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Abstract—How to bound the state vector trajectory of a
nonlinear system in a way so that the obtained bound be of
practical value is an open problem. If some norm is employed
for bounding the state vector trajectory, then this norm should
be carefully selected and the state vector components suitably
scaled. In addition, practical applications usually require separate
bounds on every state variable. Bearing this context in mind, we
develop a novel componentwise bounding procedure applicable
to both real and complex nonlinear systems with additive
disturbances. A bound on the magnitude of the evolution of each
state variable is obtained by computing a single trajectory of a
well-specified “bounding” system constructed from the original
system equations and the available disturbance bounds. The
bounding system is shown to have highly desirable properties,
such as being monotone and positive. We provide preliminary
results establishing that key stability features are preserved by
the bounding system for systems in triangular form.

Index Terms—Componentwise bounds, monotone systems, pos-
itive systems, nonlinear systems.

I. INTRODUCTION

The obtention of bounds on the trajectory of a system is a

central issue in stability analysis. For example, the now stan-

dard definition of local Lyapunov stability of an equilibrium

point requires that the norm of the (forward) state trajectory

be bounded by a class-K function of the norm of the initial

state (see, e.g. Chapter 4 of [10]). From a qualitative point of

view, the specific norm employed for bounding the state vector

is usually irrelevant, provided the norm is taken from a class

of equivalent ones. By contrast, when practical issues such as

estimating basins of attraction or the size of some ultimate

bound are considered, then the question of what specific norm

to use may be crucial in order to get useful estimates.

When the state equations arise from modelling a real sys-

tem, it is often the case that each component of the state vector

represents some physical quantity whose evolution should be

contained within some given set. In this context, the obtention

of bounds on each component of the state vector becomes

especially relevant. If a bound on some norm of the state is

to be of any use, then this norm should be carefully selected

and/or the state equations should be suitably scaled.

This paper addresses the problem of obtaining bounds on

the magnitude of each component of the state vector, i.e.

componentwise magnitude bounds. Nonlinear systems with

additive disturbances are considered, where a bound on the

magnitude of each component of the disturbance vector is

known. In the case when the system is input-to-state stable

(ISS) [18], [19], regarding the disturbance vector as the input,

then the ISS property provides a bound on the norm of the

state vector depending on both the norm of the initial state

and the maximum norm of the disturbance. Once a bound for

the norm of the state is obtained, then componentwise bounds

can be easily computed. However, for these bounds to be of

practical value, the comparison functions characterizing ISS

should be tight, and suitable state and disturbance norms have

to be selected. The computation of tight comparison functions

is a highly non-trivial task [9], [14], [20]–[22], even when the

state and disturbance norms are given.

The obtention of componentwise bounds for linear time-

invariant (LTI) systems with disturbances has been addressed

in [13] for the case of constant (and also for some specific

state-dependent) disturbance bounds. The main method in [13]

has been tailored to sampled-data systems with quantization

[4] and extended to switched systems [6], [7]. Also, discrete-

time [8], [13] and probabilistic [11], [12] extensions are

available. All of these previous works are essentially based on

the analysis of a perturbed LTI system. The essential procedure

consists in (a) finding a linear coordinate change under which

the LTI system’s A-matrix becomes simpler, e.g. diagonal or

triangular; (b) bounding the magnitude of each component

of the transformed system state; (c) linearly transforming

back into the original coordinates. One key feature of this

procedure is that the componentwise bounding step (b), which

requires the transformed A-matrix to be “simpler”, is guaran-

teed to produce a convergent bound whenever the nominal

(i.e. undisturbed) system is asymptotically (hence globally

exponentially) stable. The bounding step of the procedure,

namely (b), is applicable only to an LTI system, with no

obvious way to extend it to nonlinear systems.

In this context, the main contribution of the current paper

is to provide preliminary results in order to develop a novel

componentwise bounding procedure applicable to nonlinear

systems and able to preserve key stability features when

the nonlinear system is in some “simple” form (triangular).

