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Abstract

The field of Brain Computer Interaction has diverse applications in real life problems,

most of them little explored. One of them is the training of an agent immersed in a

system making use of human brain signals. These signals can be obtained in different

ways, among which Electroencephalography (EEG) stands out due to its ease of use, low

cost, effectiveness and its non-invasive condition.

Event-related potential (ERP) is the brain response as a consequence of an event in a

given time. Error-related potential (ErrP) is a type of ERP that is related to the detection

of an error. When a subject perceives a mistake, in this case, made by an agent, it triggers

these potentials. ErrP are detectable in brain signals with the appropriate processing and

from this detection it is possible to perform some desired action or take a certain decision.

Spatial filters are a tool that allows to improve signals, eliminating a lot of non-redundant

information such as noise.

Reinforcement learning consists of training an agent based on a reward that he seeks to

maximize while interacting with the environment. The information obtained from the

brain signals can be used as a source to calculate the rewards in a given problem.

Carrying out the complete extraction, processing and learning procedure in real time has

greater utility and number of practical applications, and its results could be better.

This thesis works as an extension to [1]. It is based on the training of an agent with the

reinforcement learning algorithm with ErrP signals, captured with EEG. It proposes a

basic scheme for the online procedure. The use of spatial filters is tested by generating

and comparing different processing pipelines.

Keywords – BCI, EEG, ERP, ErrP, Reinforcement Learning, Q-Table, OHC, xDawn,

PCA, Cross Validation
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1

1 Introduction

1.1 Brain computer Interfaces

A Brain-computer interface (BCI) is a system that measures central nervous system (CNS)

activity and converts it into articial output that replaces, restores, enhances, supplements,

or improves natural CNS output and thereby changes the ongoing interactions between

the CNS and its external and internal environment [2].

Figure 1.1: The block diagram of a BCI system

The architecture is described in Figure 1.1. It has the following 5 main components:

1. An experiment the subject observes which activates the desired brain activity.

2. A signal acquisition device that captures the brain data in order to be transmitted

to a computer device for processing.

3. An signal featuring step where signal is filtered, resampled, among other

transformations with the objective of eliminating noise and artifacts and that

builds a feature in order to distinguish the signals characteristics and get the most
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out of data.

4. A signal classification module which infers the information.

5. An application system that uses the generated information as input to perform a

desired action.

Brain-computer interfaces (BCIs) give the possibility to assist people with some kind

of motor disability [3], this can be done by converting thoughts into movements of an

external device. Helping disabled people to recover autonomy was the initial purpose of

BCIs but nowadays the application scope has been growing over time up to the point it

has begun to be used in gaming, emotion recognition, mental fatigue evaluation, vigilance

estimation, etc. [4] Currently BCIs can determine the intent of the user detecting and

processing their Electroencephalographic signals (EEG), for instance, the user may control

the modulation of some brain waves (e.g., mu or beta rhythms) or the BCI may exploit

natural automatic responses of the brain to external stimuli (e.g., event-related potentials

(ErrP)). [5] EEG is the most used measurement method of brain waves, for its non-invasive

(does not require implants nor surgeries) and simple nature. However, the captured signals

are very weak and of poor quality, as they need to cross several layers of tissues—such as

the meninges, the skull and the scalp—before being captured by the electrodes. For this

reason, it is often necessary to use several electrodes to have a higher spatial resolution

and a more precise system.

1.1.1 Signal Acquisition

Over the past years, number of technologies have been developed to measure the activity of

the human brain. Some of the techniques measure the variation of the electrical activities

related to the different states of the brain while some other techniques measure other

different parameters. Available modalities can be classified under the two categories

based on their invasiveness, non-invasive and invasive. Invasive techniques further can be

categorized to technologies using intra–cortical electrode arrays and electrocorticography

(ECoG, intracranial electroencephalography). Non-invasive techniques also can be further

categorized into EEG, near infrared spectroscopy (NIRS), functional magnetic resoncance

imaging (fMRI), positron emission tomography (PET) and magnetoencephalography

(MEG).
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Invasive methods require complex craniotomy surgery. Taking that into account, testing

with them is not a viable option. Out of the non-invasive methods EEG is more widely

used compared to MEG, mainly because EEG is inexpensive and simple, instead MEG is

expensive, cumbersome and is only used in research settings.

1.1.1.1 Electroencephalography

Electroencephalography (EEG) is an electrophysiological monitoring method to record

electrical activity of the brain. EEG measures the electrical activity fluctuations of the

brain from the scalp of the human head. Each electrode is called EEG channel. In Figure

1.2 theres an example of an EEG signal (time axis is in seconds and five seconds are

displayed. The eight channels provided by this device are shown). Abnormalities of EEG

are used to diagnose various neurological disorders, sleep disorders, brain death, tumors,

stroke, etc. . . in clinical applications. However, due to the easiness of use, noninvasive

nature and higher temporal resolution compared to other noninvasive BSAT, EEG draws

more attention to be used as BCI modality frequently. Despite, EEG recording are prone

to contaminate with noise. [6] [7]

Figure 1.2: Sample EEG signal obtained from (g.Nautilus, g.Tec, Austria) [8]

The work uses EEG signals from different observational human critics (OHCs) who were

asked to observe how a computer game was solved while the EEG signals emitted by the

subject were captured, and then through the ErrPs evoked from said recordings, train

an agent to solve the game in question. Observational human critics are silent subjects
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observing a computer gaming agent playing the game.

1.1.2 Signal Processing

Signal processing means to mathematically manipulate an information signal to modify

or improve it in some way. In order to achieve the desired objective of the BCI, which is

to carry out a particular action based on results, it is almost always necessary to perform

some type of processing on the data. In the first instance, there is a pre-processing

stage, in which all unwanted or junk information is eliminated, such as interference, noise

or artifacts. The difference between noise and artifacts is that noise is caused due to

background neurological activity where artifacts are not i.e. eye blinks. This can be done

in different ways, among which bandpass filters, frequency filters, spatial filters, among

others, stand out. [9] Once this is done, you can proceed to the feature extraction stage.

Feature extraction is the process of distinguishing the pertinent signal characteristics

from extraneous content and representing them in a compact and/or meaningful form,

amenable to interpretation by a human or computer [2]. This means that based on

detection and separation of intrinsic characteristics of a signal, with the application of a

relevant translation the command for device control can be generated

1.1.3 Spatial Filtering

As mentioned before, EEG signals are weak, easily contaminated by interference and noise,

non-stationary for the same subject, and varying across different subjects and sessions.

Therefore, it is important to build a model that allows to improve the signals during the

different sessions, for different devices and tasks. To achieve an improvement in the signal

and obtain a better detection of the ErrPs, filters and algorithms are usually applied that

remove noise and interference from the signals, such as the band-pass filter [10], xDawn

algorithm [11], among others.

1.1.4 Signal Classification

The goal of classification is to translate the signal features provided by the feature extractor

into commands or orders that carry out user’s intent. This is done by processing the

feature vector that returns the recognized command as output. In order to discern a
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command, the model must be trained in such a way that it can differentiate what a feature

vector represents. In EEG signals it is possible to detect traces (voltage fluctuations)

related to the existence of events in a given time. These events are called event-related

potentials (ERP). The events that trigger ERP signals could be perceptual, cognitive or

motor events, in response to an activity that reflects the brain activity (Ferrez, 2007) and

a model can be made to detect them. In particular, the study in question deals with a

particular type of ERP called Error-related potentials (ErrP).

