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Abstract

Data-driven simulation of pedestrian dynamics is an incipient and promising

approach for building reliable microscopic pedestrian models. We propose a

methodology based on generalized regression neural networks, which does not

have to deal with a huge number of free parameters as in the case of multilayer

neural networks. Although the method is general, we focus on the one pedestrian

- one obstacle problem. Experimental data were collected in a motion capture

laboratory providing high-precision trajectories. The proposed model allows

us to simulate the trajectory of a pedestrian avoiding an obstacle from any

direction. Together with the methodology specifications, we provide the data

set needed for performing the simulations of this kind of pedestrian dynamic

system.

Keywords: pedestrian dynamics, data-driven simulation, navigation, steering,

generalized regression neural network, artificial intelligence.

1. Introduction

The common practice when developing models for any nonequilibrium and

many-particle system consists of proposing a model with a certain number of

parameters and then, adjust them such that it can reproduces some observables
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from the given system. Because, in principle, a huge number of models could5

be postulated, it is not easy to guarantee if there is a correct one. Particularly

this is the case in pedestrian dynamics modeling: one can find a large number

of models in the literature (see, for example, the reviews in [1, 2]) and none of

them can simulate the wide diversity of pedestrian system configurations [2].

One possible way to overcome this limitation could be to skip the system10

modeling stage in the typical process described by: 1)Data Extraction; 2)Mod-

eling; 3)Simulation. We could develop reliable simulation directly from the data,

simplifying the above process as: 1)Data Extraction; 2)Simulation. We call this

second scheme ”data-driven simulation”. One of the beauties of this approach is

that simulations will be validated with experimental data by definition. Also, it15

could be computational efficient, and thus becomes a new paradigm to be trans-

ferred to commercial simulation software, improving the operational design and

safety of pedestrian facilities.

In the present work we explore a possible way of putting together a particular

data-driven formulation.20

Recently, we proposed a general framework of pedestrian simulation [3] in

which the surroundings of a virtual pedestrian, i.e., obstacles and other non-

contacting particles, can only influence its trajectory by modifying its desired

velocity.

The basic assumption is that the avoidance behavior can be exerted only25

by the self-propelled mechanism of the particle itself (usually modeled by the

desired velocity).

This framework is independent of the type of low-level model being force-

based, rule-based or other. For example, it could be implemented on the Social

Force Model [4, 5], by replacing the social force, with a variable desired velocity30

that takes into account the possible future collisions [6].

Of course, this framework can also be implemented on a first-order model,

in which the position (r) of any particle can be updated by [ r(t + ∆t) =

r(t) + v(t)∆t ] by dynamically adjusting the desired velocity [v(t)].

Under this approach, the problem lies in postulating the heuristics required35
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for computing the variable desired velocity depending on the environment. As

in traditional pedestrian theoretical models, any arbitrary heuristic can be pro-

posed (for example, [7], [8]) and then the free parameters could be tuned in order

to obtain simulated trajectories that approach experimental micro or macro-

scopic data.40

Instead of this traditional methodology, we can directly use the experimental

data so as to compute the desired velocity at each time step. More precisely,

we postulate that a minimum set of real trajectories exist, which could have the

complete information for providing a desired velocity to the simulated agent,

considering the state of the agent and its surroundings in the simulated and45

experimental environment. This idea of using experimental data in a simulated

environment is at the core of our data-driven simulation scheme.

Alternatively, the problem of simulating pedestrian dynamics could be seen

in another dimension. The purpose of any model is to map current positions

of particles [r(t), sometimes called ‘state’ or ‘input’] into the positions at the50

next time step [r(t + ∆t), or ‘action’ or ‘output’]. Again, this mapping could

be achieved by the large number of traditional pedestrian models but also by

using available experimental data.

In this sense, data-driven simulations have the benefit of avoiding the pro-

posal of explicit models along with their parameters, which can be related or55

not to reality. Instead, the experimental data can be considered directly for

mapping the past positions into the future ones. No a priori model assump-

tion or guess needs to be made when simulating the pedestrian system. All the

necessary information would be provided by the data from real scenarios.