The componentwise bounds are obtained by computing a

single trajectory of a (nonlinear) monotone positive system

[1], [17]. Useful properties of monotone systems make this



specific bounding procedure highly desirable [2]. As opposed

to the LTI case where local stability notions are equivalent

to global ones, and where trajectories are always defined for

all times, the situation for nonlinear systems is substantially

more delicate. Therefore, the developed bounding procedure

exhibits key differences with respect to the previously existing

LTI procedure. However, when applied to an LTI system, the

bound obtained is shown to coincide with that obtained by the

existing procedure in [5], [6].
The remainder of this paper proceeds as follows. This

section ends with an overview of the notation employed. In

Section II, we state the problem and define the bounding sys-

tem. In Section III, we provide the main results, establishing

properties of the bounding system and proof that its solution

constitutes a componentwise bound on the magnitude of the

state trajectory. In Section IV, we show that local exponential

stability of the origin is maintained by the bounding system

if the original system is triangular. Numerical examples illus-

trating the bounding procedure are given in Section V and

conclusions are drawn in Section VI.
Notation: N, R, R≥0 and C denote the sets of natural,

real, nonnegative real and complex numbers, respectively. For

n ∈ N, n := {1, 2, . . . , n}. |M | denotes the elementwise
magnitude of a matrix or vector M . The (i, k)-th entry of a

matrix M is denoted by Mi,k. If X,Y ∈ R
n×m, the expression

‘X � Y (X ≺ Y )’ denotes the set of componentwise

inequalities Xi,k ≤ Yi,k(Xi,k < Yi,k), i ∈ n, k ∈ m, between

the entries of X and Y , and similarly for X � Y . The

imaginary unit is denoted j (j2 = −1) and 1 denotes a vector

all of whose components equal 1. A matrix M ∈ R
n×n is

Metzler if Mi,k ≥ 0 for all i �= k. For x ∈ R
n or C

n, ‖x‖
denotes its supremum (infinity) norm. For x : I ⊂ R → R

n,

where I is an open interval, D+x(t) denotes the upper-right

Dini derivative:

D+x(t) = lim sup
h→0+

x(t+ h)− x(t)

h
.

II. PRELIMINARIES

As mentioned in Section I, part of the motivation for the

componentwise bounding procedure in this paper arises in

extending to nonlinear systems a previously existing procedure

only applicable to LTI systems and requiring, in essence, an A-

matrix of diagonal or triangular form. If the original A-matrix

is not in such a form, then a linear change of coordinates

in the state variables induces a similarity transformation on

the A-matrix. For the transformed A-matrix to be diagonal

or triangular, complex-valued entries may be needed. Taking

this situation into account, we develop the componentwise

bounding procedure for both complex and real systems.

A. Problem Statement
Consider the real or complex dynamic system with additive

disturbances, given by1

ż = f(z) + w, z(0) = z0, (1)

1Future work is aimed at extending the procedure to systems of more
general forms, such as ż = f(z) + g(z)w, or ż = f(z, w).

with f : Fn → F
n and F = R in the real case or F = C in the

complex case. We assume that f is continuously differentiable

everywhere (holomorphic in the complex case) and f(0) = 0.

The disturbance vector w satisfies

|w(t)| � w, ∀t ≥ 0, (2)

for some w ∈ R
n
≥0. The problem addressed is to obtain

componentwise bounds on the magnitude vector ρ = |z|. This

is achieved by designing a monotone positive (real) system

ẋ = f̃(x,w), so that ρ(t) � x(t) for all t for which x exists.

B. The Bounding System

To define the bounding system, we need the following

definitions. For a matrix N ∈ C
n×n, define M(N) ∈ R

n×n

as the matrix whose entries satisfy

[M(N)]i,k =

{
Re{Ni,k} if i = k,

|Ni,k| if i �= k,
(3)

for all i, k ∈ n. Also, Mi(N) will be used to denote the

i-th row of M(N). Note that M(N) is Metzler for every

N ∈ C
n×n. Given the continuously differentiable vector field

f in (1), define the real vector field M[f ] : Rn → R
n via

M[f ]i(x) :=

∫ 1

0

max
y∈Vi(σ|x|)

[
Mi

(
∂f

∂z
(y)

)
|x|

]
dσ, (4)

Vi(p) := {z ∈ F
n : |z| � p, |zi| = pi}, (5)

where M[f ]i denotes the i-th component of M[f ] and the

above definitions are valid for all i ∈ n. Note that z ∈ Vi(|z|)
for all z ∈ F

n and all i ∈ n, Vi(0) = {0}, and M[f ](0) = 0.

