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A B S T R A C T

Extraction, transformation, and loading (ETL) processes are used to extract data from internal
and external sources of an organization, transform these data, and load them into a data
warehouse. The Business Process Modeling and Notation (BPMN) has been proposed for
expressing ETL processes at a conceptual level. A different approach is studied in this paper,
where relational algebra (RA), extended with update operations, is used for specifying ETL
processes. In this approach, data tasks in an ETL workflow can be automatically translated
into SQL queries to be executed over a DBMS. To illustrate this study, the paper addresses the
problem of updating Slowly Changing Dimensions (SCDs) with dependencies, that is, the case
when updating a SCD table impacts on associated SCD tables. Tackling this problem requires
extending the classic RA with update operations. The paper also shows the implementation
of a portion of the TPC-DI benchmark that results from both approaches. Thus, the paper
presents three implementations: (a) An SQL implementation based on the extended RA-based
specification of an ETL process expressed in BPMN4ETL; and (b) Two implementations of
workflows that follow from BPMN4ETL, one that uses the Pentaho DI tool, and another one
that uses Talend Open Studio for DI. Experiments over these implementations of the TPC-DI
benchmark for different scale factors were carried out, and are described and discussed in the
paper, showing that the extended RA approach results in more efficient processes than the ones
produced by implementing the BPMN4ETL specification over the mentioned ETL tools. The
reasons for this result are also discussed.

1. Introduction

Extraction, transformation, and loading (ETL) processes extract data from internal and external sources of an organization,
transform these data, and load them into a data warehouse (DW). Since ETL processes are complex and costly, it is important to
reduce their development and maintenance costs. Modeling these processes at a conceptual level would contribute to achieve this
goal. Since there is no agreed-upon conceptual model to specify such processes, existing ETL tools use their own specific language
to define ETL workflows. Considering this, the paper discusses two methods for designing ETL processes. The first one, called
BPMN4ETL, is based on the Business Process Modeling Notation (BPMN), a de-facto standard for specifying business processes, which
provides a conceptual and implementation-independent specification of such processes, that can be then translated into executable
specifications for ETL tools. The second one is a logical model based on relational algebra (RA), a formal language that provides
a solid basis to specify ETL processes for relational databases. The rationale for studying these two alternatives is two-folded: on
the one hand, since BPMN is widely used for specifying business processes, adopting this methodology for ETL would likely be
smooth for users already familiar with that language. On the other hand, RA is not only a well-studied formal language, but its
expressiveness allows providing a detailed view of the data flow of any ETL process as well.
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Fig. 1. Schema of the TPCI-DI system (left); Tables in the TPCI-DI DW (right).

1.1. Running example

The TPC-DI benchmark [1] is used as running example throughout the paper, with focus on the processes that update customers
and their accounts. The benchmark has two phases: Historical Load, and Incremental Updates. In the former, destination tables are
initially empty and then populated with new data. The TPC-DI scheme is shown on the left-hand side of Fig. 1, which depicts the
overall process of loading data from the sources into the DW, whose tables are given on the right-hand side. The OLTP database
represents transactional information about securities market trading and the entities involved, e.g., customers, accounts, and so on.
There is a Change Data Capture (CDC) file, where data are sorted according with the time when the updates occurred. Thus, input
files from the OLTP database are modeled as CDC extracts, which show the changes in the source data starting from the last data
extraction. The CDC records also contain a flag, denoted CDC_FLAG, that may take the values I or U, telling which kind of operation
each record represents (insert, or update, respectively). In addition, a CustomerMgmt.xml file represents actions resulting in new
or updated customer and account information, extracted from a Customer Management System. This file is only used in the historical
load, to populate the dimension tables for customers and their accounts, denoted DimCustomer and DimAccount, respectively.

It must be noted that, for each action in the ETL, only the properties involved in the update are given. For example, a ‘NEW’
action (an insertion of a new customer) will contain customer identifying information, many properties (e.g. name, address), and
information about the customer’s account. In contrast, an ’UPDCUST’ action updates a customer and all of his/her current accounts.
Also note that all actions have at least one related customer, and each account is associated with a single customer. There are also
other related tables (e.g., Prospect list, Financial Newsware, and so on) that are used by the different processes.

1.2. Contributions

The paper studies the two approaches introduced above for modeling and implementing ETL processes. For this study, the paper
addresses the well-known case of Slowly Changing Dimensions (SCDs) with dependencies, that is, the case when updating a SCD
table impacts on associated SCD tables. The problem of updating this kind of SCD is introduced in Section 2.

As a key contribution, an ETL development approach is proposed. It starts with a BPMN4ETL conceptual model, that is then
translated into a RA extended with update operations at the logical level (this extended RA is presented in Section 4). Finally, RA
operations are translated into an SQL-based specification of the ETL process. Although BPMN4ETL been already proposed in [2],
and explained in detail in [3], the problem of modeling SCDs using this technique is discussed here for the first time (see Section 3).