Previous research papers using data-driven simulation have exploited the60

data directly [9, 10, 11] or through artificial neural networks (NN) [12, 13, 14,

15, 16]. This computation paradigm is a natural choice, because the NN can

be ”trained” with the experimental data and then it could be applied in the

simulation when mapping old positions [r(t)] into the future ones [r(t+ ∆t)].

In general, these previous papers consider particular data sets corresponding65

to specific configurations (geometry and pedestrian flow) and then use these data
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for simulating the same system configuration. How the data-driven methodology

could be generalized for simulating arbitrary (previously unseen) geometries and

flows remains an open question.

Artificial intelligence tools were also applied for crowd characterization and70

people counting from images and video [17, 18].

In the case of using neural networks, previous papers implement Multilayer

Perceptron [19] (MLP, also known as Feed-Forward or Back-Propagation Neu-

ral Networks). These kinds of networks are very popular but their architec-

ture presents an arbitrary number of hidden layers, each one with an arbitrary75

number of neurons. This leads to an also arbitrary number of free parame-

ters ( ‘weights’) that should be determined via the training process using ‘in-

put/output’ pairs ( ‘patterns’ or examples) from experimental data of the real

system. For this reason, the number of patterns has to be much greater than the

number of free parameters in order to find a reliable set of weights. In any case,80

by using an MLP the data are interpolated with a model having a huge number

of parameters, which is of course, an undesirable property for any model.

Here we propose a data-driven approach using a nonparametric universal in-

terpolator: the generalized regression neural network (GRNN) [20] (Sec. 2.3.3).

The GRNN needs to have access to the data examples (patterns) when predict-85

ing a new output. However, because it has only one degree of freedom (only

one free parameter), the number of (input/output) patterns can be relatively

low. And this brings us to the second novelty. We postulate that a complete set

of (input/output) examples, extracted from a limited number of experimental

trajectories, could be sufficient for simulating and reproducing any arbitrary90

pedestrian dynamic configuration. As a starting point, here we present this

methodology in the case of one pedestrian avoiding a fixed obstacle. As the

methodology is general, it will be implemented in more general scenarios of

pedestrian dynamics in future work.
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2. The data-driven model95

In this section, the proposed data-driven model is explained in detail.

2.1. General framework

Our general framework [3] postulates that a particle i, with position ri, has

a temporary and short-range goal Tt
i(t) that is dynamically placed depending

on the environment. Tt
i will produce a detour in the trajectory in order to avoid100

any collision. The environment is defined by the fixed long-distance goal (Ti),

the positions (rj(t)) and the relative velocities (vij) of the nearest neighbors and

obstacles. A graphical representation of these variables is presented in Fig.1.

⊗b

b

vj

vi

rj

ri
Ti

x
y

Tt
i

θ+
i

Figure 1: Basic quantities of the general framework defining the environment of particle i and

the placement of the temporary local goal.

We denote the general function that receives these relevant variables and

returns the temporary and short-range goal as H:105

Tt
i(t) = H(ri(t), rj(t),vij(t),Ti) (1)

The vector Tt
i determines the avoidance direction, but it also has a mag-

nitude that allows us to adjust the speed of the agent. The function H is

completely general and, of course, it can take any form. Again, we remark that

this formulation does not depend on the type of low-level operational model.110

Thus, we choose a first-order model for describing the evolution of the parti-

cle, because we are not considering any forces, and besides, it presents a higher

computation speed than a second-order model.
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The simulated particle has position rs(t) and velocity vs(t) at time t with a

fixed long-distance goal T.115

rs(t+ ∆t) = rs(t) + vs(t)∆t, (2)

where we can directly identify the dynamic target with the desired velocity

vs(t) = Tt(t).

2.2. Experimental trajectories

Because this is a data-driven model, the experimental data are the first

ingredient needed for obtaining the velocity (vs(t)) in eq. 2.120

As a case study of the proposed method, we will focus on a simple configu-

ration, considering one pedestrian and one fixed obstacle.

The experimental setup consists of a 6 m circumference where we locate the

starting points (Sp) and the final target T in a relative opposite location, as

shown in Fig. 2. At the center of the circumference a fixed obstacle is placed,125

which has the approximate size of a pedestrian.

