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Abstract

We propose the use of convolutional neural networks that consider as input four channels
images (RGB+IR) for counting and positioning people in images. Our data set was made of
images based on photographs taken from a drone using a dual FLIR camera.

Comparison between 3 (RGB) and 4 (RGB+IR) channels are studied for different lightning
conditions. The four channel network performs better in all situations, particularly in cases of
poor visible illumination that can be found in real night scenarios. The average precision of
this network on a testing data set (independent from the training one) is approximately 1 cm
in finding the positions of pedestrians (from 15 and 30 m altitude images) and 0.0001% in the
relative counting error.
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1 Introduction

Crowd analysis is a labor of known relevance and interest at a global level. It is necessary for its
various applications: from the social and political perspective, it is important to obtain data and
draw conclusions from demonstrations; from the security point of view, an accurate calculation of
densities can facilitate the design of emergency exits and evacuation methods; for informational or
statistical purposes, it is a basic task but does not relegate utility.

There are several methods to process images and calculate the total amount of people present
[1, 2, 3]. In particular, the use of AI for this work is already widely known, and is addressed
by various investigations starting from data sets of crowds images and using convolutional neural
networks (CNN) that obtain favorable results [4, 5, 6]. In [7] accurate density maps are obtained
as output, commenting that the difficulty lies in particularly dense congregations. However, this
study is limited by the simple fact of relying on the visible information provided by the images, so
an extra complexity is added when considering dark environments, where the light is scarce and
irregular, or where the visible spectrum mix (due to external light sources).

The need to add extra information that helps the network to individually discriminate the
position of each person within a crowd comes into play when the visual conditions are not optimal.
Starting from [8], in which a method is presented to obtain said positions using a dual-camera
(visible + infrared) mounted on an Unmanned Aerial Vehicle (UAV), this study continues and
presents the novelty of using a special type of a CNN (U-Net CNN) to evaluate images with their
data distributed in 4 channels, 3 for the visible spectrum (RGB) and one for the infrared. The
latter, by providing thermal information, will allow a more accurate analysis in these scenarios.

Following the research line of previous works such as [9], which take advantage of the combina-
tion of visual and infrared images, the present implementation consists of comparing the precision
of a neural network trained with images with the first 3 channels against a trained one with images
with the 4 channels (from now on, the first network will be referenced as CNN3 and the second
network as CNN4), and observing substantial improvements in the obtained results when evalu-
ating cases using the second one. The images that make up the data set are specially selected
considering environments with conditions similar to those mentioned, where visual information is
scarce, representing aerial shots obtained from a drone (UAV).

2 Methods

2.1 Data

Naturally, both the CNN3 and the CNN4 will use the same data sets, and the first thing to
mention is the discernment between the training set, the validation set and the testing set [10],
which is mutually exclusive from the other two. The main reason for this division is to separate the
images that will be used to train the networks from those that will be used to test it.

For the training phase, a data set containing training images and validation images will be used:
90% of the images will be training images, which are the ones provided to the networks to process
and update their weights; the remaining 10% (chosen randomly) will compose the validation images,
which will be used to check the accuracy of the networks at the end of each epoch (and decide when
to complete the training). On the other hand, the testing set has independent images, on which
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different metrics will be analyzed and conclusions will be drawn from their results.
Before detailing the composition of each data set, it is necessary to explain how each image was

obtained. Real photographs were provided to us, taken by a FLIR DUO PRO R camera attached
to a Unmanned Aerial Vehicle (UAV, also known as a multi-rotor drone). These photographs were
obtained in the context of a previously on going research project at the ”Centro de Agentes F́ısicos,
Biológicos y Sociales”: ITBACyT2018-42.

These photographs were taken at 15 m and 30 m altitude of small congregations of people
distributed differently in an open field during the day, with full visible light. Each of these im-
ages has its IR component, thanks to the technology provided by the camera. Therefore, the
following method is used to generate the final images to be used by the networks. First, from the
photographs, cut-outs of people and backgrounds are made to use as templates (considering both
visible and infrared information). Then, we simulate different crowd configurations (number of peo-
ple and positions) by performing simulations with the Social Force Model [11]. Different number of
simulated pedestrians were generated randomly inside the area, then moving them toward different
targets. Positions during the evolution of trajectories were registered, and different configurations
and densities were obtained.

