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ABSTRACT

In many Solvency and Basel loss data, there are thresholds or deductibles that affect the
analysis capability. On the other hand, the Birnbaum-Saunders model has received great
attention during the last two decades and it can be used as a loss distribution. In this pa-
per, we propose a solution to the problem of deductibles using a truncated version of the
Birnbaum-Saunders distribution. The probability density function, cumulative distribution
function, and moments of this distribution are obtained. In addition, properties regularly
used in insurance industry, such as multiplication by a constant (inflation effect) and recip-
rocal transformation, are discussed. Furthermore, a study of the behavior of the risk rate
and of risk measures is carried out. Moreover, estimation aspects are also considered in this
work. Finally, an application based on real loss data from a commercial bank is conducted.
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1 INTRODUCTION

The assumption of normality is not often quite true when monetary loss data are analyzed.
Thus, standard statistical techniques based on the normal model are not adequate in this
case. In order to solve this problem, some solutions have been proposed in the literature
related to this issue. These solutions can come from two approaches: (i) to transform
the loss data and model these by standard methods (although this approach is not always
convincing because the interpretation of the results is sometimes misleading, and it has been
shown that a data analysis conducted under a wrong transformation reduces the power of
the study); and (ii) to directly model the loss data by an appropriate distribution avoiding
their transformation. In this last approach, several probability models have been used to
describe this type of data. These models are called loss or life distributions. In particular,
the Birnbaum-Saunders (BS), exponential, gamma, inverse Gaussian, lognormal, Pareto,
and Weibull models have been considered as loss or life distributions; for more details, see
Lawless (2002), Kleiber and Kotz (2003), Marshall and Olkin (2007), and Ahmed et al.
(2008), among others. In this paper, we use the second approach considering the following
ingredients: (i) the basic objective of the actuarial science to model the behavior of loss
data based on financial risk; (ii) the BS model as loss distribution; and (iii) the truncation
of distributions with the goal of building a model that can be used to forecast losses.

Next, we discuss the mentioned ingredients and propose an application of the truncated
version of the BS distribution to improve a forecasting actuarial model. The first consid-
ered ingredient is related to financial risk, which has been applied to different fields and
nowadays is being used for important initiatives such as Basel II and Solvency II, for ex-
ample in the development of calculations of operational and credit risk losses in order to
evaluate capital requirement; see Sandstrom (2006), and Hull (2007). Also, financial risk
is being used by the insurance industry to provide tools to the insurer to fulfill claims in the
future; see Klugman et al. (2004), and Panjer (2006). The second ingredient is the two-
parameter BS distribution proposed by Birnbaum and Saunders (1969), which has been a
model widely studied and applied later on. This is due to the interesting properties of the
BS distribution and its close relationship with the normal model. These aspects make the
BS distribution a natural and meaningful alternative candidate to the normal model under
positive skewness and non-negative support, such as is the case of loss data. The BS dis-
tribution has been regularly used in biological, engineering, environmental, and medical
applications; see Sanhueza et al. (2008). We believe that this distribution can be used in
actuarial science, business, economics, finance and risk management as well. For more



details about the BS model and some of its generalizations and extensions, see Johnson et
al. (1995, p. 651), Saunders (2007), and Sanhueza et al. (2008). The BS distribution is im-
plemented in the R software and available from CRAN.R-project.org by the bs package;
see Leiva et al. (2006), and R Development Core Team (2008). Finally, as mentioned, the
third ingredient is based on truncated distributions. Truncated data often appear in many
fields such as reliability, actuarial science, and chemometrics (where there are instruments
that unable to detect data under or over certain limits). Truncated versions of the gamma,
inverse beta, lognormal and normal distributions can be revised in Wingo (1988), McEwen
and Parresol (1991), Coffey and Muller (2000), Rigby and Stasinopoulos (2006), Nadara-
jah (2008), and Pichugina (2008).

The described ingredients allow us to develop an actuarial model that describes the dis-
tributional behavior of loss data. Specifically, in this paper, we propose a new model called
the truncated Birnbaum-Saunders (TBS) distribution. We consider that a direct application
of this distribution can be used by the financial industry, as for example, for modeling data
from insurance payments that establish a deductible. Another example is related to loss
data from financial institutions considering events that are over a minimum amount. These
two examples can be studied by truncated distributions instead of the classical perspective
from non-truncated distributions. If we agree with the application in both of the mentioned
examples, then the utilization of the TBS distribution can be a useful tool for modelling of
data based on Solvency II and Basel II; see Sandstrom (2006).

This paper is structured as follows. In Section 2, we provide a background of the
BS distribution and a characterization of the TBS distribution, including their probability
density function (pdf), cumulative distribution function (cdf), risk indicators, moments,
some properties and transformations, and parameter estimation based on the maximum
likelihood (ML) method. In Section 3, we carry out a financial application of the obtained
results. In the concluding remark and appendix sections, we include some final comments
of the proposed TBS model and the proofs of the theorems, respectively.

