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Abstract. Although property graphs are increasingly being studied by
the research community, most authors do not consider the evolution of
such graphs over time. However, this is needed to capture a wide range
of real-world situations, where changes normally occur. In this work, we
propose a temporal model and a high level query language for prop-
erty graphs and analyse the real-world cases where they can be useful,
with focus on transportation networks (like road and river networks)
equipped with sensors that measure different variables over time. Many
kinds of interesting paths arise in this scenario. To efficiently compute
these paths, also path indexing techniques must be studied.
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1 Problem Statement and Motivation

Property graphs are graphs whose nodes an edges are annotated with (property,
value) pairs [3]. They are widely used for modeling and analyzing different kinds
of networks. The property graph data model underlies most graph databases
in the marketplace.! Typically, the graphs used in practice do not change over
time. However, in real-world problems, time is present in most applications and
graphs are not the exception. Many changes may occur in a property graph as
the world they represent evolves over time: edges, nodes and properties can be
added and/or deleted, property values can be updated, to mention the most
relevant ones. Social networks are clear examples of this statement: If v and v
are vertices modeling persons, and an edge represents a relationship between u
and v telling that w follows v or u isFriendOf v, these relationships may change
over time or even the persons may unregister from the network. Accounting for
these changes would allow queries like “Who were friends of Mary while she was
working at Hasselt University”, that otherwise could not be answered. Another
example are graphs representing road networks, where vertices model locations
and edges represent roads or highways that exist at different periods of time and
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whose properties (like road condition) also vary over time. This allows queries
like “Compute the time that we saved going from Buenos Aires to Pinamar after
the construction of Highway Number 11.”

Our work builds on the hypothesis that keeping the history of changes in
graphs is relevant in many interesting real-world applications and that this has
been largely overlooked in property graph database modeling. We study how
temporal databases concepts can be applied to graph databases in order to
model, store, and query temporal property graphs.

In Sect. 2, we review related work. Section 3 presents our approach to the
problem and the main results obtained so far. Section 4 discusses ongoing work
and open problems. We conclude in Sect. 5.

2 Related Work

Literature on temporal graphs is mostly oriented to address certain path prob-
lems in homogeneous graphs (graphs whose nodes are all of the same kind),
not tackling property graphs. This is the case of [13,14], where only edges are
timestamped with the initial validity time of the relationship and the duration
of the relationship, and there is only one kind of relationship in the graph. Wu
et al. [13] study temporal paths and introduce the notions of earliest-arrival
path, latest-departure path, fastest path, and shortest path. Along the same
lines, Chronograph [5] is a temporal model for graphs that enables temporal
traversals such as: temporal breadth-first search, temporal depth-first search,
and temporal single source shortest path.

A first approach to the problem of temporal property graphs modeling was
presented by Campos et al. [6]. Over this work we build the model we introduce
in Sect. 3. Further, the notion of Continuous path used in our work was initially
introduced in [12], where a model and index for temporal XML documents was
proposed. Pokorny et al. [11] index graph patterns in Neo4j, using a structure
stored in the same database as the graph, an approach we follow in our work for
indexing temporal paths. Another approach we build on is the temporal database
index proposed by Elmasri et.al. [8] to process temporal selections and temporal
join operations. In [10], an index structure is designed for temporal attributes
with various frequency and rates of changes.

3 Our Approach and First Results

The first result of our work is a temporal graph data model, called T'Graph, that
accounts for changes in nodes and relationships in property graphs [7]. Together
with this model, we proposed and implemented a high-level query language, T-
GQL, that not only considers temporal operators to query a TGraph, but also
deals with temporal path structures, the actual first-class citizens in our model.
We introduce the model and query language next.
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Fig. 1. A temporal property graph.

Temporal Model. We mentioned that in property graphs, nodes and edges are
labeled with a sequence of (property,value) pairs. All of them can evolve over
time. Thus, to keep the history of the graph we need a data model that can
deal with all of these kinds of changes. In our model, entities are represented
as Object nodes. These nodes may have attributes that may be either static or
which can change over time. The former are represented as classic properties of
the Object node. The latter are represented as a different kind of node, called
Attribute node, connected to the Object node. For example, Object nodes may
represent a person as an entity, a static attribute of such person may be her date
of birth and a temporal attribute may be her name, which can change when a
person gets married. The values that this attribute can take are represented as
Value nodes connected to the corresponding Attribute node. Figure 1 depicts an
example of the TGraph model representing a social network. There are three
kinds of Object nodes: Person, Brand and City. There are also three types of
temporal relationships: LivesIn, Fan, and Friend. The first one is labeled with the
periods when someone lived somewhere, the second one with the periods when
a person was fan of a brand, and the last one, with the period when two people
were friends, for example, Mary Smith-Taylor has been a friend of Peter Burton
since 1993. The temporal Attribute node Name represents the name associated
with a Person node. We see for example that “Mary Smith” became “Mary
Smith-Taylor” in 1960. For clarity, if a node is valid throughout the complete
history of the graph, the temporal labels are omitted.