Modeling ETL processes using RA was introduced by Santos and Belo [4–6], also addressing SCDs. The proposal presented in
this paper goes far beyond those works (as it is discussed in Section 7, along with other related efforts), addressing the problem
of updating SCDs with dependencies, and implementing the resulting ETL process using SQL. The relevance of tackling SCDs with
dependencies is reflected by their inclusion in the TPC-DI benchmark introduced in Section 1.1. Modeling SCD with dependencies
using the extended RA approach is described in Section 5.

As another contribution, the paper compares the implementation of a portion of the TPC-DI benchmark resulting from both
approaches, namely: (a) An SQL implementation based on the extended RA-based specification of an ETL process expressed in
BPMN4ETL; and (b) Two implementations of workflows that follow straightforwardly from BPMN4ETL, one that uses the Pentaho
DI tool, and another one that uses Talend Open Studio for DI. Experiments over these implementations of the TPC-DI benchmark



for different scale factors were carried out, and are described and discussed in Section 6. The results suggest that the extended
RA approach results in more efficient processes than the ones produced by implementing the BPMN4ETL specification over the
mentioned ETL tools. The reasons for this are also discussed in Section 6. Conclusions are given in Section 8.

2. Slowly changing dimensions with dependencies

Slowly Changing Dimensions (SCD) [3,7] are used in a DW to keep the history of changes that occur in data sources. Kimball [7]
defined seven types of SCD. With SCDs of type 2, the history of changes is kept by augmenting the schema of the dimension table
with two temporal attributes, called StartDate and EndDate. The former stores the time when the tuple was inserted into the
dimension table. The latter stores the date when an update of the attribute was made in the dimension table. In general, a currently
valid record has a NULL value or a date far off into the future as its EndDate. When a tuple is deleted from the source table,
the EndDate attribute of its corresponding tuple in the dimension table is set to the current date. An additional current indicator
attribute, IsCurrent, contains a Boolean value which is set to True to indicate that a tuple is the current record corresponding to
the natural key.

This paper (as well as the TPC-DI benchmark) tackles SCDs of type 2 with dependencies. Such a SCD table contains a surrogate
key reference to another dimension table. This way, whenever an update to the referenced dimension table occurs, the referencing
table must be updated as well. To illustrate this, consider the schemas two dimension tables, namely DimA and DimB, depicted in
Eqs. (1) and (2), depicted below.

𝖣𝗂𝗆𝖠 = (𝖲𝗄𝖠, 𝖯𝗄𝖠,… , 𝖨𝗌𝖢𝗎𝗋𝗋𝖾𝗇𝗍, 𝖲𝗍𝖺𝗋𝗍𝖣𝖺𝗍𝖾,𝖤𝗇𝖽𝖣𝖺𝗍𝖾) (1)
𝖣𝗂𝗆𝖡 = (𝖲𝗄𝖡, 𝖲𝗄𝖠, 𝖯𝗄𝖡,… , 𝖨𝗌𝖢𝗎𝗋𝗋𝖾𝗇𝗍, 𝖲𝗍𝖺𝗋𝗍𝖣𝖺𝗍𝖾,𝖤𝗇𝖽𝖣𝖺𝗍𝖾) (2)

Dimension DimB references the surrogate key (SkA) of DimA. Dimensions DimA and DimB have ‘natural’ keys PkA and PkB,
respectively. When an update occurs over DimA, the (SkA) value of DimB must be replaced by the most current (SkA) value in
DimA.

The general steps of an ETL that updates a tuple in DimA are listed below.

1. Retrieve the current tuple (the one with IsCurrent = True) from DimA.
2. Rename SkA to SkAOld.
3. Retrieve the maximum SkA value from DimA and increase it by 1.
4. Remove ‘‘logically’’ the current tuple from DimA. That means, set IsCurrent and EndDate attributes to False and the current

date, respectively.
5. Insert a new tuple in DimA (set IsCurrent and EndDate attributes to True and NULL, respectively).
6. Retrieve the corresponding current tuples from DimB. These are the tuples with IsCurrent and SkA values of True and

SkAOld, respectively.
7. Remove the current tuples in DimB, that means, set IsCurrent and EndDate attributes to False and the current date,

respectively.
8. Insert new tuples in DimB (set IsCurrent and EndDate to True and NULL, respectively).

This process is represented using BPMN4ETL in Section 3 and using the relational algebra (RA) approach in Section 5.

3. Conceptual BPMN for slowly changing dimensions

The BPMN4ETL conceptual model [3,8], represents ETL processes as a combination of control and data tasks. Control tasks
orchestrate groups of tasks, and data tasks detail how input data are transformed and output data are produced. For example,
populating a DW is a control task composed of multiple subtasks, while populating fact or dimension tables is a data task. This
section shows how BPMN4ETL can be applied to handle SCD with dependencies described above in the TPC-DI benchmark. First, a
description of the possible changes is given. Then, a BPMN4ETL representation is shown for the cases of insertion of a new customer
record, and updating an existing one.

3.1. Updates in the TPC-DI benchmark

In the TPC-DI benchmark introduced in Section 1, changes that occurred in the data sources before the historical load are stored
in the CustomerMmgt.xml file. Thus, updates (in this case, over the dimensions DimCustomer and DimAccount) are not only
present during the incremental load, but also in the historical load.

