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4.1 Introduction
An Artificial Pancreas (AP) is a system to automatically regulate the glucose level
in Type 1 Diabetes Mellitus (T1DM), and reduce the constant burden of this disease
as much as possible. Although several AP schemes exist [1,2], here we consider that
only insulin is infused, and both measurement and infusion are performed subcuta-
neously via a Continuous Glucose Monitoring (CGM) sensor and an insulin pump.
This represents a single-hormone scheme based on a minimally invasive AP sys-
tem that allows ambulatory use but, unfortunately, makes the control problem much
harder.

The main obstacles that have to be taken into account in designing AP controllers
are:

• lag-times and errors, both in glucose measurement and insulin action;
• nonlinearities;
• large inter- and intrapatient uncertainties; and
• technical difficulties (sensor dropouts and insulin set failure).

The reader is referred to [3] and [4] for a complete review of these challenges. It is 
worth remarking that even rapid-acting insulin analogs introduce a significant delay 
that can affect the performance of a glucose controller [4]. In fact, this is the main 
limitation for AP systems, considering that the peak of insulin action occurs about 
70 min after infusion [5].

The AP development has been accelerated by the use of elaborated simulators 
(see [6] for a comparison of the most relevant ones). One of them is the UVa/Padova 
metabolic simulator accepted by the US Food and Drug Administration (FDA) in lieu 
of animal trials [7,8]. These simulators are instrumental for exhaustive preclinical 
tests before real-life clinical trials are attempted.
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AP clinical trials were performed in different countries of the EU, USA, Israel, 
and Australia [9–12], and more recently in Argentina [13]. The great majority of the 
control algorithms that have been clinically tested are based on Proportional-Integral-
Derivative (PID), Model Predictive Control (MPC), or fuzzy logic controllers. Gen-
erally, they are hybrid (semiautomatic) control loops, where the controller action is 
complemented with premeal insulin boluses in both single-hormone [14–18] and 
dual-hormone [2,19] AP schemes. Although the injection of an open-loop bolus 
based on the carbohydrate intake facilitates the reduction of postprandial glucose 
values [20], inaccurate carbohydrate counting is frequent [21]. In [2], meal announce-
ment is not required, but it is suggested in order to trigger a meal-priming bolus based 
on a meal size classification akin to the proposal of [22,23].

Studies involving fully closed-loop AP systems can be found in [24,25] and more 
recently in [26–29]. Despite promising results, there is still a strong compromise be-
tween the aggressiveness of the control action and the postprandial glucose excursion. 
This compromise exists even when meals can be anticipated based on a probabilistic 
approach like that presented in [30]. An important aspect to take into consideration 
when designing glucose controllers is that the counter-regulatory response in peo-
ple with T1DM is often compromised. Therefore, the response of an AP controller 
should be designed to be less aggressive than the β-cell’s secretory response [4]. 
However, if the controller is not aggressive enough to a meal perturbation, then pro-
longed hyperglycemia may occur [20,26]. On the other hand, if the controller is too 
aggressive, then there is a higher risk of insulin overdosing and, consequently, post-
prandial hypoglycemia [28]. The latter is partially because the effect of the meal on 
the CGM signal is not immediate, and therefore the insulin response generated by the 
controller to cope with the meal is delayed several minutes. It should also be consid-
ered that in the standard open-loop basal-bolus treatment, a unique insulin bolus is 
applied at meal times. Instead, in a feedback control scheme, multiple insulin boluses 
are generated in response to the change in the CGM signal. As a consequence, fully 
closed-loop systems have an increased risk of initial hyperglycemia and late hypo-
glycemia during meals in comparison with semiautomated hybrid strategies. In [29], 
this problem is reduced, because the insulin bolus to cover the meal is not generated 
by the multivariable adaptive controller per se, but by an additional module that in-
fuses an insulin bolus when a meal is detected. A very recent set of papers in this area 
can be found in [31].