1.1.4.1 Error Related Potential

ErrP [12] occurs in different situations, so it is possible to say that there are different types

of ErrP, for example, interaction ErrP, which is evoked by recognizing an error during the

interaction between human and machine, feedback ErrP, which is obtained by recognizing

an error that is made conscious by feedback presented to the human, response ErrP, which

is generated by recognizing the person’s own error who is performing a task that requires

quick response, or observation ErrP, which is evoked, while observing an erroneous action

of a subject. The last one is the one that will be used in this investigation.

Figure 1.3: Reinforcement learning diagram
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1.2 Reinforcement Learning

Single-trial detections of ErrPs are possible by using machine learning techniques and

signal processing methods [13], which has been demonstrated in various application areas

[14] [15]. Reinforcement Learning (RL) is an Artificial Intelligence approach that can be

used in issues such as detecting ErrP signals. RL problems require to know how to map

situations to actions with the objective of maximize a numerical reward. In an essential

way they are closed-loop problems because the learning system’s actions influence its later

inputs. [16] These RL systems are widely used in the field of video games, especially in

games that respond to stochastic Markov decision processes.

Recently, this technique has been used extensively in the context of advances in artificial

intelligence [17], like in 2019, where OpenAI Five became the first AI system to defeat the

world champions at an esports game. By defeating the Dota 2 world champion (Team OG),

OpenAI Five demonstrates that self-play reinforcement learning can achieve superhuman

performance on a difficult task. [18] Papers like [19] and [20] demonstrate that it is

possible to train robots with the brain to perform specific tasks. In these papers they use

RL in conjunction with ErrPs signals registered by a BCI system based on EEG, which

through the stimuli obtained generate implicit feedback in the form of a reward for the RL.

[4] The current study focuses on seeking improvements in classification, by implementing

different spatial filters applied to the signals and using variants of classification methods,

with the aim of obtaining improvements in the learning of RL.

RL is based upon the concept of learning from interaction, automatizing decision making

and goal directed learning. Setting a numerical reward for every action given a particular

state and maximizing such reward as the objective. However the best actions to take

are not explicitly indicated and the agent must discover which path to take in order to

maximize the reward. The learner must discover new states in addition to states it has

already explored. If not it may be possible to lose important information which might

lead to better rewards. When the agent chooses an action it has done in the past that

have granted high rewards, it is exploiting previous experiences, nevertheless the agent

also needs to explore new paths. The agent must try countless set of actions and prioritize

the best that have appear in previous experiences. This method allows us to avoid the

problems of creating an explicit model for the behaviour.
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1.2.1 Elements

The two main elements of RL are the environment and the agent. In addition to these the

other four elements are the policy, the reward system, the value function and the model

for the environment.

The agent is the entity capable of perceiving its environment and reacting accordingly in

a rational way, trying to maximize the final result or reward.

1.3 Q-Learning

Q-Learning [21] is a variant of model-free reinforcement learning algorithm where an agent

receives rewards or penalties to achieve the proper evaluation at a particular state of

the consequences of their actions. To represent this rewards a matrix known as Q-Table

is used where rows represent all possible states and columns correlate with all possible

actions. Q-Table is formally defined as:

Q(s, a)← Q(s, a) + α[r + γ ∗max
ã
Q(s̃, ã)−Q(s, a)] (1.1)

The algorithm randomly chooses the action to be taken and updates the Q-Table iteratively

based on the reward r obtained by the result of the equation. s is the current state, a

the action, α the learning rate, and γ as the discount factor settling the importance of

long term against immediate rewards. Formerly when the environment has been explored

and the Q-Table acquired, the action for a given state must be the one maximizing the

expected reward. At first the Q-Table is initialized with zeros, unless a pre-existing table

is given as an argument. To learn from the feedback generated by the subject, the Q-Table

is ignored by the agent and it is not used to choose the action at a particular state. Instead

the action to achieve in a given state is determined by the agent’s actions taken from

the brainwave session results. Using this feedback implies the reward is subject directly

and only to the brain activity. The Q-Table is updated in each iteration and its agent’s

performance tested once it finishes the iteration through all training cases. The following

pseudo-code shows how the Q-table is trained
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Figure 1.4: Q-Table Training Algorithm

1.4 Online

Many of the studies that are carried out on BCI are carried out offline. [22] This means

that the processing and learning part can be temporarily disconnected with the data

collection part. In the day to day, and as a solution to a problem in the real world,

although this type of studies work as a base or complement, they are not useful enough.

Suppose you want to implement a system in which an agent moves a robotic arm based

on the brain signals of a human. In the first instance, following the structure mentioned

above, you should take training data initially, repeatedly, until you have enough. The

second step would be to process the signals and classify them. Only then can training be

carried out so that, the next time the device is used, it works as expected. Then, some

problems arise, some more explicit and visible than others and that an online version of

the same procedure comes to solve. The first is that the amount of data that is collected

depends purely and exclusively on the training sessions. The worst case is that the data

that can be obtained while the system is being used, is discarded. It is well known that

with algorithms such as reinforcement learning, it is a matter of time for better results

to be generated with training. This implies that much information that could be used

is being wasted. If, on the contrary, it is decided to store these data, then the problem
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is transformed. In the first place, one should begin to take into account the issue of

storage memory, which although it seems smaller, it is not, taking into account the size of

the EEG signal records. And this is closely related to the second point, how often the

processing and training will be carried out. Doing them too often can be tedious; and the

more time is left between them, not only implies more memory, but also the existence of

a loss of efficiency in those periods of time. If the data taken at time t = 0 were used as

feedback at that instant for the data taken at t = 1, learning would be on average faster.

Another point to highlight is the ease of adaptation that arises in an online system. A

bit based on the same idea, if for some reason the rules of the game change, with online

learning, that adaptation is done more quickly. That being said, other approach of the

following study is to analyze how an agent behaves when training it online, it seeks to

know what is the degree of learning that can be obtained compared to training it offline.

In summary, this type of online learning is more practical in daily use than offline learning,

and it allows more quickly to obtain a greater number of tests since the agent can be

trained while performing the EEG recording sessions.

1.5 Contributions

1. Analysis of processing pipelines to identify single-trial ErrP. This includes:

classification algorithms and signal filters.

2. Scheme to perform the online procedure of the method.

3. A method to simulate the online situation (which could not have been conducted

due to the pandemic).
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2 Materials And Methods

The experimental procedure is represented in Figure 2.1. The system consists of extracting

brain signals from an OHC that is watching an agent play a game. The agent knows how

the game works, but does not know how to play it, and therefore, can make mistakes. The

subject emits an error signal when perceiving erroneous movements of the agent. Based on

these responses and under a learning mechanism, the agent improves his performance. The

experimental procedure can be divided in two sub-procedures: training a classifier (Offline)

and training an IA (Online). At first, Brainwaves were obtained by OpenVibe Server from

an OHC. The Game Manager was responsible for generating the game screen, the game

mechanics, and the game movements performed by the gaming agent. It was also connected

to the Acquisition Server to send stimulus information. The captured information was

stored by the OpenVibe Designer and by the Game Manager. Offline: Saved EEG signals

are classified. Online: Saved EEG are streamed to the OpenVibe Acquisition Server. The

Game Replicator is responsible for replicating saved game movements performed by the

gaming agent. The captured information is received and sent by the OpenVibe Designer.

After training a classifier offline, then the experiment is repeated and, by linking signals

and stimulus to game movements, rewards are calculated. This information is used by a

Reinforcement Learning algorithm that iteratively trains a Q-Table in order to improve

the performance of the agent that plays the game.