As mentioned in Section 2, the dimension tables for customers and accounts are related to each other in a way such the
DimAccount table has a surrogate key that references the surrogate key (Sk_CustomerID) of the DimCustomer table, conforming
type 2 SCDs with dependencies. Therefore, upon changes over DimCustomer, the DimAccount table may need to be updated (see
below).

The type of changes over the dimension tables above can be: (a) NEW, where a new customer is inserted, always associated
with a new account; (b) ADDACCT, where one or more new accounts are associated with an existing customer (this update does
not affect customer records); (c) UPDACCT, which updates the information in one or more existing accounts (also not affecting



customer records); (d) UPDCUST, which updates existing customer’s information; (e) CLOSEACCT, which closes one or more
existing accounts, not affecting customer records; (f) INACT, which sets the status of an existing customer, and his/her associated
active accounts, to ‘‘inactive’’. Note that for UPDCUST and INACT actions, no account fields are included in the file. Also note that
for UPDACCT, attributes that are not updated are not included. Thus, the CDC records in this case include the identifying data, and
the updated attributes. Finally, since a change to an existing customer causes a new tuple to be inserted in DimCustomer with a
new surrogate key, all accounts belonging to that customer must be updated with the new customer surrogate key. Thus, new tuples must
be inserted in DimAccount.

Everything is ready now to explain the BPMN4ETL conceptual design. To avoid redundancy, the process will be explained for
the case of type 2 SCDs with dependencies.

3.2. Conceptual BPMN design for slowly changing dimensions with dependencies

This section illustrates the BPNN4ETL representation for a type 2 SCD is described, by means of two cases: first, the update of
a new customer is shown. Then, the update of an existing customer and its associated accounts is explained.

Fig. 2 depicts the BPMN4ETL specification for the case of the insertion of a new customer(ActionType = ‘‘NEW’’). The whole
process starts with an input data task which reads all attributes of the CustomerMmgt.xml file. There is first an Input data task.
A condition check on the action type is then performed. If ActionType is not ‘‘NEW’’, a Sort data task is performed based on the
action’s timestamp, to indicate the order in which each change occurred. Otherwise, an Add Column task adds the phone attributes
to the flow. These attributes are the Phone1,Phone2, and Phone3 columns of table DimCustomer. Then, an Update Column task
inserts the character ‘‘U’’ into the Gender column if the value in it is not ‘M’ or ‘F’. Two Lookup tasks follow, retrieving columns
from the TaxRate table, such that the TX_ID column of this table matches the C_NAT_TX_ID attribute of the flow (the national
tax id) and the C_LCL_TX_ID (the local tax id). The next lookup task retrieves a number of columns from the table Prospect,
which are used to calculate the MarketingNamePlate column, added to the flow in the next Add Column task. After that, an Add
Column task adds the column Seq to the flow, to give a row number to each row (that will eventually be stored in the surrogate
key columns for both DimCustomer and DimAccount). The status is also set to ‘Active’, and the new tuple made the most current
one, for which the effective and end dates must be also set. The tuple then splits in two paths, namely one to continue with the
insertion into DimCustomer, and the other to insert into DimAccount. The attributes for inserting into the latter are all found in
the flow, except for Sk_BrokerID, which is retrieved from the DimBroker table by matching CA_B_ID with BrokerID where the
action timestamp (ActionTS) falls between the EffectiveDate and EndDate of the table DimBroker. These date check prevents a
situation where a tuple in the account dimension references a broker that did not exist when the account was created. Next, an Add
Column task adds the Sk_AccountID column to the flow. Finally an Insert Data task inserts the tuple into DimAccount.

Fig. 3 shows the conceptual design of the UPDCUST action for the historical load. Initially, an Add Column task updates
the phone attributes of the sources. The next five tasks (Lookup, Update Column, Drop Column, Lookup and Add Column),
implement the updates defined in the TPC-DI benchmark specifications. Note that Status is set to ‘‘active’’ in the Add Column task
to indicate that an updated customer is still active. Since DimCustomer is a SCD-type 2 table, upon updating a customer record, a
new Sk_CustomerID value must be inserted for the new current tuple. Thus, the current Sk_CustomerID value will not refer to the
correct value in the DimAccount table anymore. Further, the only link to DimAccount is the Sk_CustomerID value of the current
DimCustomer record. Thus, a lookup is performed using the customer identifier, followed by a Rename Column task that renames
the current Sk_CustomerID attribute to Sk_CustomerID_OLD. In the next Add Column task, the maximum Sk_CustomerID value
of DimCustomer is retrieved and incremented by one, becoming the Sk_CustomerID for the new tuple. This is followed by an
Update Data task that sets the IsCurrent and EndDate values of the current tuple in DimCustomer to ‘False’ and ‘ActionTS’ (the
action timestamp) respectively. Then the new tuple is inserted into DimCustomer, with IsCurrent and EndDate values to ‘True’ and
‘9999-12-31’ respectively. Now, all the accounts of the updated customer must be updated, setting the new value of Sk_CustomerID.
These accounts are found through a Lookup task with the Sk_CustomerID_OLD value that has been saved in the flow. This value
is matched with the Sk_CustomerID value of DimAccount. After this, the current tuple of this account in DimAccount, for this
customer, is logically deleted, by setting the IsCurrent and EndDate values to ‘False’ and ‘ActionTS’, respectively, using an Update
Data task. Since a rule in the TPC-DI specification document requires that there must be at most one update to a ‘natural’ key record
on any given day (even when the source data contains more than one update), a tuple is only deleted if the EffectiveDate value
is not equal to the ActionTS value (which will become the EndDate of the deleted tuple). Otherwise, another Update Data task
sets their Sk_CustomerID value to the new Sk_CustomerID value in the flow. Then, an Add Column task adds the Sk_AccountID
column to the flow. The row number value of each tuple is added to the maximum Sk_AccountID value since more than one account
could belong to the same customer being updated. Finally, an Insert Data task inserts the tuples in DimAccount.