In the next section, we will prove that if z is a solution to (1),

then ρ = |z| will satisfy ρ(t) � x(t), where x is a solution to

the system

ẋ = M[f ](x) +w, x(0) � ρ(0) = |z(0)|. (6)

III. THE BOUNDING PROCEDURE

In order to establish that the solutions of (6) constitute

componentwise magnitude bounds for the solutions of (1),

we need several auxiliary results. Some of these results are

interesting in their own right. In Section III-A, we prove some

properties of the vector field M[f ]. In Section III-B, we derive

a multivariable comparison lemma suited specifically to the

current purpose. In Section III-C, we prove the main result of

the section employing the results in Sections III-A and III-B.

A. Properties of M[f ]

Our first result is needed to ensure uniqueness of solutions

of the bounding system (6).

Lemma 3.1: M[f ] is locally Lipschitz continuous in either

of these cases:

i) F = C, or

ii) F = R and f has locally Lipschitz partial derivatives.

The proof of Lemma 3.1 is based on results for marginal

functions (see for example [3, Prop. 2.10]) and is omitted due

to lack of space. The requirement of local Lipschitzianity of

the partial derivatives of f can be dropped in the complex case



because a continuously differentiable holomorphic function

has continuous partial derivatives of all orders.

Definition 3.1 (Adapted from [17]): Let g : R≥0×R
n → R

n.

We say that g is of type K in some set D ⊂ R≥0 × R
n if

whenever (t, x), (t, y) ∈ D, x � y and xi = yi for some

i ∈ n, then gi(t, x) ≤ gi(t, y). We say that ḡ : Rn → R
n is of

type K in D̄ ⊂ R
n if g defined via g(t, x) := ḡ(x) is of type

K in R≥0 × D̄.

Remark 1: The type K condition is the main condition that

gives rise to a monotone system, and is also referred to as the

Kamke condition [17]. ◦
Lemma 3.2: The vector field M[f ] is of type K in R

n
≥0.

Proof: Let 0 � x � w so that xi = wi for some i ∈ n.

From (5), then Vi(σx) ⊂ Vi(σw) for all σ ≥ 0. From (3)

and (4), we have

∫ 1

0

max
y∈Vi(σx)

⎡
⎢⎣Re

{
∂fi
∂zi

(y)

}
xi +

n∑
k=1
k �=i

∣∣∣∣ ∂fi∂zk
(y)

∣∣∣∣xk

⎤
⎥⎦ dσ

≤
∫ 1

0

max
y∈Vi(σw)

⎡
⎢⎣Re

{
∂fi
∂zi

(y)

}
wi +

n∑
k=1
k �=i

∣∣∣∣ ∂fi∂zk
(y)

∣∣∣∣wk

⎤
⎥⎦ dσ

and hence M[f ]i(x) ≤ M[f ]i(w).
Remark 2: It is interesting to see what M[f ] looks like for

a linear system, i.e. f(z) = Az, with A ∈ F
n×n. In this case,

it follows straightforwardly from (3) and (4), that M[f ](x) =
M(A)|x|, where M(A) is Metzler. The system ẋ = M(A)x
is essentially the bounding system employed in [5], [6]. ◦

B. Multivariable comparison Lemma

The following result extends the well-known comparison

Lemma (cf. Lemma 3.4 in [10]) to a multivariable setting.

The main difference with existing multivariable comparison

results such as Theorem 3.1 of [15] is that we do not require

that solutions take values in an open set, and we employ upper-

right Dini derivatives instead of standard derivatives.