(a)

r
0.3 m

⊗

3 m

TSp

×

××
×
×××××

×

×

×

(b)

Figure 2: Experimental setting. (a) Snapshot of the experiment. (b) Schematic representation

of starting points (Sp) and final target (T) for the recorded trajectories.

The experiments were performed with the participation of four volunteers in

the Motion Capture Laboratory located at the ‘Instituto Tecnológico de Buenos

Aires’.

The volunteers were instructed to walk normally from the starting points to130

the final target. Each volunteer wore a cap with three markers. Throughout
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the experiment, each pedestrian had to walk less than 500 m (not continuously)

inside the measurement area at normal speed and with no physical contact.

Under these conditions, the experimental protocol did not involve any risks,

protecting the integrity, privacy, and confidentiality of the research subjects.135

The position of the markers was recorded using the commercially available

technology from Optitrack R©. Each marker position was captured by 16 Flex3 R©

cameras located throughout the recording environment at 33 frames per second

and then processed using the Motive: Body R© software. Pedestrians were tracked

using the position of the three markers, but we considered the position of the140

pedestrian as that of the highest (central) one and the others were used only

for reconstruction when, for very short periods, the acquisition system failed to

record the position of the central one. The precision of the technology locating

a marker in the 3-D space was 1 cm.

The 3-D spatial trajectories obtained were further processed. First, only145

the two components belonging to the horizontal plane were kept and the height

was ignored. Then, in order to neglect the natural swaying of human walking,

a Fourier filter was applied to each of the two horizontal components of the

trajectories r(t) = [x(t), y(t)].

Finally, No = 10 original trajectories were selected from all the pedestrian150

data, which are displayed as solid lines in Fig.3.

The starting points (Sp) near y ∼ 0 produced trajectories with detours

needed for avoiding the obstacle. However, in the extreme starting locations

(r1andr10), the trajectories were almost straight because a direct trajectory

toward the final target would not intersect the obstacle, and thus it would not155

be necessary to dodge it.

In order to have a complete set of trajectories, we replicate these extreme

trajectories by rotating them around the final target, spanning the rest of the

angular positions, from which the simulated pedestrian can move directly toward

the final target without performing any avoidance but keeping the natural vari-160

ations in speed as its distance to the final target changes. We choose Nr = 8

replicated and rotated trajectories in strategic positions that can be seen as
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Figure 3: Experimental trajectories (solid lines) and rotated trajectories (dashed lines). The

points indicate the initial position of trajectories. The final target for all trajectories is located

at (x, y) = (0, 3 m) coordinates.

dashed lines in Fig. 3.

The decision about the number of trajectories considered (No and Nr) will

be explained in Sec. (3.3).165

Summarizing, the N = No + Nr = 18 experimental trajectories in Fig. 3

contain the information for a pedestrian approaching a target from any angular

position, having or not an obstacle to avoid. Note that this information can be

coded in the particle’s system of reference (see Sec. 2.2) and thus it is general,

in the sense that the relative position of the obstacle can be arbitrary. The170

described trajectory data can be found in the supplementary material.

2.3. A neural network instance of H

We define the input state seen from the particle that will allow us to compute

the output action (vs in eq. 2) as the temporary target from eq. (1).

Input / output pairs will be obtained from the experimental set of trajec-175
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tories. Then, a general regression neural network will take these examples for

predicting new outputs as from the simulated environment (inputs).

2.3.1. Input

In a two-body problem, we can consider the pedestrian i, who has position

ri(t) at time t whose goal is Ti, and any other arbitrary pedestrian or obstacle180

j with position rj(t). We postulate a continuous input state given by the vector

ξij(t) (eq. 3). In the case of two particles the dimension of the input space is

6 (2 for particle i and 4 for the other particle). Of course, the input vector can

be generalized; if there were more particles, its dimension would increase by the

amount of 4 for each extra particle.185

ξij(t) = [ v̂i, θ̂ij , d̂iT , v̂ij , θ̂
v
ij , d̂ij ] (3)

In what follows we describe the variables of the input space. First, in order to

make all the variables compatible, because of their different units, and spanning

over different ranges, we define them as dimensionless by rescaling to values

. 2.190

• v̂i=
|vi(t−)|
1.8 m/s

, where 1.8 m/s is the mean speed observed in our experi-

ments, vi(t
−) is the past velocity of pedestrian i at time t calculated as

vi(t
−) = [ri(t)− ri(t− k)]/(k∆t) (Fig. 4 (a)).