2.1 Brainwave Session

Due to the context of a global pandemic, taking data from subjects in real time was

practically impossible. However, this study was already in process and it was decided to

continue with it, making some adaptations. The data used in this project was borrowed

under the approval of the Departamento de Investigacion y Doctorado from the Instituto

Tecnologico de Buenos Aires (ITBA), and the authors of a similar previous study [1]

who had the possibility to record it. The retrieval of the OHC’s brain activity, called

brainwave session, was done voluntarily and anonymously. A brainwave session consists of

several matches, each one being a game play. The brainwaves sessions involved 8 subjects,

5 males and 3 females, with an average age of 25.12 years, a standard deviation of 1.54
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Figure 2.1: Overview of the experimental procedure

years, and a range of 22-28 years. All subjects had normal vision, were right-handed

and no history of neurological disorders. They were only told that the objective of the

agent was to reach the goal and the four movements that the agent can make. To capture

brain signals, a wireless digital EEG device (g.Nautilus, g.Tec, Austria) that is worn

by the subject. It had eight electrodes (g.LADYbird, g.Tec, Austria) on the positions

Fz, Cz, Pz, Oz, P3, P4, PO7, and PO8, identified according to the 10-20 International

System, with a reference set to the right ear lobe and ground set as the AFz position.

The electrode contact points were adjusted applying conductive gel until the impedance

values displayed by the program g.NeedAccess (g.Tec, Austria) were within the desired

range. OpenVibe Acquisition Server program, from the OpenVibe platform [23], was

launched and configured with a sampling rate of 250 Hz. A 50 Hz notch filter was applied

to filter out power line noise. An additional band-pass filter between 0.5 Hz and 60 Hz

was applied. Data was handled and processed with the OpenVibe Designer, from the same

platform, using 8 channels for the brain data (one channel per electrode) and an additional

channel to record the stimulus, which corresponds to a game movement performed by

the agent. To replicate this situation, the stored data is collected through a program
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and streamed via lab streaming layer (LSL) [24], which is a system that handles the

networking, time-synchronization and real-time access for time series measured in research

experiments. This stream is received by the OpenVibe Server and sent to the OpenVibe

Designer as if it was in real time. From there, the data is transmitted by the same

mechanism and received by a client that will be responsible for carrying out the necessary

processing, so that it can be used in the learning of the agent.

2.2 Cognitive Game Procedure

Figure 2.2: Representation of the grid system used in the cognitive game and replicated
later

In correlation with the fact that the data obtained from the subjects (EEG and stimuli)

is associated with a specific game, in order for the learning to work, it is also necessary to

replicate both the game and the particular movements made by the agent in each of the

games. The game used consisted of a grid of 5x5 2.2 circles where one indicates the current

position of the agent and another the target to be reached. The blue spot represents the

initial location while the green spot represents the target location. Once the agent reaches

the target spot, its color turns red to indicate the end of the play, and after a few seconds,

the game restarts. Similar to the one used in [25]. Both the initial position of the agent

(1; 1) [row; column], and the position of the target (5; 5) are static in all games. The

different states of the game are determined by the movements of the agent. These can be

in four directions: right, left, up and down (with the restriction that it cannot left the

grid). The agent performs a movement every two seconds. In the first instances of the

experiment, the direction is chosen randomly; then, when testing the learning, it makes
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use of a q-table. Every time the game state changed, the Game manager would send a

signal to OpenVibe indicating that a stimuli to the OHC had occurred. The state changes

were visually abrupt, in order to trigger the ErrP. To replicate this situation, the stored

data is read by the Game Replicator which works exactly as the Game Manager regarding

the execution of the game, with the difference that the movements that are made are

those previously made by the agent (there is no randomness here). Using transmission

control protocol (TCP) [26], which is a connection-oriented communications protocol that

allows the exchange of messages between devices in a network, the data is transmitted

and received by the same client mentioned before.

2.3 Signal Processing

The main idea consists of the detection of the ErrP within the signals. For this, a pipeline

is established in which the signals received from OpenVibe are processed, followed by

a classifier that will allow distinguishing whether or not there was an ErrP. [27] It is

developed in Python using the MNE software platform, for exploring, visualizing, and

analyzing human neurophysiological data such as EEG [28] [29] [30], which is build upon

the machine learning library Scikit-Learn [31].

Figure 2.3: Power spectral density (PSD) of a raw dataset smoothed.



14 2.4 Segmentation

The pipeline used is the same in the online part as in the offline part and has the following

structure. First, the result of the brainwave session is received as raw data. An additional

0.5-10.0 Hz band-pass filter is immediately applied to the signal, followed by a Notch filter

of 50 Hz to eliminate the fixed frequency of the power line.

Figure 2.4: Power spectral density (PSD) of a raw dataset after applying a band-pass
0.5-10.0 Hz filter smoothed.

2.4 Segmentation

The next step is to create the epochs. An epoch refers to the succession of samples in a

period of time of 2 seconds, from the moment an event occurs. To split the data in epochs,

the samples corresponding to the start of an event are tagged using the information

received in the extra channel that sends the stimulus. Considering that the sampling

frequency is 250 Hz, the epochs turn out to be structures of 500 samples each. Taking

into account that each sample contains 8 channels, the result is a 500x8 matrix.

Each game consists of an array of epochs, the length of which is variable depending on

the duration of it. The number of games depends on the samples that have been taken

from each subject.

All data that is not associated with a particular game, that is, the one received between



2.5 Spatial Filtering 15

Figure 2.5: Grand avarage signal values of all epochs types of a measured dataset.

several successive games or at the beginning or end of a brainwave session is discarded.

2.5 Spatial Filtering

There exists a typical response synchronized with the target stimuli, and then this

synchronous response can be enhanced by a spatial filtering, i.e, in order to eliminate

noise from signals [32], spatial filters [33] [34] are applied. Tests are performed with

combinations of two spatial filters, PCA and XDawn.

2.5.1 PCA

PCA is defined as an orthogonal linear transformation that transforms the data to a new

coordinate system such that the greatest variance by some scalar projection of the data

comes to lie on the first coordinate (called the first principal component), the second

greatest variance on the second coordinate, and so on. [35]

Let xj(t) denote the EEG signal recorded by the jth sensor at time index t and let

X ∈ RNt×Ns be the matrix of recorded EEG signals whose (i, j)th entry is xj(i). N s is the

number of sensors and N t the number of temporal samples. The sample mean of each

column has been shifted to zero.

The transformation is defined by a set of l p-dimensional vectors of

weights w(k) = (w1, . . . , wp)(k) that map each row vector x(i) of X to a

new vector of principal component scores t(i) = (t1, . . . , tl)(i), given by

tk(i) = x(i) ·w(k) for i = 1, . . . , n k = 1, . . . , l in such a way that the individual



16 2.5 Spatial Filtering

variables t1, . . . , t` of t considered over the data set successively inherit the maximum

possible variance from X, with each coefficient vector w constrained to be a unit vector

(where ` is usually selected to be less than p to reduce dimensionality).

The first weight vector w(1) has to satisfy

w(1) = argmax
‖w‖=1

{∑
i

(t1)
2
(i)

}
= argmax

‖w‖=1

{∑
i

(x(i) ·w)2

}
(2.1)

Equivalently, writing this in matrix form gives,

w(1) = argmax
‖w‖=1

{‖Xw‖2} = argmax
‖w‖=1

{wTXTXw} (2.2)

in order to maximize variance, which equivalently satisfiesWx

w(1) = arg max

{
wTXTXw

wTw

}
(2.3)

since w(1) has been defined to be a unit vector.

The first principal component of a data vector x(i) can then be given as a score t1(i) =

x(i) · w(i) in the transformed co-ordinates, or as the corresponding vector in the original

variables, {x(i) · w(i)}w(i).