4. An extended relational algebra for ETL processes

This section presents an extended RA that can be used for implementing ETL processes. RA is a well-studied formal language,
that can be used to automatically generate SQL queries to be executed over any Relational Database Management System (RDBMS).
It is assumed that relations may contain duplicate tuples, a typical situation in ETL processes that take input data for arbitrary data
sources. Along the lines of [9], the paper uses an extension of RA that allows representing SQL data modification operations. In
Section 5 these operations are applied to implement the ETL tasks specified using BPMN4ETL in Section 3.

The extended RA operations are shown in Fig. 4. On the left-hand side, the typical RA operations are depicted. A description of
these operations can be found in classic database literature (see, e.g., [10]). The additional operators are indicated on the right-hand
side of the figure, and detailed next.



Fig. 2. Conceptual schema of the ETL process for updating of a customer using a type 2 SCD approach.

Fig. 3. BPMN4ETL design for updating a customer (SCD type 2 table).



Fig. 4. Relational algebra operators (left). Extended relational operators (right).

• Aggregate: Let F be an aggregate function such as Count, Min, Max, Sum, or Avg. The aggregate operator
𝐴1 ,…,𝐴𝑚 ∣𝐶1=𝖥1(𝐵1),…,𝐶𝑛=𝖥𝑛(𝐵𝑛)(𝑅) partitions the tuples of 𝑅 in groups that have the same values in attributes 𝐴𝑖 and computes for
each group new attributes 𝐶𝑖 by applying the aggregate function 𝖥𝑖 to the values of attribute 𝐵𝑖 in the group, or the cardinality
of the group if 𝐹𝑖(𝐵𝑖) is 𝖢𝗈𝗎𝗇𝗍(∗). If no grouping attribute is given (i.e., 𝑚 = 0), the aggregate functions are applied to the whole
relation 𝑅. The schema of the resulting relation has the attributes (𝐴1,… , 𝐴𝑚, 𝐶1,… , 𝐶𝑛).

• Delete: The delete operation, denoted by 𝑅 ← 𝑅−𝜎𝐶 (𝑅), removes from relation 𝑅 the tuples that satisfy the Boolean condition
𝐶.

• Extend: Given a relation 𝑅, the extension operation, denoted 𝐴1=𝐸𝑥𝑝1 ,…, 𝐴𝑛=𝐸𝑥𝑝𝑛 (𝑅), returns a relation where each tuple in
𝑅 is extended with new attributes 𝐴𝑖 obtained by computing the expression 𝖤𝗑𝗉𝑖. The schema of the resulting relation also
contains the attributes in 𝑅.

• Input: This operation, denoted by 𝑅 ← 𝐴1 ,…,𝐴𝑛
(𝐹 ) returns a relation with schema 𝑅(𝐴1,… , 𝐴𝑛) that contains a set of tuples

constructed from the content of the file 𝐹 . This is a meta-operation with several variants allowing to input files of various
formats. Only CSV and XML formats are considered here.

• Insert: Given two relations 𝑅 and 𝑆, this operation, denoted 𝑅 ← 𝑅∪𝑆, adds to 𝑅 the tuples from 𝑆. When a new relation 𝑅
is created with the contents of 𝑆, the operation is denoted 𝑅 ← 𝑆. Also if the two relations have different arity, the attributes
of the second relation must be explicitly stated as, e.g., 𝑅 ← 𝑅 ∪ 𝜋𝐵1 ,…,𝐵𝑛

𝑆.
• Lookup: The lookup operation is given by 𝑅 ← 𝜋𝐴1 ,…,𝐴𝑛

(𝑅1 ⋈𝐶 𝑅2), where the join operation can be any of the six types in
Fig. 4.

• Remove Duplicates: This operation, denoted 𝛿(𝑅), returns a relation that contains the tuples of 𝑅 without duplicates.
• Rename: This operation is applied over relation names or over attribute names. For the former, the operation is denoted by
𝜌𝑆 (𝑅), where the input relation 𝑅 is renamed to 𝑆. For attributes, 𝜌𝐴1←𝐵1 ,…,𝐴𝑛←𝐵𝑛

(𝑅), returns a relation where the attributes
𝐴𝑖 in 𝑅 are renamed to 𝐵𝑖, respectively.

