
ta [3]. The outliers can adversely affect the results obtained 
from the conventional estimation methods such as CSP and 
LDA. These algorithms are strongly influenced by outliers 
because they involve the use of sample covariance that is 
highly non-robust. 

In this work, methods based on the regularized common 
spatial patterns analysis (RCSP) algorithm proposed by 
Yong et al. [4] are evaluated for three datasets taken from 
the BCI competitions III and IV using several robust cova-
riance estimators: Minimum covariance determinant (MCD) 
[5], Stahel-Donoho estimator (DS) [6,7], MM-estimator [8]. 
The proposed estimators for the covariance matrix provide 
robust estimates with respect to individual samples, i.e. they 
ignore trial structure and downweights outlier samples ra-
ther than whole trials. Not only the estimation of covarian-
ce matrices, but also the sample variance estimates used in 
extracting the features from the projected EEG signals are 
also easily affected by even a single outlier [3]. In order to 
deal with this problem, the scale estimate is replaced with 
the median absolute deviation and mean absolute deviation 
estimates. 

II. MATERIAL AND METHODS

In BCI design the goal is to process the EEG signal to 
translate into the mental state of the user. The two main 
steps in the processing system are feature extraction and 
classification. 

In motor imagery based BCI can be distinguished imagi-
nary movements of the right hand from the left hand. To 
identify these two mental states from EEG signals, band po-
wer features are usually extracted in the  
and  -
calized over the motor cortex areas of the brain. Such fea-
tures are then typically classified using LDA. 

A. Classical and robust CSP

One way to extract features from multiple EEG channels
is to use spatial filtering, as CSP, which is a technique to 
analyze multi-channel data based on recordings from two 
classes.   
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Abstract— Common spatial patterns analysis and linear dis-
criminant analysis are popular algorithms for spatial filtering 
and classifying in motor imagery. These algorithms are very 
sensitive to noise and artifacts which affect the classification 
accuracy. To deal with this issue, it is proposed to replace the 
usual estimators of covariance and scale used in the algorithms 
for robust versions. The performance of the methods are eval-
uated and compared on EGG data from BCI competition data 
sets; results show that robust methods outperformed classical 
techniques for subjects with poor classification accuracy.  
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I. INTRODUCTION

Motor imagery (MI) is a neuronal activity that occurs 
when a subject voluntarily imagine making a movement, for 
example, moving the right hand. To imagine a movement 
produces a neuronal activity that is spatio-temporally simi-
lar to the activity generated during the real movement. The 
Brain-Computer Interface (BCI) protocol usually employed 
involves asking the patient to imagine various types of mo-
vements while the EEG signals are recorded. The charac-
teristics used to quantify the EEG activity are extracted and 
subsequently classifiers can be applied to discriminate bet-
ween two or more imagined movements, allowing each 
imagined activity to be assigned to a particular control sig-
nal. 

Common spatial patterns analysis (CSP) [1] is a supervi-
sed spatial filtering method that is used to find a transfor-
mation that maximizes the separability between the EEG 
data of two conditions. Usually, only a few of most discrim-
inative filters obtained are used for classification. Linear 
discriminant analysis (LDA) [2] is a classifier that provides 
acceptable accuracy without high computation require-
ments. It is usually applied to classify patterns into two 
classes, although it is possible to extend the method to mul-
tiples classes. 

EEG signals are widely affected by a variety of large sig-
nal contaminations or artifacts, such as eyes movements and 
blinkings, heart and muscle activities, head and body move-
ments, as well as external interferences due to power sour-
ces. This causes the EEG signals contain outliers, which are 
observations that deviate from the general pattern of the da-



Let  be a sample of  training EEG trials 
corresponding to two different mental states (classes 1 and 
2), where  is the data matrix which corresponds to 
a trial ( ) of imaginary movement, with  the 
number of observations in each trial and  the number of 
channels. Let  be the spatial covariance matrix of 
the band-pass filtered signals in  from class  ( . 

CSP yields a data-driven supervised decomposition of 
the signal parameterized by a matrix  that projects 
a signal  in the original sensor space CSP  
where the  spatial filters (rows of   (

) extremize the Rayleigh quotient . 
For a given trial matrix  (centered and scaled) the nor-

malized sample covariance matrix is obtained as 
tr  . 

For each class , an estimator of  is computed by ave-
raging the covariances matrices of each trial as 

 

where  is the set of trials in  belonging to the class  and 
 denotes the cardinality of . Such computation of cova-

riance matrices assumes that the signals have zero mean, 
which is true in practice for band-pass filtered signals. 
 The vector  in can be achieved by solving the 
generalized eigenvalue problem 

 
Then the matrix  in CSP consists of the generalized eigen-
vectors  of Eq. 2 and  are the corresponding 
diagonal elements of , while  in Eq. 2 equals to  

The sample covariance matrix is highly non-robust and 
has a breakdown point of 0, implying that is affected by 
even a single outlier. The simplest way to deal with this 
problem is to replace it with a robust estimate. In this study, 
the robust estimators used instead of  are MCD, DS-esti-
mator and MM-estimator.  