Nodes and edges in TGraph must satisfy a set of temporal constraints that
state how the nodes in the graph must be connected. An Object node can only be



connected to an Attribute node or to another Object node, Attribute nodes can
only be connected to non-Attribute nodes and Value nodes can only be connected
to Attribute nodes. Cardinality constraints state that Attribute nodes must be
connected by exactly one edge to an Object node, and Value nodes must only be
connected to one Attribute node through one edge. Also, for any pair of edges
with the same name between the same pair of nodes, their temporal intervals
must have empty intersection. Value nodes connected to the same Attribute node
must have non-overlapping intervals.

Temporal Paths. Path computation is a key problem in graph databases. In
temporal (property) graphs, this problem gets even more complex since time
comes into play. Therefore, as mentioned above, temporal paths are first-class
citizens of our model. We initially defined three kinds of temporal paths [7],
based on their applicability to real-world problems: Continuous paths, Pairwise
Continuous paths and Consecutive paths.

A Continuous path (CP) is a path valid continuously during a certain interval.
That is, given a consecutive sequence of edges, there is a continuous path over
the intersection of all of their intervals. For example, in a social network we may
be interested in finding out chains of people that where friends during the same
period. In many cases, a weaker condition over temporal paths suffices. The user
may be interested in paths such that there is an intersection in the intervals of
consecutive edges pairwise. These paths are called Pairwise Continuous paths
(PCP). Consecutive paths (CSP), are useful for scheduling. In these cases, we
require that consecutive edges do not overlap, for example, to leave a certain
time for a train or flight connection. Thus, CSPs are sequences of edges such that
the pairwise intersection between consecutive edges is empty. Different kinds of
Consecutive paths can be defined, according to the use that is given to them.
For example, in scheduling problems, the earliest-arrival path (EAP) is the path
that can be completed in a given interval such that the ending time of the path is
minimum; the latest-departure path (LDP) is the path that can be completed in
a given interval such that the starting time of the path is maximum; the fastest
path (FTP) is the path that can be completed in a given interval such that its
duration is minimum; finally, the shortest path (STP) is the path that can be
completed in a given interval such that its number of edges is minimal.

Query Language. TGraph comes equipped with a high-level SQL-like query lan-
guage called T-GQL. The T-GQL language has a mixed flavour between SQL
and Cypher [9], Neodj’s high-level query language. The syntax of the language
has the typical SELECT-MATCH-WHERE form. The SELECT clause performs
a selection over variables defined in the MATCH clause. The MATCH clause
may contain one or more path patterns and function calls. The result of the
query is always a temporal graph (analogous to relational temporal databases
theory), although the query may not mention temporal attributes. This can
be modified by the SNAPSHOT operator, which allows retrieving the state of
the graph at a certain point in time. T-GQL supports the three path seman-
tics above, namely Continuous, Pairwise Continuous, and Consecutive paths,



implemented as functions included in a library of Neo4j plugins. Consider the
query “Compute the friends of the friends of each person and the period when
the relationship occurred through all the path.” For example, in Fig. 1, Pauline
Boutler was a friend of Cathy Van Bourne between 2002 and 2017. Also, Mary

Smith-Taylor was a friend of Pauline between 2010 and 2018. Thus, the path

(MarySmith — Taylor Fiend, pauline £ Cathy, [2010,2017]) will be in the

answer since the whole path was valid in this interval. The query reads in T-GQL
(cPath computes the CPs of length two for every node):

SELECT path
MATCH (n:Person), path = cPath((n)-[:Friend*2]->(:Person))

Analogously, PCPs can be also computed using the pairCPath function, and
four functions are supported for CSPs: fastestPath, earliestPath, shortestPath, and
latestDeparturePath.

The intermediate results of a query can be filtered by an interval I, provided
by the user, that filters out the paths whose interval does not intersect I. The
temporal granularity of the starting and the ending instants of the interval must
be the same. Also, the BETWEEN operator receives a temporal interval and
performs a temporal filter. The WHEN clause has the form MATCH-WHERE-
WHEN and can reference variables in an outer query. This clause is used to
compute events occurring during concurrent intervals.

4 Current Work and Open Problems

We are currently working on different topics that extend the work presented in
the previous section. We comment on this work next.

Indexing Continuous Paths. Computing temporal paths over the TGraph model,
particularly CPs, turns out to be costly. We studied how to improve the com-
putation of CPs by indexing them. For this, two index structures are proposed
and implemented, one that indexes all the paths and another one that indexes
all paths of length two. In the latter case, computing the paths of length higher
than two requires additional processing. We implemented additional commands
in T-GQL to create and make use of indices. We also consider reducing the
search space by limiting the time window to consider the one in which queries
will most likely fit. Although we have already implemented this proposal, this is
a fertile field to work in and improve current results.

