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Abstract 

The high emissions of greenhouse gases and the impact generated on the environment 

by human behavior during the last few years has led many governments to decide to 

promote the use of electric cars for passenger transport, as well as the replacement of 

conventional energy sources by renewable ones. These radical changes have a high impact 

on the installed energy infrastructure, especially if electric vehicles are charged in an 

uncontrolled mode because this could generate peaks of consumption saturating the 

electricity grid, as they require a high-power load. However, if the same vehicles could be 

charged in a controlled manner this would bring several advantages, such as shifting load 

to times when there is less consumption thus decreasing the power required during 

consuming peaks, or charging them during times when the price of electricity is low, thus 

generating savings in energy costs. In this master's thesis, a model was developed to find a 

schedule for charging electric vehicles that reduce these costs, later analyzing the economic 

benefits that this entails. 
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Kurzfassung 

Die hohen Treibhausgasemissionen und die Auswirkungen des menschlichen 

Verhaltens auf die Umwelt in den letzten Jahren haben viele Regierungen veranlasst, die 

Verwendung von Elektroautos im Personenverkehr sowie den Ersatz konventioneller durch 

erneuerbare Energiequellen zu fördern. Diese radikalen Veränderungen haben einen hohen 

Einfluss auf die bereits installierte Energieinfrastruktur, insbesondere die Elektrofahrzeuge. 

Wenn diese unkontrolliert aufgeladen werden, könnten Verbrauchsspitzen entstehen, die 

das Stromnetz überfordern, da Elektroautos in diesem Fall eine sehr hohe Stromleistung 

benötigen. Wenn jedoch dieselben Fahrzeuge kontrolliert aufgeladen werden könnten, 

würde dies verschiedene Vorteile mit sich bringen, wie z.B. die Verlagerung der 

Stromnutzung auf Zeiten mit geringerem Verbrauch, wodurch der Leistungsbedarf in 

Spitzenzeiten verringert wird, oder die Aufladung in Zeiten mit niedrigem Strompreis, was 

zu Einsparungen bei den Energiekosten führt. In dieser Masterarbeit wurde ein Modell 

entwickelt, das einen Zeitplan für die Ladung von Elektrofahrzeugen vorsieht und 

gleichzeitig zu einer Reduzierung der Kosten führt und später den damit verbundenen 

wirtschaftlichen Nutzen analysiert. 
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Abstracto 

 Las altas emisiones de gases de efecto invernadero y el impacto generado en el 

medio ambiente por el comportamiento humano durante los últimos ha generado que 

muchos gobiernos decidan promover el uso de automóviles eléctricos para el transporte de 

pasajeros, así como también el reemplazo de las fuentes de energía convencionales por las 

renovables. Estos cambios radicales tienen alto impacto en la infraestructura energética ya 

instalada, especialmente los vehículos eléctricos ya que si los mismos son cargados de 

forma no-controlada podrían generar picos de consumo saturando la red eléctrica, ya que 

requieren de una alta potencia de carga. Sin embargo, si los mismos vehículos pudieran 

cargarse de forma controlada esto traería consigo diversas ventajas, como desplazar la 

carga para momentos donde haya menor consumo disminuyendo así la potencia requerida 

durante los picos, o cargarlos durante momentos en que el precio de la electricidad es bajo, 

generando de esta forma ahorros en gastos energéticos. En esta tesis de maestría, se 

desarrollo un modelo que encuentra un cronograma de carga de vehículos eléctricos para 

disminuir dichos gastos, analizando posteriormente los beneficios económicos que ello 

conlleva. 
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1 Introduction  

 

1.1 Background 

Since the Kyoto Protocol was signed in 1997 by the UN participating countries, in 

which global warming was acknowledge and accepted, the nations involved are trying to 

reduce CO2 emissions. Several years later in 2015 in Paris 195 state parties agreed on 

limiting the increase on the world’s temperature on 1.5 °C per year, confirming the direction 

of policy makers to continue reducing greenhouse gas emissions (BMU, 2018, p. 18). In 

Germany, one of the highest CO2 emitters, in the year 2018, 60.6% of the transport sector 

emissions were produced by passenger vehicles, and it is one of the aims of the Climate 

Action Plan 2050 of the Federal Government to reduce these emissions (BMU, 2018, p. 39). 

And to accomplish this objective, electrifying part of the transport sector might seem a 

reasonable solution, but the integration of renewables it is also an important factor to 

consider. Eventually, if the energy used to drive electric and plug-in hybrid vehicles is 

produced by carbon-based power plants, it will not help to reduce the emissions. The 

energy sector is also responsible for green-house gases emissions and therefore, measures 

in this subject are being taken also by the policy makers in Germany to accomplish the 

political objectives set by the energy transition (“Energiewende”), shutting down lignite and 

coal power plants and replacing this generation with renewable energy sources (RES) (Hayn, 

Bertsch, & Fichtner, 2014, p. 30), which are expected to represent at least the 35% of the 

electricity consumption in the year 2020 (BMU, 2018, p. 24). 

Since 2005 the market of electric vehicles (EV) has been expanding around the world, 

with a notorious increase in the past few years. Only in the year 2017 regarding the EVs 

sales, in China almost 580.000 were sold, in Norway, the leader in market share, 39% of all 

the vehicles sold were EVs, and in Germany the sales were doubled respect to 2016 as 

described in Figure 1 (IEA, 2018, p. 21). 
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Subsequently, this change of the share of EVs will bring new challenges, but 

especially regarding the electrical grid, the responsible of delivering the driving energy for 

all these vehicles. Charging simultaneously several EVs will change significantly the load 

profile for a certain residential area, as discussed in (Jochem, Kaschub, & Fichtner, 2011) 

and shown in Figure 2. 

 

Fig. 1. Passenger electric car stock in major regions and the top-ten EVI (Electric 
Vehicles Initiative) countries. Source: (IEA, 2018, p. 19) 

 



Price-based charging scheduling optimization for BEV   Institute for Industrial Production (IIP) - KIT 

Page 11 of 70 
 

 

 

 

Moreover, not only will the charging process of an EV increase the household net 

energy requirements but will also rise the peak loads during peak hours, when users usually 

charge their vehicles. Controlling the charging process of the vehicle so that it can be 

scheduled for hours in which power demand is lower can actually help to reduce the impact 

of the EVs in the electrical grid. 

1.2 Motivation and scope 

The goal of this master thesis is to analyse, comprehend and understand the full 

potential of controlling and scheduling the charging process of battery electric vehicles, 

based on the intraday electricity prices and the benefits, advantages and drawbacks it may 

produce. For this, a linear optimization model is going to be developed to find an optimal 

charging schedule for a single vehicle, based on data of real vehicle drivers and the spot 

electricity prices for the Schleswig-Holstein region in northern Germany for the year 2015, 

which purpose is to minimize the expenditures on energy for driving these vehicles, 

eventually reducing operation costs, and consequently  improving the total cost of 

ownership (TCO) for an EV. The results of the optimization for a single vehicle could be later 

on aggregated to find the charging load for a whole fleet when using controlled charging 

Fig. 2. Load profile of an urban district with uncontrolled 
electric vehicles charging. 

Source: (Jochem, Kaschub, & Fichtner, 2011) 
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methods. In addition, controlled charging could be used as a demand response (DR) 

measure in the future, to load the grid when its required or as an option for load shifting 

potential (LSP), to reduce the electricity demand during peak hours. 

1.3 Research questions 

Although some publications in this same direction describe a similar approach, there 

are no studies that describe with detail the model aforementioned and there is no tool to 

simulate the model for further analysis of results. Therefore, the following research 

questions are answered in this master thesis: 

RQ1: How can a mathematical model that optimizes the charging schedule of an EV 

that minimizes the expenditures on energy and meets the trip requirements of the 

driver be described and formulated? 

RQ2: Can this model be simulated to find the optimal schedule for a single vehicle? 

RQ3: How significant are the savings when charging in a controlled versus 

uncontrolled mode for a single vehicle and for a fleet?  

To answer the first two research questions, and after the research presented in section 

2, the model is going to be described in section 3, where the mathematical model is 

presented, and the software implementation explained. In section 4, results for the 

optimization are shown to answer the third research question. To conclude, in sections 5 

the model is going to be furtherly discussed, and in section 6 conclusions to the research 

outlined. 
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2 Literature research  

 

In this chapter of the master thesis the reasons to study the benefits of controlled 

charging of an EV are going to be presented, mentioning other studies with different 

approaches to analyse a solution for the important changes the electrical grid will suffer by 

the emerging electromobility. 

Using electric motors to drive means of transport has been working since the first half of 

the 19th century, after the discovery of electricity. In May 1834 Moritz Hermann Jacobi built 

the first electric motor in Königsberg, Prussia (today Kaliningrad, Poland) (Doppelbauer, 

2018), and sometime later (1884) Thomas Parker, prominent British pioneer, built what can 

be considered the first electric car, in the same era in which Karl Benz was inventing his first 

“Motorwagen” in 1885 in Mannheim, Germany (Guarnieri, 2012). 

But later, in the beginning of the 20th century, due to the success of the internal 

combustion engine vehicle (ICEV), boom of oil production and consequent falling prices and 

growing accessibility of petrol stations, ICEV prevailed, and electric powered vehicles were 

forgotten (Palinski, 2017, p. 3). Of course, that didn’t mean that electromobility had no 

future, since train, trolleys, trams and other means of transport continued using electric 

motors to drive, although there are some basic differences with battery electric vehicles. 

2.1 Charging electric and hybrid vehicles 

Electric vehicles are, by definition, vehicles which are driven by electric motors, using 

electric energy. This energy can be stored in the vehicle or can be obtained from an 

electrical grid. When cars include a battery, they are generally considered as a Battery 

Electric Vehicle (BEV) or just Electric Vehicle (EV) and this battery needs to be connected to 

the electrical grid to obtain electrical energy, that will be later used for driving. But there 

are also hybrid cars which are cars that are driven by both electric motors and internal 

combustion engines. This kind of cars may or may not include a battery, therefore the ones 
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which do include a battery and need to be connected to be charged are called Plug in Hybrid 

Electric Vehicles (PHEV), and if they don’t just Hybrid Electric Vehicle (HEV). 

Nowadays charging electric vehicles it is a key factor because it is considered as one of 

the disadvantages of the EV when compared with ICEV, since the second one only needs a 

few minutes to fill its tank, and although there are today several different modes of charging 

an EV, including a fast charging mode, still it is very difficult to do in the same time as a 

regular car takes to fill the tank of petrol or diesel. 