The kth component can be found by subtracting the first k − 1 principal components from

X:

X̂k = X−
k−1∑
s=1

Xw(s)w
T
(s) (2.4)

and then finding the weight vector which extracts the maximum variance from this new

data matrix

w(k) = argmax
‖w‖=1

{
‖X̂kw‖2

}
= argmax

{
wT X̂T

k X̂kw

wTw

}
(2.5)

The kth principal component of a data vector x(i) can therefore be given as a score

tk(i) = x(i) · w(k)) in the transformed co-ordinates, or as the corresponding vector in the

space of the original variables, x(i) · w(k))w(k), where w(k) is the kth eigenvector of XtX.

The full principal components decomposition of X can therefore be given as T = XW

where W is a p-by-p matrix of weights whose columns are the eigenvectors of XtX.
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2.5.2 xDawn

The xDAWN [11] algorithm designs spatial filters to enhance the discrimination between

signal and noise and reduce the dimension of the EEG signals Let xj(t) denote the EEG

signal recorded by the jth sensor at time index t and let X ∈ RNt×Ns be the matrix of

recorded EEG signals whose (i, j)th entry is xj(i). N s is the number of sensors and N t

the number of temporal samples. The sample mean of each column has been shifted to

zero. Let A ∈ RNe
N s be the matrix of ErrP signals whose (i, j)th entry is aj(i). N e is the

number of temporal samples of the ErrP. The observation X can then be modeled by:

X = DA+N (2.6)

X ∈ RNt×Ne is a Toeplitz matrix that represents the time position of the ErrP in the

observations whose first column is defined such that DTk,1 = 1, where Tk is the stimulus

onset of kth target stimulus (1 ≤ k ≤ K, with K being the total number of target stimuli)

and such that all the other elements are null. N ∈ RNt×Nc is a noise matrix. A is defined

by:

Ã = argmin
A
||X −DA||2 = (DTD)−1DTX (2.7)

where .T is the transpose operator. If there is no overlap between trials, Ã is equal to

the averaged signal (DTA). The next step of xDawn method consists of estimating N f

spatial filters ui (1 ≤ i ≤ N f ≤ N s) such that the synchronous response is enhanced by

the spatial filtering:

XU = DAU +NU (2.8)

where U ∈ RNs×Nf are the spatial filters matrix whose ith column is ui. The filters are

designed in such a way that U maximizes the signal-to-signal plus noise ratio (SSNR)

with the generalized Rayleigh quotient:

Ũ = argmax
U

Tr(UT ÃTDTDÃU)

Tr(UTXTXU)
(2.9)

where Tr(·) is the trace operator. This optimization problem can be solved by a QR

factorization with a singular value decomposition.
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2.6 Classification

The epochs can be classified according to their type in two: hit or no-hit. The former

correspond to those in which the agent executes an action that takes him away from the

goal. In the latter, on the contrary, the agent’s action brings him closer to the goal. ErrP

should be detected in hits. Then, objective of the classifier is to be able to differentiate

the hits from the no-hits. To get the data ready for classification, the stimulus channel

is removed to classify the signals using only the EEG data. The eight channels are

concatenated using the MNE Vectorizer function, which transforms the data matrix into

2D array. Each epoch is regularized using a MinMaxScaler, which is scaling each feature

to a given range by subtracting the minimum value in the epoch and dividing by the

signal peak-to-peak amplitude [36].

Figure 2.6: Grand avarage signal values of epochs that represent a hit.

Figure 2.7: Grand avarage signal values of epochs that represent a no-hit.

The classification algorithms used are Logistic Regression [Logistic-Regression] and a

linear kernel Support Vector Classifier (i.e. SVM) [Linear-SVC] . The idea is to compare
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different configurations of these two algorithms and to be able to detect which of them

best suits the problem to be treated.

2.7 Cross Validation

Games are divided into two sets. The first one will be used to train the classifier to identify

the ErrP within the signals. The second has two different uses: testing the classifier

separately and the online part of the project, that is, the games that are streamed and

with which reinforcement learning will be carried out. The size of each of the sets depends

on the number of games recorded. Ideally, if this is an even number, it is decided to divide

it in two, having the same size for both sets (50% − 50). Otherwise, the testing set is

bigger by 1.

By partitioning the available data into sets, the number of samples which can be used

for learning the model is drastically reduced, and the results can depend on a particular

random choice for the pair of (train, testing) sets. This phenomenon is even stronger in

cases like the one presented in this study, where the amount of data is scarce. In order to

eliminate any bias that may arise in relation to the selection of data, two cross validation

methods were used. These are: K-Fold and Shuffle Split whose implementations taken

from Scikit-Learn [31]. The classifier was trained and tested with both methods, but only

the latter was used to train the agent, since K-fold does not allow to split the data in

half. 2.8 represents visually how these two cross validation methods work. In the K-Fold

example, the number of splits k=4. In the ShuffleSplit k=4, and testing set size n=0.15 *

total size. Note that neither of them is affected by classes or groups.

K-Fold procedure has a single parameter called k that refers to the number of groups that

a given data sample is to be split into and is as follows:

1. Shuffle the dataset randomly.

2. Split the dataset into k groups.

3. For each unique group:

(a) Take the group as a hold out or test data set

(b) Take the remaining groups as a training data set



20 2.7 Cross Validation

Figure 2.8: Visualization of both of the cross-validation methods.

(c) Fit a model on the training set and evaluate it on the test set

(d) Retain the evaluation score and discard the model

4. Summarize the skill of the model using the sample of model evaluation scores

ShuffleSplit is a good alternative to KFold cross validation since it allows a finer control

on the number of iterations and the proportion of samples on each side of the train/test

split. The main difference then, is that the size of the testing set n can be fixed. The

procedure is as follows:

1. Shuffle the dataset randomly.

2. Split the dataset into k groups.

3. For each unique group:

(a) Take the group + (n − 1) groups randomly from the remaining groups as a
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hold out or test data set

(b) Take the remaining (total − n) groups as a training data set

(c) Fit a model on the training set and evaluate it on the test set

(d) Retain the evaluation score and discard the model

4. Summarize the skill of the model using the sample of model evaluation scores

2.7.1 Calibration and Selection

The algorithm calibration consists of finding the set of parameters that gives the best

results when classifying. In machine learning, this technique is called hyperparameter

optimization. The same kind of machine learning model can require different constraints,

weights or learning rates to generalize different data patterns. These measures are called

hyperparameters, and have to be tuned so that the model can optimally solve the machine

learning problem. The most traditional way of doing it is called grid search, which basically

consists of doing an exhaustive search on a manually specified subset of the hyperparameter

space. To calculate the scores for each configuration, a k-fold cross-validation process is

carried out, which guarantees the training capacity of the training data set. Each setting

is scored 10 times. The final score for each configuration is taken as the average of these

10 scores. [37] The configuration with the best score is selected for each subject and

each classification algorithm. From this, the best configuration results for each algorithm

for each subject are compared and the one with the highest score is selected for further

calculations

2.7.2 Comparison

Having the best configuration for each classification algorithm, the classification can be

performed. As mentioned above, for this the test set is used, that is, the data that has

not yet been used. This is where the online part comes in.

2.7.3 Performance

In order to measure the performance of the classification algorithms, for each subject there

is a confusion matrix and a receiver operating characteristic (ROC) curve. A confusion
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matrix is a tool that allows the visualization of the performance of an algorithm that

is used in supervised learning. Each column in the matrix represents the number of

predictions for each class, while each row represents the instances in the actual class. The

classes are hits and no-hits. From this graph you can see two types of errors:

• Type 1 error (false positives): Samples are classified as positive when they are

actually negative. In this case, no-hits predicted as hits.