• Sort: This operation, denoted 𝜏𝐴(𝑅), sorts a relation that contains the tuples of 𝑅 sorted by the attribute 𝐴.
• Update Column: This operation, denoted 𝐴1=𝐸𝑥𝑝𝑟1 ,…,𝐴𝑛=𝐸𝑥𝑝𝑟𝑛 ∣𝐶 (𝑅), returns a relation where for each tuple in 𝑅 that satisfies

the Boolean condition 𝐶, the value of the attribute 𝐴𝑖 is replaced, respectively, by the value of 𝖤𝗑𝗉𝗋𝑖.
• Update Data: Denoted 𝑅 ←  (𝑅)𝐶 ∣𝐴1=𝖤𝗑𝗉𝗋1 , …,𝐴𝑛=𝖤𝗑𝗉𝗋𝑛 (𝑆), this operation updates tuples in 𝑅 that correspond to tuples in 𝑆

that satisfy the Boolean condition 𝐶. The value of attribute 𝐴𝑖 is replaced by the value of the expression 𝖤𝗑𝗉𝗋𝑖. Unlike the
Update Column operation, the Update data operation matches the tuples of two relations before the boolean condition is
applied.

Fig. 5 shows how tasks in the BPMN4ETL methodology can be translated into RA. For example, the Add Column task, which
adds columns to the flow, is translated as an Extend operation. Analogously, the Aggregate Data task, which adds columns to the
flow, based on aggregating data from the input flow, is translated as an Aggregate operation. The Drop Column task shown in
Fig. 5 removes the last two columns 𝐴𝑛−1, 𝐴𝑛 from the flow. The Drop Column operation is specified in RA as a projection of all
columns except the removed ones. In the Input Data task, the Fields (attributes) are generated by XPath expressions. The Update
Data task is translated as an Update Set operation with matching attributes explicitly stated in the condition.



Fig. 5. Translation of BPMN4ETL tasks to RA operations.

5. Relational algebra specification for updating a type 2 SCD with dependencies

This section shows how the representation of the ETL workflow that loads new and updated customers in DimCustomer and
DimAccount dimension tables of TPC-DI, using the RA operations presented in Section 4. That means, this is the RA equivalent to
the BPMN4ETL representation described in Section 3.

First, the insertion of a new customer is addressed. For this, Fig. 6 describes the ETL process for tuples with ActionType
= ‘NEW’. First, all tuples in the XML file input into a relation called All (Eq. 3). The variable Temp0 holds all tuples except
those with ActionType = ‘NEW’ (Eq. 4). Equations 5 through 17 process the tuple if the value of the ActionType attribute is
‘NEW’. In Eq. 5, a tuple from Temp0 is stored into variable NTemp1 if ActionType = ‘NEW’. After that, the phone columns
are added, by applying functions that take as parameters the phone attributes in the XML file (Eq. 6). For simplicity, the
parameters of the phone functions are not listed. In Eq. 7, the attribute Gender is updated, using a function that inserts ’U’ if
the value is neither ’M’ or ’F’. NationalTaxRate, NationalTaxRateDesc, LocalTaxRate, LocalTaxRateDesc are set by obtaining
the corresponding TX_NAME, TX_RATE values in from the DW table TaxRATE. After this, TX_NAME and TX_RATE are renamed
(Eqs. 8 through 11). The attributes from the DW table Prospect are then retrieved (Eq. 12). These attributes are used by the function
SetMarketingNamePlate() to compute the value of MarketingNamePlate (Eq. 13). The Seq column is added in Eq. 14, to provide
a row number to each row that will be stored as the surrogate key columns for both DimCustomer (in Eq. 15) and DimAccount (in
Eq. 17). Values to other columns are set as well (Status, IsCurrent, EffectiveDate, EndDate). Then, the new customer’s data are
inserted into the dimension table DimCustomer (Eq. 15). Finally, data must be inserted into the DimAccount table. For this, the
Sk_BrokerID is obtained by matching the attributes Customer/Account/CA_B_ID and DimBroker.BrokerID, such that the action’s
timestamp falls within the EffectiveDate and EndDate of DimBroker (Eq. 16). Finally, the new account data are inserted into
DimAccount (Eq. 17).

Updating a new customer record is addressed next. The implementation in RA of the process described in the running
example for tuples with ActionType = ‘UPDCUST’, is shown in Fig. 7. Variable Temp0 holds all tuples except for the ones with
ActionType=‘NEW’, and Temp1 holds the tuple pointed to by a cursor from Temp0 at any particular time. For the sake of space,



Fig. 6. RA expressions to model the historical load for a new customer.

only the part concerning SCDs will be explained (Eqs. 28 through 30). Equations 28 and 29 obtain the Sk_CustomerID of the current
customer tuple in DimCustomer, and rename it to Sk_CustomerID_OLD, to keep the current surrogate key of DimCustomer in
the flow, for the reasons already explained. Eqs. 30–31 add Sk_CustomerID to the flow (the new surrogate key value is computed
by adding 1 to the maximum Sk_CustomerID value in DimCustomer). The corresponding current tuple in DimCustomer is then
‘‘deleted’’ (Eq. 32). Then, the remaining columns needed are added (Eq. 33), and the tuple is inserted into DimCustomer (Eq. 34).
After this, all current accounts of the customer are obtained (Eq. 35) and ‘‘deleted’’ (by setting, e.g., IsCurrent as ‘False’, in Eq. 36).
Again, only one tuple is inserted, for accounts such that EffectiveDate ≠ ActionTS. For accounts with EffectiveDate = ActionTS,
only their Sk_CustomerID values are updated (Eq. 37). Finally, Eq. 38 adds Sk_AccountID to the flow. This is the maximum
Sk_AccountID in DimAccount plus the rownumber() value of each current account tuple. Finally, the tuples are inserted into
DimAccount (Eq. 39).