Throughout the past three decades there had been several developments in technology 

for charging EVs, the so-called Electric vehicle supply equipment (EVSE) and the 

International Energy Agency (IEA) uses three main characteristics to differentiate chargers 

from one another (IEA, 2018, p. 39): 

• Level: the power output range of the EVSE outlet. 

• Type: the socket and connector used for charging. 

• Mode: the communication protocol between the vehicle and the charger. 

The following table shows the most prevalent charging standards by level and type, since 

they vary according to different regions around the globe. Direct current (DC) seems to be 

the most promising technology, although it requires higher investments cause its 

technology is more complex. 
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Table 1. Overview of the EVSE characteristics in the main regions 
Source: (IEA, 2018, p. 40) 
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With these new technologies charging an 85-kWh battery with a 480 VDC Tesla 

supercharger may take up to 75 minutes. Nevertheless, as the charging time tends to reduce 

to make the BEV competitive with the ICEV, consuming power on peaks hours tends to 

increase, and this may lead to a mismatch between electricity demand and supply and 

eventually considerable changes in the electricity market: if the demand cannot be fully 

satisfied by the generation, a loss-of-load event occurs, also known as “generation capacity 

deficit”, and the market will set the price synthetically (Ensslen et al., 2018, p. 112). 

The charging process of a BEV it is a very complex process that involves several 

parameters, such as electrical specifications of the charger, technical characteristics of the 

battery’s technology, age and reuse cycles of the battery, but they are of no interest in this 

thesis. Yet, it is relevant to mention that the charging process can be controlled or 

uncontrolled. For an uncontrolled charging process the battery begins to charge at 

maximum power as soon as it is connected and will continue to charge until the battery has 

reached its maximum state of charge (first at constant current, then constant voltage). In 

contrast, a controlled charging process is the one in which the process may or not may be 

continuous, but instead it is deliberately paused or delayed by a human or a machine, and 

power can be adjusted from 0 Watts to maximum power. This charging method can also be 

sometimes referred as “smart charging”. 

 

2.2 Power generation: renewables and electricity market. 

However, considerably higher charging times is not the only issue to address. Unlike 

other goods and services, electricity has a unique condition: supply must meet demand at 

all time (or generation must meet consumption) otherwise the networks stability can be 

compromised as well as the grid infrastructure could be jeopardized (Flath, Ilg, Gottwalt, 

Schmeck, & Weinhardt, 2014, p. 619). Since the Energiewende (energy transition) goals 

were set (Hayn et al., 2014, p. 30), Germany is trying to change its energy matrix, increasing 

the share of renewable energy sources (RES) like wind and photovoltaic and reducing the 

participation of nuclear and carbon-based power plants. But there is a natural characteristic 
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that differentiates these types of technologies: on one side wind and photovoltaic are 

intermittent, their generation depends on weather and climate conditions which cannot be 

controlled, and its generation is decentralized. On the other side, carbon and nuclear power 

plants are used as base power since they are more reliable and their generation it is usually 

centralized and injected into a high voltage grid. So as more renewables come in, and more 

base power plants are put out of service, the electric network becomes more unstable and 

intermittent in generation, making it less reliable. Therefore, it is even more difficult to 

make consumption (demand) meet generation (supply) since it is more unpredictable. 

Furthermore, Germany has policies which give priority to dispatch RES energy over fossil 

fuels energy when demand is satisfied  (Khoshrou, Pauwels, & Dorsman, 2017, p. 4). 

The modifications to the electrical grid mentioned influence the electricity spot market. 

An electricity spot market is a place or platform where short term electricity contracts are 

agreed to trade electric energy for the next days. Electricity generators or sellers must set 

the quantities of energy they are willing to offer and its price, and distributors or buyers 

should set the amount of energy they will be needing for the next day, and how much are 

they willing to pay. In Germanys electricity market there are two spot markets: the day-

ahead market where bids are offered hourly for the next day, and the intraday market 

where bids can be offered hourly and every 15 minutes. The main difference between these 

both markets, besides the time basis, is that on the day-ahead market bids must be made a 

day before, and for the intraday market they can be done 45 minutes before. 

More importantly, since the renewables share in the energy matrix is rising, this has been 

affecting these markets. According to (Khoshrou et al., 2017), the impact of RES on the day 

ahead market can be appreciated when analysing data from 2011 to 2016, showing a clear 

correlation between the price day profile of the sunlight hours and the energy produced by 

the photovoltaic systems, especially during the summer when it can be seen that peak 

prices shift away from the day-light hours. The increase of the occurrences of negative and 

low prices can also show how the renewables, especially wind energy, are affecting price 

because they have been happening more often for the past last years. (Flath et al., 2014) 

explains this correlation: “As wind turbines and solar power have almost zero marginal cost 
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of generation, they displace peaking plants with higher marginal costs. Therefore, 

availability of generation from renewable sources reduces the wholesale price.” (Flath et al., 

2014, p. 621) 

 

2.3 Power consumption: load profiles, load shifting and demand response 

In the following section the power consumption is going to be discussed, focusing on 

how will the increase of market share of EV influence of the loading profile, although making 

focus on the residential load, which in the case of Europe is not the most representative 

part, just the 29% (Hayn et al., 2014, p. 30), but it is of the interest of this thesis. In addition, 

concepts such as Load Shifting and Demand Response are going to be introduced. 

If a typical household consumption profile is analysed, it can be observed that the 

consumption peaks occur mostly during the morning and evening hours. The most power 

demanding appliances such as the fridge, dishwasher, washing machines, heating devices 

and hair dryers are usually being used during these periods, causing these peaks, but when 

compared in power and energy requirements with an electric vehicle charger they seem 

insignificant, especially when considering the 11 kW charger, which can easily double the 

household electricity consumption (Jochem et al., 2011, p. 5). As analysed by (Hayn et al., 

2014, p. 37) assuming that a single driver could drive 15.000 km per year with an efficiency 

of 20 kWh/100 kilometres, one single EV would require 3.000 kWh per year, the equivalent 

of the annual electricity consumption for a German average household. 

This means, the load profile for the typical household can change drastically when an EV 

is charged, and when the charging process is uncontrolled this may happen during the 

consumption peaks, making the worst case possible, increasing the maximum power 

consumption of the household, consequently impacting also on the low voltage grid (0.4 

kV). The same analysis was made in (Paetz, Kaschub, Jochem, & Fichtner, p. 4) for a 500 

households profile assuming a high penetration of EV in the market share and obtaining as 

a result an increase of the load peak of 231%, during evening hours (see figure 3). 
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This issue was also addressed in (Jochem et al., 2011) and the solution proposed is to 

control the charging process so it doesn’t match with the already existing high peaks, but 

by charging the vehicle during times of lower consumption. By doing this, the load 

generated by the EV charging process would be shifted to a consumption valley, for 

example, during the night hours where consumption in households is really low. Battery 

electric vehicles turn out to be a very good option for load shifting because of their long 

parking hours (Paetz et al., p. 1), whether it is at home or at the workplace and a great 

Fig. 3. Effect of uncontrolled charging of an EV on a 500 aggregated load profiles of 
households in summer (assuming high penetration of EVs). 

Source: (Paetz, Kaschub, Jochem, & Fichtner, p. 4) 
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demand of power and energy. As stated in (Babrowski, Heinrichs, Jochem, & Fichtner, 2014) 

EV have a great load shifting potential (LSP), and could be used as a demand response (DR) 

measure. For LSP is understood the potentiality of shifting load from consumption peaks to 

low power demand valleys, as described in figure 4. 

 

 

 

 

This is quite relevant because, as mentioned in the previous section, the energetic matrix 

will be going through several significant changes that will compromise its stability and will 

be needing this balancing measures, and a demand response measure like sending low price 

signals to encourage users to charge the EV in load demand hours could be really helpful in 

this way. However (Babrowski et al., 2014, p. 284) stated that this measure should be 

carefully coordinated to prevent an undesired effect of having simultaneous EV charging at 

the same time in the same location. This problem was identified at (Ensslen et al., 2018) 

when all the users received the same price signal and all the charging was scheduled for the 

same low-price period, generating a spike of consumption load, what it is known as 

“avalanche effect” (Ensslen et al., 2018, pp. 112–113), a significant and sudden increase of 

the charging load. 

  

Fig. 4. Load shifting concept. 
Source: Jochem et al 2013 (026) 
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2.4 Relevant studies 

For the research corresponding to this master's thesis, different publications have 

been studied related to the optimization of charging electric vehicles. First of all, it is worth 

mentioning the work of (Ensslen et al., 2018) "Incentivizing smart charging" which describes 

and evaluates the benefits of implementing an electricity tariff or business model that will  

incentive EV users to charge their vehicles with a controlled mode, and consequently 

provide load flexibilities to charging managers, focusing on France and Germany. This study 

analyses also the acceptance of the user of the electric vehicle, their minimum range 

requirements, the social barriers, as well as the business model of the aggregator or 

charging manager and their revenues. Another essential point to mention is that, as it is 

intended to do in this master thesis, the objective of the charging manager is to minimize 

the costs and uses the day-ahead market prices information to find the optimum schedule 

of the charging events. For the 5 different scenarios presented, the results of the average 

load profiles for scenarios 1, instantaneous or uncontrolled charging, and scenario 4, 

scheduled charging at home and work, are interesting for the study of this master thesis 

because the same comparison is intended to be done. As a general conclusion, from this 

work it can be stated that controlled charging methods can generate savings to the charging 

managers, as it is intended to be shown in the model that will be developed. 

In second and third place, the contributions of (Sundström & Binding, 2010) and (Hu, 

You, Oestergaard, Lind, & Qiu Wei, 2011) as they describe an optimization model also based 

on the price of electricity, although with some differences between them, but are the works 

that came closest to what this thesis work aims to study. Both have the objective of 

minimizing the costs of charging an electric car, but the first of them with a specific focus 

on the behaviour of the battery (linear or quadratic approximation) and also taking into 

account a "constraint" for generation, while the second has an approach from the point of 

view of "aggregator/fleet manager/fleet operator". This manager, who has information on 

the future trips of users and the price of electricity for the next 24 hours, finds the schedule 

to charge the entire fleet while minimizing energy costs. To do so, it must assume that the 

power of the charger is constant, that it knows the state of charge (SOC) of the battery at 
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the time of starting the simulation/optimization and underestimates the costs for deeply 

discharging the battery (Depth of Discharge) that decrease the useful life of the battery (Hu 

et al., 2011, p. 3). These two works propose quite similar mathematical models, clear and 

concise, but none of them details the development of the equations to obtain the 

corresponding matrices and vectors to be able to implement any model or other. 