• Type 2 error (false negatives): Samples are classified as negative when they are

actually positive. In this case, hits predicted as no-hits

A ROC curve is a graphical representation of sensitivity versus specificity for a binary

classifier system as the discrimination threshold is varied. In other words, it is the

representation of the ratio of true positives versus the ratio of false positives. If the

curve is above the identity function, it means that the classifier has better performance

than a random selection. On the contrary, if the curve is below, then the classifier is

under-performing. In any case, it is always good to obtain results that are far from the

identity (in the latter case it would be enough to invert the classifier’s predictions). The

goal then is to maximize that distance.

2.8 Reinforcement Learning

With the classifier trained, the received epochs are classified into hits and no hits. Each

of the agent’s movements is given a reward based on the predictions obtained from the

classifier. The reward can either be -1 when the event is classified as a hit or 0 when

it is classified as a no-hit. The accuracy of these rewards depends on the performance

of the classifier. The sequence of movements with their associated reward is used by

the reinforcement learning algorithm to train the agent. The algorithm used is called

Q-Learning.

2.9 Q-Learning

The Q-Learning implementation used is the one provided by the OpenAI Gym library.

Gym is a toolkit for developing and comparing reinforcement learning algorithms. [38]
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2.9.1 Algorithm Implementation

The algorithm is based on the existence of a Q-Table. Initially, it starts with its values at

zero. In each iteration, its values are updated. In order to achieve learning, these updates

are made taking into account the feedback received from the subject, after experiencing

how the agent played the game. The feedback is not explicit, but is obtained after having

made the above-mentioned interpretations and classifications of the brain signal data. In

other words, the reward is determined based on the classification of an action as error or

not, which in turn, is determined based on the brain activities of the subject. It should be

noted that the actions carried out by the agent are completely unrelated to the Q-Table.

Each action is chosen randomly within all possible ones given a state. This is mainly

due to the fact that, given the context, it was not possible to obtain new data from the

experiments and that everything is based on recordings of past games. The equation used

to update the Q-Table is as follows:

Q(state, action)← Q(state, action)+α[reward+γ∗Max(state, action)−Q(state, action)],

(2.10)

After the algorithm finishes iterating through all the training episodes, the Q-Table is

saved. Each experience is one trainingEpisode.

2.9.2 Environment

In reinforcement learning, the environment is what defines the different game’s states and

the possible actions. From the combination of the current state and the action carried

out by the agent, the corresponding reward is determined. The representation of the

environment is the one mentioned in section 2.2.

An environment contains all the necessary functionality to run an agent and allow it to

learn. Creating an environment with Gym is quite simple, it requires the implementation

to inherit from Gym’s class Gym.Env. It is necessary to define the type and shape of

the actionspace, which will contain all of the actions possible for an agent to take in

the environment. Similarly, the observationspace is defined, which contains all of the

environment’s data to be observed by the agent. The main methods to be implemented are

render, reset and step. Render is used to to print a rendition of the environment (a matrix
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representing the state). Reset method will is called to periodically reset the environment

to an initial state (initial position and amount of steps to zero). Step function iterates

from one state to the next one. It returns four values . These are:

• Observation (object): an environment-specific object representing your observation

of the environment.

• Reward (float): amount of reward achieved by the previous action. The scale varies

between environments, but the goal is always to increase your total reward.

• Done (boolean): whether it’s time to reset the environment again. Done being True

indicates the episode has terminated.

• Amount of steps (integer): Amount of steps since the beginning of the experience.

The custom environment developed is called MentalChaseEnv. The environment is in

charge of reading the next state from the file and passing the reward as a parameter to

the reinforcement learning algorithm.

2.9.3 Testing Implementation

To get the most out of the online implementation, the best solution would have been

for the agent to constantly change its actions based on the Q-table. Having done this,

an analysis of the learning speed of the agent could have been made, trying to validate

the hypothesis that it learns faster. However, putting this into practice was impossible

due to context, and therefore, the only way to test the operation of the the agent’s

learning algorithm is to do it offline. To do so, a parallel algorithm is developed. In this

implementation, the Q-Table is used to determine what action should be taken given a

state. The equation that shows the action is the following:

action(sort(Q[state, :] + random(actionSpace) ∗ (1/(iterationStep+ 1)))) (2.11)

An environment called ChaseEnv is developed for testing.

The reward function takes into account the distance that exists between the position of

the agent and the target. If the distance increased in relation to the previous state, then
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the reward is negative. If not, it returns zero. Something important to mention is that

the reward function doesn’t always return the correct reward, in order to test how the

Q-Table is trained when the accuracy is less than 100%.

The following pseudo-code describes the reward function

Figure 2.9: Reward Calculation for ChaseEnv

2.10 Online

The online flow goes as shown in 2.10. Lsl Receiver is the main program, that after a few

steps, receives all the data ready to be processed and after doing it, delegates predictions

to the Q-Learning Algorithm.

For the implementation of the online part, the first step was to identify the functionalities

provided by OpenVibe. In the ideal case, an Acquisition Server would have been built

to take the data from the Nautilus device, but considering that this was not feasible, an

alternative had to be found. The proposed alternative continues to use the Acquisition

Server as a source of information, but instead of coming directly from the brain, it comes

from an LSL stream, and this configuration can be seen in the figure 2.11

The LSL signal is sent by a program developed in Python called LSL Sender, which is

responsible for reading the corresponding data files that contain both the EEG signals

and the markers. LSL works similar to a publish / subscribe pattern. Having the name

of the Stream and the type (that is, if it is an EEG signal or a markers signal), the

Acquisition Server "subscribes" to the corresponding stream. Periodically, in real time,

the data is sent and received. The next step is identical, both in the online and offline
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Figure 2.10: Online flow sequence summary diagram

Figure 2.11: OpenVibe Acquisition Server Configuration

implementation, and is the internal connection that the OpenVibe Server makes to the

OpenVibe Designer to send the data. This connection is outside the implementation of

this work and its management is entirely the responsibility of OpenVibe.

OpenVibe Designer allows to operate with the data received from the server, by creating

and executing a scenario. The scheme created for this case is quite simple and can be

seen in figure 2.12, since the OpenVibe Designer is expected to only work as a proxy

to forward the received signals to a program that will take care of the processing. This

program is the LSL Receiver. The LSL connection between the two is equivalent to the

previously mentioned connection. The data obtained is divided into two different streams.

LSL Export (Gipsa) is used to send EEG signals. LSL Export is used to send the markers
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channel.

Figure 2.12: OpenVibe Designer Scenario

To associate the signals to the agent’s movement, on the other hand, the LSL Receiver

must receive the current state of the game. This is sent by Game Replicator. In the first

instance, this program, developed in JAVA, reads a file representing a game (it contains

initial configuration and consecutive agent positions). With this information it replicates

the game in real time and, as it happens, sends the information via TCP. To do this,

between the Game Replicator and the LSL Receiver, a previous connection based on this

protocol was established on a specific port.

The following pseudo-code describes LSL Receiver main actions, which, after receiving

all the raw data, proceedes to filter, segmentate and classificate the signal and train the

Q-table.

One point to take into account when carrying out this whole scheme is the synchronization

of the signal. For this, the first idea that arose was that it was going to be necessary to

make use of the timestamps associated with the signals and markers. However, when

analyzing the situation in practice, considering that it works with very low latency, the

information was not out of sync. In the case of working with higher latencies, then this

addition would have to be done.

Even having the data synchronized, considering that the data comes in separate streams,

it is necessary to link it to each other, that is, to associate the EEG signal to the marker.