Lemma 3.3 (Multivariable comparison Lemma): Let D ⊂
R

n, D =
∏n

k=1[ak, bk) with −∞ < ak < bk ≤ ∞ for all k ∈
n. Let g : R≥0×D → R

n be such that g(t, x) is continuous in

(t, x) and locally Lipschitz in x (uniformly over t in compact

sets), and suppose that g is of type K in R≥0 ×D. Consider

the initial value problem

ẋ = g(t, x), x(t0) = x0, t0 ≥ 0,

and let Ix be the maximal (forward) interval of existence of

the solution x. Let y(t) be continuous and satisfy

D+y(t) � g(t, y(t)), y(t0) � x0, (7)

and y(t) ∈ D for all t ∈ Iy = [t0, Ty), for some Ty > t0.

Then, y(t) � x(t) for all t ∈ Ix ∩ Iy .

Sketch of the proof: The maximal interval of existence

of x is a nonempty interval of the form Ix = [t0, Tx) or

[t0, Tx] with Tx ≥ t0. If Tx = t0 then the thesis trivially

holds. Assume that Tx > t0. For every m ∈ N, consider the

following auxiliary initial value problems

ẋm = g(t, xm) +
r

m
1, xm(t0) = x0 +

r

m
1,

where 1 = [1, 1, . . . , 1]′ is a vector all of whose components

equal 1 and r > 0 is such that x0 + r1 ∈ D. Since x0 +
r
m1

lies in the interior of D, the maximal interval of existence

of xm is of the form Im = [t0, Tm) or Im = [t0, Tm] with

Tm > t0. Note that if Im = [t0, Tm) then there exists i ∈ n
such that xm

i (t) → bi as t → T−
m and if Im = [t0, Tm] then

there exists i ∈ n so that xm
i (Tm) = ai. The facts that g is of

type K and that (7) holds on Iy,m = Iy ∩ Im, imply Claim 1.

Claim 1: y(t) � xm(t) for all t ∈ Iy,m = Iy ∩ Im. ◦
Claim 2: Let t0 < t1 < Tx. Then, there exists m0 ∈ N

such that t1 < Tm for all m ≥ m0, and xm → x uniformly

on [t0, t1].
Proof of Claim 2: We first prove that for all m ∈ N,

xk(t) < xm
k (t) ∀t ∈ [t0, t1] ∩ Im, ∀k ∈ n. (8)

For a contradiction, suppose there exist m ∈ N, τ ∈ [t0, t1] ∩
Im and k ∈ n such that xk(τ) ≥ xm

k (τ). Since xk(t0) <
xm
k (t0), and x and xm are continuous, then there exists τ ′ ∈

(t0, τ ] such that xk(τ
′) = xm

k (τ ′). For every i ∈ n, define

si := inf{t ∈ [t0, t1] ∩ Im : xi(t) = xm
i (t)},

s := min
i∈n

si, I := {i ∈ n : si = s}.

The fact that xk(t0) < xm
k (t0) for all k ∈ n, the continuity of

x and xm and the definition of s imply that t0 < s ≤ τ ′ and

that xi(s) = xm
i (s) for all i ∈ I , x(s) � xm(s) and xk(s) <

xm
k (s) for all s ∈ [t0, s) and all k ∈ n. Then, for i ∈ I ,

since ẋm
i (s) = gi(s, x

m(s))+ r
m and ẋi(s) = gi(s, x

m(s)), it

follows that

gi(s, x
m(s)) +

r

m
= lim

s→s−

xm
i (s)− xm

i (s)

s− s

≤ lim
s→s−

xi(s)− xi(s)

s− s
= gi(s, x(s)).

Also, since g is of type K, then gi(s, x(s)) ≤ gi(s, x
m(s)).

We have thus reached a contradiction.

Let μ > 0 be such that the set C = {y ∈ R
n : ∃t ∈

[t0, t1], x(t) � y � x(t)+μ1} ⊂ D. Note that C is a compact

set and let L be a Lipschitz constant for g on [t0, t1]×C, i.e.

L > 0 satisfies

‖g(t, y)− g(t, ỹ)‖ ≤ L‖y − ỹ‖, ∀t ∈ [t0, t1], ∀y, ỹ ∈ C.