 

In the model described by (Sundström & Binding, 2010) (figure 5) pb is the decision 

variable, cT is the costs vector, ts is the time slot and the function to minimize is 𝑡𝑠𝑐
𝑇𝑝𝑏, 

subject to three constraints: a stop-over inequality constraint, which means the vehicle 

must have enough energy in the battery to drive the following trip, a generation inequality 

constraint, to assure that there is energy being generated to charge the vehicle, and the 

battery inequality constraint which is defined to set the upper limit of the battery capacity. 

Finally, the last equation sets the boundaries for charging power pb (Sundström & Binding, 

2010)  

On the other side, the model proposed by (Hu et al., 2011) described in figure 6 uses 

energy instead of power as a decision variable, simply by multiplying the charging power 

vector times the time variable. Again, they use CT as costs vector, and the function to 

minimize is 𝐶𝑇𝐸, being E the decision variable vector. This function is subject also to three 

constraints just like in the previous model. 

Fig. 5. Mathematical model 
proposed by (Sundström & 

Binding, 2010). 
 

Fig. 6. Mathematical model proposed by (Hu, 
You, Oestergaard, Lind, & Qiu Wei, 2011) 
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2.5 Conclusions 

The EV market will continue to grow over the next few years and the share of RES in 

the energy matrix will increase, and this will bring with it many challenges to face. The grid 

instability generated by RES can produce a mismatch between supply and demand of 

electric energy, and this can be aggravated by the simultaneous charging of electric cars, 

affecting the grids reliability and security.  On the other hand, this same problem that EV  

generate could serve as a solution to give stability to the network and generate 

consumption when needed, if the charging events for these EV’s can be schedule to low 

demand consumption valleys. If these solutions can be implemented, not only it benefits 

the grid but also reduces price volatility in the wholesale electricity markets (Ensslen et al., 

2018, p. 112) and also could save money, since electricity prices are usually higher during 

consumption peaks, shifting the charging process to a valley would make it more cost 

effective. 

Several studies have been conducted regarding the subject of finding the optimal 

schedule to minimize the expenditures, with different approaches and different outcomes. 

Although all of them propose the same idea of finding the optimal schedule by minimizing 

charging expenditures, none of them described how to formulate the model in details, as 

this master thesis pretends to do in Section 3, showing how to obtain matrices and vectors 

needed to find this optimal schedule, and by this, answering the first research question. 
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3 Modelling  

Finding an optimal schedule for charging an EV that minimizes charging expenditures 

can be interpreted as a mathematical problem and in order to answer the first research 

question (RQ1), a mathematical model was elaborated as a linear optimization to find the 

charging schedule which minimizes the costs on driving energy but fulfils the trip 

requirements of the vehicle’s user. Later, this same model that it is going to be described in 

the following sections was the model used and programmed in MATLAB R2018b and using 

an optimization solver tool from IBM called CPLEX to solve the linear optimization problem. 

The idea of this software is to find for each driving profile a cost-efficient schedule for 

charging the vehicles battery but considering also the driving necessities of the user and its 

availability to charge the vehicle. In a previous Bachelor Thesis in this institute, another 

model was developed to find these representative driving profiles using data from the 

German Mobility Panel (MOP) (Heinz, 2018). These driving profiles would be calculated 

depending on the driving behaviour, departing and arriving time, and the driving time and 

distance for every trip. Afterwards, the obtained charging schedules are going to be 

aggregated to find an aggregated loaded profile for this charging mode (smart charging) for 

this vehicle’s fleet. 
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3.1 Input data and assumptions 

In order to find this optimal solution, certain data is necessary from the vehicle’s driver, 

such as, for example, to know when the vehicle is being used, how many kilometres it 

travels daily, when it is available to be charged, where it can be charged and with what 

power. All this data has been collected by the German Mobility Panel and later processed 

by Daniel Heinz in his work “Creating and Evaluating Representative Mobility and Load 

Profiles for Electric Vehicles in Germany” (Heinz, 2018), and from the model developed in 

this work, the data can be extracted as standard driving profiles. A driving profile contains 

the data that is needed to find the optimal charging schedule, and each of the 2120 standard 

profiles are structured in a table as follows: 

1) Time (t-1) 

2) Time (t) 

3) Position (t-1) 

4) Position (t) 

5) Consumed energy [kWh] 

6) Available power of the charging point [kW] 

7) Available energy of the charging point [kWh] 

8) Electric energy consumed by driving according to maximum strategy [kWh] 

9) Electric energy consumed by driving according to minimum strategy [kWh] 

10) Charging power used according to maximum strategy [kW] 

11) Charging power used according to minimum strategy [kW] 

12) Charged energy according to maximum strategy [kWh] 

13) Charged energy according to minimum strategy [kWh] 

14) State of charge at end of interval according to maximum strategy [kWh] 

15) State of charge at end of interval according to minimum strategy [kWh] 

16) SOC at the end of the interval according to maximum strategy [%] 

17) SOC at the end of the interval according to the minimum strategy [%] 

18) BEVID (Battery Electric Vehicle Identifier) 

19) Weight Factor 

 
 

All of these values can be obtained from the model for a period of one week, and with 

a chosen time interval, which in this case was 15 minutes, finally obtaining 672 time 

intervals. In addition to the time interval that was chosen, and in order to obtain the driving 
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profiles it is necessary to set other variables as well, such as the vehicles specifications 

(battery capacity and driving efficiency), the locations where the EV can be charged, and 

the maximal power of the charger. Although these parameters can be changed in the future, 

for this simulation it was decided to configure them in the following way: 

• Battery capacity: 22 kWh 

• Driving efficiency: 15 kWh/100 km 

• Charging locations: home and workplace 

• Maximum charging power: 3.7 kW  

 

The International Electrotechnical Commission (IEC) standard 61851-1 specifies a set 

of modes for EV charging. These encompass 16 A 1-phase charging (3.7 kW). 

 

Once these parameters were set, the driving profiles can be extracted from the 

model as a MATLAB file, and the following variables were used in this optimization: 

• Position (t) – (4) 

• Consumed energy [kWh] – (5) 

• Available power of the charging point [kW] – (6) 

• Charging power used according to maximum strategy [kW] – (9) 

• State of charge at end of interval according to maximum strategy [kWh] – (14) 

• State of charge at end of interval according to minimum strategy [kWh] – (15) 

• BEVID (Battery Electric Vehicle Identifier) – (18) 

• Weight Factor – (19) 

The weight factor will be needed when aggregating variables such as power or 

charging costs, since not every profile has the same representativity. 

Before describing the mathematical model, it is important to introduce the charging 

strategies that are going to be used as boundaries in the optimization problem. These limits 

are the data already processed in variables (14) and (15) as SOC according to maximum and 

minimum strategies respectively.  
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Charging as soon as possible strategy (ASAP) or maximum strategy 

When charging mobile devices or vehicles which have a battery for energy storage, 

the most usual way to do it is to charge it as soon there is an available a charging site. This 

means that as soon as the vehicle arrives to a charging point, whether it’s a parking lot or a 

garages house, the user will plug the BEV and start charging it at maximal available power, 

even though he or she is not planning to use the BEV soon. The BEV battery is going to be 

charged until the battery’s capacity is completely full of energy or until the user must leave 

to do the next trip, whatever occurs first. This method is the so called “as soon as possible” 

(ASAP) and the SOC(t) curve generated from charging the BEV this way will be called 

SOCmax(t). 

Charging as late as possible strategy (ALAP) or minimum strategy 

In contrast, we can find another way of charging mobile devices/vehicles which is 

called “as late as possible”, and this means that instead of charging the BEV battery 

instantaneously as the charging spot is reached the user will wait some time before to begin 

with the charging process. In this case, only the energy that is needed to drive the following 

trip is going to be charged into the battery. So, if the user needs to drive 10 km and the 

vehicles needs 22 kWh to drive 100 km, the user will charge only 2.2 kWh to the BEV battery. 

And to do this it will set the charging process to begin some time t before the departure 

time, being t = 2.2 kWh/charging power. Although it is assumed that the vehicle has enough 

energy to drive the whole trip before departing, when this method is considered, there is a 

threshold value of minimum amount of energy that will be always available in case of 

emergency. In this thesis this value was set to 5% of the nominal battery capacity. This 

method is the so called “as late as possible” (ASAP) and the SOC(t) curve generated from 

charging the BEV this way will be called SOCmin(t). 

Finally, since the optimization is based in minimizing costs, intraday electricity prices 

series from Schwelsig Holstein for the year 2015 were used. This data was obtained from 

EPEX Spot (EPEX, 2015) and it contains the intraday electricity price for this region in a 15 

minutes resolution, for a whole year, resulting in 35040 registers. 
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 Certainly, with this information the model could be developed, however it is 

necessary to comment some of the assumptions that will be made. As described before, 

this model assumes all vehicles to have the same battery capacity, the same driving 

efficiency, all drivers are able to charge their EV’s at their home and their workplaces, 

always with the same maximum power which is 3.7 kW. This value was determined by the  

International Electrotechnical Commission (IEC)  in its standard 61851-1, where it specifies 

a set of modes for EV charging (Flath et al., 2014, p. 622). Regarding the battery’s charging 

process, it is going to be modelled as a linear process when it is not actually like this, since 

there are no significant effects by using this model instead of a quadratic one, as concluded 

by (Sundström & Binding, 2010, p. 6), “In this paper the impact of using a linear versus a 

quadratic approximation of the EV batteries to plan the charging has been shown. The 

observation is made that the resulting violations of the battery boundaries when applying 

the charging schedule based on the linear approximation are relatively small, i.e., less than 

2% of the usable capacity. The benefit of using the quadratic formulation does not justify 

the increase in computation time”. Also, in this work, losses when charging EV are not 

considered, so charging efficiency is assumed to be 1. 

 Since the time resolution for the prices series is 15 minutes, the same time interval 

was chosen for the driving profiles, and so the charging process must be also discretized 

this way, which means that a charging process occurs in 15 minutes times intervals. 