Using these positions, we overprint the cut-outs of the people from the real photographs over
a given background. Backgrounds were also taken from real photographs and artificially generated
by noise. After that, and in order to erase border artifacts of cut-out images we pass a blurring
function and add random noise. Blurring is implemented using the technique of a Gaussian function
(with a kernel of side k = 7 and a standard deviation σ = 1). The noise added to every image is
achieved with a percentage of randomness in each pixel, using as a range [Ip ∗ (1− β), Ip ∗ (1 + β)],
where Ip is the pixel value and β = 0, 1.

In this way, representations similar to reality are generated. The obtained images used in the
data sets differ from each other in terms of a series of configurable variables (including the positions
of agents):

• The attenuation factor for the intensity of the RGB components ζRGB (the intensity is the
pixel value of each channel, an integer within the range of [0, 255]).

• The attenuation factor for the intensity of the IR component ζIR

• The type of background B (they vary both visually and in temperature).

• The distance A that would represent the altitude at which the photo was taken. Associated
with this variable is the amount of people present in the image (depending on the altitude,
there is certain amount within a range).

• The people distribution D (their positions in the shown area).

• The composition of the background IR channel T (backgrounds are self-generated with pixel
values that correspond to certain temperatures, within a range). This variable is considered
only for the formation of the testing set, not for the training set.

Every image has its 4 channels (the RGB in one file and the IR in a separated one), with a
resolution of 1024x768 pixels. Internally, the 4 channels are used together to be processed by the
CNNs (in the case of the CNN3, the last channels is ignored).
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Examples of real photographs with different people densities and generated images of different
altitude and amount of people can be seen in Fig. 1.

Figure 1: On the left, examples of real photographs taken at 15 m and 30 m altitude, with their
corresponding IR channels. On the right, examples of generated images at the same altitudes using
the cut-outs from the first ones.

With that being said, on one hand we have the data set for the training and the validation phase
of the CNNs. Eq. 1 shows the combinations of the possible values for each variable involved in the
generation of this set. Taking into account all combinations between them, we have 1530 images.

The value of the people distribution simply indicates that 5 different instants of the simulation
(hence, the people positioned in different places on the ground) were considered for each of the other
variable’s combinations. For the latter, Table 1 shows their possible values. A few clarifications
are made: firstly, cases annotated (*) are repeated twice, and the case annotated with (**) thrice
(giving 17); secondly, the total number of people in each image, associated with the altitude, is
chosen randomly from the specified range, with a uniform distribution of probabilities

Str = ζtrRGB ∗ ζtrIR ∗Btr ∗ Atr ∗Dtr = 17 ∗ 3 ∗ 3 ∗ 2 ∗ 5 = 1530 (1)
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ζtrR ζtrG ζtrB ζtrIR Btr Atr

1 0 0 0.6 Cement 30 m/[400,2800]
0 1 0 1 Grass 15 m/[100,700]
0 0 1 1.2 Synthetic Grass

0.01 0.01 0.01 *
0.05 0.05 0.05 **
0.2 0.2 0.2
0.4 0.4 0.4
0.6 0.6 0.6
0.8 0.8 0.8
1 1 1 *

Table 1: Possible values for each variable of the training and validation set Str.

On the other hand, as mentioned previously, independent images were used to carry out the
prediction tests, obtain results and draw conclusions, once the networks were trained. This testing
set is formed combining the possible values of the variables indicated in Eq. 2, obtaining 3456
images. In the same way as before, table 2 shows the possible values for these variables.

Later on, in Sec. 3, the 6 cases divided by the combination of the RGB attenuation factor ζ
will be treated separately. As previously said, the reason for an alternate set is to avoid making a
prediction with an image that was previously used to update the weights of the networks during
the training phase.

