) 20391 197 (9%) 1554 (70%) 1045 (47%) 17905 1045 (47%) 0 (0%)

by overfitting: 16 out of the 26 produced fixes are correct

fixes. BeAFix outperforms ARepair in terms of the number

of repaired models: 16 models repaired by ARepair, against

24 repaired by BeAFix (a 21% difference in the number

of repaired models, over the size of the benchmark). It is

worth remarking that the two techniques complement each

other in terms of the repaired models: ARepair is able to

repair models that BeAFix does not repair (see for instance

c t r e e and fsm), and BeAFix repairs models that ARepair

is not able to repair (see for instance s t u d e n t and o th e r) .

In terms of efficiency, both tools show comparable running

times. The average time to produce a repair is however just

a reference, since the tools perform different kinds of tasks.

BeAFix does not include fault localization, so the times here

account for absolute repair times, given that the faults have

been localized offline. ARepair, on the other hand, includes

both the time to localize faults and perform the repair. Let us

remark however that, in ARepair, on average 62% of the time

corresponds to repair and 38% to fault localization. Unlike

ARepair, that alternates between patching and calling fault

localization, BeAFix calls fault localization only once, before

triggering repair. As such, the proportion of time devoted to

fault localization is much less. In our experiments, when we

consider the combination of fault localization and BeAFix, on

average 4% is devoted to fault localization (in the worst case,

Student6, the fault localization time was 13% of the total time).

Further details can be found in the tool’s site (see below).

Now let us consider the Alloy4Fun benchmark. For this

benchmark, we did not have any choice but to automatically

generate test cases, as these were not available for these

models. We generated test cases automatically, using AUnit

[18] (again, using the best performing generation criterion, as

reported in [18]). ARepair is able to repair a significant number

of models: 1751 out of 2209. However, only 197 were correct

fixes; the remaining 1554 were overfitting cases, that passed

the automatically generated tests, but were not correct fixes for

the corresponding specifications. BeAFix, on the other hand,

produced a smaller number of fixes: 1042 out of the 2209. But

since it uses Alloy assertions as repair oracles, instead of test

cases, it showed no overfitting issues for these specifications.

As a result, BeAFix shows a better effectiveness in repair:

47% of correctly repaired models by BeAFix, against 9% of

correctly repaired models by ARepair. Regarding the cases

themselves, again, the tools complement each other: there are

cases correctly repaired by one tool that were not repaired by

the other, and vice versa.

1143

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2021 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

The observed overfitting is an important difference between

the two tools and their approaches, and confirms our intuition

and motivation regarding the use of stronger repair oracles,

that naturally come in specifications. Clearly, one may argue

that ARepair’s performance, in terms of overfitting, can be

improved by feeding the tool with different/stronger test suites.

We fully agree, and in fact, this is confirmed with ARepair’s

benchmark: if the test suites used in [19] are fed to ARepair

(which, as we mentioned, include manually crafted tests), then

26 out of 38 models are repaired, compared to the 14 out of

38 repaired models obtained with just automatically generated

tests (effectiveness is increased from 42% to 68%). Writing

the right set of test cases for specification repair is a time

consuming task, that would require a manual design of a test

suite for each of the models, to improve the tool’s results. The

overfitting problem is an inherent problem of using tests as

specifications, and thus it is expected of tools such as ARepair.

It is important to remark that we do not claim that our

technique leads to no overfitting, since this will depend on

the oracle being used, and how faithfully it captures the de-

veloper’s intentions. In the case of our controlled experiments,

where we had the ground truths as oracles (which would not be

the general case in formal specification), we had no overfitting,

although overfitting may still have been observed due to the

bounded nature of the analysis. In any case, being forced to

use test cases as opposed to more general properties makes it

more prone to overfitting.

Other attributes of the generated patches may be considered.

One of these is readability. We can remark that candidate

patches are built out of mutations of the faulty expressions,

and the space of faulty expressions is visited in breadth-first.

