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Abstract—WiFi received signal strength (RSS) and magnetic
field intensity are common measures for indoor localization
because they are readily available on most mobile devices. There
is a vast literature on smartphone positioning using RSS and it
has been widely implemented in real-world scenarios in the last
two decades. There is much work done on localization aided
by magnetic field measurements. We have recently evaluated
the accuracy of RSS-based positioning applying state-of-the-art
algorithms to measurements in a well-controlled experimental
setup. In this paper, we extend this work to assess the accuracy
improvements achievable by fusing WiFi and magnetic field
information. We show that accuracy improvements of up to 30%
are possible.

Index Terms—Indoor Positioning, Fingerprinting, Magnetic
based localization, RSSI based localization.

I. INTRODUCTION

Research on indoor localization has been very popular in
the last two decades. Different technologies have been used for
positioning purposes (see, e.g., Brena et al. [1]). In this work,
we focus on fingerprinting based on WiFi received signal
strength (RSS) and magnetic field (E) measurements. The use
of these signals is attractive because they are readily available
on most smartphones and it has even been incorporated into
some commercial products.

One of the most common positioning methodologies is
called fingerprinting, which consists of two phases. In the
offline or calibration phase, the indoor environment is surveyed
to build a database of fingerprints for a number of known
locations. Each fingerprint is a collection of measurements
of one or more signals (e.g., WiFi RSS). In the online or
positioning phase, new measurements at an unknown location
are collected and the system estimates the position based
on the previously observed fingerprints. Indeed, the use of
these signals for localization has already been explored in the
literature (see, e.g., [2]-[4] and references therein)

In a previous study [5], we evaluated the accuracy of
positioning systems based only on WiFi fingerprints. Although
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there is a vast literature on the subject, we found it difficult
to compare results from different researchers on a fair ground.
For this reason, we applied the state-of-the-art positioning
algorithms on our own set of measurements taken under a
careful experimental setup. One of the main conclusions was
that WiFi RSS alone is not sufficient to achieve an accuracy of
less than a meter. In this paper, we extend our previous work
and incorporate measurements of the magnetic field, evaluating
the effect of B in the accuracy.

The remaining of the paper is organized as follows. In
Section II, we overview some of the related work. In Sec-
tion III, we describe our experimental setup and in Section IV
we present the results. Finally, we close the paper with some
conclusions in Section V.

II. RELATED WORK

Universality, spatial representativeness, and time invariance
are the desirable properties for fingerprinting localization [6].
Compliance of B with these properties has been evaluated for
instance in Refs. [7], [8]. Likewise, WiFi large deployment
and its distance depending propagation [9] makes it a suitable
measure for indoor positioning. Indeed, the use of WiFi for
positioning has been an active research area for about twenty
years (see, e.g., [10]-[12] and references therein).

Subbu et al. [8] analyzed magnetic signatures inside build-
ings. They found that indoor magnetic measurements are a
combination of the Earths magnetic field and the fields from
ferromagnetic objects, such as pillars, doors, and elevators.
The impact of these structures becomes dominant as the
distance to the observation point decreases since magnetic field
magnitudes are known to be inversely proportional to the cube
of the distance.

In this work, variations of the magnetic field B were
measured on fixed locations. However, magnetic signatures are
commonly taken in an offline stage by a surveyor walking by
pre-designed trajectories in which B variations are measured
at determined time intervals. Later, online tracking is made



using tools such as particles filters [6], [13], [14] or extended
Kalman filters [15]. In this sense, the fingerprints are signa-
tures of trajectories instead of stationary, fixed-position, mea-
surements. A notable exception to this approach of trajectory
signatures is [16]

Xie et al. [17] described different ways of using magnetic
field measurements. One possibility is to use the three axis
components directly, based on the local mobile devices coor-
dinates. In this case, the training cost increases rapidly and,
according to Xie and colleagues, the accuracy reduces as
the sample space becomes large. Alternatively, it is possible
to estimate phone orientation and transform B to the earth
coordinate system (ée) following [18]. However, this is error-
prone because orientation estimation usually contains errors.
A third possibility is to use the magnitude of the magnetic
field as the observation. || B|| avoids errors due to the rotation
and the signature is stable in time. However, the elements
in each fingerprint will drop from three to one, reducing the
uniqueness of each fingerprint. Finally, Xie et al. propose
to extracting the horizontal and vertical components of B.
The gravity sensor on smartphone provides the direction of
gravity (i.e., the vertical direction). Although the gravity sensor
reading is very precise when the user stands still, noise will
be introduced when the user moves, resulting in decreasing of
precision or even localization failure.