6. Performance evaluation

This section describes the experimental evaluation aimed at showing that modeling ETL workflows with Extended RA and
translating it to SQL queries results in more efficient processes than the ones that result from translating BPMN4ETL to typical
ETL tools. In this case, the chosen tools were Pentaho DI and Talend, probably the most popular open source data integration tools.
First, the experimental setting is described. Then, results of the different tests are reported. Finally, these results are discussed.

6.1. Experimental setting

The experiments were run over the TPC-DI benchmark introduced in Section 1. The benchmark contains one historical load and
two identical incremental loads. Data sources for these loads are of different formats (xml, csv, txt, and so on). Also, the benchmark
performs several kinds of operations and transformations, including error checking, surrogate key lookups, data type conversions,
aggregate operations, data updates, among other ones. Rules for both, the historical load and incremental updates, are described
in the specification document and the reader is referred to the documentation for details. The data of the benchmark are extracted
into files in a staging area (see Fig. 1) and the ETL implementation inserts them in the DW.

The historical and incremental loads were run in three ways: (a) Using Pentaho DI,1 translating the BPMN4ETL specification
directly into Pentaho; (b) Using Talend Open Studio for Data Integration2; translating the BPMN4ETL specification directly into

1 https://github.com/pentaho/pentaho-kettle
2 https://www.talend.com/products/talend-open-studio
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Fig. 7. RA expressions to model the historical load for an updated customer.

Talend3 (c) Translating the BPMN4ETL specification into RA, and then implementing the RA operations using Postgres PLSQL.4
Both Pentaho Data Integration (PDI) and Talend Open Studio (TOS) are ETL tools developed in Java. They offer a Graphical User
Interface (GUI) that allow defining data integration jobs and transformations. The PDI Client (called Spoon), is based on the Standard
Widget Toolkit. Spoon enables building transformations, and creating jobs, also scheduling these jobs. PDI is not a code generator
but a metadata-driven ETL tool. That means, no code has to be written to perform complex data transformations or ETL tasks. TOS
provides an Eclipse-based GUI. Unlike PDI, TOS is a code generator, therefore ETL tasks and jobs are translated into Java or Perl
code. The target language is chosen when creating a new project.

The TPC-DI benchmark defines different sizes for the tests, through a scale factor (SF). For instance, for scale factor 3, the
benchmark processes 4.5 million records. For scale factors 5 and 10, the benchmark processes 7.8 and 16.1 million records,
respectively. The data warehouse sizes were 4 GB, 7 GB, and 15 GB, for scales factors 3, 5, and 10, respectively.

To optimize the performance of the Pentaho DI implementation, the tool’s performance recommendations were applied.5 The
memory limit for Pentaho DI was increased from 2GB to 4GB in order to prevent Java out of memory exceptions and to improve

3 Pentaho and Talend were chosen since most tools do not allow publishing experimental results due to licensing restrictions.
4 https://www.postgresql.org/docs/9.2/static/plpgsql.html
5 https://help.pentaho.com/Documentation/7.1/0P0/100/040/010
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Table 1
Results of implementing TPCDI with relational Algebra (PLSQL) and BPMN (Pentaho PDI) in
Hours:Minutes:Seconds.

Historical Incremental 1 Incremental 2

SF-3
PLSQL 00:12:50 00:00:09 00:00:07

Pentaho PDI 11:23:52 00:01:32 00:01:40

Talend 02:29:00 00:00:43 00:00:43

SF-5
PLSQL 00:22:31 00:00:15 00:00:14

Pentaho PDI 20:25:32 00:03:03 00:03:11

Talend 04:05:00 00:01:53 00:01:09

SF-10
PLSQL 02:11:15 00:00:39 00:00:36

Pentaho PDI 25:08:13 00:11:35 00:12:38

Talend 09:03:00 00:4:00 00:03:00

performance. Also, subjobs that are not dependent on each other were executed in parallel. To optimize the performance of the TOS
implementation, the memory limit of most jobs was increased to 4GB. As in the case of PDI, this reduces the execution time and
prevents out of memory exceptions. Also, whenever possible, many columns were derived in a single testsftMap component, instead
of including different components for different column derivations. Like in the case of the PDI implementation, jobs were run in
parallel whenever possible. All tests were run over an Intel i7 computer, with a RAM of 16 GB, running the Windows 10 Enterprise
operating system, and using the PostgreSQL database for the DW storage. Using PostgreSQL database for all implementation makes
the comparison fair.