2 THE NEW MODEL

In this section, we provide a background about the BS distribution and characterize the TBS
distribution. We only consider the case of a distribution truncated to the left since cases of
truncation to the right or double truncation are similar. In addition, truncation to the left is
coherent with the considered financial application. Thus, from now on, we simply refer as
TBS distribution when the BS distribution is truncated to the left.



2.1 Background

If a random variable (rv) X follows a BS distribution with shape and scale parameters, α

and β, respectively, then the notation X ∼ BS(α,β) is used. Thus, if

X =
β

4

[
αZ +

√
α2Z2 +4

]2
∼ BS(α,β), (2.1)

where α > 0 and β > 0, then Z =
[
[X/β]1/2− [β/X ]1/2

]
/α∼N(0,1) and W = Z2 = [X/β+

β/X−2]/α2 ∼ χ2(1). Therefore, the pdf and cdf of X are, respectively, given by
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, x > 0, (2.2)

where φ(·) and Φ(·) denote the pdf and cdf of the standard normal distribution, ξ(x) =
[x1/2−x−1/2], and ξ′(x) = dξ(x)/dx =

[
x−1/2 +x−3/2

]
/2. Some properties of the BS model

are cX ∼ BS(α,cβ), with c > 0, and 1/X ∼ BS(α,1/β). The qth quantile of X is xq =

[β/4]
[
αzq +

√
α2z2

q +4
]2, with 0 < q < 1, where zq is the qth quantile of the standard

normal distribution. Thus, since x0.5 = β, then β is also the median of the distribution. The
rth moment of X is given by
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r
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, r = 1,2, . . . (2.3)

Based on Equation (2.3), the mean, variance and coefficients of variation (CV), skewness
(CS) and kurtosis (CK) are, respectively, given by

E[X ] =
β

2
[α2 +2], Var[X ] =

β2

4
[5α

4 +4α
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√
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,

(2.4)
CS[X ] =

44α3 +24α[√
5α2 +4

]3 , and CK[X ] = 3+
558α4 +240α2

[5α2 +4]2
.

2.2 Density and properties of the TBS distribution

If X ∼ BS(α,β), then T ∼ TBSκ(α,β) denotes the truncated version of X at the positive
value κ.

Theorem 1. Let T ∼ TBSκ(α,β). Then, the pdf of T is

fT (t) =
φ

(
1
α

ξ

(
t
β

))
ξ′
(

t
β

)
αβΦ

(
− 1

α
ξ

(
κ

β

)) , t ≥ κ > 0,

where ξ(·) and ξ′(·) are given in Equation (2.2).



[
[T/β]1/2− [β/T ]1/2

]
/α follows a standard

normal distribution truncated to the left at η, which is denoted by Z ∼ TNη(0,1); see
Cohen (1991, p. 9). Thus, T = [β/4][αZ +

√
α2Z2 +1]2 ∼ TBSκ(α,β) and the truncation

point is κ = [β/4][αη +
√

α2η2 +4]2. This demonstrates that the TBS distribution may
be obtained from two ways: (i) by truncating the BS distribution to the left at κ, or (ii)
by generating an rv with BS distribution as in Equation (2.1) from Z ∼ TNη(0,1), where
η =

[
[κ/β]1/2− [β/κ]1/2

]
/α.

Corollary 2.1. Let T ∼ TBSκ(α,β). Then, the mode of T , denoted by tm, is given as the
solution of the equation t3

m +[α2 +1]β t2
m +α2 β2 tm−2α2 β3 = 0, for tm ≥ κ > 0.

Remark 2. We note that if the solution of the equation given in Corollary 2.1 does not
satisfy the condition tm ≥ κ > 0, then κ is the mode of T .

In general, the cdf of an rv can be used to compute probabilities and quantiles of the
distribution, generate random numbers, and produce goodness-of-fit. Next, we find the cdf
of the TBS distribution.

Theorem 2. Let T ∼ TBSκ(α,β). Then, the cdf of T is

FT (t) =
Φ
( 1

α
ξ(t/β)

)
−Φ

( 1
α

ξ(κ/β)
)

Φ
(
− 1

α
ξ(κ/β)

) , t ≥ κ > 0.

Corollary 2.2. Let T ∼ TBSκ(α,β). Then, the qth quantile of T is expressed as

tq = F−1
T (q) =

β

4

[
αzq +

√
α2z2

q +4
]2

,

where zq is the qth quantile of the standard normal distribution truncated to the left at
η =

[
[κ/β]1/2− [β/κ]1/2

]
/α and F−1

T (·) is the inverse function of FT (·).