Finally, since the aim of this optimization is to reduce to its minimum the expenditures 

on charging EV, it is assumed that the electrical grid operator (or charging manager) can 

control the charging process of the vehicle’s fleet and can obtain a price forecast for a week. 
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3.2 Mathematical model 

In the following section the mathematical model used to find the optimum solution 

for every profile is going to be described. But before defining the target function and its 

constraints there are some concepts that should be introduced. The term State of Charge is 

often used when referring to the amount of energy stored in the BEV battery, and we will 

be using the abbreviation SOC from now on. The following equation (3.2.1) represents how 

is the SOC of a BEV battery calculated based on the previous SOC and the energy that is 

aggregated and the energy that is subtracted from it: 

 𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) + 𝑝(𝑡). ∆𝑡 − 𝑒(𝑡) (3.2.1) 

 

• SOC(t) is the actual state of charge of the vehicle’s battery in kWh 

• SOC(t-1) is the state of charge for the previous time period in kWh 

• p(t) is the power being charged to the battery during time period t in kW 

• ∆𝑡 is the time period, measured in hours 

• e(t) is the energy driven by the car during time period t in kWh, always positive 
 

All the terms in this equation are energy and measured in kWh. Of course, it is not 

possible for a vehicle to be driving and charging at the same time period, but this equation 

its representative and helpful for our purpose. 

Although SOC(t) it’s a continuous function, and for further purposes, equation (3.2.1) 

will be also expressed with sub-indices, representing sub-index i each time slot and being n 

the last time slot in the problem’s domain:  

 𝑆𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑖−1 + 𝑝𝑖. ∆𝑡 − 𝑒𝑖            ∀ 𝑖 ∈ {1,2,3, … , n}   (3.2.2) 

Therefore, the state of charge for the first time step can be calculated by: 

 𝑆𝑂𝐶1 = 𝑆𝑂𝐶0 + 𝑝1. ∆𝑡 − 𝑒1              
(3.2.3) 

 

 

 



Price-based charging scheduling optimization for BEV   Institute for Industrial Production (IIP) - KIT 

Page 30 of 70 
 

And the following interval: 

 𝑆𝑂𝐶2 = 𝑆𝑂𝐶1 + 𝑝2. ∆𝑡 − 𝑒2              
(3.2.4) 

But if we replace equation (3.3.3) into equation (3.3.4) we would get the following equation: 

 𝑆𝑂𝐶2 = (𝑆𝑂𝐶0 + 𝑝1. ∆𝑡 − 𝑒1) + 𝑝2. ∆𝑡 − 𝑒2              
(3.2.5) 

 

So, if we consider any state of charge at any moment, it can be calculated using the 

following expression: 

 𝑆𝑂𝐶𝑛 = 𝑆𝑂𝐶0 + ∑𝑝𝑖. ∆𝑡

𝑛

𝑖=1

− ∑𝑒𝑖

𝑛

𝑖=1

              (3.2.6) 

   

This way we will only use the following parameters: SOC0 and e, and variable p.  
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3.2.1 Target function 

The objective of this optimization method is to find a charging schedule for the 

electric vehicle that minimizes the expenditures on charging energy, but that also fulfils with 

the energy requirements to drive the following trips. This means that the BEV should have 

enough energy in the battery before departing, and that this energy should be enough to 

get the BEV to the next charging site. Considering this, the proposed target function for 

every BEV driving profile is: 

 min  𝐶̅ 𝑇𝑋̅ ∆𝑡 (3.2.7) 

 

where:  

o C represents the price series vector [€/kWh] 

 𝐶̅ =  {𝑐1, 𝑐2, 𝑐3,   .  .  . , 𝑐𝑛} (3.2.8) 

o X represents the vehicle charging power [kW]  

 𝑋̅ =  {𝑝1,  𝑝2, 𝑝3, . . . , 𝑝𝑛} (3.2.9) 

o ∆t   is the time slot [h] (scalar) 
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3.2.2 Constraints 

In the previous sections the concepts for charging modes ASAP and ALAP were 

introduced because it will help us define the constraints for this optimization problem. Both 

modes of charging are the limits of the charging possibilities that the electrical grid operator 

or charging manager has to charge the vehicle so the driver can get enough energy to drive 

the next trip. It is not possible to charge it faster than ASAP (because that would have meant 

that ASAP method was not correctly defined) and it is also not possible to charge later than 

ALAP because the BEV wouldn’t get enough energy to drive the next trip. Therefore, we 

could now state the actual state of charge of the BEV should be always between these both 

limits that we have already defined as SOCmax (t) and SOCmin(t), as shown in figure 7 and 

equation (3.2.10). 

 

 

 

 𝑆𝑂𝐶𝑚𝑖𝑛(𝑡) ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥(𝑡)             ∀ 𝑡 (3.2.10) 

 

  

Fig. 7. SOC curves for ASAP (SOCmax) and ALAP (SOCmin).  

Own source. 
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Constraint 1: the BEV should have enough State of Charge to drive the next trip (SOCmin) 

 

 𝑆𝑂𝐶𝑚𝑖𝑛(𝑡) ≤ 𝑆𝑂𝐶(𝑡)             ∀ 𝑡 (3.2.11) 

with 

 𝑆𝑂𝐶̅̅ ̅̅ ̅̅
𝑚𝑖𝑛 = {𝑆𝑂𝐶𝑚𝑖𝑛,1, 𝑆𝑂𝐶𝑚𝑖𝑛,2, 𝑆𝑂𝐶𝑚𝑖𝑛,3, … , 𝑆𝑂𝐶𝑚𝑖𝑛,𝑛} (3.2.12) 

 

Definition (3.2.12) represents the SOCmin vector with the values for every time slot which 

are imported as data. 

Combining equations (3.2.1) and (3.2.11) we get: 

 𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) + 𝑝(𝑡). ∆𝑡 − 𝑒(𝑡)  ≥ 𝑆𝑂𝐶𝑚𝑖𝑛(𝑡)           ∀ 𝑡  (3.2.13) 

 

 𝑆𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑖−1 + 𝑝𝑖. ∆𝑡 −  𝑒𝑖  ≥ 𝑆𝑂𝐶𝑚𝑖𝑛,𝑖           ∀ 𝑖 ∈ {1,2,3, … , n}   (3.2.14) 

Combining equations (3.2.6) and (3.2.14) we would get the following system of equations: 

 {

𝑆𝑂𝐶1 = 𝑆𝑂𝐶0 + 𝑝1. ∆𝑡 − 𝑒1 ≥ 𝑆𝑂𝐶𝑚𝑖𝑛,1

𝑆𝑂𝐶2 = 𝑆𝑂𝐶0 + 𝑝1. ∆𝑡 − 𝑒1 + 𝑝2. ∆𝑡 − 𝑒2 ≥ 𝑆𝑂𝐶𝑚𝑖𝑛,2

𝑆𝑂𝐶3 = 𝑆𝑂𝐶0 + 𝑝1. ∆𝑡 − 𝑒1 + 𝑝2. ∆𝑡 − 𝑒2 + 𝑝3. ∆𝑡 − 𝑒3 ≥ 𝑆𝑂𝐶𝑚𝑖𝑛,3

}  (3.2.15) 

 

{

𝑆𝑂𝐶1 = 𝑆𝑂𝐶0 + 𝑝1. ∆𝑡 − 𝑒1 0 0 0 0 ≥ 𝑆𝑂𝐶𝑚𝑖𝑛,1

𝑆𝑂𝐶2 = 𝑆𝑂𝐶0 + 𝑝1. ∆𝑡 − 𝑒1 + 𝑝2. ∆𝑡 − 𝑒2 0 0 ≥ 𝑆𝑂𝐶𝑚𝑖𝑛,2

𝑆𝑂𝐶3 = 𝑆𝑂𝐶0 + 𝑝1. ∆𝑡 − 𝑒1 + 𝑝2. ∆𝑡 − 𝑒2 + 𝑝3. ∆𝑡 − 𝑒3 ≥ 𝑆𝑂𝐶𝑚𝑖𝑛,3

}  

 

Multiplying by -1 and rearranging: 

(

−𝑝1. ∆𝑡 0 0 ≤ −𝑆𝑂𝐶𝑚𝑖𝑛,1 +𝑆𝑂𝐶0 −𝑒1 0 0

−𝑝1. ∆𝑡 −𝑝2. ∆𝑡 0 ≤ −𝑆𝑂𝐶𝑚𝑖𝑛,2 +𝑆𝑂𝐶0 −𝑒1 −𝑒2 0

−𝑝1. ∆𝑡 −𝑝2. ∆𝑡 −𝑝3. ∆𝑡 ≤ −𝑆𝑂𝐶𝑚𝑖𝑛,3 +𝑆𝑂𝐶0 −𝑒1 −𝑒2 −𝑒3

)  (3.2.16) 
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Constraint 2: the actual State of Charge can never be bigger than the battery capacity 

(SOCmax) 

 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥(𝑡)             ∀ 𝑡 (3.2.17) 

with 

 𝑆𝑂𝐶̅̅ ̅̅ ̅̅
𝑚𝑎𝑥 = {𝑆𝑂𝐶𝑚𝑎𝑥,1, 𝑆𝑂𝐶𝑚𝑎𝑥,2, 𝑆𝑂𝐶𝑚𝑎𝑥,3, … , 𝑆𝑂𝐶𝑚𝑎𝑥,𝑛} (3.2.18) 

 

Combining equations (3.2.1) and (3.2.17) we get: 

 𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) + 𝑝(𝑡). ∆𝑡 − 𝑒(𝑡)  ≤ 𝑆𝑂𝐶𝑚𝑎𝑥(𝑡)           ∀ 𝑡  (3.2.19) 

   

 𝑆𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑖−1 + 𝑝𝑖. ∆𝑡 −  𝑒𝑖  ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,𝑖           ∀ 𝑖 ∈ {1,2,3, … , n}   (3.2.20) 

Combining equations (3.2.6) and (3.2.14) we would get the following system of equations: 

{

𝑆𝑂𝐶1 = 𝑆𝑂𝐶0 + 𝑝1. ∆𝑡 − 𝑒1 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,1

𝑆𝑂𝐶2 = 𝑆𝑂𝐶0 + 𝑝1. ∆𝑡 − 𝑒1 + 𝑝2. ∆𝑡 − 𝑒2 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,2

𝑆𝑂𝐶3 = 𝑆𝑂𝐶0 + 𝑝1. ∆𝑡 − 𝑒1 + 𝑝2. ∆𝑡 − 𝑒2 + 𝑝3. ∆𝑡 − 𝑒3 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,3

}  (3.2.21) 

 

{

𝑆𝑂𝐶1 = 𝑆𝑂𝐶0 + 𝑝1. ∆𝑡 − 𝑒1 0 0 0 0 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,1

𝑆𝑂𝐶2 = 𝑆𝑂𝐶0 + 𝑝1. ∆𝑡 − 𝑒1 + 𝑝2. ∆𝑡 − 𝑒2 0 0 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,2

𝑆𝑂𝐶3 = 𝑆𝑂𝐶0 + 𝑝1. ∆𝑡 − 𝑒1 + 𝑝2. ∆𝑡 − 𝑒2 + 𝑝3. ∆𝑡 − 𝑒3 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,3

} 

 

After rearranging: 

(

𝑝1. ∆𝑡 0 0 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,1 −𝑆𝑂𝐶0 +𝑒1 0 0

𝑝1. ∆𝑡 𝑝2. ∆𝑡 0 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,2 −𝑆𝑂𝐶0 +𝑒1 +𝑒2 0

𝑝1. ∆𝑡 𝑝2. ∆𝑡 𝑝3. ∆𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,3 −𝑆𝑂𝐶0 +𝑒1 +𝑒2 +𝑒3

)  (3.2.22) 
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Constraint 3: this constraint states that the SOC of the battery at the end of the optimization 

period should be the same as it was at the beginning. 