Let tm = sup
{
t ∈ [t0, t1] : x

m(τ) ∈ C, ∀t0 ≤ τ ≤ t
}

. The

continuity of x and xm, the fact that xm(t0) = x(t0) +
r
m1

and the definition of C, ensure the existence of m∗
0 such that

t0 < tm ≤ t1 for all m ≥ m∗
0. Applying Gronwall’s Lemma,

it can be proved that for all t ∈ [t0, t
m)

‖xm(t)− x(t)‖ ≤ r

m
‖1‖(1 + t1 − t0)e

L(t1−t0). (9)

Let m0 ≥ m∗
0 be any natural number such that

r

m0
‖1‖(1 + t1 − t0)e

L(t1−t0) ≤ μ

2
. (10)



By using (8), (9) and (10), and taking into account the

definition of C it follows that for all m ≥ m0, xm(tm) lies

in the interior of C and therefore tm = t1. Then, the uniform

convergence of xm to x on [t0, t1] follows from (9). ◦
We finish the proof of the lemma as follows. Suppose that

Ty ≤ Tx. Then, Ix ∩ Iy = [t0, Ty) and let t ∈ [t0, Ty). From

Claim 2, xm is defined on [t0, t] for m large enough and

xm(t) → x(t). Also, from Claims 1 and 2, yk(t) ≤ xm
k (t) for

all k if m is large enough. By letting m go to ∞ we obtain

yk(t) ≤ xk(t) for all k ∈ n. So y(t) � x(t) for all t ∈ Ix∩Iy .

If Tx < Ty instead, proceeding in the same manner as in the

previous case we obtain y(t) � x(t) for all t ∈ [t0, Tx). If

Ix ∩ Iy = [t0, Tx], then y(Tx) � x(Tx) follows by continuity

and taking the limit as t → T−
x .

C. Componentwise bounding procedure

The main result of this paper is the following, which

establishes a method for bounding the magnitude vector ρ in

a componentwise manner.

Proposition 3.1: Let z denote a solution to (1) with an

arbitrary disturbance satisfying (2), and define ρ = |z| (com-

ponentwise magnitude). Consider the real dynamic system (6).

Let [0, Tx) denote the maximal (forward) interval of existence

of x. Then, ρ(t) � x(t) for all t ∈ [0, Tx).
By means of Proposition 3.1, the obtention of componentwise

magnitude bounds is reduced to the computation of a single

and well-specificed trajetory of the bounding system (6). In

this regard, the asymptotic behaviour of (1) could be estimated

by analyzing that of (6). The idea of estimating the behaviour

of all possible trajectories by means of a single trajectory from

a comparison system has been previously employed in [16]

in the context of stability of large-scale interconnections of

nonlinear systems.

For the proof of Proposition 3.1 we require the following

lemma, which shows that the upper-right Dini derivative of

the magnitude vector ρ satisfies a componentwise inequality

involving the vector field M[f ].
Lemma 3.4: Let z denote a solution to (1), where the

disturbance vector w satisfies (2). Let [0, T ) be the maximal

interval of existence of z, and let ρ = |z|. Then,

D+ρ(t) � M[f ](ρ(t)) +w, for all t ∈ [0, T ).

Proof: We have ρi = zie
−jθi , where θi := arg{zi} is

well-defined whenever zi �= 0, for all i ∈ n. In addition,

whenever zi �= 0, the argument θi can be selected so that

ρ̇i = żie
−jθi − jzie

−jθi θ̇i = żie
−jθi − jρiθ̇i.

Taking into account that ρi, θi ∈ R, then

ρ̇i = Re{żie−jθi − jρiθ̇i} = Re{żie−jθi}, if zi �= 0. (11)

Due to the continuous differentiability of the vector field f ,

and the fact that f(0) = 0, each of its components fi can be

represented as follows:

fi(z) =

∫ 1

0

n∑
k=1

(
∂fi
∂zk

(σz)zk

)
dσ. (12)

Using (1) and (11), it follows that whenever zi �= 0, then

ρ̇i = Re{(fi(z) +wi)e
−jθi} ≤ Re{fi(z)e−jθi}+wi.