Some transformations of variates are useful in diverse situations. For example, in ac-
tuarial science, multiplication by a constant is equivalent to applying loss size inflation
uniformly across all loss levels; see Panjer (2006, p. 84). If the scale transformation of
an rv follows the same distributional class, then its distribution belongs to the scale fam-
ily. If the reciprocal transformation of an rv follows the same distributional class, then its
distribution belongs to the closed under reciprocation family; see Saunders (1974). The
following theorems show some properties and transformations of the TBS distribution.

Theorem 3. Let T ∼ TBSκ(α,β). Then, the following properties hold:

(i)cT ∼ TBScκ(α,cβ), with c > 0, and

(ii) 1/T follows a BS model with parameters α and 1/β truncated to the right at 1/κ.

Remark 1. If T ∼ TBSκ(α,β), then the rv Z =



There are several reasons motivating the study of logarithmic transformations of vari-
ates; see Balakrishnan et al. (2009). Models associated with these transformations are
called logarithmic distributions. For more details about logarithmic distributions; see Mar-
shall and Olkin (2007, pp. 427-450).

Remark 3. The sinh-normal (SN) model is a three-parameter logarithmic distribution with
shape, location, and scale parameters, α > 0, γ ∈ R, and σ > 0, respectively. This model is
sometimes called the log-Birnbaum-Saunders distribution. This is because if Y ∼SN(α,γ,σ)
and σ = 2, then T = exp(Y )∼ BS(α,β), where β = exp(γ). For more details about the SN
distribution, see Rieck and Nedelman (1991), Johnson et al. (1995, pp. 645-661), and
Leiva et al. (2007).

Theorem 4. Let T∼ TBSκ(α,β). Then, log(T ) ∼ TSNlog(κ)(α, log(β),2), where this no-
tation means the truncated version to the left at log(κ) of the SN distribution.

Transformations by raising to a power have been found to provide useful and flexible
models; see Kleiber and Kotz (2003, p. 148), and Marshall and Olkin (2007, p. 228).

Theorem 5. Let T ∼ TBSκ(α,β). Then, if Y = T r, with r > 0, the pdf of Y is given by

fY (y) =
1
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√
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1
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2α2

[[
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] 1
r +
[

η

y

] 1
r
]
−2
)

Φ
(
− 1
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ξ
(
k/η1/r

)) [y
1
r +η

1
r ]

y
1
2r +1

, y≥ kr, η = β
r.

2.3 Moments of the TBS distribution

The positive integer moments are quite useful in inference and model fitting, while neg-
ative moments are less known and their applications are more limited. For details about
applications of moments of any order; see Balakrishnan et al. (2009). The moments of
the TBS distribution depend on the moments of the truncated standard normal distribution.
Some results related to the moments of the truncated normal distribution are shown next.

Theorem 6. Let Z ∼ TNη(0,1). Then, for r ≥ 1,

(i)

E [Zr] =
+∞∫
η

zr φ(z)
Φ(−η)

dz = η
r−1Q(η)+ [r−1]E

[
Zr−2] ,

where Q(η) = E [Z] =
∫ +∞

η

zφ(z)
Φ(−η)dz = φ(η)

Φ(−η) , and



(ii)
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where Wr = E
[
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]1/2].
Theorem 7. Let T ∼ TBSκ(α,β). Then, for r ≥ 1, the rth moment of T is given by
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where Z ∼ TNη(0,1).

Remark 4. If T ∼ BS(α,β), then the expression W2r+1 = E
[
Z2r+1

[
[αZ/2]2 + 1

]1/2] (i.e.,
the odd moments of Z, where Z ∼ N(0,1)) given in Theorem 7 vanishes. However, in the
TBS case, these expressions must be considered since such terms are different from zero.

Corollary 2.3. Let T ∼ TBSκ(α,β) and Z ∼NTη(0,1). Then, the mean, variance, CV, CS,
and CK of T are, respectively, expressed as
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where Vk = E[Zk] and Wk are given in Theorem 6 and Remark 4.

2.4 Risk rate of the TBS distribution

An rv T with pdf fT (t) and cdf FT (t) that follows a loss distributions is equivalently char-
acterized by the survival function, ST (t) = 1−FT (t), or by the risk rate (also known as
failure or hazard rate), hT (t) = fT (t)/ST (t), for t > 0 and 0 < ST (t) < 1. For example,
if hT (t) is non-decreasing (or non-increasing) in t, then FT (t) belongs to the class of in-
creasing (or decreasing) failure rate (IFR) (or DRF) distributions; if hT (t) = λ > 0, for all
t, we have ST (t) = exp(−λt), for t > 0, so that FT (t) is the cdf of an exponential distribu-
tion. The failure rate average (FRA) of T is given by FRA(t) = HT (t)/t = [