 𝑆𝑂𝐶0 = 𝑆𝑂𝐶1 = 𝑆𝑂𝐶𝑛  (3.2.23) 

By definition of equation (3.2.6) the term for SOC at the end of the period can be replaced:  

 𝑆𝑂𝐶0 = 𝑆𝑂𝐶𝑛 = 𝑆𝑂𝐶0 + ∑𝑝𝑖. ∆𝑡 − ∑𝑒𝑖

𝑛

𝑖=1

𝑛

𝑖=1

  (3.2.24) 

 

And after subtracting the initial state of charge term from both sides of the equation we 

get: 

 ∑𝑝𝑖. ∆𝑡 =  ∑𝑒𝑖

𝑛

𝑖=1

𝑛

𝑖=1

  (3.3.25) 

 

Meaning that for optimization period, the sum of charged energy should be equal to the 

sum of driven energy: 

 𝑝1. ∆𝑡 + 𝑝2. ∆𝑡 + 𝑝3. ∆𝑡 + ⋯+ 𝑝𝑛. ∆𝑡 = 𝑒1 + 𝑒2 + 𝑒3 + ⋯+ 𝑒𝑛 (3.2.26) 

  

Note that equation (3.2.26) is only valid when considering the whole period and is not valid 

for temporal instances. 
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Boundaries: For decision variable X there are boundaries to be set, depending on the time 

availability to charge the vehicle, the maximum power available. 

Vector d  is the charging availability vector: 

 𝑑̅ = {𝑑1, 𝑑2, 𝑑 3, … , 𝑑𝑖 , … , 𝑑 𝑛}         ∀ 𝑖 ∈ {1,2,3, … , n}  (3.2.27) 

 

where 

 𝑑𝑖 = {
        0;     𝑤ℎ𝑒𝑛 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑜𝑠𝑖𝑏𝑙𝑒 

1;    𝑤ℎ𝑒𝑛 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑖𝑠 𝑝𝑜𝑠𝑖𝑏𝑙𝑒 
 (3.2.28) 

 

To find vector 𝑷̅𝒎𝒂𝒙 we will do the following operation: 

 
𝑷̅𝒎𝒂𝒙 = 𝑃̂𝑚𝑎𝑥. 𝑑̅ 

 
(3.2.29) 

where the scalar 𝑃̂𝑚𝑎𝑥  is the maximum available power to charge the BEV. 

Finally setting lower and upper boundaries vectors for decision variable X: 

 0 < 𝑋̅ <  𝑃𝑚𝑎𝑥,𝑖  ∀ 𝑖 ∈ {1,2,3, … , n} (3.2.30) 

 

 𝑋̅ =  {𝑝1,  𝑝2, 𝑝3, . . . , 𝑝𝑛} (3.2.31) 

 

 𝑙𝑏̅ = {0,0, 0, … , 0}  (3.2.32) 

                                    𝑢𝑏̅̅̅̅ = {𝑝𝑚𝑎𝑥,1, 𝑝𝑚𝑎𝑥,2, 𝑝𝑚𝑎𝑥,3, … , 𝑝𝑚𝑎𝑥,𝑛}    (3.2.33) 

So, our system will try to find a solution where: 

 𝑙𝑏̅ < 𝑋̅ <  𝑢𝑏̅̅̅̅   (3.2.34) 
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3.3 MATLAB & CPLEX Model Implementation 

Section 3.3 will describe how the optimization was solver, which solver tool was 

used and how it was the solution implemented. 

 

3.3.1 Linear programming and CPLEX 

For the optimization done in this master thesis a mathematical solver was used and 

invoked from the main function in MATLAB. This solver developed by IBM, called CPLEX, 

specifies some prerequisites to use the solver. For the most basic mathematical 

programming formulation, which is known as Linear Programming (LP) and the one used in 

this model, the following parameters should be defined:  

• a function to maximize or minimize: 

 max (or min)  𝑓 ̅𝑋̅ (3.3.1) 

• subject to 

 𝐴̅𝑒𝑞 𝑋̅ = 𝑏̅𝑒𝑞  (3.3.2) 

 𝐴̅𝑖𝑛𝑒𝑞 𝑋̅ ≤ 𝑏̅𝑖𝑛𝑒𝑞 (3.3.3) 

• with these bounds 

 𝑙𝑏̅ ≤ 𝑋̅ ≤ 𝑢𝑏̅̅̅̅  (3.3.4) 

 

where Aeq and Aineq are matrices, f, beq, bineq, lb and ub are vectors such that the upper 

bounds ul and lower bounds lb may be positive infinity, negative infinity, or any real 

number.  

Finally, when the mathematical model is written and adapted to CPLEX prerequisites it 

can be introduced into MATLAB for proper solving. Basically, find the variables, matrices 

and vectors as described on the next section. 
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3.3.2 Objective function coefficients, matrices and vectors 

 

Objective function coefficients 

If we look at equation (3.2.7) we can easily state that our objective function is: 

 min  𝐶̅ 𝑇𝑋̅ ∆𝑡 (3.2.7) 

being in this particular case 

 𝑓̅ =  𝐶̅ 𝑇 ∆𝑡 (3.3.5) 

 

Matrices Aineq and bineq 

Constraints 1 and 2 which set the lower and upper limits of the vehicle’s SOC are 

inequalities which can be written in the form of equation (3.3.3). For Constraint 1 we will 

start with equation (3.2.16): 

(

−𝑝1. ∆𝑡 0 0 ≤ −𝑆𝑂𝐶𝑚𝑖𝑛,1 +𝑆𝑂𝐶0 −𝑒1 0 0

−𝑝1. ∆𝑡 −𝑝2. ∆𝑡 0 ≤ −𝑆𝑂𝐶𝑚𝑖𝑛,2 +𝑆𝑂𝐶0 −𝑒1 −𝑒2 0

−𝑝1. ∆𝑡 −𝑝2. ∆𝑡 −𝑝3. ∆𝑡 ≤ −𝑆𝑂𝐶𝑚𝑖𝑛,3 +𝑆𝑂𝐶0 −𝑒1 −𝑒2 −𝑒3

)  (3.2.16) 

 

(
−∆𝑡 0 0
−∆𝑡 −∆𝑡 0
−∆𝑡 −∆𝑡 −∆𝑡

) . (

𝑝1

𝑝2

𝑝3

)  ≤ (

−𝑆𝑂𝐶𝑚𝑖𝑛,1 +𝑆𝑂𝐶0 −𝑒1 0 0

−𝑆𝑂𝐶𝑚𝑖𝑛,2 +𝑆𝑂𝐶0 −𝑒1 −𝑒2 0

−𝑆𝑂𝐶𝑚𝑖𝑛,3 +𝑆𝑂𝐶0 −𝑒1 −𝑒2 −𝑒3

) (3.3.6) 

 

−∆𝑡. (
1 0 0
1 1 0
1 1 1

) . (

𝑝1

𝑝2

𝑝3

)  ≤ [(

−𝑆𝑂𝐶𝑚𝑖𝑛,1 +𝑆𝑂𝐶0

−𝑆𝑂𝐶𝑚𝑖𝑛,2 +𝑆𝑂𝐶0

−𝑆𝑂𝐶𝑚𝑖𝑛,3 +𝑆𝑂𝐶0

) − (
1 0 0
1 1 0
1 1 1

) . (

𝑒1

𝑒2

𝑒3

)] (3.3.6) 
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And for Constraint 2 we will be using equation (3.2.22): 

(

𝑝1. ∆𝑡 0 0 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,1 −𝑆𝑂𝐶0 +𝑒1 0 0

𝑝1. ∆𝑡 𝑝2. ∆𝑡 0 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,2 −𝑆𝑂𝐶0 +𝑒1 +𝑒2 0

𝑝1. ∆𝑡 𝑝2. ∆𝑡 𝑝3. ∆𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,3 −𝑆𝑂𝐶0 +𝑒1 +𝑒2 +𝑒3

)  (3.2.22) 

 

(
∆𝑡 0 0
∆𝑡 ∆𝑡 0
∆𝑡 ∆𝑡 ∆𝑡

) . (

𝑝1

𝑝2

𝑝3

) ≤  (

𝑆𝑂𝐶𝑚𝑎𝑥,1 −𝑆𝑂𝐶0 +𝑒1 0 0

𝑆𝑂𝐶𝑚𝑎𝑥,2 −𝑆𝑂𝐶0 +𝑒1 +𝑒2 0

𝑆𝑂𝐶𝑚𝑎𝑥,3 −𝑆𝑂𝐶0 +𝑒1 +𝑒2 +𝑒3

)  (3.3.7) 

 

∆𝑡. (
1 0 0
1 1 0
1 1 1

) . (

𝑝1

𝑝2

𝑝3

)  ≤ [(

𝑆𝑂𝐶𝑚𝑎𝑥,1 −𝑆𝑂𝐶0

𝑆𝑂𝐶𝑚𝑎𝑥,2 −𝑆𝑂𝐶0

𝑆𝑂𝐶𝑚𝑎𝑥,3 −𝑆𝑂𝐶0

) + (
1 0 0
1 1 0
1 1 1

) . (

𝑒1

𝑒2

𝑒3

)] (3.3.8) 

 

Since Constraints 1 and 2 are both inequations they should be summed up into one 

equation system, combining equations (3.3.6) and (3.3.8): 

∆𝑡.