Therefore, simpler/shorter fix candidates are considered first.

While we did not evaluate readability in a systematic fashion,

BeAFix’s patches can be simpler and clearer than manual,

human-written ones. For instance, for Production.Inv4 in the

Alloy4Fun benchmark, the faulty expression:

all c: Component |
(c.parts).position in (c.position)."~next

is manually fixed by a student with the following expression:

all c: Component |
((c.'parts) & Component).position not in
(c.position).^next or no (c.^parts & Component)

BeAFix on the other hand, produces the following:

all c : one Component |
c.parts.position in c.position.~*next

Another dimension to consider is efficiency of our tech-

nique, compared with manual repairs. In Alloy4Fun we can

measure the effort of human patches, by considering the time

of the sessions of a same student, from defect introduction to

its fixing. On average, it takes a student about 10 minutes to fix

a defect, once it is introduced. On the other hand, the average

time to repair in the case of BeAFix is about 10 seconds. For

instance, for the above faulty specification, it took the student

a total of 49 minutes to get it right. BeAFix repaired it in 3

seconds. Due to space reasons, we do not present here a more

detailed comparison. The benchmarks, the tool’s output with

further statistical information, and the tool itself, can be found

in the tool’s site (see below).

V. Re l a t e d W o r k

The problem of automatically repairing software defects has

received great attention in the last decade, and a variety of

techniques have been proposed to tackle it, including generate-

and-validate techniques (e.g., based on evolutionary computa-

tion [16] or other forms of search in the space of candidates),

techniques based on patch synthesis (e.g., techniques that

gather constraints for correct program behavior and produce

patches from these [24]) and techniques driven by data (e.g.,

techniques based on learning [25]). The emphasis is largely

targeted at programs, rather than specifications. As explained

earlier in this paper, the context of formal specification has

some significant differences with programs (source code), that

render many of these techniques not applicable, or at least

difficult to adapt, to repairing specifications. The problem of

dealing with the explosion of repair candidates has been dealt

with in different ways, in the context of automated program

repair. Some approaches attempt to bring down the branching

factor in the search space by using a single mutation (e.g.,

[26]); others consider a very small set of mutators (e.g.,

based on patterns of human-written fixes [17]), or consider

coarse grained mutations (e.g., no intra-statement program

modifications [16]). Most of these approaches perform non-

exhaustive heuristic searches, as opposed to our technique,

that proposes safely pruning the search space.

o u r technique produces fine-grained repair candidates that

are akin to mutations [27], such as operator and operand

replacements, etc., or more generally, combinations of muta-

tions (as in higher order mutations in the context of mutation

testing [28]). The motivation for this decision is based on a

number of issues, that seem to impact the effectiveness of

larger-grained modifications (such as the copying, deletion and

swapping of whole expressions) as operations to build repairs

in the context of specification (for instance, for the case studies

presented in [20], our manual inspection showed no case where

one may repair the specification by deleting, swapping or

copying whole expressions within the specification). Firstly,

specifications do not seem to feature the same level of reuse

that programs have. For instance, in text books on formal

specification with more traditional languages such as Z [29]

or B [30], one does not see modularization mechanisms (e.g.,

schema/machine composition) being used for reuse across

different specifications, with the exception of the reuse of

some general purpose specifications of sets, sequences, etc.

Rather, modularization mechanisms seem to be exploited

mainly for specification organization, with little impact in

reuse. Secondly, most declarative specification languages are

order-insensitive (the order of declarations and statements is

irrelevant, as opposed to operational languages, making order-

changing modifications ineffective). Thirdly, specifications are

significantly shorter than source code, and therefore less

redundancy that could be exploited for repairs is observed.