• θ̂ij =


1 if θij ≥ π/2

−1 if θij ≤ −π/2

θij 2/π otherwise

where θij is the angle defined between the vectors (Ti−ri(t)) and (rj(t)−195

ri(t)) as shown in Fig. 4 (b) and it lies between the interval [−π, π].

However, the input angle θ̂ij saturates when |θ̂ij | ≥ π/2, which makes the

particle ignore the obstacles behind it. Also note that this variable takes
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positive and negative values aiming to distinguish between right and left

from the particle looking toward the final target.200

• d̂iT =

 diT /4m if dT ≤ 8m

2 otherwise

diT being the distance between the particle and its final target (diT =

|Ti − ri(t)|). The saturation value (8 m) causes obstacles beyond that

distance to be neglected.

• v̂ij =
|vij |

1.8m/s
, where vij is the relative velocity of j seen from particle i205

(vij = vj − vi).

• θ̂vij =



−2(θvij + π)/π if θvij < −π/2
−1 if −π/2 < θvij < 0

+1 if 0 < θvij ≤ π/2

−2(θvij − π)/π if θvij > π/2

where θvij is the angle between the vectors (Ti − ri(t)) and the relative

velocity (vj − vi) as shown in Fig. 4 (c). This function saturates for

values in the range |θvij | < π/2 because in this case the particle j would be210

moving away from particle i and as a result, there cannot be any collision.

• d̂ij =

 dij/4m if dij ≤ 8m

2 otherwise

where dij is the Euclidean distance between the particles (|ri(t)− rj(t)|).
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Figure 4: Basic quantities needed for defining the input vector (ξ). (a) Past velocity vi(t
−) of

pedestrian i. (b) Relative angle θij between both pedestrians. (c) Relative velocity vij with

angle θvij .

2.3.2. Output

The reaction of the agent will be modeled as its velocity, which in our first-215

order model will allows us to move it toward its future position (eq. 2). This

velocity will be defined in polar coordinates relative to the direction between the

particle and its final target. We call this angle θ+i , which is defined between Ti

and Tt
i [see Fig. 1 or 5 (b)]; this definition allows us to have a rotation-invariant

data set. In consequence, the output vector has only two dimensions regardless220

of the number of particles in the system.

ζi(t) = [ 1ζ(t), 2ζ(t) ] = [ v+i , θ
+
i ]. (4)

Here, v+i is the speed of particle i for the next time step calculated as the

magnitude v+i = |vi| = |ri(t + k∆t) − ri(t)|/(k∆t) (Fig. 5 (a)). And θ+i is

the angle of the velocity with respect to the direction defined by (Ti − ri(t))225

(Fig. 5 (b)).

If there are no data at time (t + k∆t), the output is not calculated and

11



therefore, the corresponding input is not considered.

ri(t) b
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Figure 5: Definition of the output vector (ζ). (a) Future velocity vi(t
+) of pedestrian i. (b)

Angle of the future velocity relative to the direction to the final target (θ+i ).

2.3.3. The nonparametric neural network

The above definitions of input/output pairs (eqs. 3 and 4 ) can be used for230

an arbitrary number of interacting particles. However, as stated above, we will

consider a simple experimental configuration with one moving particle and one

obstacle.

We call E = {ξ(t), ζ(t)}t the experimental set of state/action examples ob-

tained from the data points for each time step t.235

Each one of the two components of the output vector ζ(t) (eq. 4) will

be approximated by one neural network with output µO : R6 → R, where

µ = 1, 2 indicates its polar components, i.e., the speed (v+i ) and the angle (θ+i )

respectively.

The neural network we choose is the generalized regression neural network240

(GRNN) [20], which is a type of radial basis function network [21].