∫ t
0 hT (t)dt]/t,

for t > 0, where HT (t) is the cumulative risk rate. An analysis of FRA(t) on t allows
us to obtain the increasing (or decreasing) failure rate average (IFRA or DFRA) classes.
The conditional survival function of T is defined as ST (t|x) = ST (t + x)/ST (x), for t > 0,
x > 0, and 0 < ST (·) < 1. Similar to hT (t) and FRA(t), the distribution of T belongs
to the new better than used (NBU), exponential, or new worse than used (NWU) classes,
when ST (t|x) < ST (t), ST (t|x) = ST (t), or ST (t|x) > ST (t), respectively. In addition, a
study of the behavior of ST (t|x) establishes the loss families called increasing residual
life (IRL) and decreasing residual life (DRL). Based on the definition of hT (t), we have
hT (t) =−d log(ST (t))/dt, for t > 0, and 0 < ST (t) < 1, so that ST (t) =

∫ t
0 exp

(
−hT (x)

)
dx.

Thus, all the risk indicators mentioned above can be expressed in terms of hT (t). For this
reason, our analysis only focusses on the risk rate.

The normal distribution and its truncated version belong to the IFR family. However,
the lognormal model has not an increasing failure rate because it initially increases until
reaching its change point and then decreases to zero. The risk rate of the BS model behaves

16V4 − 24V2W1
2 + 3W1

4 − 12α2V2
2W1 + 16W1W2 − 48V2

2W1α+ 48V4W1α



similarly to the lognormal model, but it decreases until a positive constant value (not at
zero). The behavior of the risk rate, with Y ∼ BS(α,β), does not depend on the parameter
β. Also, for any value of α, we have that this rate is (i) unimodal; (ii) increasing for y < yc,
and decreasing for y > yc, where yc is the change point of hY (y); and (iii) approaches
1/[2α2β] as y→ ∞. For more details about the BS risk rate, see Kundu et al. (2008).

Theorem 8. Let T ∼ TBSκ(α,β). Then, the survival function and risk rate of T are,
respectively, given by

ST (t) =
Φ
(
− 1

α
ξ(t/β)

)
Φ
(
− 1

α
ξ(κ/β)

) and hT (t) =
φ
( 1

α
ξ(t/β)

)
ξ′ (t/β)

αβΦ
(
− 1

α
ξ(t/β)

) , t ≥ κ > 0.

The change point of the risk rate is an important value when the loss distribution does
not belong to a family with non-monotone failure rate (IFR and DFR classes). Thus, when
this change point is known, the inflection point of the risk is obtained. Next, we study
the change point of the TBS risk rate, which we denoted by tc. As β is a scale parameter,
without loss of generality, we consider β = 1.

Theorem 9. Let T ∼ TBSκ(α,1). Then, tc is obtained as the solution of the equation

Φ
(
− 1

α
ξ(tc)

)[
α

2
ξ
′′
(tc)−ξ(tc)[ξ

′
(tc)]2

]
+αφ

(
− 1

α
ξ(tc)

)[
ξ
′
(tc)
]2

= 0, tc ≥ κ > 0,

where ξ′′(·) is the second derivative of ξ(·).
Remark 5. There is not explicit solution to the equation given in Theorem 9. Thus, a
numerical method is required to solve it, with the constrain t ≥ κ > 0. In this case, it is
possible that a change point of the risk rate does not exist because the solution of this
equation would not necessary satisfy the condition t ≥ κ > 0.

Based on the results obtained for the classical BS distribution, we can establish the
following Corollary; see Kundu et al. (2008) and Remark 5.
Corollary 2.4. Let T ∼ TBSκ(α,β), hT (·) be its risk rate, and yc be the change point of the
risk rate of Y ∼ BS(α,β), the classical BS distribution with parameters α and β. Then,

(i)If yc ≥ κ, yc = tc is also the change point of hT (t), which is an upside-down function,
and

(ii)If yc < κ, hT (t) has no change point and this function monotonically decreases until
a positive constant value.

Another important value for the risk rate is its limit behavior. This is because, within
the class of loss distributions with non-monotone failure rate (IFR and DFR classes), some
risk rates, after reaching its change point, decrease to zero and others become stabilized at
a positive constant value, and not at zero.

Theorem 10. Let T ∼ TBSκ(α,β) and hT (·) be its risk rate. Then, lim
t→∞

hT (t) = 1/[2α
2
β].



2.5 Risk measures for the TBS distribution

Although the risk measures mentioned in Section 2.4 are known and used in practice, finan-
cial organizations suffer a high level of exposure, which makes necessary to have efficient
risk measures for these organizations with the purpose of mitigating their risks. The finan-
cial instruments indicate the degree to which an institution is exposed. Thus, the value at
risk (VaR) has become a standard measure to evaluate exposure to the risk. The VaR is a
quantile of the risk (or loss) distribution and can also be used in the determination of the
amount of capital required to withstand such adverse outcomes. Specifically, let T be a loss
rv. Then, the VaR of T at the 100× q% level, denoted by VaRq(T ) or tq, is the 100× q
quantile of the distribution of T . Thus, if T ∼ TBSκ(α,β), based on Corollary 2.2, we have

VaRq[T ] =
β

4

[
αzq +

√
α2z2

q +4
]2

, (2.5)

where zq is the qth quantile of Z ∼ TNη(0,1), with η =
[
[κ/β]1/2− [β/κ]1/2

]
/α.