WiFi fingerprinting has been tested in many scenarios and
using different algorithms. Usually, each research group that
comes up with a new positioning algorithm creates a new
experiment in a new scenario, making it difficult to compare
the results of other groups. In order to attack this issue,
some researchers have tested several algorithms in a common
scenario, e.g. Khalajmerabadi et al. [19] and Grisales et al. [5].
Other efforts that enable a fair comparison of systems are lo-
calization competitions like EVAAL-ETRI [3] and Microsoft’s
IPSN [20]. There are also some standards like ISO/IEC DIS
18305 [21] which try to identify the appropriate metrics and
evaluation procedures for localization and tracking systems
focusing primarily on indoor environments. We must remark
that the focus of this paper is not a general comparison of
state-of-the-art positioning systems, but we aim at assessing
the highest achievable accuracy.

Torres-Sopreda et al. [3] mention some of the pros and
cons of both WiFi RSS and B and they highlight that no
infrastructure needs to be installed and that good accuracy can
be achieved. Pasku et al. [22] mention some of the advantages
of the magnetic field over WiFi, for instance localization
systems based on the magnetic field are not affected by
multipath fading, while Subbu et al. [8] highlight the time
stability of the magnetic field fingerprints. Bai et al. [2] analyze
how WiFi and B propagate in a typical indoor environment
while Li et al. [16] found an improvement of 23% of using
WiFi power and magnetic field measurements over using only
WiFi.

A common approach is to use WiFi RSS to reduce the
search space and then use the magnetic field measurements for
fine localization [6], [23]. In particular, this refinement led to

a 22% improvement over WiFi-only localization in Ref. [23].
However, the authors claim that it is not clear how to determine
the size of the search space given by WiFi and this is selected
based on experience.

III. SETUP AND EQUIPMENT

Our aim is to assess the a highest achievable accuracy
of positioning systems that use WiFi RSS and magnetic
field measurements. For this reason, we carefully designed
an experiment that, although it is conducted in a realistic
environment, it alleviates some of the problems found in real
world scenarios. As an example, WiFi fingerprinting can be
affected by the presence and movement of people [24], but
we reduce this factor at a minimum in our data acquisition
stage. Measurements were taken in an large and almost empty
room (see Fig. 1) used for motion capture experiments at
one of ITBAs buildings. We used a Lenovo Yoga Tablet
2 and developed a simple Android application to handle
measurements. The Lenovo tablet was placed on a short stool.

Fig. 1. Experimental setup.

We set up a measurement grid on the floor. A coarse, 1 x 1
meter measurement grid, was refined with several intermediate
points, as shown in Fig. 2. Exactly 20 measurements of
WiFi RSS and B were taken at each location. In order to
get line-of-sight signals, we placed three access points (APs)
on the same room, at heights similar to that of the tablet
or slightly higher. These APs were based on RaspBerry Pi
running a Linux variant. We must note that an analysis of
the resulting radiomaps suggested that the antennas on these
access points were far from isotropic. Besides the three APs
placed inside the room, the tablet recorded information from
other APs. A set of nine access points was detected at all
measurement locations. These APs transmitted beacons on the
following frequencies: 2412, 2417, 2437, 2462 and 5745 MHz.
RSS measurements ranged from -85 to -18 dBm. The mean
standard deviation of the RSS of every AP at each point is
shown in Table II. As it can be observed, received power from
some APs has large variations.

Disassembly of the tablet [25] reveals that it uses a Broad-
com BCM43241 chip. Its datasheet [26] summarized the
accuracy of the RSSI measurements at a 95 % confidence level
as shown in Table 1. Although it is not clear the nature of the
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Fig. 2. Simplified measurement setup. Crosses and circles mark measurement
locations. Crosses form a 1 x 1-meter grid. Filled squares mark the location
of the three access points placed inside the room.

measurement errors, say, random errors in a single device or
measurement differences among devices, a standard deviation
of ~ 2.5 dB is found for the lower power range under a
normality assumption.

TABLE I
RSS ACCURACY.

Range Accuracy [dB]

[dBm] Minimum | Maximum
-98 to -30 -5 5

> -30 -8 8

TABLE II
DISPERSION OF WIFI RSS MEASUREMENTS

>
=

o [dB]
7.52
2.78
7.78
2.81
4.81
2.70
5.45
3.46
3.20

\O| OO | | Wn| | W] DN =t

Yoga Tablet 2 has a ST 3-axis Magnetic Fields Sensor
by STMicroelectronics. Although we do not know the exact
model, some specifications, collected by a sensor app on the
tablet, are shown in Table III. We saved the three components
of the magnetic field at each location. In order to avoid
artificial changes in the magnetic field, we preserved the
orientation of the tablet at each location. Moreover, we tried
to preserve the same orientation at all locations. The mean
standard deviation of every component of B at each point is
shown in Table IV. Note that the dispersion is ~ 8 times
(almost an order of magnitude higher than) the resolution.
This means that measurements are not perfectly stable and
are affected by unaccounted for variations.