Sts = ζtsRGB ∗ ζtsIR ∗Bts ∗ T ts ∗ Ats ∗Dts = 6 ∗ 3 ∗ 3 ∗ 4 ∗ 2 ∗ 8 = 3456 (2)

ζtsR ζtsG ζtsB ζtsIR Bts T ts Ats

1 0 0 0.6 Cement Real/- 30 m/[400,2800]
0.01 0.01 0.01 1 Grass Generated/[15 °C,20 °C] 15 m/[100,700]
0.05 0.05 0.05 1.2 Synthetic Grass Generated/[30 °C,35 °C]
0.1 0.1 0.1 Generated/[45 °C,50 °C]
0.2 0.2 0.2
1 1 1

Table 2: Possible values for each variable of the testing set Sts.

2.2 Model

The implementation carried out consists mainly of the convolutional neural network, which is fed
by the images of the data set to be trained first and perform the evaluations later, and a series of
functions to transform its output and obtain the desired information.

First of all, it is also necessary to have the exact positions of the people present in each of the
images to be used as input. As these images are obtained from the previously described method,
we can count on these positions throughout the simulations, since they are recorded at all times.
So, for each image we have, in a separate file (called ”ground-truth”), the position of each person,
represented in a matrix of integers as a coordinate map, with value 0 where there are no people and
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value 100 in the center of each of them. Based on this, the CNN, after processing the information
of each image, will be able to compare the predictions of the positions with the actual positions.

Considering the neural network, it was trained using the incremental methodology in each epoch,
and its architecture is based on an evolved design of normal convolutional neural networks: the U-
Net. The use of this design was determined for 2 main reasons. The first one is that it is aimed
both at being able to classify the patterns recognized in the inputs and at being able to locate them
spatially (exactly what is required in images of crowds of people). The second, thanks to the series
of functions that are being applied internally, is that it offers the possibility of using an input image
data set that is not necessarily extensive, as if a common neural network would require it.

In particular, the implementation used here is based on the article [12] and the code found in [13],
consisting of repeated applications of two 3x3 convolutions, each followed by a rectified linear unit
ReLU (f(x) = max(0, x), with x being the input of the neuron) and a 2x2 max pooling operation
with stride 2 for the downsampling phase. For the upsampling phase, successive techniques are
also performed to return the image to its original dimension using a 2x2 transposed convolution, a
concatenation with the corresponding image in the downsampling phase (to combine the information
of previous phases) and two 3x3 convolutions followed by ReLU.

The differences between this implementation and the original model described in the aforemen-
tioned work are the application of a batch normalization of the values of each map between the con-
volutions and the rectification in the downsampling phase, the use of 3 downsampling/upsampling
stages instead of 4 and the inclusion of the 4th channel in the input images. This is summarized in
the Fig. 2.

Figure 2: U-Net architecture. First block (top left) is the input image and last block (top right) is
the output of the network.

The last thing referring to the network’s architecture is the use of the following variables for its
training: Nesterov Momentum α = 0.9, learning rate η = 0.02, weight decay w = 0, γ = 0.1 and
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step size s = 10, the latter being the step of epochs through which η is updated, multiplied by the
factor γ.

Regarding the network’s output, another matrix of integers is obtained, where the predicted
positions of the people are indicated, although further processing is necessary. This output matrix
has the same dimension as the resolution of the images that are used as input (which are transformed
to similar matrices when feeding the network, but with an additional dimension that contains the
information of the RGB and IR channels), that is, 1024x768.

The necessary processing consists of looping through the matrix, composed mostly of values of
0, which indicate that there are no people present in the element (x, y) where we are looking. When
predicting the central position of a person, this is reflected with values greater than 0 in a certain
element of the matrix, so we need to identify these elements. However, it is necessary to observe
the neighboring elements every time a value other than 0 is found, add their values (since there are
cases in which the predicted central position is translated in the matrix as more than one element
with value greater than 0) and leave them concentrated in the element where the highest value is
found. This unification process can be seen in Fig. 3.

Figure 3: Looping through every element of the network output map (left), neighbours with values
higher than 0 must be unified to obtain a final map indicating the predicted positions of the people
(right).

Summarizing, the CNN will provide as output the positions of all pedestrians present in the
input image.

It is worth mentioning that during the training of the network, the unification process does not
take place: to determine the completeness of the training, at the end of each epoch a comparison
value is obtained to determine its level of precision. This comparison is made on the images
conforming the validation set (differentiating it from the training set, which is used specifically to
update the weights of the network). It is calculated as expressed by Eq. 3, which is the same
function used by the CNN as its loss function.