A risk measure is a mapping from the rv representing the loss associated with the risk
to the real line and provides a single number that is intended to quantify the exposure to
this risk. The study of these measures has been focused on ensuring their consistence. In
this line, Artzner (1999) introduced the concept of coherence of risk measures, which is
defined as follows. A risk measure ρ(·) is coherent if, for any two bounded loss variates,
say T1 and T2, it has the following properties:

(i)Subadditivity: ρ(T1 +T2)≤ ρ(T1)+ρ(T2);
(ii)Monotonicity: ρ(T1)≤ ρ(T2), if T1 ≤ T2;

(iii)Positive homogeneity: ρ(cT1) = cρ(T1), for all c; and
(iv)Translation invariance: ρ(T1 + c) = ρ(T1)+ c, for all c.

In financial risk management, the VaR is used for trading processes over a fixed time pe-
riod. In this case, the normal distribution is often used for describing gains or losses, in
which case the VaR satisfies all coherence properties described above. However, opera-
tional and credit risk losses are usually well modelled by loss distributions, i.e., positively
skewed distributions with non-negative support, such as those occurs with the BS distri-
bution. However, in this case, the risk measure VaR does not satisfy the first of the four
criteria for coherence, i.e., the subadditivity requirement. Since the VaR suffers this un-
desirable property, a more informative and useful measure, such as the tail value at risk
(TVaR), should be used. The TVaR has shown to be a coherent risk measure that does
have the property of subadditivity; see Artzner (1999). Therefore, the TVaR seems to be a
suitable alternative like operational and credit risk measure. Specifically, let T be a loss rv



and fT (·),ST (·), and tq be its pdf, survival function, and qth quantile, respectively. Then,
the TVaR of T at the 100×q% level, denoted by TVaRq(T ), is the expected loss given that
the loss exceeds the qth quantile of the distribution of T . That is,

TVaRq[T ] = E[T |T > tq] =

∫
∞

tq t fT (t)dt

ST (tq)
= tq +

∫
∞

tq [t− tq] fT (t)dt

ST (tq)

= tq +

∫
∞

tq ST (t)dt

ST (tq)
= VaRq[T ]+ e(tq), (2.6)

where e(tq) =
∫

∞

tq ST (t)dt/ST (tq) is known in insurance as the mean excess loss function
and in lifetime analysis as mean residual life function; see Panjer (2006, p. 34). From
Equation (2.6), we note that TVaR is greater than the corresponding VaR by the average
excess of all losses that exceed VaR. A complete review of the risk measure TVaR can
be found in Wirch (1999), Tasche (2002), and Acerbi and Tasche (2002). Thus, if T ∼
TBSκ(α,β), from Equations (2.5) and (2.6), we have

TVaRq[T ] =
β

4

[
αzq +

√
α2z2

q +4
]2

+
1

Φ
(
− 1

α
ξ(tq/β)

) ∫
∞

tq
Φ

(
− 1

α
ξ
( t

β

))
dt, (2.7)

where zq is the qth quantile of Z ∼ TNη(0,1), with η =
[
[κ/β]1/2− [β/κ]1/2

]
/α.

2.6 Estimation and inference in the TBS distribution

The log-likelihood function for a random sample T = [T1, . . . ,Tn]>, with Ti ∼ TBSκ(α,β),
for i = 1, . . . ,n, is `(θ) = ∑

n
i=1 `i(θ), where θ = [α,β]>,

`i(θ) =− log(Φ(−H))+ log
(

φ

(
1
α

ξ
( ti

β

)))
+ log

(
ξ
′( ti

β

))
− log(β)− log(α), (2.8)

and H = ξ(κ/β)/α. The ML estimator of the parameter θ is the solution to the equation
L̇θ = 0, where L̇θ = [L̇α, L̇β]> is the score vector with first derivatives given by

L̇α =− n
α

+
n
α

φ(H)
Φ(H)

H +
ns

α3β
+

nβ

α3r
− 2n

α3 and (2.9)

L̇β =−n
β
− n

α
ξ
′
(

κ

β

)
κ

β2
φ(H)
Φ(H)

+
n

2α2β

[
s
β
− β

r

]
+

n
K(β)

, (2.10)

with s = ∑
n
i=1 ti/n, r = n/

[
∑

n
i=1[1/ti]

]
, and K(x) = n/

[
∑

n
i=1[1/[x + ti]]

]
, for x > 0. These

likelihood equations do not present analytical solutions so that the use of numerical iterative
methods is necessary. As starting values for this numerical procedure, we suggest using the
ML estimates of α and β of the BS distribution; see Leiva et al. (2006).