6.2. Results

Table 1 reports the total execution times of the processes, for different SFs. The historical and incremental loads were run, for
all three SFs. It can be noticed that for the historical load, PLSQL implementation is orders of magnitude faster, for all scale factors.
Differences are also relevant for incremental loads.

To get further insight on the results, Fig. 8 shows the execution times for each table in the TPC-DI DW, for SF = 3 using
PLSQL (resulting from the RA approach), Pentaho PDI and Talend (the results for the other SFs are similar). It can be noticed
that the PLSQL implementation is faster for loading all tables. Also, results for TOS are better than the ones obtained for PDI.
Moreover, it is orders of magnitude faster when it comes to implementing SCDs with dependencies, DimCustomer/DimAccount
and DimCompany/DimSecurity. The reasons for these results are discussed in the next section.

6.3. Discussion

Consider the fact table FactHoldings in the benchmark. Figs. 9 and 10 show the ETL processes for the historical load of the table,
using Pentaho PDI and Talend, respectively. The PLSQL queries resulting from the RA approach that implements the process are
shown below. It can be seen that with the Pentaho PDI implementation, the Merge Sort step must be preceded by two sort steps. The
Merge Sort step requires the join condition columns to be already sorted. These sort steps add up to the total execution time since
the sort components must finish execution before the ETL process can go on. The absence of these sort queries and components for
all joins in PLSQL and Talend lowers the cost of the ETL process. The PLSQL join query uses a hash join which does not require
both inputs to be sorted.

DROP FUNCTION IF EXISTS FactholdingsLoad();
CREATE FUNCTION FactholdingsLoad()
RETURNS VOID AS $$
BEGIN

DROP TABLE IF EXISTS FHTemp1,FHTemp2;

CREATE TEMPORARY TABLE FHTemp1 AS
SELECT HH_H_T_ID, HH_T_ID, HH_BEFORE_QTY, HH_AFTER_QTY,
SK_CustomerID, SK_AccountID, SK_SecurityID,
SK_CompanyID, SK_CloseDateID, SK_CloseTimeID,TradePrice
FROM holdinghistory H, DimTrade D
WHERE H.HH_T_ID = D.TradeID;

INSERT INTO Factholdings(TradeID, CurrentTradeID,
SK_CustomerID, SK_AccountID, SK_SecurityID,



Fig. 8. Execution times for each table for the historical load in the TPC-DI benchmark, using PLSQL, Pentaho Data Integration and Talend.

SK_CompanyID, SK_DateID, SK_TimeID,
CurrentPrice, CurrentHolding, BatchID)
SELECT HH_H_T_ID, HH_T_ID, SK_CustomerID, SK_AccountID,
SK_SecurityID, SK_CompanyID,
SK_CloseDateID, SK_CloseTimeID, TradePrice, HH_AFTER_QTY,1
FROM
FHTemp1 ;

END;
$$ LANGUAGE ’plpgsql’;

Further, the results obtained are also partially explained by analyzing the way in which each approach implements the loops
needed to perform the updates over the SCDs in the benchmark. Recall that the tables DimCustomer and DimAccount are populated
from the CustomerMmgt.xml file, which contains all updates to customers and their accounts prior to the historical load. Apart
from tuples with ActionType=‘‘NEW’’, which are loaded in batch form, all other action types are loaded using loops, one row
at a time. Pentaho PDI handles loops with the Copy Rows to Result step, that stores the rows in main memory and retrieves
them one row at a time. For SF = 3, it takes Pentaho PDI 22,156 s out of the total running time for the historical load, to finish
running the DimCustomer and DimAccount dimension tables due to this loop. Talend handles loops with the tFlowToIterate
component, which reads data line by line from the input flow; data are then stored in iterative global variables flowed by the
tFixedFlowInput component. For example, for SF = 3, it takes Talend 9,000 s out of the total running time for the historical
load, to finish running the DimCustomer and DimAccount dimension tables due to this loop. The same reasoning applies to the
DimCompany and DimSecurity tables.

Finally, both Pentaho PDI and Talend are run in a Java-enabled environment. They provide a Java engine that controls data
processing. That means, data from a staging area are extracted into the Java environment for processing. Any ETL task in Pentaho
PDI or Talend that requires a lookup for data from the DW increases the ETL execution time, since the data are first loaded into the
tool’s environment before processing it. For example, several lookup tasks are needed to find values from the most current tuples of
the DimCustomer/DimAccount and (DimCompany/DimSecurity) SCDs. Implementing ETL processes based on a translation from
the extended RA specification proposed in this paper, as in the case of PLSQL, the above drawbacks are avoided. This is because
the data for lookup already exist in the database and hence there are no additional costs due to extraction of the data into the ETL
environment. Thus, the ETL execution time increases exponentially when it comes to implementing loops in Pentaho and Talend
data integration tools. For each tuple, the tasks that look up values in the DW have to reload the data from the DW into the tool’s
environment to obtain the correct value(s). An example of the above occurs when finding the surrogate key of the most current
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Fig. 9. Load of DimBroker table for Pentaho PDI.