The GRNN is a universal interpolator based on nonparametric regression.

The basic idea is that when trying to predict the output for a new input, the

data examples are used in the following way: first, the distance between the new

input and the data inputs is calculated, then the corresponding data outputs245

are weighed with a kernel function, depending on that distance, and averaged.

In other words, the data outputs of closer data inputs are used for interpolating

the new output.
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In what follows we explain this concept explicitly for a network with one di-

mensional output (O). Suppose a training family of ordered pairs {ξn, ζn}n≤N ,250

then:

O(ξ) =

∑N
n=1 ζnK(ξ, ξn)∑N
n=1K(ξ, ξn)

(5)

where

• O(ξ) is the prediction value of an arbitrary input vector ξ.

• ζn is the output of example n corresponding to the input vector ξn.

• K(ξ, ξn) = e−ln/2σ
2

is the radial basis function kernel that weighs the255

contribution of the nth output example in order to predict the new output.

Where ln = (ξ− ξn)T (ξ− ξn) is the square distance between data examples

ξn and the input vector ξ.

Once we have a proper set of N patterns, the only degree of freedom in this260

neural network is the so-called spread (σ), which can be taken as a scalar value

for all examples and variables of the input vector.

3. Simulations

In this section we describe how the spread (σ) of both GRNN’s was cali-

brated and we present results showing that with the proposed approach we can265

simulate several configurations of a pedestrian avoiding an obstacle, within and

beyond the boundaries of the experimental data.

3.1. Data-driven simulation scheme

The proposed data-driven simulation method is shown in schematic form in270

Fig. 6.
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Figure 6: Flow diagram of the simulation procedure by estimating the future velocity of the

simulated particle by means of two GRNN’s that use data extracted from the same experi-

mental set of trajectories. All symbols were defined in previous sections. Superscript s stands

for simulated positions and velocities.

At each time step of the simulation, both GRNN’s will provide the speed

and angle of the velocity for computing the future position of the particle. In

order to do this, the GRNN’s will use the experimental data set E = {ξ(t), ζ(t)},
which is provided in the supplementary material. As stated in Sec. 2.3.3, there275

is only one free parameter for each GRNN: the spread (σ). In the next section

we specify how this parameter was determined.

3.2. Calibrating the GRNN

In order to synchronize the simulation with the experimental data, we con-

sider a time step ∆t = 1/33 s corresponding to the maximum time resolu-280

tion of the acquisition system (k = 1 in Fig. 4 (a) and 5 (a)). Considering

that the training data set is composed of 18 trajectories (shown in Fig. 3)
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each having 95 positions on average, the number n of input/output patterns is

n ∼ 18 × 95 = 1710.

We can write the set of all data points as a collection of 18 subsets corre-285

sponding to each trajectory 18ξn = {r1, r2, ..., r18}, where ri = [ri(t)]t≤tfi
is the

succession of pedestrian positions at discrete time steps ∆t and tfi is the final

time of ri. The first 10 trajectories correspond to original data, and trajectories

from 11 to 18 are replications of the extreme trajectory r1 rotated as explained

in Sec. 2.2.290

Now, for the determination of the spread in each GRNN, we consider data

patterns from the 10 original trajectories 10ξn = {r1, r2, ..., r10} from which we

will try to reproduce the 6 trajectories having data trajectories at both sizes, i.e.,

the 6 original trajectories different than r1, r5, r6 and r10, and proceed with

a leave-one-out cross-validation. In other words, we take out each trajectory295

ri with i = 2, 3, 4, 7, 8, 9 from the set of patterns (10ξn) to reconstruct the

same trajectory (rsi ) by simulating it with the methodology described in Fig. 6

considering the nine remaining trajectories as data examples for the GRNN’s.

Because each simulated trajectory needs two neural networks (one for each polar

coordinate) the global error will be a function of both of them. We call Ei(σ1, σ2)300

the error when comparing ri with rsi . Then, E(σ1, σ2) =
∑

i=2,3,4,7,8,9 Ei(σ1,σ2)

6 is

the global error for these spread values.