The asymptotic inference for the parameter vector θ can be based on the normal approx-
imation of its ML estimator, denoted by θ̂. This is θ̂ ∼̇ N2(θ,Σθ̂), where Σθ̂ corresponds
to the asymptotic variance-covariance matrix for θ̂, which may be approximated by −L̈−1

θ
.

Here −L̈θ is the observed information matrix, which is obtained from the Hessian matrix
with second derivatives L̈θ whose elements are given by

L̈αα =
n

α2 −
2n
α3

φ(H)
Φ(H)

ξ

(
κ

β

)
+

n
α5 ξ

3
(

κ

β

)
φ(H)
Φ(H)

,

+
n

α4 ξ
2
(

κ

β

)[
φ(H)
Φ(H)

]2

− 3ns
α4β
− 3nβ

α4r
+

6n
α4 ,

L̈αβ = L̈βα =− nκ

α2β2
φ(H)
Φ(H)

ξ
′
(

κ

β

)
+

nκ

2α4β2 ξ

(
κ

β

)
φ(H)
Φ(H)

− n
2κα4 ξ

(
κ

β

)
φ(H)
Φ(H)

− nκ

α3β2 ξ
′
(

κ

β

)[
φ(H)
Φ(H)

]2

− ns
α3β2 +

n
α3r

, and

L̈ββ =
n

2β2 +
2nk
αβ3

φ(H)
Φ(H)

ξ
′
(

κ

β

)
+

n[1−κ2]
2κα3β4

φ(H)
Φ(H)

+
nκ2

α2β4

[
ξ
′
(

κ

β

)]2 [
φ(H)
Φ(H)

]2

+
nk2

αβ4
φ(H)
Φ(H)

ξ
′′
(

κ

β

)
−K(β)− ns

α2β3 ,

where s, r, H, and K(·) are given in Equation (2.10).
For the BS distribution, it is known that E[L̈αβ] = 0; see Sanhueza et al. (2008). How-

ever, for the TBS model, it can be proved by using Theorem 7 that E[L̈αβ] 6= 0. An ap-
proximate 100[1− ς]% confidence region, with 0 < ς < 1, for θ is given by R = {θ ∈ R2 :
[θ̂−θ]>Σ̂

−1
θ̂ [θ̂−θ] ≤ χ2

1−ς
(2)}, where, as mentioned, Σ̂θ̂ may be approximated by −L̈−1

θ
,

but now evaluated at θ̂, and χ2
1−ς

(2) denotes the (1− ς)th quantile of the χ2 distribution
with two degrees of freedom.

Remark 6. Based on the invariance property of the ML estimators, we can estimate different
functions of the parameter θ, for instance, the VaR and TVaR.

3 APPLICATION

In this section, we apply the obtained results to a real data set corresponding to unpaid cred-
its (losses) provided by a commercial bank of the Mexican United States. We analyze the
data considering the BS and the TBS distributions. For the TBS distribution, this analysis
is performed through an R package developed by the authors called tbs, which is available
upon request. The tbs package contains probabilistic, statistical, and model checking tools.



Specifically, this package has incorporated the pdf, cdf, quantiles, risk rate, survival func-
tion, a random number generator, moments, VaR, TVaR, ML estimation, Schwarz (SIC)
information criterion, probability-probability (PP) and quantile-quantile (QQ) plots, and
the Kolmogorov-Smirnov test for the TBS distribution. The estimations obtained from the
tbs package are relevant for the calculation of the usual measurements of expected value
and volatility, as well as for the calculation of the typical risk measurements that we present
in this paper. As a result of the analysis of the VaR, it proves to be true that there is a better
way to define exposure to risk, such as the TVaR.

3.1 The problem upon analysis

One of the major problem for a Mexican retail bank is to define the threshold used for pros-
ecuting a default on a credit portfolio. The modelling of loss and amount is fundamental
for establishing indicators such as VaR or TVaR and determining the placement cost of new
credits in a competitive market. We show how the truncation of the considered distribution
allows us a much better management of the credits and when to proceed on a default or
just consider it as an expected loss on the business operation. The values of VaR or TVaR
seem to be higher when we use the classical BS distribution instead of the TBS model,
since events with a greater exposure are more disperse and so the 99th quantile is greater.
The use of all the loss data leads to an inadequate evaluation of the real expected loss under
the application of a threshold policy. The reduction of the exposure and, as consequence,
of the expected loss, is directly related to the efficiency of the whole collection process
and the early warning indicators that raise the attention of the management on the credit
deterioration process.