1144

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2021 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

While most work on automated repair applies to programs,

there are some notable exceptions [31], [19], [20]. The tool

AutoFix [31] targets contract-equipped programs, and can

produce repairs that make the programs satisfy their contracts

(at least as far as a test suite can determine). The technique can

modify contracts as well as the code itself, and therefore can

be considered as a specification repair technique. The approach

differs from ours in many respects: it applies to specifications

at the source-code level, as opposed to the more abstract

specifications we target in this paper; it is not constrained

to specifications, it can indistinguishably alter programs and

specifications; and the specification is not the oracle for repair,

the tests are. An approach closely related to ours, as it applies

to Alloy specifications too, is ARepair [19], [20]. ARepair

repairs faulty Alloy specifications by combining a number

of techniques, including a technique for synthesis known as

sketching [32], and mutation-based repairs, as in program

repair. ARepair can fix specifications with multiple buggy

locations, and is able to do so considering a manageable set of

candidates, thanks to an effective fault localization approach

(and resorting to sketching rather than arbitrary mutations).

In effect, ARepair is guided by its own fault localization

approach, and the whole process is supported by Alloy tests.

Our approach, on the other hand, is not coupled with fault

localization, and can use different techniques (e.g., [33], [22],

as long as they can be used with the fault localization oracle

at hand) for fault localization. Alloy tests are similar to unit

tests for source code: they provide specific scenarios with an

expected outcome when evaluating specific parts of an Alloy

specification, e.g., a predicate. The tool has been successfully

applied to repair specifications taken from a benchmark of

Alloy models [3] very efficiently, by being combined with

techniques for automated Alloy test generation (as tests are

necessary for repair). As for program repair techniques which

use tests as acceptance criteria, they are subject to overfitting,
the problem that arises when a candidate passes all tests, but is

not a true repair, i.e., there are situations in which the program

(in this case, specification) fails to comply with the intended

behavior. This, as usual, is strongly related to the quality of

the provided test suite, and many of the cases from [3] were

repaired thanks to additionally, manually provided, test cases

[19], [20]. ARepair inherently depends on test cases, while our

technique works on arbitrary Alloy specification oracles. See

the previous section for a more detailed comparison of BeAFix

with ARepair, from a more experimental point of view.

Our technique uses Alloy counterexamples to weakly check

variabilization feasibility, since fully checking feasibility re-

quires dealing with higher-order quantification. To perform

this higher-order checking, one may use Alloy* [34]. We

experimented with this approach, but due to performance

issues, we favored our current counterexample-based mecha-

nism. Also in this line, one may profit from Alloy* to capture

Alloy’s grammar and semantics into Alloy*, and use the solver

to encode the whole repair approach. In this way, Alloy* would

function as a synthesis engine, with the solver doing the search

for repairs, as in some semantic program repair approaches

(e.g., [24]). In our initial attempts we did not manage to obtain

results, due to the available heap space being exceeded, for

fragments of Alloy’s grammar significantly smaller than what

we are considering with our ad-hoc search approach. We plan

however to further investigate this possibility.

VI. Co n c l u s io n

Software specification and modeling are crucial activities

of most software development methods. Getting a software

specification right, i.e., capturing correctly a software design,

the constraints and expected properties, etc., especially when

the language to capture these is formal, is very challenging.

Thus, techniques and tools that help developers in correctly

specifying software is highly relevant. In this paper, we have

presented a technique that helps precisely in this task, in the

context of formal specification using the Alloy language [4].

Our technique has a number of characteristics that distinguish

it from related work [20]. Firstly, it does not require any

particular form of the oracles, i.e., the properties to be used for

assessing fix candidates (as opposed to existing work which

require such oracles to be expressed in terms of test cases).

Secondly, it bounded exhaustively explores the state space of

fix candidates, thus finding a specification fix, or guaranteeing

that such a fix is impossible within the established bounds,

for the identified faulty locations, and with the provided

mutation (syntactic modification) operators. This is suitable

in an Alloy context, where users are accustomed to bounded-

exhaustive analyses. This bounded-exhaustive exploration of

fix candidates demands then appropriate mechanisms to make

the search more efficient. Our technique comes with two sound

pruning strategies, that allow us to avoid visiting large parts

of the state space for fix candidates, which are guaranteed

not to contain valid fixes. We have assessed our technique

on a large benchmark of Alloy specifications, and shown that

the pruning strategies have an important impact in analysis.