To do this, the moment a marker is received (representing a hit or no hit), an epoch

is created with the EEG data. Considering that the sampling frequency is 250Hz, and

that the markers are sent every 2 seconds, the epochs are made up of 500 values. In the

original data, the amount of samples from the epochs was around that number, but it

was not exact, and it depended on how OpenVibe did the cut. For practical purposes it is
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Figure 2.13: Lsl Receiver Algorithm

the same, due to the processing that is carried out later, which includes a resample. Also,

the markers’s channel is used to divide between games. All the EEG channel information

that is not associated with an epoch is discarded.
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3 Results

3.1 Training and Test Sets

The number of games and brainwaves sessions available is not homogeneous between each

subject. The following table describes the amount of samples that are used throughout

the analysis for training and testing sets for each subject.

Subject Training Set Size Testing Set Size
1 3 3
2 3 3
3 3 3
4 3 3
5 2 2
6 2 3
7 2 3
8 3 3

Table 3.1: Training and Test Sizes

3.2 Pipelines

In order to determine if the spatial filters are adequate for the detection of error potentials,

classification tests were carried out. For each subject the best algorithm was used, and

three different pipelines were compared:

• Pipeline 1 (Standard): Vectorizer => MinMaxScaler => Classifier

• Pipeline 2 (PCA): PCA => Vectorizer => MinMaxScaler => Classifier

• Pipeline 2 (xDawn): xDawn => Vectorizer => MinMaxScaler => Classifier

3.3 Signal Classification

3.3.1 Algorithm Calibration

In order to obtain a good detection of ErrP signals, it is necessary to find the best algorithm,

this implies the type and its configuration. To do this, different parameters were tested

for the two algorithms mentioned above, making use of the GridSearch implementation of
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the sklearn library. The metric used to compare is the score, which is based on AUC. The

best results were obtained for both xDawn and Standard pipeline.

3.3.1.1 Logistic Regression

For the logistic regression algorithm the parameters that are tested are C and penalty.

The values that C can take are 0.001, 0.01, 0.1, 1, 5, 10 and 25. The values that penalty

can take are ’l1’ and ’l2’. The values that solver can take are ’liblinear’, ’lbfgs’ and ’saga’.

Logistic Regression
Subject Score Configuration

1 0.65 ’C’: 0.1, ’penalty’: ’l2’, ’solver’: ’liblinear’
2 0.69 ’C’: 0.001, ’penalty’: ’l2’, ’solver’: ’liblinear’
3 0.69 ’C’: 5, ’penalty’: ’l1’, ’solver’: ’liblinear’
4 0.68 ’C’: 5, ’penalty’: ’l1’, ’solver’: ’liblinear’
5 0.58 ’C’: 0.01, ’penalty’: ’l2’, ’solver’: ’lbfgs’
6 0.68 ’C’: 10, ’penalty’: ’l2’, ’solver’: ’lbfgs’
7 0.74 ’C’: 5, ’penalty’: ’l2’, ’solver’: ’liblinear’
8 0.63 ’C’: 0.001, ’penalty’: ’l2’, ’solver’: ’liblinear’

Table 3.2: Logistic Regression best score per subject - Standard Pipeline.

Figure 3.1: Logistic Regresion AUC best score per subject - Standard Pipeline.
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Logistic Regression
Subject Score Configuration

1 0.66 ’C’: 1, ’penalty’: ’l1’, ’solver’: ’liblinear’
2 0.67 ’C’: 0.1, ’penalty’: ’l2’, ’solver’: ’lbfgs’
3 0.71 ’C’: 5, ’penalty’: ’l1’, ’solver’: ’liblinear’
4 0.71 ’C’: 0.1, ’penalty’: ’l2’, ’solver’: ’lbfgs’
5 0.63 ’C’: 0.1, ’penalty’: ’l2’, ’solver’: ’lbfgs’
6 0.75 ’C’: 0.1, ’penalty’: ’l2’, ’solver’: ’lbfgs’
7 0.75 ’C’: 0.1, ’penalty’: ’l2’, ’solver’: ’saga’
8 0.70 ’C’: 0.1, ’penalty’: ’l2’, ’solver’: ’saga’

Table 3.3: Support Vector Classifier best score per subject - xDawn.

Figure 3.2: Logistic Regresion AUC best score per subject - xDawn Pipeline.
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3.3.1.2 Support Vector Classification

For the support vector classifier algorithm the parameters that are tested are C, gamma

and kernel. The values that C can take are 1, 10, 100, 1000. The values that gamma can

take are 0.0001, 0.001, 0.01, 0.1, 1. The values that kernel takes are ’linear’, ’rbf’, ’poly’

and ’sigmoid’.

Support Vector Classifier
Subject Score Configuration

1 0.65 ’C’: 1, ’gamma’: 0.0001, ’kernel’: ’sigmoid’
2 0.68 ’C’: 1000, ’gamma’: 0.001, ’kernel’: ’rbf’
3 0.69 ’C’: 10, ’gamma’: 1, ’kernel’: ’linear’
4 0.68 ’C’: 1, ’gamma’: 0.1, ’kernel’: ’poly’
5 0.61 ’C’: 1, ’gamma’: 1, ’kernel’: ’rbf’
6 0.68 ’C’: 1000, ’gamma’: 0.001, ’kernel’: ’rbf’
7 0.74 ’C’: 1, ’gamma’: 0.1, ’kernel’: ’poly’
8 0.64 ’C’: 1000, ’gamma’: 0.001, ’kernel’: ’rbf’

Table 3.4: Support Vector Classifier best score per subject - Standard Pipeline.

Figure 3.3: SVC AUC best score per subject - Standard Pipeline.
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Support Vector Classifier
Subject Score Configuration

1 0.67 ’C’: 1000, ’gamma’: 0.001, ’kernel’: ’rbf’
2 0.68 ’C’: 1, ’gamma’: 1, ’kernel’: ’poly’
3 0.71 ’C’: 1, ’gamma’: 0.1, ’kernel’: ’rbf’
4 0.70 ’C’: 100, ’gamma’: 0.001, ’kernel’: ’sigmoid’
5 0.63 ’C’: 10, ’gamma’: 1, ’kernel’: ’rbf’
6 0.70 ’C’: 100, ’gamma’: 0.001, ’kernel’: ’rbf’
7 0.75 ’C’: 1, ’gamma’: 0.1, ’kernel’: ’rbf’
8 0.69 ’C’: 100, ’gamma’: 0.001, ’kernel’: ’sigmoid’

Table 3.5: Support Vector Classifier best score per subject - xDawn Pipeline.

Figure 3.4: SVC AUC best score per subject - xDawn Pipeline.

3.3.2 Optimal Algorithm Selection

The choice of the best algorithm is made by comparing the scores of the best configuration

of each algorithm for each subject.

The results are the following:
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Subject Algorithm
1 Support Vector Classifier/Logistic Regression
2 Logistic Regression
3 Support Vector Classifier/Logistic Regression
4 Support Vector Classifier/Logistic Regression
5 Support Vector Classifier
6 Support Vector Classifier/Logistic Regression
7 Support Vector Classifier/Logistic Regression
8 Support Vector Classifier

Table 3.6: Best algorithm per subject - Standard Pipeline.

For Standard pipeline, for subjects 1, 3, 4, 6 and 7 both algorithms provided the same

score, so choosing between both was an arbitrary decision.

Figure 3.5: SVC vs Logistic Regression best score per subject - Standard Pipeline.

The results are the following:
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Subject Algorithm
1 Support Vector Classifier
2 Support Vector Classifier
3 Support Vector Classifier/Logistic Regression
4 Logistic Regression
5 Support Vector Classifier/Logistic Regression
6 Logistic Regression
7 Support Vector Classifier/Logistic Regression
8 Logistic Regression

Table 3.7: Best algorithm per subject - xDawn Pipeline.