As boundary conditions for each simulated trajectory rsi we take the ini-

tial position [rsi (0) = ri(0)] and velocity vsi (0) = [ri(∆t) − ri(0)]/∆t equal to

the experimental ones. The final target is selected as the last position of the305

experimental trajectory [Ti = ri(t
f
i )].

We define two different average error functions between simulated and ex-

perimental trajectories, one based on the minimum distance to the obstacle,

located in robs = (0, 0), which we call Ed(σ1, σ2) defined by eq. (6), and the

other is the mean of the absolute value of the difference of position at the same310
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time step and we call it Et(σ1, σ2) defined by eq. (7).

Ed(σ1, σ2) =
1

6

∑
i=2,3,4,7,8,9

|mint(|rsi (t)− robs|)−mint(|ri(t)− robs|)|, (6)

Et(σ1, σ2) =
1

6

∑
i=2,3,4,7,8,9

∑
t≤tfi

|rsi (t)− ri(t)|
tfi

. (7)

First, we consider the simplified case in which the same spread value is used

for both neural networks (σ1 = σ2 ≡ σ). This assumption can be made because

the input space is the same for both networks and the spread is a measure of315

how many patterns are considered for estimating the output.

Figure 7 shows the results. The optimum spreads found were: σ = 0.11 for

the distance-to-obstacle error Ed = 0.05 m, and σ = 0.09 for the frame-to-frame

error Et = 0.122 m.

These spread values provide us with a range of usable values in the proposed320

network. Interestingly, it contains σ =< dfn >= 0.09±0.06, which is the mean

distance between first neighbors (excluding points from the same trajectory) in

the input space. Then, we can state that the GRNN’s having better performance

on the data are those that take into account the closest data points in the input

space, with respect to the new input to be predicted.325

Next, we relax the σ1 = σ2 constraint and explore this error as a function

of the two variables. The heat map plot in Fig. 8 displays the minimum value

of the error Et = 0.120 m at σ1 = 0.08 and σ2 = 0.11. We can see that the

decoupling of both GRNN’s leads to a similar approximation of our experimental

data. Again, the spread values obtained are comparable with the mean distance330

between first neighbors in the input space.
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Figure 7: Measures of the error for the simulated trajectories compared with the experimental

ones as a function of the GRNN parameter σ. (a) Minimum distance to obstacle error: Ed

(eq. 6). (b) Average microscopic difference between trajectories: Et (eq. 7).
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Figure 8: Average microscopic error: Et (eq. 7) as a function of the spreads of both GRNN’s.

The white circle indicates the position of the minimum.

Because the simplification σ1 = σ2 = σ works with an error similar to

σ1 6= σ2, in what follows we consider the case with only one free parameter of

the GRNN.
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3.3. A minimum data set335

In this section we justify the number of trajectories chosen in previous sec-

tions for solving the data-driven simulation of the studied system.

First, we consider the No = 10 original trajectories and repeat the study

performed in the previous section (Fig. 7), but considering subsets with a lower

number of trajectories, N∗
o = 8 and N∗∗

o = 6. Here, we also consider as patterns340

but do not simulate the trajectories r1, r5, r6 and r10, thus from the remaining

six trajectories we subtract two and four of them in order to get N∗
o and N∗∗

o

correspondingly. In both cases, there are 15 ways of doing it:
(
6
2

)
=
(
6
4

)
= 15.

So, we compute the corresponding 15 errors and their averages are shown in

Fig.9.345
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Figure 9: Measures of the error for the simulated trajectories as a function of the GRNN

parameter σ for subsets experimental trajectories of different sizes. (a) Minimum distance to

obstacle error: Ed. (b) Average microscopic difference between trajectories: Et.

It can be seen that for smaller subsets of data trajectories, the error increases

for a wide range of spread values. Thus, it is necessary to consider the set

No = 10 that allows the best possible sampling in the input/output spaces.

Second, taking σ = 0.11, we study the error Et in the rotated trajectories

described in Sec. 2.2 and shown as dashed lines in Fig. 3. Here, the objective350

is to find the minimum number of rotated trajectories (Nr) in order to have an
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error compatible with the original trajectories.