The MCD estimator is given by the subset of  ( ) 
out of  data points with smallest covariance determinant. 
The location and scatter estimates are therefore the mean 
and a multiple of the covariance matrix computed on  such 
points. The DS-estimators of multivariate location and sca-
tter are defined as a weighted mean and a weighted cova-
riance matrix. The weights depend on a measure of out-
lyingness obtained by considering all univariate projections 
of the data. The idea of the multivariate MM-estimators is 
to estimate the scale by means of a very robust S-estimator, 
and then estimate the location and shape using a different 
loss function that yields better efficiency at the central mod-
el. The location and shape estimates inherit the breakdown 
point of the auxiliary scale.  

The average estimates obtained in Eq. 1 can be substan-
tially disturbed by outliers. It is possible to make them more 

robust by reducing the contributions of outlier covariances. 
An alternative iterative method is proposed by [9] using a 
weighted average where the weights controls the importan-
ce of each covariance depending on the distance from the 
center. Another weighted average, based on the number of 
outliers, can be obtained as follows. For a given , let  
and  be robust estimates of location and scatter. Let 

 be the  rows of  where  ( ). 
A measure of outlyingness for a data point  is given by a 
robust  version of the   Mahalanobis distance      

 with the usual cutoff value of . 
For each row ,  is calculated to determine if  is an 
outlier; let the number of rows of  which are not outli-
ers. Thus, a robust estimator of   is given by 

 Then, replacing  by  in Eq. 1, the proposed robust 
version of CSP will generate a weight matrix  as output. 

B. Feature extraction

The classical measure for the selection of CSP filters is
based on the eigenvalues in Eq. 2. The  filters ( ), 
corresponding to the  largest and the  lowest eigenvalues 
are used.  

Once these filters are obtained, a CSP feature  for a 
signal  is defined as  
i.e., the  features used are simply the band power of the
spatially filtered signals.

  Each eigenvalue is the relative variance of the signal fil-
tered with the corresponding spatial filter. This measure is 
not robust to outliers because it is based on simply pooling 
the sample covariance matrices in each class. A simple way 
to fix this issue proposed by Blankertz et al. [10]; they 
calculate the variance of the filtered signal within each trial 
and then calculate the corresponding ratio of medians: 

 with  . 
On the other hand, a robust scale estimate  of a sample 

 can be obtained using the median of the ab-
solute deviations (MAD) of the sample from their median, 
given by  

Another scale estimator  is the mean absolute deviation 
( ), given by  

  Thus, using any of the proposed variance estimators, for 
a signal , the vector of features used in clas-
sification is found. 

C. Classification

Linear discriminant analysis is typically carried out using
Fisher's method. LDA assumes that the two classes are line-



arly separable. According to this assumption, it defines a li-
near discrimination function which represents a hyperplane 
in the feature space in order to distinguish the classes. The 
class to which the feature vector belongs will depend on the 
side of the plane where the vector is found.  

For each  in the sample , the features vector  is ob-
tained. Let  the set of these vectors such signals are in , 
and let  and  be the sample mean and covariance ob-
tained with the data in . For a new signal , let  be 
the probability that the signal  to classify belongs to class  
and  the features vector for  Let  be the within groups 
covariance matrix given by the pooled version of the differ-
ent scatter matrices  

 is assigned to class  for which  whe-
re  

D. Numerical experiments

a) Data sets
In order to compare the performance of the robust algo-

rithms proposed with the classical CPS and LDA, three data 
sets of the BCI competitions, which contain motor imagery 
EEG signals, were used. The first two datasets were collect-
ed in a multiclass setting, with the subjects performing more 
than two different MI tasks; for them, the algorithms were 
evaluated on two-class problems by selecting only signals 
of left and right hand MI trials.  

Datasets are: IV-IIa [11]: recorded using 22 electrodes 
from 9 subjects who performed left-hand, right-hand, foot 
and tongue MI. The training and testing sets containing 72 
trials for each class; III-IIIa [12]: recorded using 60 elec-
trodes from 3 subjects who performed left-hand, right-hand, 
foot and tongue MI. The training and a testing sets contain 
45 trials per class for subject 1, and 30 trials per class for 
subjects 2 and 3; III-IVa [13]: recorded using 118 electro-
des from 5 subjects who performed right hand and foot MI. 
A training set and a testing set were available for each sub-
ject, with different sizes (280 trials were available for each 
subject, among which 168, 224, 84, 56 and 28 composed the 
training set for subject A1, A2, A3, A4 and A5 respectively, 
the remaining trials composing the test set).  

b) Data processing
For all data sets, EEG signals were band-pass filtered in

8-30 Hz, using a 5th order Butterworth filter. For each trial,
the features are extracted from the time segment located
from 0.5s to 2.5s after the cue instructing the subject to per-
form MI. The Matlab code of EEG signal processing/clas-
sification by Lotte, available at [14], was adapted to process
the signals. Data were spatially filtered using the different
variants of CSP presented in Section II.A. The robust sta-
tistical toolbox FSDA [15] was used to obtain the robust es-

timates of the covariance matrices by the functions “mcd” 
for MCD, “SDest” for DS-estimator and “MMmultcore” for 
MM-estimators. The filters were selected according to the 
pairs of extreme eigenvalues and the  pairs of extreme
scores. After spatially filtering the data, the log-variance
was calculated in each trial using the different estimators of
scale proposed in Section II.B, and LDA was trained on
those features. The subjects’ performance was calculated by
filtering and classifying the testing data with the filters and
LDA obtained in the manner mentioned before.