Temporal Modeling of Sensor Networks. The model in the previous section can
represent graphs whose nodes and edges change over time, like in the case of
social networks. There are other kinds of interesting networks in real-world sce-
narios where the model can be applied. This is the case of transportation net-
works, like roads or river networks, which differ from social networks in that there
is an element that flows through the network (e.g., cars, water). These networks
are rather stable, in the sense that changes occur occasionally. For example, the
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Fig. 2. A temporal graph for a river network equipped with sensors.

direction of the water flow in a river may change due to a flood or a branch may
disappear during long dry weather periods. More interesting is the case where
sensors are attached to segments in transportation networks, producing time-
series data. These are called sensor-equipped transportation networks [1], sensor
networks for short. The data captured by sensors can be used in various appli-
cation areas, like traffic control and river monitoring. For example, the Internet
of Water project of the Flemish government in Belgium will deploy a network
with 2,500 wireless water quality sensors. Bollen et al. [4] proposed a formal
model and a calculus to query sensor networks, where the network topology and
the time-series data are stored in a graph database for querying and analysis.
However, this model does not account for changes over the network. Thus, we
propose to model sensor networks using the TGraph model, where Object nodes
represent network segments, Attribute nodes represent the temporal properties
of the segments, and Value nodes represent the time-series data captured by the
Sensors.

Modeling sensor networks requires extending TGraph in many ways and
opens up a wide variety of paths that are worth studying using Allen’s Alge-
bra [2]. We call this model SN-TGraph. In this model we distinguish Object
nodes that hold a sensor from the ones which do not, and call them Sensor and
Segment nodes, respectively. Also, a list of time intervals indicates the periods
of time where a segment had a working sensor on it. Properties that do not
change across time are represented as usual in property graphs. Figure 2 shows
a scheme of the SN-TGraph model for a river network. Shaded nodes are Sensor
nodes. All nodes are of type :Segment, and sensor nodes have the value Sensor
for the property name. There are two kinds of Attribute nodes, for representing
series of temperature and pH values. Also, in the Value nodes there is an ordered
sequence of time intervals for each value of the variables.

The temporal paths presented in Sect.3 are more involved in SN-TGraphs,
since paths must now be defined based on a function over the sensors measure-



ments. This way, CPs are now defined as paths where the value of some function
is the same throughout the path during a certain interval. At this time, we only
consider functions over categorical rather than continuous variables. This is the
case, for example, where there is a sequence of consecutive sensors such that
each sensor has measured the value of a variable Temperature categorized as
High throughout a certain interval. We denote this as an SN-CP. PCPs over
a sensor network are defined as paths such that for every pair of consecutive
sensors there is an overlapping interval where the value of the variable is the
same. We denote these paths SN-PCP. In the case of Consecutive paths, there
is a sequence of consecutive sensors where the value of the variable is the same
and the time intervals do not overlap. We denote these paths as SN-CSP.

We note that the paths above cannot completely capture the flow in a trans-
portation (sensor) network, since an event captured by a sensor (e.g., a traffic
jam in a road network or the presence of a pollutant in a river) will probably be
detected by a sensor located after the previous one in the sense of the movement.
Further, if the sensors were placed close to each other, it is possible that a value
measured by one sensor would still be valid while it is valid in the next one. If
this condition is fulfilled for each pair of sensors, the path can be considered a
PCP, while in case the sensors were placed far apart, it can be a CSP. To com-
bine both situations in one path in which the valid time of a sensor measurement
just starts before the next one we introduce the notion of Flow path (SN-FP).

Temporal Relations Between Paths. The difference between the four kinds of
paths introduced so far lies in the way in which the temporal interval of each
node (or edge) is related to the next one. Temporal relations between every
pair of consecutive intervals in those paths can be described in terms of Allen’s
Algebra. There are thirteen possible Allen’s relations covered by CPs, PCPs,
CSPs, and SN-FPs. Even though not all possible combinations of Allen’s intervals
are interesting in real-world situations, we want to study if there are interesting
paths that can be identified in addition to the ones already defined. In order to
determine if our paths are not covering some important combination, we need
to define a path taxonomy, and map paths to real-world cases. We are currently
carrying out this study.

5 Conclusion

In this Ph.D. project, we study the evolution of different kinds of property graphs
over time. As our first result, we proposed a temporal model (called TGraph)
and a high-level query language (called T-GQL) to account for changes on nodes
and edges in property graphs. Temporal paths are first-class citizens in this
model. Although TGraph is applicable to, for example, social networks, it cannot
capture transportation networks (i.e., networks were some element flows from
one node to another) equipped with sensors which produce time-series data
measuring the evolution of different variables over time. Thus, we proposed SN-
TGraph, a model that extends TGraph. In SN-TGraph, new kinds of temporal



paths can be defined in terms of the variables measured by the sensors. We
are currently studying the impact and applicability of these paths to real-world
cases, like river systems and road networks, two typical cases of transportation
networks. In addition to the above, since computing temporal paths is costly, we
are studying different ways of indexing such paths.
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