For xDawn pipeline, for subjects 1, 3, 4, 7 and 8 both algorithms provided the same score,

so choosing between both was an arbitrary decision. Logistic Regression was chosen.

Figure 3.6: SVC vs Logistic Regression best score per subject - xDawn Pipeline.
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3.3.3 Spatial Filtering

Average AUC values, with their standard deviation, were calculated using the two cross-

validation algorithms mentioned in section 2.7. Configurations for each algorithm are

the ones mentioned in tables 3.2, 3.3, 3.4, 3.5. For PCA, both best configurations (for

Standard and xDawn) were tested and the one chosen was the best one of those.

Standard PCA xDawn
1 0.64 ± 0.04 0.50 ± 0.08 0.65 ± 0.05
2 0.72 ± 0.12 0.49 ± 0.08 0.67 ± 0.07
3 0.72 ± 0.07 0.53 ± 0.07 0.71 ± 0.10
4 0.67 ± 0.16 0.45 ± 0.18 0.71 ± 0.15
5 0.58 ± 0.05 0.49 ± 0.05 0.63 ± 0.08
6 0.73 ± 0.09 0.46 ± 0.07 0.76 ± 0.08
7 0.75 ± 0.03 0.56 ± 0.05 0.75 ± 0.03
8 0.66 ± 0.17 0.51 ± 0.11 0.70 ± 0.13

Table 3.8: Classification average scores comparison between PCA, xDawn and Standard.
Kfold with k=number_of_games (4, 5 or 6 representing training_set_size test_set_size)

Standard PCA xDawn
1 0.64 ± 0.02 0.50 ± 0.01 0.62 ± 0.02
2 0.64 ± 0.06 0.48 ± 0.03 0.65 ± 0.02
3 0.68 ± 0.04 0.56 ± 0.03 0.65 ± 0.05
4 0.63 ± 0.03 0.53 ± 0.03 0.66 ± 0.02
5 0.53 ± 0.05 0.51 ± 0.02 0.62 ± 0.03
6 0.61 ± 0.07 0.49 ± 0.06 0.67 ± 0.05
7 0.70 ± 0.02 0.55 ± 0.03 0.71 ± 0.01
8 0.60 ± 0.04 0.49 ± 0.03 0.66 ± 0.05

Table 3.9: Classification average scores comparison between PCA, xDawn and
Standard. ShuffleSplit with k =number_of_games(4, 5 or 6 representing training_set_size
test_set_size) and test_size=0.5% or 0.6% (as mentioned in table 3.1)

3.3.3.1 xDawn Analysis

In general, the use of xDawn spatial filters, yielded higher AUCs than the standard method

based on 8 predefined channels, for all subjects. In cases where xDawn does not generate

an improvement, the results are the same or slightly worse, e.g subject 1 in table 3.9.

However, in cases where it does, the improvement is significant, e.g subject 8 in table 3.9.

The changes observed in the standard deviation between Standard and xDawn do not

allow to draw solid conclusions
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The values with K-fold (table 3.8) are better compared to those of ShuffleSplit (table 3.9)

as expected, since the training is carried out with a greater number of games.

Carrying out the comparison between Standard and xDawn, but taking into account the

K-fold and ShuffleSplit distributions, it is seen that the improvement in results provided by

xDawn is more significant when the number of training sets is less, that is, in ShuffleSplit

3.3.3.2 PCA Analysis

By analyzing the results of the tables we were able to detect that the PCA results are

not as expected. Having investigated and taking into account previous analysis, spatial

filters for error detection should improve the classification. In fact, as previously discussed,

with xdawn the values show an improvement. However, when applying the PCA filter,

the same does not happen. To verify that it was not an implementation error and that

the results are really reliable, three different tests were carried out. It should be noted

that these tests were applied in the rest of the pipeline configurations also as an extra

verification, but with PCA are necessary.

The first test consists of shuffling the labels, that is, the hits and no hits. This allows

labels to be meaningless in relation to signals. As can be seen from the results shown in

figures 3.7 and 3.8, the AUC values are close to 0.5 for all subjects, and therefore the test

is successfully completed.

The second test consists of hardcoding very high values for a certain point in the signal,

for all times that are hits in such a way that the classification is very close to perfection.

As can be seen from the results shown in figures 3.9 and 3.10, the AUC values are close to

1, and therefore the test passes.

The third test consists of training with all the data, and testing with one of them. The

AUC values in the ROC curves are expected to be high. As can be seen from the results

shown in figures 3.11 and 3.12, the AUC values are high, and therefore the test passes.
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Figure 3.7: PCA ROC Curves, subjects 1 to 4. Training with randoms labels.
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Figure 3.8: PCA ROC Curves, subjects 4 to 8. Training with randoms labels.
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Figure 3.9: PCA ROC Curves, subjects 1 to 4. Training with fixed high value.
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Figure 3.10: PCA ROC Curves, subjects 4 to 8. Training with fixed high value.



42 3.3 Signal Classification

Figure 3.11: PCA ROC Curves, subjects 1 to 4. Training with all experiences, testing
with one of those.
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Figure 3.12: PCA ROC Curves, subjects 4 to 8. Training with all experiences, testing
with one of those.
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There are different hypotesis to explain why PCA produces bad results. PCA is performs

poorly when the data has high bias, but that’s not the case, since all the test were done

using cross validation. Neither can be the fact that the data is imbalanced since data is

splitted evenly and contains hits and no-hits with a good ratio. When independent and

dependent variables are not linearly related, PCA can also fail, but for this cases there’s

an extension of the algorithm called Kernel PCA, that, is good to mention, was tried

too and failed. Another failure situation could be if within class variance is higher than

between class variance, but in that case, then xDawn should produced poor results too. So,

after analyzing the failure possibilities and ruling out most of them because they are not

applicable to this problem, one remains. Taking into account the main difference between

xDawn and PCA, the explanation that pops out is that the noise N is not being taken into

account to design filters like PCA, and that leads to a poor estimation of enhancing filters.

Moreover, this latter fact also leads to not ensuring that the first principal components

have the best output signal-to-noise ratios (SNRs). Taking all this into account, the PCA

spatial filtering pipeline is discarded for upcoming analysis.

3.3.4 Classification Results

Figure 3.13 to Figure 3.20 show the Confusion Matrix and ROC curves for each subject

using the best algorithm and xDawn.

In the confusion matrices it can be observed that:

• The correct classifications, that is, the upper left and the lower right, have percentages

above 0.5

• The percentage of Type I error (false positive) samples is consistently low for all

subjects.

• The percentage of Type 2 error (false negative) is in all cases lower than 0.5

Algorithms classify no-hits better than hits.