(

  
 

−1    0    0
    1    0    0
−1 −1    0
   1    1    0
−1 −1 −1
   1    1    1)

  
 

. (

𝑝1

𝑝2

𝑝3

)  ≤

[
 
 
 
 
 
 

(

 
 
 
 

−𝑆𝑂𝐶𝑚𝑖𝑛,1 +𝑆𝑂𝐶0

𝑆𝑂𝐶𝑚𝑎𝑥,1 −𝑆𝑂𝐶0

−𝑆𝑂𝐶𝑚𝑖𝑛,2 +𝑆𝑂𝐶0

𝑆𝑂𝐶𝑚𝑎𝑥,2 −𝑆𝑂𝐶0

−𝑆𝑂𝐶𝑚𝑖𝑛,3 +𝑆𝑂𝐶0

𝑆𝑂𝐶𝑚𝑎𝑥,3 −𝑆𝑂𝐶0)

 
 
 
 

+

(

  
 

−1   0 0
   1   0  0
−1 −1  0
   1    1   0
−1 −1 −1
   1    1    1)

  
 

. (

𝑒1

𝑒2

𝑒3

)

]
 
 
 
 
 
 

 

which is equivalent for the inequation required: 

𝐴̅𝑖𝑛𝑒𝑞 𝑋̅ ≤ 𝑏̅𝑖𝑛𝑒𝑞 (3.3.3) 
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Matrices Aeq and beq  

Using the same procedure, we will find these matrices from Constraint 3, which 

instead of an inequation represents an equation. From equation (3.2.26) 

𝑝1. ∆𝑡 + 𝑝2. ∆𝑡 + 𝑝3. ∆𝑡 + ⋯+ 𝑝𝑛. ∆𝑡 = 𝑒1 + 𝑒2 + 𝑒3 + ⋯+ 𝑒𝑛 (3.2.26) 

 

we can define a system to find Aeq and beq: 

 

(∆𝑡 ∆𝑡 ∆𝑡). (

𝑝1

𝑝2

𝑝3

) =  (𝑒1 + 𝑒2 + 𝑒3) (3.3.9) 

 

𝐴̅𝑒𝑞  𝑋̅ = 𝑏̅𝑒𝑞 (3.3.2) 
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3.4 Linear optimization problem summary 

Optimizations problems are usually presented as a function to find a maximum or 

minimum and its constraints. For this model, the system can then be defined by: 

min  𝐶̅ 𝑇 . 𝑋̅. ∆𝑡 (3.2.7) 

 

Subject to 

𝐴̅𝑒𝑞 . 𝑋̅ = 𝑏̅𝑒𝑞 (3.3.2) 

 

 

𝐴̅𝑖𝑛𝑒𝑞 . 𝑋̅ ≤ 𝑏̅𝑖𝑛𝑒𝑞  (3.3.3) 

 

 

𝑙𝑏̅ ≤ 𝑋̅ ≤ 𝑢𝑏̅̅̅̅  (3.3.4) 

 

As it was mentioned in section 2.4, this analysis was done with the support of different 

scientific papers which addressed the same problem. Although these papers didn’t use the 

same terminology and didn’t explain with full details how to write the mathematical model, 

they did share a vision on how to solve the problem, using X as charging power or charging 

energy, multiplying power vector X [W] by the time slot ∆t [h], obtaining energy [Wh] (Hu 

et al., 2011) and (Sundström & Binding, 2010), and using also constraints for the availability 

to drive the next trip and the maximum SOC of the battery. 
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3.5 Source code and hardware 

  The source code described in this master thesis was all written for this purpose, 

except for the function to solve the optimization, which was developed by IBM and will not 

be discussed in this work. The first milestone in the code development was to find an 

optimal charging schedule for one profile for a one-week period, since the input profiles 

data were provided also for a one-week period. This function it is called “optimize_week” 

and its purpose is to find the minimal cost charging schedule that would allow the driver to 

drive its required trips. It receives as an input a certain profile which is identified by its 

unique identifier, a one-week price series, and the initial SOC of the battery. With the 

identifier, the model would get from the data the curves for SOCmax and SOCmax, mentioned 

in sections 3.1.1 and 3.1.2. With all this information, this function can build matrices Aeq, 

Aineq, beq, bineq, and vectors f, lb ub. Finally, using these variables as input parameters it 

invokes the function “cplexlp” and get as an output the charging vector X for this particular 

profile, this price-series and this initial SOC. The charging vector X, which is the solution the 

solver provides when the system is feasible, consists of a vector which indicates the charging 

power for every time slot in the simulated period, 0 when it is not charging and a value 

between 0 and 3.7 when it is. 

 Subsequently, the following milestone in the development of the code was to find 

this same solution for a one-year period, and it was simply resolved by iterating 52 times 

the “optimize_week” function, but considering two aspects: firstly, the SOC at the end of 

one week would be the SOC at the beginning of the next one, and secondly, since the price 

series input data was given for the whole year, a week within this year-vector should be 

selected and would change for every iteration. This second function it’s called 

“optimize_year”. 

 Finally, once the model was able to find the optimal solution for one profile the last 

step was to find the same solution for all the remaining profiles in the data set. And once 

again, this was done with an iteration among all the profiles, this is, 2120 times. 
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 Since the source code for this master's thesis was developed as described in the 

previous paragraph, as a result of the development of the model and the source code, 4 

scripts and 3 additional functions are presented. Each of these scripts serves to analyse the 

data in the following way, divided by amount of profiles and simulated time period: 

• Script № 1: 1 profile – 1 week 

• Script № 2: 1 profile – 1 year 

• Script № 3: 2120 profiles – 1 week 

• Script № 4: 2120 profiles – 1 year 

Even though the scripts were written for those purposes, the number of profiles 

simulated can vary from 1 to 2120 in scripts 3 and 4, and the number of weeks simulated 

can vary from 1 to 52 in scripts 2 and 4. This was the best way to develop the code since the 

results shown and the variables analysed can change from script to script, and it is really 

advantageous to be able to change the number of profiles used or the week in the year 

which wants to be simulated. The results shown in the following section will follow the same 

structure as the scripts described. The code written as part of this master thesis can be 

founded in the institute’s repository BW Sync and Share. 

The hardware used to develop the model and for the further simulations was a Lenovo 

Thinkpad T460 with the following technical specifications: 

• Processor: Intel ® Core ™ i5-6200 CPU @ 2.30 GHz 

• Installed memory (RAM): 16,0 GB 

• System type: 64-bit Operating System 

• Operative System: Windows 7 Professional 
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4 Results 

Before discussing the results obtained in the simulation, it is important to emphasize 

why not all the input data could be exploited. The profiles that were used represent the 

behavior of real users with ICEV, and some of these users made trips that could be 

considered long for a BEV, since the autonomies of current BEV are considerably lower than 

those of ICEV, i.e., those profiles with long trips cannot be used as valid profiles. During the 

process of simulation of the 2120 profiles used, some of them presented inconsistent values 

for some parameters, such as the battery capacity and therefore had to be discarded. 

Finally, of the profiles that had consistent data, some users had not driven any kilometers 

during the week the data was acquired, hence there is nothing to optimize and the result 

of the simulation is an empty vector. The corresponding detail of used profiles can be seen 

in Table 2. 

 Number of profiles % 

Input Profiles 2,120 100% 

Useful Profiles 1,397 66% 

Non-useful Profiles 723 34% 

     Inconsistent input data 160 8% 

     Profiles that were not driving 411 19% 

     Non-feasible profiles 152 7% 

 

 

Then again, there are also some cases of those profiles who, although their trips are 

not relatively long, do not have enough time during their stops to charge the battery, 

resulting in the simulation in an unfeasible profile. This means that the model cannot find 

such a solution that the car is charged to meet its travel requirements, even if it is spending 

more money on charging. These both cases were also mentioned in another publications 

such as (Flath et al., 2014, p. 622). 

Certainly, these two cases and their occurrence depend on the size of the battery used 

for modeling, and in this case was chosen the value of 22 kWh. Finally, it is also worth 

mentioning that within the profiles used there are some users who have not used the car 

Table 2. Overview of the profiles used for the simulation. 
Own source. 
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and therefore their record of kilometers traveled, and energy used to move is 0, resulting 

also in 0 € costs as a result. 

 

4.1 One-week single vehicle optimization 

As mentioned in the previous section, the first objective of the model was to solve the 

optimization problem for a short-term period, so it is relevant to show some results in the 

short term also. As an example, the results for profile number 6 are displayed (figures 8, 9 

and 10), for different SOC initial values for a one week period optimization. As it can be seen 

in the following figures, this parameter is decisive to the determination of the charging 

vector and the corresponding SOC curve. The first graph shows the curves for the 

optimizations lower and upper boundaries (SOCmax for ASAP strategy and SOCmin for ALAP 

strategy), and the SOC curve for the resulting optimization or a controlled charging mode, 

also called smart charging (SMART strategy). For these three curves the behaviour it is the 

same: if the slope is positive, the SOC value is rising therefore the BEV battery is receiving 

energy, if the slope is negative the SOC value is decreasing which means the vehicle is 

driving and if there is no slope the SOC value remains the same, hence the vehicle is parked 

and not charging. On the second graph of this series, a bar plot shows when the BEV is 

charging, and the power used to charge it. The charging bars also represent energy, since 

power by time its energy, so when the slope is positive on the upper graph (energy vs. time), 

a bar should be on the same time slot on the lower graph (power vs. time). 
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Results for an initial SOC = 2.66 kWh 

 

 

Results for an initial SOC = 7.09 kWh 

 

 

 

 

Fig. 8. SOC curves for profile 6 and the corresponding charging bar plot for an SOC 
initial value of 2.66 kWh (12%). Own source. 

Fig. 9. SOC curves for profile 6 and the corresponding charging bar plot for an SOC 
initial value of 7.09 kWh (32%). Own source. 
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Results for an initial SOC = 11.51 kWh 

 

 

Simulation Parameters:    

Initial State of Charge [%] 12 32 52 

Initial State of Charge [kWh] 2.66 7.09 11.51 

Energy driven in simulated period [kWh] 57 57 57 

Kilometers driven in simulated period [km] 378 378 378 

Charging Manager Expenditures (single vehicle):    

SMART [€] -0.15 0.03 0.25 

 ASAP [€] 1.50 1.50 1.50 

Charging Manager Expenditure Savings (single vehicle):    

Net savings SMART vs ASAP [€] 1.65 1.47 1.25 

Percentage savings SMART vs ASAP [%] 110 98 83 

 

 

For this three cases the constraints for the optimization are the same: SOC curves 

and availability vector, but charging vector and corresponding expenditures results are 

different when intial conditions differ. As it can be seen on table 3, for lower initial SOC 

values greater are the savings for the charging manager. The results suggests that when the 

initial SOC of the BEV is low, the solver has more flexibility to allocate future charging 

Fig. 10. SOC curves for profile 6 and the corresponding charging bar plot for an SOC 
initial value of 11.51 kWh (52%). Own source. 