IV. RESULTS

As in Ref. [5], our approach to assess the maximum achiev-
able accuracy was to apply state-of-the-art algorithms to the

TABLE III
MAGNETOMETER

0.44
810.0

Resolution [1T]
Max. Range [ T]

TABLE IV
DISPERSION OF MAGNETIC FIELD MEASUREMENTS

Component | o [uT]
B, 3.32
By 3.03
B, 3.42

experimental measurements. We selected the algorithms based
on popularity, representativity and ease of implementation.
Algorithms implemented were k Nearest Neighbors(kNN),
Kernel Ridge, Least Absolute Shrinkage and Selection Op-
erator (LASSO), Ridge, Support Vector Machines (SVM) and
Kernel Density Estimation (KDE). A detailed description of
the algorithms used can be found in Refs. [5], [10], [19] and
references therein.

All algorithms were implemented in Python, using Scikit-
learn [27], SciPy [28], NumPy [29], Pandas [30] and Mat-
plotlib [31]. We used PyPy [32] to speedup the calculations.

We randomly chose 80% of the reference points for training
and the remaining 20% for testing. In Figure 3 we report
median localization error (in meters) based on 10000 random
partitions in order to average out the effects of a particular
training and testing datasets. kNN, Kernel Ridge, LASSO and
Ridge hyper parameters were tuned using cross validation. In
the case of SVM regression, we used a radial basis function
kernel with parameters set on a trial-and-error basis. For KDE
we used parameters proposed by Kushki et al. [33].
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Fig. 3. Median localization error for different algorithms: WiFi RSS and B
(lines), WiFi RSS and || B|| (dots), and WiFi RSS only (no pattern).

We ran tests with only WiFi RSS, WiFi RSS and || 5| and
WiFi RSS and B. Fig. 3 we present the median error for each
each type of fingerprint and for each of the studied algorithms.
As it can be observed, adding the information of the magnetic
field always improves the localization performance. Moreover,
the gain in performance appears to be more significant for
those algorithms that have a poorer performance when only
WiFi RSS fingerprints are used. The performance improve-
ment is also summarized in Table V.



Fig. 3 also reveals that there is some loss when information
of the magnetic field is summarized by its total intensity.
It may be the case that, using only ||B| may reduce the
fingerprint uniqueness as argued by Xie et al. [17]. We must
note that we do not show any results of the use of WiFi RSS
and the magnetic field intensity for the KDE approach because
we found some numerical problems in the density estimation.

We must also remark that results in Fig. 3 correspond to
the best case, that is, when an optimal number of APs was
considered. We measured the effect of using different numbers
of APs along with the three components of B and with || B||
to test if the effect of adding information on the magnetic field
is similar to the effect of using more or less WiFi APs. Some
results are presented in Figs. 4-6. The APs are added sequential
according to its relevance as predicted by the Fisher criterion
(see [19]). We found an improvement in every case when B
is added. However, for kernel ridge regression, LASSO and
ridge regression, the addition of information summarized by
the intensity of the magnetic field showed almost no gain
over using only WiFi RSS (see, for instance, Fig. 6). From
Figs. 4-6, it can also be observed that there are at least two
different behaviors. While in the case of k-nearest neighbors
there is no significant gain by considering more access points
(even some loss can be observed when information of the
magnetic field is added), the remaining algorithms always
show an improvement when more APs are taken into account.
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Fig. 4. Median error for kNN: WiFi RSS (squares),WiFi RSS + || B|| (circles),
and WiFi RSS + B (stars).
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Fig. 5. Median error for SVM r(zgression: WiFi RSS (squares),WiFi RSS +
[|B]| (circles), and WiFi RSS + B (stars).
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Fig. 6. Median error for kernel ridge regression: WiFi RSS (squares), WiFi
RSS + ||B|| (circles), and WiFi RSS + B (stars).

TABLE V
ACCURACY GAIN
Algorithm WiFi + ||B|| | WiFi + B
SVM 4% 13%
LASSO 2% 9%
Ridge Regression 2% 9%
Kernel Ridge Regr. 2% 11%
KDE - 27%
kNN 16 % 31%

V. CONCLUSION

In this paper, we focused on the question of the attainable
accuracy of localization algorithms based on WiFi received
power and magnetic field measurements, using off-the-shelf
hardware. In order to answer this question, we obtained
measurements from a carefully planned experiment and we
tried several state-of-the-art localization algorithms. We found
that using both signals together achieves better accuracy than
using only WiFi and the improvement is remarkable with algo-
rithms like k-nearest neighbors and kernel density estimation.
However, we cannot obtain errors below 1 m. Indeed, the best
performing algorithm gave a median error of 1.20 m.

In real-world scenarios, the use of the three components
of the measured magnetic field is complicated by orientation
changes of the mobile device. An alternative is to use only
the intensity of the magnetic field. We found that, indeed,
some performance improvement can be obtained by adding
information of the magnetic field on this form, but is much
smaller than when the full B is considered.

Although we do not present the results here, we also
tried approaches that used information on the magnetic field
to refine the position estimated on the basis of WiFi RSS
measurements. We did not obtained significant performance
improvements and more work needs to be done to evaluate
the convenience of these approaches.
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