Looking at the ROC curves, it can be seen how the subjects learn, some to a greater

extent than others, but in all there is a considerable distance between the curve and the

identity. Making the comparison with the previous study with the same data, in most

cases, the results are better.
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(a) Confusion Matrix: Subject 1

(b) Roc Curve: Subject 1

Figure 3.13: Classification Results: Subject 1
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(a) Confusion Matrix: Subject 2

(b) Roc Curve: Subject 2

Figure 3.14: Classification Results: Subject 2
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(a) Confusion Matrix: Subject 3

(b) Roc Curve: Subject 3

Figure 3.15: Classification Results: Subject 3
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(a) Confusion Matrix: Subject 4

(b) Roc Curve: Subject 4

Figure 3.16: Classification Results: Subject 4
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(a) Confusion Matrix: Subject 5

(b) Roc Curve: Subject 5

Figure 3.17: Classification Results: Subject 5
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(a) Confusion Matrix: Subject 6

(b) Roc Curve: Subject 6

Figure 3.18: Classification Results: Subject 6
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(a) Confusion Matrix: Subject 7

(b) Roc Curve: Subject 7

Figure 3.19: Classification Results: Subject 7
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(a) Confusion Matrix: Subject 8

(b) Roc Curve: Subject 8

Figure 3.20: Classification Results: Subject 8
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3.4 Reinforcement Learning

3.4.1 Average steps to goal

To assess the agent’s level of learning when using the Q-table, the number of steps it takes

for the agent to reach the goal is used as a metric. This value is calculated progressively

while training the Q-Table using the calculated reward for each subject. In figures 3.21

to 3.28 the progress on the amount of steps can be detected. Each of the points on the

x-axis represents a game within the test set. Each point represents on the y-axis the

average number of steps the agent takes for a Q-Table in 200 iterations. The number of

points represents the number of games that are part of the test set. In the first point, the

Q-Table starts from the initial state, that is, empty and therefore the decisions remain

randoms. Each advance on the x-axis represents an experience change, and therefore a

new Q-table is used, updated with the values obtained with previous runs.

As can be seen, as the Q-Table is trained, the number of steps it takes to reach the goal

decreases, that is, the agent learns. However, not all subjects learn in the same way; For

example, subject 3’s learning is faster than subject 4. In a previous study using the same

data, subjects 5 and 6 had not shown learning. The idea that the data was not enough

had been predicted, however, in this case, with the application of the spatial filter xDawn,

the results were satisfactory.

Figure 3.29 shows how the number of steps evolves when training a Q-Table with a

experience of each subject progressively. Analyzing the results, the conclusion reached

is that even using information from different subjects, the agent learns and improves

his performance. In this way it is proved that the reinforcement learning algorithm is

independent of the subjects. This is because the only information that matters is the

calculated rewards, so if the classification is done correctly, data from different subjects

can be used.
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Figure 3.21: Average steps using Q-table: Subject 1

Figure 3.22: Average steps using Q-table: Subject 2
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Figure 3.23: Average steps using Q-table: Subject 3

Figure 3.24: Average steps using Q-table: Subject 4
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Figure 3.25: Average steps using Q-table: Subject 5

Figure 3.26: Average steps using Q-table: Subject 6
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Figure 3.27: Average steps using Q-table: Subject 7

Figure 3.28: Average steps using Q-table: Subject 8
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Figure 3.29: Average steps using Q-table: All Subjects, one game per subject.
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3.4.2 Heat map of Learned Policies

An interesting complement to the analysis, which shows how the learning algorithm works,

is the study of the positions that the agent takes in the game. To do this, the heat maps

presented below were made. The color gamut extends from yellow to red, from lowest to

highest frequency respectively. For each iteration, the numbers represent the average of 50

samples. Subject 7 was taken as the test subject, because the results obtained and shown

in the previous section were the best compared to the rest of the subjects. Four instances

are distinguished, where each one uses a different Q-Table that is obtained progressively.

The figure 3.30 represents the initial heat map, with the Q-Table empty, that is, the

movements are completely randoms. An oscillation around the position (1; 1) can be

observed. The frequency decreases in positions furthest from the epicenter.

The figure 3.31 represents the frequency after training the Q-Table for the first time.

This map shows a more homogeneous frequency distribution, and lower values than the

previous map. However, there is a peak on position (2; 2), which could be caused probably

by a tendency to explore certain states that were not explored during the previous step. It

can be detected how some of the positions are already discarded with 0 frequency values

The figure 3.32 shows a new iteration of the Q-table, where there is a greater amount of

discarded positions, in the corners that do not correspond to the starting point or the

arrival point, and their surroundings. In this way you can glimpse an almost armed road.

The first 3 movements taken by the agent are always the same, which indicates that he

has already found the optimal way to start. This is explained by the fact that errors in

classification lead to penalties for some roads more than others. A perfect classification

would show greater equality in the probabilities of choosing two equivalent actions that

lead the agent to his goal. The movements towards the end are a little more varied.

The figure 3.33 shows the heat map that represents the occupied positions based on the

final Q-table. It can be seen that in almost all cases with few exceptions, the path is the

same, which, despite being skewed, is direct and optimal.
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Figure 3.30: Heat map - Empty Q-Table. Subject 7

Figure 3.31: Heat map - Q-Table after 1 iteration. Subject 7
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Figure 3.32: Heat map - Q-Table after 2 iteration. Subject 7

Figure 3.33: Heat map - Final Q-Table. Subject 7
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4 Conclusion

After analyzing the results of this work, it was possible to validate that it is feasible

to train an agent in real time using reinforcement learning based on ErrP signals. The

classifications obtained from the signals can be effective enough for the agent to learn.

The fact that it is online requires taking some considerations into account, such as the fact

of synchronization, but beyond being a little more complex to implement, it is governed

by the same concept and results will at least be equivalent.

When it comes to classifying, both the Support Vector Classifier and Logistic Regression

produce good results. Taking into account the combinations tested to obtain the best

configuration, it was not possible to obtain a significant difference between the two to

choose one over the other. The best configuration of each algorithm depends on the

subject in question, that is, the calibration and selection processes are necessary whenever

the subject is changed (transfer learning is not possible). The classifications that give the

best results are those in which the number of type I errors, that is, those that predict no

hits as hits, is low. The existence of type II errors has as a consequence an impact on the

speed of learning.

Regarding the use of spatial filters, not all of them are applicable for the detection of

ErrPs in EEG signals. These signals are known to have a large amount of noise, therefore,

to obtain good results, the spatial filters used must be specifically designed to eliminate it.

In particular, PCA is not useful in this type of problem, in fact, it leads to worse results.

xDawn, on the other hand, is perfectly suited to the problem being treated, and, in most

cases, produces better results, especially when the training data is limited. According to

the analysis, the more data that can be used to train the agent, the better the results will

be, both in time and in precision. The amount of samples that can be obtained from a

subject is limited, due to the fatigue that brainwave sessions can generate. The xDawn

application serves to partly make up for this lack of data. If this in turn is complemented

by the real-time use of Q-Tables, learning should be not only better but faster.

Once the signals are identified they can be used to train a reinforcement learning algorithm.

Although the classification is strictly linked to a subject, rewards earned from different

subjects can be used to train the same agent for better results.
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Finally, this research verifies that brain signals can be used as an interface between humans

and a computer that allows control of the system without explicit user input. Getting

better results is only a matter of trying different combinations and additions to processing.
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5 Future Work

Like all research work, improvements and extensions can continue. Some exploration

possibilities are presented below.

5.1 Full Online Learning

The current implementation aims to be online, but due to limitations, its full potential

could not be exploited. The idea would be to make the necessary small adaptations and

based on that a comparative analysis between online and offline learning.

5.2 Explore More Spatial Filters

Analyzing other spatial filters can lead to improved results. While other studies do not

find a significant difference between xDawn and other denoising filters, it would be a good

study area to explore.

5.3 Take More Data

The greater the amount of data, the more foundation the conclusions have.

5.4 Explore More Complex Game Models

The activation of error potentials is related to the ease of distinguishing whenever a

mistake is being made. There are other more sophisticated game models to which the

same analysis could be applied.

5.5 More EEG Channels

The version of the used EEG cap has 8 channels. There are up to 64 channels in the same

type of EEG cap. Increasing the number of channels might produce better results.
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5.6 Try Other Reinforcement Learning Algorithms

Other forms of learning might accelerate the process of learning and lower the number of

steps the agent need to reach the goal faster.

5.7 Improve Classification

Although the results obtained are sufficient for the agent to learn, alternatives of signal

processing might produce better ROC Curves.
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