Fig. 10. Load of DimBroker table for Talend.

tuple in DimCustomer or DimAccount, and increasing it by one as the surrogate key of the new tuple to be inserted, as explained
in Section 3.

Automatically translating a BPMN4ETL specification to RA would have a crucial impact on the use of the approach discussed
in this paper to real world scenarios. There are many BPMN modeling tools in the market. Some of these tools can be extended for
BPMN4ETL modeling, and translated automatically to RA (and therefore to SQL, given that this translation is straightforward), with
the use of the XML language. An example of an extendable tool is Camunda Modeler.6 The idea of this automated translation is as
follows. First, a model is created using the BPMN4ETL tool (that is, the extension of a BPMN modeling tool). Then, an XML file is
automatically generated for such model. The information in this XML file could be used as the input of an algorithm, in order to
finally produce the SQL code that will execute the ETL process. This automated translation is ongoing work by the authors, and a
full explanation of the process falls outside the scope of this paper.

In summary, the results reported here suggest that implementing ETL SQL-based processes based on a translation from a RA
specification is plausible and competitive. The tests showed that the extended RA-to-SQL approach is more efficient in terms of
overall execution time for running the TPC-DI benchmark, than the implementations over data integration tools. Of course, a
great part of the observed difference is due to the overhead introduced by the higher level of abstraction provided by the process-
specification tools. However, an automated translation from BPMN4ETL to RA (or SQL) commented above, would bring the best of
both worlds: a high-level of abstraction together with an efficient execution time.

7. Related work

Several different strategies have been proposed to model ETL processes. The conceptual model proposed by Vassiliadis et al. [11]
analyzes the structure and data of the data sources and their mapping to a target DW. A set of frequently used ETL activities are
identified, like the assignment of surrogate keys, the check for null values, etc. The conceptual model proposed by Trujillo and
Luján-Mora [12], uses UML to design ETL processes. Here, each ETL process is represented by a stereotyped class which is in turn
represented by an icon. This icon can be used in a UML model instead of the standard representation of a class. This model, however,
does not capture some important ETL transformations and mappings between attributes of data sources and data warehouses, and
is refined by Muñoz et al. [13], using UML activity diagrams instead of UML class diagrams to model the ETL processes.

The works by El Akkaoui et al. [8,14,15] propose a vendor-independent conceptual metamodel for designing ETL processes based
on BPMN. This ETL workflow design combines two perspectives, a control process view, and a data process view. A control process

6 https://camunda.com/products/modeler/
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view consists of all the data processes in the ETL workflow, while the data process view provides a more detailed information
of the input and output data of each data process in the control process view. Using BPMN to specify ETL processes makes this
model simple and easy to understand at the cost of expressiveness: it is not possible to visualize the transformation of attributes
and attribute constraints at any point in the workflow. This approach has been later used in a proposal for assessing of the quality
of an ETL design [16].

Santos and Belo have proposed using relational algebra for modeling ETL processes [4–6,17]. In particular, ETL processes for
slowly changing dimensions specifications [4], data quality enforcement tasks [5], and ETL conciliation tasks [6], were modeled
with relational algebra and applied to a real-world ETL scenario [17]. Since he authors use the classic RA, these works cannot
address more complex scenarios like, for instance, the problem of updating SCDs that are referenced by other SCDs (SCDs with
dependencies). The extended RA in the present paper makes it easy to translate RA specifications to any ETL scenario. Further, the
work above does not include an implementation of the proposal, but only descriptions of possible ones. On the contrary, the present
paper shows an implementation over the TPC-DI benchmark (described in Section 6), allowing to compare the approach against
alternatives popularly used in real-world scenarios, like Pentaho DI and Talend Open Studio for DI.

Finally, relevant to the work presented here, a research reported in [18] presents a framework for ETL development based on
writing software code, instead of specifying the process using commercial tools like Pentaho PDI, Integration Services, etc., and
discusses the advantages of this approach.

8. Conclusion

This paper discussed the use of an extension of RA for modeling and implementing ETL processes at the conceptual level, and
compared this approach against BPMN4ETL, a conceptual model for ETL processes based on the Business Process Modeling Notation
(BPMN), commonly used for specifying business processes. For this comparison, the paper addresses the problem of Slowly Changing
Dimensions (SCDs) with dependencies, that is, the case when updating a SCD table impacts on associated SCD tables. To evaluate
the efficiency of the ETL processes resulting from the two approaches above, the loading of a portion of the TPC-DI benchmark was
used. That is, the TPC-DI benchmark was used in two ways: one, using RA to translate the specification into SQL. The other one,
implementing the benchmark using BPMN4ETL, and translating this directly into the Pentaho Data Integration (PDI), and the Talend
Open Studio for Data Integration (TOS) tools. The experiments showed that the SQL implementation runs orders of magnitude faster
than the other two ones. Therefore, ongoing work by the authors, on the automated translation of BPMN to RA and SQL would
allow to keep the high level of abstraction provided by BPMN, while obtaining the important efficiency gain reported here. Finally,
since this work did not consider structural changes of the data sources, this issue remains open to be addressed in future research.
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