The technique has an efficiency comparable to that of the

previous work [20], it complements the latter in terms of the

fixes it is able to generate, and is less prone to overfitting,

as it naturally supports stronger oracles based on assertion

checking and property satisfiability, that usually accompany

Alloy specifications.

VII. Da t a Av a il a b i l i t y

BeAFix, all benchmark data, further statistical information

and the instructions to replicate the experiments in this paper,

are available at [35]. A snapshot of the tool and benchmark,

as used in the paper, is available at [36].

Ac k n o w l e d g m e n t s

We thank the anonymous reviewers for their helpful com-

ments. This work was supported in part by awards W911NF-

19-1-0054 from the Army Research Office; CCF-1948536,

CCF- 1755890, and CCF-1618132 from the National Science

Foundation; and PICT 2016-1384, 2017-1979 and 2017-2622

from the Argentine National Agency of Scientific and Tech-

nological Promotion (ANPCyT).

1145

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2021 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

Re f e r e n c e s

[1] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software
Engineering, 2nd ed. Upper Saddle River, NJ, USA: Prentice Hall
PTR, 2002.

[2] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and
future directions,” ACM Comput. Surv., vol. 28, no. 4, pp. 626-643,
1996. [Online]. Available: https://doi.org/10.1145/242223.242257

[3] T. Nelson, N. Danas, D. J. Dougherty, and S. Krishnamurthi, “The
power of ”why” and ”why not”: enriching scenario exploration with
provenance,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017, E. Bodden, W. Schafer, A. van
Deursen, and A. Zisman, Eds. ACM, 2017, pp. 106-116. [Online].
Available: https://doi.org/10.1145/3106237.3106272

[4] D. Jackson, Software Abstractions - Logic, Language, and Analysis.
MIT Press, 2006.

[5] P. Zave, “Reasoning about identifier spaces: How to make chord correct,”
IEEE Transactions on Software Engineering, vol. 43, no. 12, pp. 1144-
1156, 2017.

[6] H. Bagheri, E. Kang, S. Malek, and D. Jackson, “A formal approach
for detection of security flaws in the android permission system,”
Formal Asp. Comput., vol. 30, no. 5, pp. 525-544, 2018. [Online].
Available: https://doi.org/10.1007/s00165-017-0445-z

[7] M. Alhanahnah, C. Stevens, and H. Bagheri, “Scalable analysis
of interaction threats in iot systems,” in ISSTA ’20: 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
Virtual Event, USA, July 18-22, 2020, S. Khurshid and C. S.
Pasareanu, Eds. ACM, 2020, pp. 272-285. [Online]. Available:
https://doi.org/10.1145/3395363.3397347

[8] H. Bagheri, A. Sadeghi, R. J. Behrouz, and S. Malek, “Practical, formal
synthesis and automatic enforcement of security policies for android,”
in 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2016, Toulouse, France, June 28 - July
1, 2016. IEEE Computer Society, 2016, pp. 514-525. [Online].
Available: https://doi.org/10.1109/DSN.2016.53

[9] S. A. Khalek, G. Yang, L. Zhang, D. Marinov, and S. Khurshid,
“Testera: A tool for testing java programs using alloy specifications,”
in 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011), Lawrence, KS, USA, November 6-10,
2011, P. Alexander, C. S. Pasareanu, and J. G. Hosking, Eds.
IEEE Computer Society, 2011, pp. 608-611. [Online]. Available:
https://doi.org/10.1109/ASE.2011.6100137

[10] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek, “Reducing
combinatorics in GUI testing of android applications,” in Proceedings
of the 38th International Conference on Software Engineering, ICSE
2016, Austin, TX, USA, May 14-22, 2016, L. K. Dillon, W. Visser, and
L. A. Williams, Eds. ACM, 2016, pp. 559-570. [Online]. Available:
https://doi.org/10.1145/2884781.2884853