PMSE =
1

n

n∑
i=1

(Xi −Yi)
2 (3)

where X is the ground-truth matrix, Y the network output matrix and n the number of elements
in each of them. This is the mean squared error taken between each element of the initial matrix in
the ground-truth file (the one that provides the real people positions) and the matrix of the output
map of the networks (with no further process, like the left matrix on Fig. 3).
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2.3 Metrics

First, while training the network, the best combination of the connection weights will be recorded.
Each epoch is compared with the previous one, keeping the one with least PMSE, as described before
in Eq. 3. The cut-off criteria is the passage of 30 epochs without registering a minor error.

Prior to calculating network efficiency with the independent testing set, it is necessary to de-
termine the threshold value µ that must be exceeded to be able to discern whether or not a person
is detected in a predicted position on the final matrix (after the unification process). This value is
found empirically, averaging the absolute mean error calculated between the predicted number of
people and the real number of people for each image in the training and validation sets, as noted
in Eq. 4

NMAE =
1

n

n∑
i=1

|pni − rni| (4)

where pn the predicted number of people, rn the real amount and n the number of images in
the set.

Finally, for the analysis of results, there are 2 metrics that refer to the precision of the network
processing a single image. The first one is the relative error of the number of predicted people
versus the real number. It is shown in Eq. 5

Enum =
1

Nr

|Np −Nr| (5)

where Nr is the real number of people and Np the predicted number.
The second metric is the average error of the distance between the predicted position and the

real one (in cm), for each position that has its real pair (that is, excluding people who were not
counted and those who were ”added”). It is shown in Eq. 6

Epos = (
1

n

n∑
i=1

|ppi − rpi|) ∗ ψ (6)

where n is the number of pairs, pp the predicted positions, rp the real positions and ψ the
multiplication factor implying the distance per pixel given the altitude of the image, according to
the results in [8]. An extra mention is needed, since the criteria to associate a predicted position to
its real pair must be determined.

In order to do this, the algorithm described next is used. Having the list of predicted positions
and the list of real positions, for each of the predicted positions the closest real position (euclidean
distance) is analyzed. At this point, it is necessary to check if there is another predicted position
that is closer to the selected real one, and follow with a similar reasoning to ensure that the correct
predicted position - real position pair is chosen. Upon obtaining it, the error between the two is
calculated and each one is removed from its respective list, to do the same with the rest. At the
end, there may be more predicted positions or actual positions, which will not be taken into account
for this metric .
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3 Results

3.1 Training and Validation

Since the main objective of this work is to compare the performance of the CNN3 against the
CNN4, it is taken into account that all measurements were carried out against both of them. The
results of the training phase are shown in Table 3. The number of epochs run by each CNN implies
the needed epochs to find the lowest PMSE.

CNN Epochs run PMSE

CNN3 29 12.61
CNN4 19 11.51

Table 3: Training results comparison between CNN3 and CNN4: number of epochs run by each
network and lower PMSE found on the images of the validation set.

This simply indicates that the CNN4 needed fewer epochs to obtain a smaller error and perform
better at this stage than the CNN3.

Then, to determine the optimal threshold µ to be used as a criterion in the detection of a person
given the output map, the entire training + validation set was run with the CNN4 and the NMAE

was calculated, using different µ (from 10 to 90, with step 5). The results can be observed in the
Fig. 4, and the best value for µ is 30 (being NMAE = 6 10−4). From this results, though, we can
say that any value between 25 and 45 can be used to perform similar subsequent evaluations.

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

µ

N
M

A
E

Figure 4: Calculated NMAE of the entire training + validation set Str for different values of the
threshold µ, using the CNN4.
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3.2 Testing

Being able to measure the errors in the predictions of the images of the testing set, using the 2
metrics described in Sec. 2.3, Enum and Epos, and the threshold µ = 30, the testing set is divided
into the 6 cases mentioned in Sec. 2.1 (based on each combination of the RBG intensity). Basically,
this division is made from the amount of light present in the images, represented by the attenuation
factor ζ for the R, G and B channels.