3.2 Exploratory data analysis

As mentioned, we consider a data set provided by a commercial bank of the Mexican United
States, which represents the unpaid credits (in Mexican pesos × $100) that have been
passed to portfolio overcome in October, 2007. Table 1 presents a descriptive summary
for the loss data. The exploratory data analysis indicates a positive skewness (CS = 2.49)
with high kurtosis (CK = 9.48). The great flexibility of the BS distribution allows us to be-
lieve that, for these data, this model can be a good candidate, since it can describe the high
values of skewness and kurtosis found in the data. The descriptive analysis also reflects
that the 50% of the unpaid credits are less than $2,531.27. In our study, we must also take
into account the range and the volatility of these credits.



Table 1: descriptive statistics for non-truncated (NT) and truncated (T) losses (in Mex$×100)

Loss Mean Median SD CV CS CK Range Min. Max. n

NT 15385.01 2531.27 26177.97 1.70 2.49 9.48 147605.93 50.22 147656.15 1040
T 19196.91 6515.37 28001.29 1.46 2.17 7.74 147392.03 264.12 147656.15 832

Many financial institutions face the problem of having a large number of losses with
small amounts of loss. For the financial institution, the potential cost of a judicial follow-
up to recover the credit default is, in many cases, greater than the value of the debt of
credit. Generally, the financial institution determines a threshold from which it becomes
effective on judicial recovery. Now, according to the financial policy previously exposed,
we introduce a threshold at κ = 259.55 on total unpaid credits. As a result of this truncation
procedure, we obtain 208 unpaid credits outside of the analysis. The remaining 832 unpaid
credits represent a total of $1,597 millions of Mexican pesos, about 99% of the total debt
defaults by such claims. Table 1 also presents a descriptive summary for truncated unpaid
credits. The exploratory data analysis indicates a positive skewness (CS = 2.17) with a
high kurtosis (CK = 7.73). The information delivered by the standard deviation, median,
range and extreme values suggests that a heavy-tailed distribution should produce a good
fit to the data. We propose the TBS distribution based on the exposed properties.

3.3 Model checking

To check the goodness-of-fit of the BS and TBS models to the non-truncated and truncated
loss data, respectively, we produce QQ plots with confidence bands based on these distri-
butions; see Atkinson (1985). These graphical plots are shown in Figure 1 and indicate the
adequacy of the BS and TBS distributions to the data.

Remark 7. From Figure 1, distributions with heavier tails than those of the BS and TBS
models might be more appropriate to the loss data. We are considering to incorporate
generalizations of the TBS distribution that produce heavy tails and other aspects related to
the TBS distribution for a future work; see Sanhueza et al. (2008).

3.4 Confirmatory data analysis

The capital requirement can be expressed as the difference between a risk measure (VaR or
TVaR) and the best estimate of the technical provision, usually estimated by the expected
value of the distribution. As mentioned, the measures of risk VaR and TVaR under the BS
and TBS distributions are implemented in the tbs package. Thus, once the ML estimates



Figure 1: QQ plot with bands based on the BS (left) and TBS (right) models for loss data.

of α and β are obtained, we can estimate the VaR, TVaR, and their capitals by using the
invariance property of the ML estimators. These values are presented in Table 2.

Table 2: values for Var, TVaR, and capital for losses (in Mex$×100).

Distribution VaR TVaR Capital(VaR) Capital(TVaR)

BS 143255.8 188937.7 127943.7 173625.6
TBS 149919.1 194186.1 85659.5 129926.5

From the exploratory analysis, the nature of the data indicates that the loss distribution
would be positively skewed with non-negative support and heavy tails. In addition, a left
truncation effect should be considered due to financial decisions. Thus, we must use an ap-
propriate loss distribution truncated to the left, being a good alternative the TBS model. By
using goodness-of-fit tools, we have verified that the TBS distribution is a suitable model
to the loss data. In order to carry out a financial risk analysis, we must consider that the
risk measure VaR is not the most adequate due to its shortage of coherence. Therefore, as
mentioned, a good alternative is to use the TVaR because this is a coherent measure. Thus,
the TVaR of the TBS distribution is a reasonable risk measure for computing the capital
requirement, implying a reduction of this capital when the BST model is the appropriate
distribution, as we can see in Table 2.

CONCLUDING REMARKS

In this article, we dealt with a truncated version of the Birnbaum-Saunders distribution.
First, we showed that the truncated BS model is more appropriate than the corresponding
classical BS model for describing financial data. Second, we characterized and carried out



a risk analysis for the new distribution. Third, we discussed and computed financial risk
measures based on the truncated BS model. Specifically, we obtained the pdf, cdf, and
moments and presented several properties of the truncated BS distribution. In addition,
we considered some transformations associated with the new model. Furthermore, we
calculated the change point and studied the limit conduct of the truncated BS risk rate.
Finally, we illustrated the presented methodology in this work using an example with real
financial data. The ML method and a computational implementation in the R software
language have been considered to estimate the parameters of the truncated BS distribution.
These estimates were used to compute the usual financial risk measures. This example
showed the utility of the new model.