From (12), we have

Re{fi(z)e−jθi} = Re

{∫ 1

0

n∑
k=1

(
∂fi
∂zk

(σz)zk

)
e−jθidσ

}

≤
∫ 1

0

Re

{
∂fi
∂zi

(σz)

}
ρi +

n∑
k=1,k �=i

∣∣∣∣ ∂fi∂zk
(σz)

∣∣∣∣ ρkdσ
≤

∫ 1

0

max
y∈Vi(σρ)

[
Mi

(
∂f

∂z
(y)

)
ρ

]
dσ = M[f ]i(ρ),

where the last inequality follows because σz ∈ Vi(σρ) for all

σ ≥ 0. If zi(t) = 0, then ρi(t) = 0 and

D+ρi(t) = lim sup
h→0+

ρi(t+ h)− ρi(t)

h
= lim sup

h→0+

ρi(t+ h)

h

= lim sup
h→0+

∣∣∣∣zi(t+ h)

h

∣∣∣∣ = |żi(t)| ≤ |fi(z(t))|+wi.

Also, using (12), if zi(t) = 0, at time t we have

|fi(z)| =
∣∣∣∣∣
∫ 1

0

n∑
k=1

(
∂fi
∂zk

(σz)zk

)
dσ

∣∣∣∣∣
≤

∫ 1

0

n∑
k=1,k �=i

∣∣∣∣ ∂fi∂zk
(σz)

∣∣∣∣ ρk dσ ≤ M[f ]i(ρ).

Combining the obtained inequalities and the fact that whenever

ρ̇i exists, then ρ̇i = D+ρi, the result follows.

Proof of Proposition 3.1: Let Tz be the maximal interval

of existence of z. By Lemma 3.4, we know that D+ρ(t) �
M[f ](ρ(t)) +w for all t ∈ [0, Tz). By Lemma 3.2, we know

that M[f ] is of type K, and hence so is g = M[f ] +w.

Claim 3: x(t) ∈ R
n
≥0 for all t ∈ [0, Tx).

Proof of Claim 3: For every m ∈ N, consider the following

auxiliary initial value problem

ẋm = M[f ](xm) +w +
1

m
1, xm(0) = x(0) +

1

m
1,

defined in all of R
n. Let [0, Tm) be the maximal interval

of existence of xm. The trajectory xm begins in the positive

orthant because x(0) � 0. We next show that xm(t) ∈ R
n
≥0

for all t ∈ [t0, Tm). By continuity of xm, if xm leaves R
n
≥0

before ceasing to exist, there must exist k ∈ n and s ∈ [0, Tm)
such that xm

k (s) = 0 and xm(s) � 0. Then, we would have

ẋm
k (s) = M[f ]k(x

m(s)) +wk +
1

m
≥ 1

m
> 0,

where we have used the facts that xm(s) ∈ R
n
≥0, M[f ] is

of type K in R
n
≥0, and M[f ](0) = 0. It is clear that, having

a positive derivative, xm
k cannot become negative. We have

thus established that xm(t) ∈ R
n
≥0 for all t ∈ [t0, Tm). Then,

by using standard results about the continuity of solutions of

ODEs with respect to parameters and initial conditions (e.g.

[10, Theorem 3.5]), it follows that for all t ∈ Tx, xm(t) →
x(t) as m → ∞ and, in consequence, that x(t) ∈ R

n
≥0. ◦



Applying Lemma 3.3 with D = R
n
≥0, then ρ(t) � x(t) for

all t ∈ [0, T ), with T = min{Tx, Tz}. Since ρ(t) = |z(t)| � 0,

it follows that Tz ≥ Tx and hence T = Tx. Otherwise, z(t)
would lie in a compact set for all t ∈ [0, Tz), hence z(t) could

be extended to [0, Tz + δ) for some δ > 0, contradicting the

fact that [0, Tz) is its maximal interval of existence.

IV. TRIANGULAR SYSTEMS: STABILITY

In this section, we show that if the system is in triangular

form and the origin is a locally exponentially stable equilib-

rium, then the same holds for the bounding system. Consider

the following triangular system

ż1 = f1(z1, z2, . . . , zn),
ż2 = f2(z2, . . . , zn),
...

...
...

żn = fn(zn).