In this way, case 1 is composed of monochromatic images (ζR = 1, ζG = 0, ζB = 0), and
from case 2 to case 6 they are composed of images with incremental values of the amount of light:
respectively, ζRGB = 0.01, ζRGB = 0.05, ζRGB = 0.1, ζRGB = 0.2 and ζRGB = 1 for each consecutive
case.

Measurements were taken using the CNN3 and the CNN4, seeing the corresponding results on
Table 4 and Table 5 in which the values of all the images in each case are averaged. For compute
Epos the correspondence conversion factor between pixel/cm was calculated taking into account the
distance that represents the altitude of each image (reason for which it is specified in that unit).
The ratios obtained are 1.25 cm/pixel for height 15 m and 2.5 cm/pixel for height 30 m, based on
the calculations in [8].

Enum Epos(cm)
Case Mean Std. Deviation Mean Std. Deviation

1 1 10−3 2 10−3 1.1 0.3
2 2 101 2 101 - -
3 1 10−2 2 10−2 2 1
4 1 10−3 1 10−3 1.0 0.4
5 2 10−4 9 10−4 1.0 0.4
6 2 10−4 8 10−4 1.0 0.3

Table 4: Prediction results of the CNN3: mean and standard deviation of Enum and Epos for every
image in each case of the testing set Sts (divided by the value of ζRGB).

Enum Epos(cm)
Case Mean Std. Deviation Mean Std. Deviation

1 1 10−3 5 10−3 1.0 0.4
2 1 10−2 3 10−2 1 1
3 1 10−3 4 10−3 1.0 0.4
4 1 10−3 1 10−3 1.0 0.3
5 1 10−4 5 10−4 1.0 0.3
6 2 10−4 6 10−4 1.0 0.3

Table 5: Prediction results of the CNN4: mean and standard deviation of Enum and Epos for every
image in each case of the testing set Sts (divided by the value of ζRGB).

Comparing the results of case 1, it can be observed that the two CNNs show similar values
in both metrics. Given that this case is considering monochromatic images, this behavior was as
expected, because the information provided by this images can be exploited by both CNNs equally.
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The greatest difference is observed, clearly and as expected, between the metrics of case 2,
corresponding to the dark images. The CNN3 is unable to predict decent results and throws out
of bounds errors for Enum. Regarding Epos, the fact that the error in the people amount is so high
prevents us from associating the predicted people with the real ones to calculate the error in their
distances.

Logically, it is in these scenarios that the intention to use networks trained with the infrared
channel is evident, making an almost exclusive use of it to process the images and make acceptable
predictions.

Furthermore, there is a tendency to reduce the error (both in the number of people and in their
positions) when comparing the subsequent cases between the two networks (increasing the amount
of light in the images). So, the network using four channels CNN4 does produce better predictions
at a general level.

In order to confirm this, we also calculated the relative error in the number of people Enum

changing the attenuation factor ζRGB. This calculation involves a larger testing set Sts
2 , composed

of more number of cases (in addition to the cases of Sts). The comparison between both networks
can be seen in Fig. 5, showing a clear advantage of the CNN4 over the CNN3, that is wider for
dark images but also better for all the range of the studied visible attenuation factor.
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Figure 5: Enum mean for each case of the larger testing set Sts
2 , depending on ζRGB.

Finally, to illustrate the performance of the CNN4, we chose a random image of the testing data
set and displayed the predicted positions in Fig. 6, where it can be seen the precision of the neural
network counting and positioning people from an image.
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Figure 6: On the left, a random image of the testing set Sts with ζRGB = 1, grass background and
15 m altitude. On the right, the predicted positions of the people on top of the same image, using
the CNN4.

4 Conclusions

Two convolutional neural networks were created and trained, one taking 3 channels images (RGB)
as input and the other 4 channel images (RGB + IR), which can count and provide the positions
of people in aerial images (in our case, taken from a drone).

The performances of these networks were tested with zenith images of crowds at different alti-
tudes and under different lighting conditions, in addition to combining other variables.

It can be clearly observed that in general, for the studied cases, the use of the fourth channel
(IR) improves the precision in counting and positioning people in the images. This improvement is
much more evident when the intensity of visible light is low.

Taking all this into account, the four channel network could be used to count people in open
spaces, even in dark or changing lighting conditions such as at concerts or other outdoor cultural
events.
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