In order to do this, as data patterns for calibration and simulation, we take

the two extreme trajectories r1 and r10 shown in Fig. 3 and Nr rotated copies

of r1, thus conforming a set of Nr+2 trajectories. The rotated trajectories were355

added one by one at equidistant angles from r1 and r10. Then the error Et is

computed with the leave-one-out cross-validation over these Nr + 2 trajectories,

and it is shown in (Fig. 10).
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Figure 10: Average microscopic error: Et as a function of the number of rotated trajectories.

It is natural to expect that the error will decrease when the number of

trajectories increases. However, we can appreciate that for small Nr the error360

drops dramatically and then stabilizes presenting a slow decay. We choose a

value of Nr = 8 in the transition zone, taking also into account that the error

Et is compatible with the error of original trajectories No.

3.4. Results

With the spreads found in Sec. 3.2 and the trajectory data described in Sec.365

2.2 and 2.3, we analyze the performance of the simulations using the proposed

method described in Sec. 3.1.
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To this end, we simulate new trajectories for one particle having forty-eight

different initial positions, shown as points in Fig. 11, around the final target at

Ti = (3 m, 0). Also, a fixed obstacle is placed at coordinates (x, y) = (0, 0) in a370

configuration similar to the experiments. However, neither of these trajectories

is equal to the experimental ones. In all cases, the initial velocity points toward

Ti and has an initial speed of vi = 1.17 m/s, which is the arithmetic mean of

the initial speeds of all the experimental trajectories.

First, we present the results corresponding to the case in which both spreads375

are considered equal to σ = 0.11. In Fig. 11 the smoothness and continuity

of the trajectories with respect to the initial positions can be seen. Also note

that the minimum distances of the simulated trajectories from the obstacle (<

dmin >∼ 0.5 m) are similar to those from our experiments (< dmin >∼ 0.6 m)

and from other papers [22] (< dmin >∼ 0.6 m), [23] (< dmin >∼ 0.7 m, in this380

case the obstacle is an standing human).
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Figure 11: Simulated trajectories with σ1 = σ2 = σ = 0.11. (a) Complete view of the

simulated system. (b) Zoom over the avoidance region.

It should be noted that only potentially colliding trajectories produce a

detour for avoiding the obstacle, while the rest of the particles describe straight
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trajectories toward the target. Also, if the obstacle were located in another

position (at similar distance from the target), the trajectory patterns would385

rotate accordingly, because the input state and output action are defined in

a coordinate system relative to the particle, i.e., polar coordinates taking the

zero angle axes as the direction from the particle toward the target (Ti− ri(t)).

Thus, the results do not depend on the absolute position of the obstacle.

Second, we explore the same configuration, also simulating one particle at390

a time, but using a different spread value (σ = 0.09) corresponding to the

minimum of the error Et (Eq.7) as shown in Fig.7 (b). The results are presented

in Fig. 12.
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Figure 12: Simulated trajectories with σ = 0.09. (a) Complete view. (b) Zoom over the

avoidance zone.

Also in this case, the simulated trajectories correctly describe the avoidance

behavior. However, some differences can be observed; for example, there is one395

trajectory that slightly crosses over other neighbors’ trajectories. This crossing

is also observed in the experiments as is shown in Fig. 3.

An important consequence is that different values of σ can lead to different

avoidance behaviors, which can be used for simulating a heterogeneous popu-
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lation of virtual pedestrians. Of course, another way of doing this would be to400

use a different data set of trajectories for the GRNN of each simulated agent.

Animations of selected trajectories reported in this section can be seen in

the supplementary material.

3.5. Extrapolation to more complex obstacles

In order to see whether our model has any prediction capacity, we stress the405

proposed methodology by simulating some configurations different from those

of the experimental setup. In particular, we consider more complex obstacles

composed of several simple ones. For these simulations we choose the variant

of using σ = 0.11.

In Fig. 13 (a) a wall-like obstacle of length 1.4 m is avoided by the simulated410

particles. The wall is oriented along the direction of trajectories. And the

simulated pedestrian considers the closest point over the wall in its field of view

as the obstacle to be avoided.