(13)

We assume that the linearization of system (13) about 0 is

locally exponentially stable.

Assumption 1: Re
{

∂fi
∂zi

(0)
}
< 0 for all i ∈ n.

Proposition 4.1: Consider the triangular system (13) and let

Assumption 1 hold. Then there exist positive constants δ, c
and β such that every solution x to

ẋ = M[f ](x), with 0 � x(0) � δ1, (14)

satisfies x(t) � 0 for all t ≥ 0 and

‖x(t)‖ ≤ c‖x(0)‖e−βt, ∀t ≥ 0. (15)

Proof: Let A = M
(

∂f
∂z (0)

)
, define

e(x) := M[f ](x)−A |x|, (16)

and let Ai denote the i-th row of A. We next show that

limx→0
ei(x)
‖x‖ = 0 for every i ∈ n. We have

ei(x) = M[f ]i(x)−Ai|x|

=

∫ 1

0

{
max

y∈Vi(σ|x|)

[
Mi

(
∂f

∂z
(y)

)
|x|

]
−Ai|x|

}
dσ

=

∫ 1

0

max
y∈Vi(σ|x|)

{[
Mi

(
∂f

∂z
(y)

)
−Ai

]
|x|

}
dσ

=

∫ 1

0

max
y∈Vi(σ|x|)

[
n∑

k=1

bi,k(y)|xk|
]
dσ (17)

with bi,k(y) = |∂fi/∂zk(y)| − |∂fi/∂zk(0)| if i �= k and

bi,i(y) = Re{∂fi/∂zi(y)− ∂fi/∂zi(0)}. From the continuity

of the partial derivatives of f and the fact that Vi(σ|x|) ⊂ {y ∈
F
n : ‖y‖ ≤ ‖x‖} =: B(‖x‖) for all 0 ≤ σ ≤ 1, it easily fol-

lows that maxy∈Vi(σ|x|) |bi,k(y)| ≤ maxy∈B(‖x‖) |bi,k(y)| =:
γi,k(x) and that γi,k(x) → 0 as x → 0. Then, using (17), we

have

|ei(x)| ≤
n∑

k=1

γi,k(x)|xk| and hence lim
x→0

|ei(x)|
‖x‖ = 0

Let g : Rn → R
n be defined via

g(x) = Ax+ e(x). (18)

By the above derivation, it follows that g is differentiable at the

origin and ∂g
∂x (0) = A. Note that g coincides with M[f ](x)

whenever x ∈ R
n
≥0, and that A is Hurwitz because (a) system

(13) is triangular and hence A is upper triangular, and (b) by

Assumption 1 the diagonal entries of A have negative real

part. It thus follows that ẋ = g(x) has a locally exponentially

stable equilibrium at the origin.

The proof concludes by taking into account that the solu-

tions of (14) that begin in R
n
≥0 remain in R

n
≥0 while they exist

(see the proof of Proposition 3.1) and that, in consequence, are

also solutions to ẋ = g(x).

V. EXAMPLES

We provide two examples to illustrate the procedure and

some of its features. Both examples have the same equations,

the first interpreted as a complex system and the second as

a real system. The equations correspond to the second-order

triangular system (1)–(2), with |z(0)| = [1, 2]′, and

f1(z1, z2) := −(1 + z22)z1, |w1(t)| ≤ w1 := 0,

f2(z1, z2) := −z2, |w2(t)| ≤ w2 := 1.

We can compute the Jacobian

∂f

∂z
(y) =

[−(1 + y22) −2y1y2
0 −1

]
.

A. Complex system

We allow z(t) ∈ C
2. From (5), for σ ∈ [0, 1] we have

V1(σ|x|) = {y ∈ C
2 : |y1| = σ|x1|, |y2| ≤ σ|x2|}

and hence

max
y∈V1(σ|x|)

[
M1

(
∂f

∂z
(y)

)
|x|

]
= max

y∈V1(σ|x|)
[
Re{−(1 + y22)}|x1|+ | − 2y1y2||x2|

]
= max

|y2|≤σ|x2|
[−(1 + Re{y22})|x1|+ 2σ|x1||y2||x2|

]
= max

|y2|≤σ|x2|
θ2∈[0,2π]

[
(−1− |y2|2 cos(2θ2))|x1|+ 2σ|x1||y2||x2|

]

= max
|y2|≤σ|x2|

[
(−1 + |y2|2)|x1|+ 2σ|x1||y2||x2|

]
= (−1 + σ2|x2|2)|x1|+ 2σ2|x1||x2|2
= (−1 + 3σ2|x2|2)|x1|.