III. RESULTS

Table 1 shows the best results of classifying the signals 
from the test sets using each of the techniques presented in 
Section II. The notation used is the following: CSP* for 
CSP, MCD* for MCD, DS* for Stahel-Donoho (using the 
weight functions: MDC (DSM*), Tukey’s biweight (DST*) 
and Huber’s (DSH*)) and MM* for MM-estimator; *1 for 
the scale estimator using MAD and *2 for ; and *s 
when the  features are selected using scores instead of the 
extreme eigenvalues. Although in the BCI literature the 
usual number of features considered is between 2 and 6, in 
this work the number of pairs  (pf) was varied between 1 
and 11 for the first dataset and between 1 and 30 for the last 
two ones; only the lowest  is reported in the case of ties for 
the best accuracies from the same method. 

Results show that robust methods outperformed classical 
CSP for subjects with poor performances. In these cases, for 
most of them, the use of robust covariance matrices in CPS 
together the mean absolute deviation for scale and the featu-
res selected through the extreme eigenvalues produce the 
best classification accuracy. For the other subjects, this pro-
cedure provides an accuracy close to that of conventional 
method. This suggests that robust techniques are an alterna-
tive to improve the classification accuracy of CPS with 
LDA. However, determine the optimal method and the 
number of features suitable for classification is highly de-
pendent on the individual. 

IV. CONCLUSIONS

 This study presents a comparison between the classical 
MI classification based on CSP and LDA and robust pro-
posals. The methods are evaluated on MI data from 17 sub-
jects. For all of them, better or similar performance in clas-
sification with classical CSP and RCSP (see [16]) are ob-
tained. Results shows that for most subjects the best classi-
fications are achieved using robust CSP.  
 The method with the best performance depends on the 
subject as it is seen from Table 1. Future work  could be de- 



Table 1 Classification accuracies obtained for each subject for the different methods. For each subject, the best result is displayed in bold characters 

veloping techniques to determine from the training data 
which  is the most convenient  method among the  proposed 
in this paper for classifying MI signals. 
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pf % pf % pf % pf % pf % pf % pf % pf % pf % pf % pf % pf % pf % pf % pf % pf % pf %

CSP1 4 90.28 1 54.17 3 96.53 1 74.31 2 64.58 3 71.53 2 84.03 6 97.22 2 93.75 1 97.78 7 68.33 1 98.33 2 71.43 10 100 6 61.73 9 78.13 10 67.46
CSP1s 4 92.36 5 54.86 8 94.44 4 72.22 5 56.25 5 67.36 7 81.94 8 97.22 6 93.75 4 95.56 8 63.33 6 91.67 26 74.11 24 98.21 14 57.65 4 59.82 5 58.73
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MCD1 2 83.33 2 60.42 5 96.53 10 68.06 3 66.67 6 70.83 2 72.22 2 98.61 3 92.36 2 98.89 1 66.67 2 98.33 2 70.54 10 100 7 60.71 4 82.59 3 87.30
MCD1s 2 83.33 3 60.42 4 96.53 5 68.75 11 65.97 5 70.14 2 74.31 3 98.61 3 92.36 3 97.78 17 68.33 4 93.33 16 71.43 12 100 4 64.29 11 77.23 5 73.41
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DST2 3 90.28 4 57.64 5 97.92 2 72.92 2 62.50 2 75.00 2 79.17 11 98.61 2 92.36 2 98.89 20 71.67 2 98.33 1 75.00 3 98.21 3 73.98 2 86.61 3 84.92
DST2s 5 88.89 7 58.33 3 96.53 6 70.14 7 61.81 8 73.61 4 76.39 8 99.31 4 93.75 4 93.33 8 61.67 10 88.33 1 77.68 6 98.21 17 58.67 8 54.91 11 67.46
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DSH2 3 88.19 1 56.25 3 95.83 6 75.00 2 65.28 1 75.69 11 75.69 5 97.22 1 92.36 1 97.78 13 75.00 2 98.33 1 72.32 26 100 2 66.33 1 80.36 2 82.94
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MM1 2 85.42 3 56.25 5 95.83 1 72.92 2 67.36 2 66.67 1 75.69 5 98.61 2 91.67 2 96.67 17 68.33 2 100 9 74.11 1 96.43 6 71.43 2 86.61 2 79.37
MM1s 2 86.81 2 59.03 4 95.83 1 72.92 3 59.72 3 70.83 1 75.69 5 98.61 1 92.36 2 96.67 16 71.67 3 90.00 11 65.18 2 94.64 6 69.90 13 70.54 11 63.49
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BCI III dataset IIIa
1 2 36 7 8 9

BCI IV dataset IIa
1 2 3 4 5

BCI III dataset IVa
1 2 3 4 5
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