Table 3. Parameters and results obtained from the 3 simulations.  
Own source. 
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events, and consequently find a schedule with lower prices. But beyond the differences of 

the results obtained for different initial condition values, the most significative result are 

the savings for the charging manager, which in this case oscillate between 83% and 110%, 

being for the last scenario negative net savings, i.e., the charging manager is getting paid 

for charging this particular vehicle. The savings expresed in the results are always comparing 

the SMART strategy versus the ASAP strategy, since SMART would represent the controlled 

charging mode and ASAP the uncontrolled charging mode. 

 

In the following graph (figure 11) it is shown that the software allocates the charging events 

in the time slots where prices are low, and even some time slots where prices are negative. 

On the upper graph the price series for a week are shown in red marks, along with the 

available charging time slots for the BEV in grey. On the bottom graph, the blue bars show 

how every charging events were allocated, finding the minimum prices in the grey time 

windows. Lower prices can be found outside of the grey time windows, but during this time 

the vehicle is wheter driving or parked but no available for charging. 

 

 

 

Fig. 11. Allocating charging events. Own source. 
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4.2 One-year single vehicle optimization 

In the same way the software could find an optimal charging schedule for a single 

vehicle for a one-week time period, in this second analysis a whole year was simulated. To 

do this, as explained in the previous section, a script with 52 iterations was developed, and 

for each iteration a one week optimization was solved, but with one important 

consideration. By the end of each optimization, to accurately begin with the next one, the 

last value of the vehicle’s SOC should be saved and used to begin the next simulation period 

as the initial SOC value. This way, the SOC for the simulated profile would have continuity 

between simulated weeks. In section 3.2.2 the constraints for the optimization problem 

were introduced, and Constraint 3 stated that the SOC at the end of the simulation period 

should be the same as it was at the beginning of the period, expressed by equation 3.2.23: 

 𝑆𝑂𝐶0 = 𝑆𝑂𝐶1 = 𝑆𝑂𝐶𝑛  (3.2.23) 

which later introduced the constraint-equation 3.3.2. Finally, to let the vehicle’s SOC value 

freely fluctuate this constraint-equation was suppressed of the optimization problem. The 

first two weeks of the simulation of profile 6 are shown below (figures 12 and 13). 

 

 

 

Fig. 12. Week number 2 of optimization of profile 6. Own source. 
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As the SOC graph on figure 13 shows, week number 2 begins with the SOC value of the end 

of simulation of week 1, which in this case is 𝑆𝑂𝐶𝑤𝑒𝑒𝑘 1,𝑛 = 𝑆𝑂𝐶𝑤𝑒𝑒𝑘 2,1 = 2.66 𝑘𝑊ℎ. 

Although for reasons of simplicity only two simulations are shown here, when the whole 

year was simulated it could be clearly noticed from every simulation that the SOC always 

dropped to the minimum value by the end of the simulation period. When the solver notices 

that the vehicle does not require energy for driving, since it is trying to minimize 

expenditures, it will simply not allocate any more charging events, and only charge the 

minimum energy required to finish the remaining trips. 

Regarding the economic savings for this particular profile for the year simulation, 

the results show that the charging manager could save up to 71% in charging energy 

expenditures with the controlled charging mode versus the uncontrolled mode (SMART vs. 

ASAP) (Table 4). 

  

Fig. 13. Week number 2 of optimization of profile 6. Own source. 
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Simulation Parameters:  
Initial State of Charge [%] 32 

Initial State of Charge [kWh] 7.09 

Energy driven in simulated period [kWh] 2,947 

Kilometers driven in simulated period [km] 19,648 

Charging Manager Expenditures (single vehicle):  
SMART [€] 34.87 

 ASAP [€] 119.29 

Charging Manager Expenditure Savings (single vehicle):  
Net savings SMART vs ASAP [€] 84.42 

Percentage savings SMART vs ASAP [%] 71 

Expenditures per km driven:  
SMART [c€/km] 0.20 

 ASAP [c€/km] 0.61 

 

 

  

Table 4. Parameters and results obtained from the simulation 
of profile 6 for a one-year period. Own source. 
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4.3 One-week fleet optimization 

After getting positive results for the single vehicle optimization, whether for a week 

or a year, the simulation could be further tested for more than one vehicle and eventually 

tested for all the profiles available. With the written script for this section, the week to be 

simulated could be chosen from the 2015 year period, by setting a value between 1 and 52, 

and with this possibility, the expenditure savings for the whole fleet can be compared 

between to different weeks of the year, which was the case.  

 Two specific weeks were selected: the one with the lowest price and the one with 

the highest price in the year. 

• Week 14: on Saturday 11/04/2015 00:45 intraday price was 1 kWh = -0.117 € 

• Week 26: on Friday 03/07/2015 09:30 intraday price was 1 kWh = 0.236 € 

In figures 14 and 15 the price series for these both weeks are shown with their 

corresponding aggregated load profile for the 1397 vehicle’s fleet. Again, it can be seen that 

charging events are allocated in time slots where prices decrease, responding accurately to 

these signals how the software it is intended to do, for instance figure 15 illustrates that 

when the price peaked on Friday 03/07/2015 at 09:30 in the morning, no charging events 

were scheduled. On the contrary, in figure 14, when the price decreased on Saturday 

11/04/2015 00:45 several vehicles were scheduled to charge during this interval, generating 

a consumption peak. As a consequence, when comparing SMART charging mode with ASAP 

charging mode, the distribution of charging events it is rarely unequal as figures 15 and 16 

depict. On the one side the ASAP strategy shows that the magnitude of the aggregated 

charging power events can oscillate between 0 and 1 MW, and these events are distributed 

from 06:00 in the mornings to midnight (00:00) almost in a continuous way, and with 

consuming peaks around 08:00 in the morning and 18:00 in the evening, and almost no 

consumption during the night hours, and this pattern may be caused by the behaviour of 

the drivers, i.e., charging the vehicle as soon as they get to their home or workplace. On 

other side the SMART strategy shows that the magnitude fluctuates between 0 and 5 MW, 

but its dispersion through time it is quite irregular, although some remarks can be made.  
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Week 14: 

 

 

 

Week 26: 

 

 

 

Fig. 14. Prices series for week number 14 and aggregated load profile of 1397 vehicles 
fleet. Own source. 

Fig. 15. Prices series for week number 26 and aggregated load profile of 1397 vehicles 
fleet. Own source. 
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This irregular distribution could be determined by the price instability and dispersion, 

even if it does show a pattern during the day in which prices are high during the morning 

and the evening, prices can vary rapidly from one moment to another in a big scale, causing 

a non-continuous charging process when SMART charging mode is used. Yet, the most 

relevant factor when comparing these two strategies is the magnitude of the charging 

power which in this case it is 5 times higher for SMART than for ASAP charging mode. When 

SMART strategy is used, all of the vehicles in this fleet are receiving the same price signals, 

and although their availability to charge may differ, it is highly likely that if the prices 

decrease and several vehicles are available to charge, they will be charged simultaneously, 

generating a peak consumption. This effect was already been noticed and identified in 

(Ensslen et al., 2018, pp. 112–113) as “avalanche effect” and also by (Flath et al., 2014, 

p. 620): “our results show that EV charging coordination solely based on an exogenous price 

signals gives raise to large aggregate load spikes”. Further comments on the impacts and 

consequences of the SMART charging method will be discussed on Section 5. 

From figures 16 and 17 it can also be observed that ASAP strategy load profile has 

consumption valleys during the night during which there is almost no consumption and a 

valley during the day between the morning and evening peaks. In contrast, SMART strategy 

does schedule charging events mostly during these two mentioned valleys. To illustrate this 

behaviour, these loading profile graphs were re-designed to present a clearer contrast 

between these two charging strategies, by aggregating the power by daily time slot and by 

discriminating the week day from the weekend day. The results are presented in figures 18 

and 19 showing daily loading profiles and in figures 20 and 21 as percentage of number of 

charging events per time slot. From observing figure 18 we can affirm that during the week 

14, great number of charging events occurred during the midday valley, assuming that 

during this week of the year prices were low from 12:00 to 16:00. On the other hand, for 

week 26 the charging events took place during the night hours, principally from 00:00 to 

06:00 and even though a relationship with weather data has not been made, these 

differences between these two weeks could be adjudicated to weather and the influence 

of RES.  
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Week 14: 

 

 

 

Week 26: 

 

 

Fig. 16. Aggregated load profiles for SMART strategy vs ASAP strategy for week 14. 
Own source. 

Fig. 17. Aggregated load profiles for SMART strategy vs ASAP strategy for week 26. 
Own source. 
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In relation to the difference between week day and weekend day, it can be enounced 

that during the weekend prices are more unstable or volatile and charging allocation could 

happen any time, with no particular pattern as it was founded for the week day. 

Week 14: 

 

 

Week 26: 

 

Fig. 18. Aggregated load profiles for week 14, discriminating the weekday from the 
weekend, for SMART strategy vs ASAP strategy. Own source. 

Fig. 19. Aggregated load profiles for week 26, discriminating the weekday from the 
weekend, for SMART strategy vs ASAP strategy. Own source. 
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Week 14: 

 

 

Week 26: 

 

 

 

  

Fig. 20. Charging events distribution for week 14, discriminating the weekday from the 
weekend, for SMART strategy vs ASAP strategy. Own source. 

Fig. 21. Charging events distribution for week 26, discriminating the weekday from the 
weekend, for SMART strategy vs ASAP strategy. Own source. 
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Finally, and to address the research questions proposed in this master thesis, the 

economic savings for these two scenarios are going to be analysed, but in this opportunity 

as a fleet. In the following table (table 5) the results for the expenditures for this simulation 

are exposed. 