Another configuration of a larger obstacle composed of three basic obstacles

is presented in Fig. 13 (b). In this case, the simulated agent considers the closest415

obstacle and reacts in consequence, following the proposed method. Also here,

it can be observed that the particles dodge the obstacle at reasonable distance.
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Figure 13: Simulated trajectories in previously unseen scenarios. (a) A wall-like obstacle. (b)

A larger obstacle built from four basic obstacles

In both cases, it can be seen that the simulated particles describe natural tra-

jectories when avoiding larger obstacles. It is also demonstrated that arbitrary

rotation of the system does not affect the performance of the method.420

3.6. Comparison with traditional modeling method

Finally, in this section we compare our data-driven approach with the tra-

ditional modeling procedure. To this end, we choose the predictive collision

avoidance model [24], which is a variation of the social force model conceived

for producing better collision avoidance maneuvers. The direction of the ”social425

force” term is given by the repulsion that would produce the future positions of

particles at collision time. The benefits and details of this model can be seen

in [24]. However, as the magnitude of the modified ”social force” is described

qualitatively in the cited paper, a particular form we implemented is presented

in Fig. 14.430
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Figure 14: Magnitude of the avoidance force in the Karamouzas et al. ’s predictive model

[24].

This function has two free parameters that we used for minimizing the error

at which the model can adjust the No = 10 original trajectories. The desired

speed of the driving force was set as vd = 1.8 m/s, which is the mean speed of the

experimental trajectories. The rest of the model parameters and specifications

can be seen in the original work [24].435

We calculated the frame-to-frame error defined in Eq. 7 considering each

experimental trajectory and the corresponding simulated one having the same

initial position and final target. The error Et surface is displayed in Fig. 15.
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Figure 15: Error Et as a function of both parameters of the repulsion force shown in 14

implemented in the avoidance model of Karamouzas et al. [24].

We can observe that the minimum error is near Emodelt = 0.90 m, while in

our approach it is EData−drivent = 0.12 m. One possible explanation is that440

the model cannot adjust the variation in the speed of the simulated particles

according to the experimental ones, at least in the present experiment. If one

wants to improve this, a new modification to the model could be proposed, which

of course would bring new parameters. Also, it should be noted that the model

already has more parameters than the two parameters used for computing the445

error in Fig. 15.

On the other hand, the proposed data-driven approach has a maximum of

two parameters, and it also works fine with only one value of the parameter

σ. Even if this traditional model could be modified or adjusted in order to

reproduce the experimental data, we remark that the data-driven approach450

would save any effort in the modeling procedure and will provide (by definition)

experimentally validated trajectories through efficient simulations.

25



4. Conclusions and perspective

The collision avoidance problem considering one moving pedestrian and one

obstacle was studied with the technology from a motion capture laboratory455

allowing high-precision tracking of trajectories.

A data-driven model that uses a generalized regression neural network (GRNN)

was proposed as a general method for simulating pedestrian dynamics. As a first

approach, it was implemented with a simple configuration studied experimen-

tally, consisting of one pedestrian avoiding a fixed obstacle.460

The advantage of the GRNN is that it only has one free parameter and no

training phase is needed, because the input/output patterns are used directly

by this neural network.

The proposed simulation scheme allows us to reproduce the experimental

data and generalize to other scenarios not explicitly contained in these data465

used to feed the GRNN. In this sense, the methodology proposed is invariant

under rotations of the relative particle - obstacle positions. Thus we can claim

that the data-driven simulation of the general problem of avoiding one narrow

obstacle at large and medium distances has been solved.

We provide the model along with a range of spread values (the free parameter470

of the GRNN) and with the experimental data (input/output patterns, available

in the supplementary material) ready to use by the community.

Our model is ready for considering more particles. Thus, in future work we

will present results of navigation in more populated environments at medium

and also at high densities, where contact and competitiveness could be present.475
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[7] M. Moussäıd, D. Helbing, G. Theraulaz, How simple rules determine pedes-500

trian behavior and crowd disasters, Proceedings of the National Academy

of Sciences 108 (17) (2011) 6884–6888.
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