APPENDIX: PROOFS OF THE THEOREMS

Proof of Theorem 1. It is easily obtained from the definition of a truncated distribution and the pdf
and cdf of a BS distribution.

Proof of Theorem 2.It is obtained from the definition of the cdf of a truncated distribution and the
cdf of the BS distribution.

Proof of Theorem 3.The proofs of (i) and (ii) are direct from the theorem of change of variable.

Proof of Theorem 4. Let Y = log(T ). Then, its pdf is given by

fY (y) =
1

Φ

(
− 1

α
ξ

(
k
β

))√
π

exp
(
− 1

2α2

[
exp(y)

β
+ β

exp(y) −2
]) exp

(
− y

2
)
[exp(y)+β]

2α
√

β
,

for y > logκ, which can be written as

fY (y) =
1

Φ

(
− 1

α
ξ

(
k
β

))φ

(
2
α

sinh
(

y−logβ

2

)) 1
α

cosh
(

y−logβ

2

)
. (3.1)

The last expression given in Equation (3.1) is the pdf of Y ∼ SN(α, log(β),2), whose cdf is FY (y) =
Φ
(
2sinh([y− log(β)]/2)/α

)
and thus Φ

(
−ξ(k/β)/α

)
= Φ(−2sinh

(
[log(κ)− log(β)]/2)/α

)
.

Proof of Theorem 5. Considering Y = T r, we obtain fY (y) = fT (y1/r)y1/r−1/r if y1/r ≥ k, where
fT (·) is the pdf of T ∼ TBSκ(α,β). Taking η = βr and after a few algebraic manipulations, the
theorem is proven.

Proof of Theorem 6. The expectations in (i) are obtained integrating by the method of parts and
recursively. To prove (ii), we use induction. First, we have

E
[

Z
[

1+
[

αZ
2

]2 ]1/2]
= Q(η)

√
1+

α2η2

4
+

2exp
(

2
α2

)
Φ(−η)

Φ

(
− 2

α

√
1+ α2η2

4

)
,



which is obtained by substitution and integration by parts. Considering E
[
Z2r+1 [1+α2Z2/4

]1/2 ]=
W2r+1, for r ≥ 1, we have W2r+1 =

+∞∫
η

z2r+1
√

1+α2Z2/4exp(−z2/2)/[
√

2πΦ(−η)]dz. Now, by

using substitution α2Z2/4+1 = u and then integration by parts, we reach

W2r+1 = 2Q(η)

√
α2η2

4
+1+2rW2r−1 +
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α2η2

4 +1

exp
(

2
α2

)
2

[u−1]r√
2πu1/2

α2 exp
(
− 2u

α2

)
2Φ(−η)

du.

To solve the last integral, we use the substitution 2u/α2 = y2/2 and the binomial theorem, such that

+∞∫
α2η2

4 +1

exp
(

2
α2

)
2

[u−1]r√
2πu1/2

α2 exp
(
− 2u

α2
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2Φ(−η)

du =
α3

4
exp
(

2
α2

) r

∑
i=1

(
r
i

)
[−1]r−i

[
α2

4

]i

I(i),

where, for i≥ 0,

I(i) =
+∞∫

2
α

√
α2η2

4 +1

y2i exp
(

2
α2

)
dy√

2πΦ(−η)
and I(0) =

1−Φ

(
2
α

√
α2η2

4 +1
)

Φ(−η)
.

Thus, recursively, for i ≥ 1, we have

I(i) =
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2
α

√
α2η2

4
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]2i−1
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2
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(
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Finally,
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, r ≥ 1.

We note all the expectations exist and can be obtained with no need for numerical methods.



Proof of Theorem 7. From Remark 1, taking expectation and using the binomial theorem, we obtain

E [T r] = β
r

r

∑
l=0

(
r
l

)
E
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α2

2
Z2 +αZ

√[
α

2
Z
]2

+1
]l]

= β
r
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∑
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(
2r
2h

) h

∑
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(
h
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α

2

]2[r−h+ j]
E
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r
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(
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) h

∑
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(
h
j

)[
α

2

]2[r−h+ j]−1 E
[
Z2[r−h+ j]−1 [α2Z2 +4

]1/2
]

2
.

Proof of Theorem 8. The expressions are obtained from the definition of the risk rate, and from
Theorems 1 and 2. We note that the risk rate of the TBS distribution is defined as that of the BS risk
rate, but its domain is defined for t ≥ κ > 0, i.e., its risk rate depends on κ only in its domain.

Proof of Theorem 9. It is obtained by the derivative of the risk rate with respect to t for β = 1.

Proof of Theorem 10. The limit of the TBS risk rate does not depend on κ, therefore this result
coincides with the limit of the risk rate of the classical BS.
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