 

Simulation Parameters:   

Week  number simulated 14 26 

Profiles simulated 1,397 1,397 

Energy driven in simulated period for the fleet[kWh] 40,732 40,732 

Kilometers driven in simulated period for the fleet [km] 271,546 271,546 

Charging Manager Expenditures (CME) (fleet):   

SMART [€] -372 830 

ASAP [€] 1,367 2,104 

Charging Manager Expenditure Savings (fleet):   

Net savings SMART vs ASAP [€] 1,739 1,274 

Percentage savings SMART vs ASAP [%] 127% 61% 

CME per km driven:   

SMART [c€/km] -0.14 0.31 

ASAP [c€/km] 0.50 0.77 

 

 

 

In this case it can be observed that for these two weeks the results were quite 

disparate. Firstly, for week 14 the total expenditures were negative, which means that the 

prices for this week have been low, and for week 26 they were positive, therefore, the prices 

have been generally higher than those of week 14, since for both simulations the kilometers 

traveled and the availability to charge each vehicle are the same. As for the net savings, the 

difference was greater for week 14, but it can be seen more clearly if the percentage 

variation is analyzed with respect to the ASAP charging mode, being more than double for 

week 14 with respect to week 26. Finally, to mention the performance indicator of 

kilometers traveled per euros spent, then again there is an important difference between 

both weeks for SMART mode (0.45 c€/km), but not so much for ASAP mode (0.27 c€/km). 

This indicator will be analyzed in more detail in the next results section. 

Table 5. Parameters and results obtained from the fleet simulation for 
weeks number 14 and 26. Own source. 
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4.4 One-year fleet optimization 

In order to obtain a broader picture of the research relevant to this study and 

considering that the price of electricity can vary according to the climatic conditions of 

different seasons of the year, it was crucial to simulate a full year. Considering that the fleet 

is composed of 1397 profiles (without taking into account those that were not useful for 

this work), that the year is composed of 52 weeks and that each optimization solves one 

profile for one week, the corresponding script for this section solves 72,644 optimizations, 

so it is a process that can demand a considerable time, depending on the specifications and 

the computing power of the equipment used to simulate.  

By observing table 6 we can discern that the savings were quite significant, since the 

expenses of the load manager for the ASAP charging mode were 79,356 € while for the 

SMART mode only 5,565 €, representing a saving of 73,791 € (93%). Although this data is 

conclusive and enough to state that one method is significantly cheaper than the other, it 

is also worth analyzing these same variables throughout the 52 weeks of the year. 

 

Simulation Parameters:  
Weeks simulated 52 

Profiles simulated 1,397 

Fleet's driven distance [km] 14,140,618 

Vehicle average driven distance [km] 10,122 

Charging Manager Expenditures (CME) (fleet):  
SMART [€] 5,565 

ASAP [€] 79,356 

Charging Manager Expenditure Savings (fleet):  
Net savings SMART vs ASAP [€] 73,791 

Percentage savings SMART vs ASAP [%] 93 

CME per km driven:  
SMART [c€/km] 0.04 

ASAP [c€/km] 0.56 

 

 

Table 6. Parameters and results obtained from 
the 1 year simulation for the 1397 vehicles fleet. 

Own source. 
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For this purpose, the following graph is presented which illustrates the expenditures 

of the two methods for each of the simulated weeks. As can be seen from figure 22, the 

costs of the ASAP method range between approximately 700 and 2,000 € per week, while 

for the SMART method the same values range between -2,000 and 1,000 € per week, which 

means an amplitude of more than double. This confirms the idea that SMART spending can 

be unpredictable and highly variable. 

 

 

 

To further analyse this behaviour, the annual average performance indicator was 

calculated for all vehicles and their distribution. The average values can be seen in table 6, 

and the distributions graphs in figures 23 and 24, for ASAP and SMART respectively. The 

ASAP mode distribution graph suggests that, although driving profiles are very diverse 

because they drive different distances and their availability for charging the EV is not the 

same, their performances are quite similar. However, the graph of the SMART mode 

distribution does not suggest the same, but can vary quite a bit depending on the driving 

profile. This can be attributed to the fact that the savings produced by the SMART mode 

may be closely related to other variables such as the number of hours available for charging 

or the distance driven. 
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Fig. 22. Charging manager expenditures for 1 year by two charging modes: ASAP and 
SMART. Own Source 
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Fig. 23. Performance indicator distribution for the n = 1397 samples for ASAP charging 
mode (1 year simulation). Own source. 

Fig. 24. Performance indicator distribution for the n = 1397 samples for SMART 
charging mode (1 year simulation). Own source. 
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4.5 Simulation times 

Only as a record of the processing times for each of the simulations, a table with this 

information is shown below. The processing times in this table were obtained with the 

computer’s specifications detailed in section 3.5. 

 

Script Name 
N° of 

profiles 
N° of 

weeks 
N° of 

optimizations 
Elapsed time 

[s] 
Elapsed 
time [m] 

CSO_M02_V01 1 1 1 3.72 0 

CSO_M02_V02 1 52 52 32 1 

CSO_M02_V03 1,397 1 1,397 586 10 

CSO_M02_V04 1,397 52 72,644 62,833 1,047 

 

 

  

Table 7. Processing times for the simulations. Own source. 
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5 Discussion 

This section will present some of the conclusions reached on the method used and the 

results obtained. 

5.1 Method 

To perform this optimization of the electric car charge scheduler, the method used 

was based on the literature that was researched, as mentioned in section 2.4., and despite 

having been very satisfactory for the purposes proposed for this master's work, some 

limitations can be mentioned and suggest some improvements that could be made in the 

future. To begin with, the model simplifies variables such as battery capacity, charging 

power and consumption efficiency, but actually these parameters differ greatly from vehicle 

to vehicle, and if considered, would have a significant impact on the results, as they depend 

on these variables. 

Secondly, the model allocates charging events based solely on the price of electricity 

and with the only objective of minimizing costs, without considering consuming power. This 

approach is good, but not sufficient if one wants to reduce peak consumption and stabilize 

electricity demand. To achieve these objectives, optimization should also consider the 

overall consumption of the fleet and try not to exceed a certain threshold. In order to do 

this, one more constraint should be considered and included in the mathematical model. 

Furthermore, to develop a more complex model which not only optimizes the charging 

expenditures but also considers consuming power, it is suggested to distribute the fleet 

optimization to an optimization by nodes, where again each node has a price and a 

maximum available power capacity. Naturally, the vehicles when moving would be charging 

in different nodes. This model would find a solution that would help stabilize the electrical 

grid in residential areas, as stated (Flath et al., 2014, p. 620). 

 

Moreover, if the model could consider the energy that it is curtailed to charge the 

EVs, it could get better economic results, since this energy can be considered to cost 0 € per 
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kWh. Finally, the concept od vehicle to grid (V2G) could be also included in the model, by 

assuming that EV owners are willing to use their vehicles for energy storage for the 

moments in which there is mode supply of electric energy than demand and the prices are 

negative, so they would receive money to charge them. Later, they could choose to use this 

energy to drive, or sell it back to the grid when supply cannot meet demand and prices are 

high, receiving again revenues for storing energy. 

 

5.2 Results 

The results of this master's thesis model and simulation have been satisfactory, firstly 

because it has been possible to answer the research questions, and secondly because the 

model developed provides an initial approach and solution to address this issue. However, 

the results have also shown that the model has some shortcomings. 

 Firstly, as discussed in section 4.2, the optimization attempts to minimize energy 

expenditures, and thus by the end of the simulation period only the energy needed to finish 

driving the remaining trips, thus generating the SOC to reach its minimum level at the end 

of the interval (unless otherwise requested, with constraint 3). Although the solution 

founded by the model it is correct, it generates that the SOC of the battery is always next 

to minimum level. 

Additionally, the software also usually shows charging scheduling solutions in which 

the charging process is not continuous but rather highly interrupted, and this could affect 

the performance of the batteries. Another constraint that could be added would be the one 

that limits the number of charge cycles to protect the battery’s life expectancy. 

Yet, the most surprising result was the avalanche effect, which, although expected, 

the magnitude of the peak loads in SMART mode were considerably higher than the ones 

for ASAP mode, as discussed in the results section. Certainly, this is an important drawback 

of this model because although the charging manager expenditures are reduced it 
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generates another problem. This effect could be diminished if the suggestions in section 5.1 

were applied to the model, considering a constraint for the aggregated consumption power. 

Finally, to analyses the results of the savings obtained using the SMART charging 

mode it can be affirmed that they are quite significant, but at the same time very volatile, 

so it is assumed that there is a close dependence on the intraday price of electricity and 

therefore just as the price is unpredictable so are the savings. 
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6 Conclusions 

 

This work began describing the reasons behind the great interest of studying the future 

impact that electromobility will have in the coming years, like changing the households 

loading profiles and compromising the stability of the electricity grid. In order to address 

these problems, this master's thesis work sought to introduce the concept of controlled 

charging and describe how this concept might help to mitigate these issues, explaining for 

example how EV’s could be used as a load shifting option. Later, a mathematical was 

described to optimize the charging schedule, assuming that the charging process can be 

controlled by the charging manager, and by this way it could minimize the energy charging 

costs for an EV fleet. But this model, although it did minimize the costs, neglected other 

aspects, which can be addressed in future investigations. 

With the model developed a first approach has been introduced, with the possibility of 

extending this model to find more complex solutions, which include more than one variable 

and not only price. The mathematical model has proven to be useful for what has been 

developed and the simulation results obtained can give us an initial overview of the 

possibilities when of reducing expenditures on driving energy for EV’s. 

The first conclusion from the model described and proposed is that in fact when 

charging can be controlled by the charging manager and it is scheduled using price signals, 

costs on charging EV fleets can be reduced drastically, with an average of 93%, for this 

particular case i.e., these driving profiles and this prices series. Certainly, if the model is 

improved it could not only reduce expenses but also help to shift load from high 

consumption peaks to low demand valleys. But certain limitations were not considered 

when this model was proposed, and therefore no decision considering these limitations 

were introduced. In fact, not considering these limitations, showed us that using just price 

signals it is not enough. Since only price signals were used to find the optimal charging 

schedule, avalanche effects were clearly visible leading to the conclusion that more than 
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one variable should be used to optimize the charging schedule and eventually help reducing 

the demand peaks. 

 Regarding the possible savings that controlled charging may produce, they can 

actually be quite high, but also very volatile and difficult to predict, but would certainly be 

more cost effective than charging with an uncontrolled mode. 
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Glossary 

AC: Alternate Current 

ALAP: As Late as Possible 

ASAP: As Soon as Possible 

BEV: Battery Electric Vehicle 

CME: Charging Manager Expenditures 

EV: Electric Vehicle 

DC: Direct Current 

RES: Renewable Energy Sources 

SOC: State of Charge 

SOCmax: State of Charge for ASAP strategy 

SOCmin: State of Charge for ALAP strategy 