From (4), integrating the above expression we get

M[f ]1(x) = (−1 + |x2|2)|x1|.
Similarly, it follows that

M[f ]2(x) = −|x2|. (19)

The initial condition z0 = [1, 2j]′ (with j2 = −1) and the

constant disturbance w1(t) = 0, w2(t) = j for all t ≥ 0
(which satisfies |w(t)| = w), produce

z2(t) = (1 + e−t)j,

ż1(t) = −(1− (1 + e−t)2)z1(t) = (2e−t + e−2t)z1(t),



z1(t) = e
∫ t
0
(2e−s+e−2s)dsz1(0)

and taking x(0) = |z(0)| = [1, 2]′ and w = [0, 1]′, then the

solution to (6) is given by

x2(t) = 1 + e−t = |z2(t)|,
ẋ1(t) = (−1 + (1 + e−t)2)x1(t) = (2e−t + e−2t)x1(t),

x1(t) = e
∫ t
0
(2e−s+e−2s)dsx1(0)

and it is clear that x1(t) = |z1(t)|. Hence, in this example

there is no conservativeness in the bounding procedure.

B. Real system

Next, we interpret z(t) ∈ R
2 and hence f : R2 → R

2 and

V1(σ|x|) = {y ∈ R
2 : |y1| = σ|x1|, |y2| ≤ σ|x2|}. Then,

max
y∈V1(σ|x|)

[
M1

(
∂f

∂z
(y)

)
|x|

]
= max

y∈V1(σ|x|)
[
Re{−(1 + y22)}|x1|+ | − 2y1y2||x2|

]
= max

|y2|≤σ|x2|
[−(1 + |y2|2)|x1|+ 2σ|x1||y2||x2|

]
= −|x1|+ max

|y2|≤σ|x2|
[−|y2|2 + 2σ|y2||x2|

] |x1|.

The maximum of the latter expression between square brackets

is attained for |y2| = σ|x2|. Therefore,

max
y∈V1(σ|x|)

[
M1

(
∂f

∂z
(y)

)
|x|

]
= −|x1|+ σ2|x2|2|x1|.

Integrating the above expression we get

M[f ]1(x) =

(
−1 +

1

3
|x2|2

)
|x1|,

and (19) follows similarly. For the initial condition z(0) =
[1, 2]′ = |z(0)| = x(0), we can compute z2(t) = 1 + e−t =
x2(t) and ż1(t) = −(1 + (1 + e−t)2)z1(t), whence

z1(t) = e
∫ t
0
−(1+(1+e−s)2)dsz1(0),

x1(t) = e
∫ t
0
−(1+(1+e−s)2/3)dsx1(0).

By contrast with the complex case, the transient bound on

|z1|, namely x1, exhibits some conservativeness although

in this specific case the asymptotic bound is tight, i.e.

lim supt→∞ |z1(t)| = lim supt→∞ x1(t).

VI. CONCLUSIONS

We have developed a novel componentwise magnitude

bounding procedure applicable to nonlinear systems with

additive disturbances. Every system trajectory beginning at a

given initial condition is shown to be bounded componentwise

by a single trajectory from a bounding system, irrespective of

the disturbance evolution. This bounding system is monotone

and positive, and is constructed based on the original system’s

equations and disturbance bounds. For LTI systems, we have

shown that this bounding procedure reduces to a previously ex-

isting one. We have also provided preliminary results showing

that the bounding system is able to maintain local exponential

stability of the origin if the system is triangular. Future work

will be aimed at extending the procedure to more general

classes of systems, and to the analysis of conditions that ensure

other types of stability properties, such as global asymptotic

stability and input-to-state stability (ISS) from the disturbance.
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