[11] P. Abad, N. Aguirre, V. S. Bengolea, D. Ciolek, M. F. Frias, J. P.
Galeotti, T. Maibaum, M. M. Moscato, N. Rosner, and I. Vissani,
“Improving test generation under rich contracts by tight bounds and
incremental SAT solving,” in Sixth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2013, Luxembourg,
Luxembourg, March 18-22, 2013. IEEE Computer Society, 2013, pp.
21-30. [Online]. Available: https://doi.org/10.1109/ICST.2013.46

[12] G. Dennis, F. S. Chang, and D. Jackson, “Modular verification
of code with SAT,” in Proceedings of the ACM/SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA
2006, Portland, Maine, USA, July 17-20, 2006, L. L. Pollock and
M. Pezze, Eds. ACM, 2006, pp. 109-120. [Online]. Available:
http://doi.acm.org/10.1145/1146238.1146251

[13] J. P. Galeotti, N. Rosner, C. L. Pombo, and M. F. Frias, “Analysis
of invariants for efficient bounded verification,” in Proceedings of
the Nineteenth International Symposium on Software Testing and
Analysis, ISSTA 2010, Trento, Italy, July 12-16, 2010, P. Tonella
and A. Orso, Eds. ACM, 2010, pp. 25-36. [Online]. Available:
http://doi.acm.org/10.1145/1831708.1831712

[14] J. P. Galeotti, N. Rosner, C. G. L. Pombo, and M. F. Frias, “TACO:
efficient sat-based bounded verification using symmetry breaking and
tight bounds,” IEEE Trans. Software Eng., vol. 39, no. 9, pp. 1283-1307,
2013. [Online]. Available: https://doi.org/10.1109/TSE.2013.15

[15] D. Jackson, “Alloy: a language and tool for exploring software designs,”
Commun. ACM, vol. 62, no. 9, pp. 66-76, 2019. [Online]. Available:
https://doi.org/10.1145/3338843

[16] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog:
A generic method for automatic software repair,” IEEE Trans.
Software Eng., vol. 38, no. 1, pp. 54-72, 2012. [Online]. Available:
https://doi.org/10.1109/TSE.2011.104

[17] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in 35th International Conference
on Software Engineering, ICSE '13, San Francisco, CA, USA, May
18-26, 2013, D. Notkin, B. H. C. Cheng, and K. Pohl, Eds.
IEEE Computer Society, 2013, pp. 802-811. [Online]. Available:
https://doi.org/10.1109/ICSE.2013.6606626

[18] A. Sullivan, K. Wang, and S. Khurshid, “Aunit: A test automation
tool for alloy,” in 11th IEEE International Conference on Software
Testing, Verification and Validation, ICST 2018, Vdstercis, Sweden, April
9-13, 2018. IEEE Computer Society, 2018, pp. 398^03. [Online].
Available: https://doi.org/10.1109/ICST.2018.00047

[19] K. Wang, A. Sullivan, and S. Khurshid, “Automated model repair
for alloy,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, Montpellier,
France, September 3-7, 2018, M. Huchard, C. Kastner, and
G. Fraser, Eds. ACM, 2018, pp. 577-588. [Online]. Available:
https://doi.org/10.1145/3238147.3238162

[20] ------, “Arepair: a repair framework for alloy,” in Proceedings of the
41st International Conference on Software Engineering: Companion
Proceedings, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019,
J. M. Atlee, T. Bultan, and J. Whittle, Eds. IEEE / ACM,
2019, pp. 103-106. [Online]. Available: https://doi.org/10.1109/ICSE-
Companion.2019.00049

[21] N. Macedo, A. Cunha, J. Pereira, R. Carvalho, R. Silva, A. C. R. Paiva,
M. S. Ramalho, and D. C. Silva, “Experiences on teaching alloy with an
automated assessment platform,” in Rigorous State-Based Methods - 7th
International Conference, ABZ 2020, Ulm, Germany, May 27-29, 2020,
Proceedings, ser. Lecture Notes in Computer Science, A. Raschke,
D. Mery, and F. Houdek, Eds., vol. 12071. Springer, 2020, pp. 61-77.
[Online]. Available: https://doi.org/10.1007/978-3-030-48077-6_5

[22] G. Zheng, T. Nguyen, S. Gutierrez-Brida, G. Regis, M. Frias, N. Aguirre,
and H. Bagheri, “FLACK: Counterexample-guided fault localization for
alloy models,” in Proceedings of the 43rd ACM/IEEE International
Conference on Software Engineering ICSE 2021, Virtual (originally
Madrid, Spain), 23-29 May 2021, 2021.

[23] Y. Jia and M. Harman, “Higher order mutation testing,” Inf. Softw.
Technol., vol. 51, no. 10, pp. 1379-1393, 2009. [Online]. Available:
https://doi.org/10.1016/j.infsof.2009.04.016

[24] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: scalable multiline
program patch synthesis via symbolic analysis,” in Proceedings of the
38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016, L. K. Dillon, W. Visser, and
L. Williams, Eds. ACM, 2016, pp. 691-701. [Online]. Available:
https://doi.org/10.1145/2884781.2884807

[25] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016,
St. Petersburg, FL, USA, January 20 - 22, 2016, R. Bodik and
R. Majumdar, Eds. ACM, 2016, pp. 298-312. [Online]. Available:
https://doi.org/10.1145/2837614.2837617

[26] D. Gopinath, M. Z. Malik, and S. Khurshid, “Specification-based
program repair using SAT,” in Tools and Algorithms for the
Construction and Analysis of Systems - 17th International Conference,
TACAS 2011, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2011, Saarbriicken, Germany,
March 26-April 3, 2011. Proceedings, ser. Lecture Notes in Computer
Science, P. A. Abdulla and K. R. M. Leino, Eds., vol. 6605. Springer,
2011, pp. 173-188. [Online]. Available: https://doi.org/10.1007/978-3-
642-19835-9_15

[27] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2008.

[28] Y. Jia and M. Harman, “Higher order mutation testing,” Inf. Softw.
Technol., vol. 51, no. 10, pp. 1379-1393, 2009. [Online]. Available:
https://doi.org/10.1016/j.infsof.2009.04.016

[29] J. C. P. Woodcock and J. Davies, Using Z - specification, refinement,
and proof, ser. Prentice Hall international series in computer science.
Prentice Hall, 1996.

1146

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2021 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

[30] J. Abrial, The B-book - assigning programs to meanings. Cambridge
University Press, 2005.

[31] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller,
“Automated fixing of programs with contracts,” IEEE Trans. Software
Eng., vol. 40, no. 5, pp. 427-449, 2014. [Online]. Available:
https://doi.org/10.1109/TSE.2014.2312918

[32] A. Solar-Lezama, “Program sketching,” Int. J. Softw. Tools Technol
Transf, vol. 15, no. 5-6, pp. 475^95, 2013. [Online]. Available:
https://doi.org/10.1007/s10009-012-0249-7

[33] K. Wang, A. Sullivan, D. Marinov, and S. Khurshid, “Fault Localiza-

tion for Declarative Models in Alloy,” in International Symposium on
Software Reliability Engineering (ISSRE), 2020, p. to appear.

[34] A. Milicevic, J. P. Near, E. Kang, and D. Jackson, “Alloy*:
a general-purpose higher-order relational constraint solver,” Formal
Methods Syst. Des., vol. 55, no. 1, pp. 1-32, 2019. [Online]. Available:
https://doi.org/10.1007/s10703-016-0267-2

[35] “BeAFix site,” https://sites.google.com/view/beafixevaluation, 2021.

[36] “BeAFix version and experimental data snapshot,”
https://doi.org/10.6084/m9.figshare.13626776.v1, 2021.

1147

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2021 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