In this chapter, a different line of research on control techniques, based on ro-
bust and time-varying methods, will be followed [32–35] to overcome the obstacles 
previously mentioned. In particular, the so-called Automatic Regulation of Glucose 
(ARG) algorithm will be described. It is based on a switched Linear Quadratic Gaus-
sian (LQG) controller, which works in combination with a sliding-mode safety layer 
to include Insulin on Board (IOB) constraints [36,37]. To cope with the trade-off 
between fasting and prandial periods, the switched controller has two modes: one 
conservative, which is active most of the time, and one aggressive, which is triggered 
during meals. The combination of this controller with the safety mechanism allows 
compensating for delays associated with subcutaneous insulin infusion. When the ag-



gressive mode is selected, an insulin spike is generated. This mimics the first-phase
insulin secretion of the β-cell response [4]. On the other hand, the purpose of the
safety layer is to reduce the insulin infusion commanded by the switched LQG con-
troller when a predefined IOB limit is going to be violated. This latter characteristic
can be associated with the suppression of the β-cell in proportion to plasma insulin
levels [4]. In this way, an initial “underdamped” insulin response can be generated
to compensate for insulin delays, without increasing the risk of postprandial hypo-
glycemia. It is worth remarking that this is the first time the safety layer is employed
to adapt a closed-loop control without premeal insulin boluses.

The proposed control structure also intends to simplify both controller tuning and
implementation. This facilitated its in vivo validation in the second phase of the first
AP clinical trial campaign in Latin America. There it was tested on five T1DM adults
during 36 hours without carbohydrate counting. In the first phase, a hybrid controller
was tested in the same site and by the same team [13].

Finally, it should be added that a more demanding regional situation increases the
difficulty of this worldwide problem. In Latin America and in developing countries
in general, limited budgets and the lack of required personnel is a major obstacle.
The high costs in the case of T1DM derived from the frequent, complex, and ex-
pensive use of emergency services could be improved by the use of technology in
self-management support [38]. In particular, in Argentina for Type 2 Diabetes Mel-
litus (T2DM), the frequent combination of late diagnosis, inappropriate quality of
care, and uneven access to treatment play against the effectiveness and feasibility
of secondary prevention. Lack of suitable medication coverage affecting the public
health sector also conspires against the provision of effective care [39,40]. In the
case of T1DM in Argentina, insulin pumps are available for only 1% of the total
amount of T1DM patients (4100 for 400000 patients) from two companies (Roche
and Medtronic). Only 15% of the previous pumps are used in a Sensor augmented
pump (SAP) fashion (600 patients). The statistics of T1DM over the total number
of diabetic patients is similar to the worldwide figures (10%), but the technological
penetration is far lower.

4.2 Control-oriented models
The main goal of T1DM simulation models is to provide a blood glucose prediction
as close as possible to a real situation to perform reliable preclinical tests. However,
this class of models is not generally used for controller synthesis due to its mathe-
matical complexity. Therefore simplifications are usually considered at the controller
design phase, because most of the well-established theory of control law design ac-
commodates only simpler dynamics that are usually referred to as control-oriented
models. Thus, although these models have to represent the underlying dynamics, they
are mainly obtained for synthesis purposes and have a much simpler mathematical
formulation. In addition, it is worth remarking that the use of complex models for
synthesis does not necessarily guarantee a better closed-loop performance [41].



Another aspect to take into account in designing glucose controllers is that most 
metabolic parameters related to the insulin–glucose system are unidentifiable in prac-
tice. Therefore some tuning based on only a small number of easily obtainable 
patient-specific characteristics is recommended for a safe and effective AP [42]. Con-
sequently, a few works have been focused on such personalization [25,43–46]. This 
argument also holds from a purely robust control framework: the interpatient variabil-
ity is so large in this particular problem that there is no chance of obtaining a single 
controller for all possible patients with a decent performance. Hence the solution is 
to tune the controller to each patient’s clinical characteristics.

Personalizing a model to a particular dynamical system in general, e.g., an engine, 
is usually performed through an identification process. The drawback here is that this 
procedure in the case of T1DM patients is very invasive and/or unethical.

One interesting approach to obtain a personalized control-oriented model is to 
adapt a low-order model structure based on a priori patient information. For exam-
ple, given the patient’s Total Daily Insulin (TDI), an insulin sensitivity factor can be 
obtained using the 1800 rule (1800/TDI) [47]. From the medical point of view, the 
1800 rule indicates the maximum drop in glucose concentration, measured in mg/dl, 
after a 1 U injection of rapid-acting insulin. Since the work in [48], that rule has 
been used in several studies, both in silico and in vivo, to tune the gain of a Linear 
Time Invariant (LTI) model to a particular patient [10,32,33,49,50]. Nevertheless, the 
1800 rule is an empirical rule, and it is not indicated at which glucose concentra-
tion it works best or is most appropriate. This is important because a patient’s insulin 
sensitivity depends, among other factors (see [51,52]), on the glucose concentration, 
meaning that an LTI representation of the insulin–glucose system is not enough to 
totally describe it.

Finally, a good control-oriented model should have a structure that allows well-
known, reliable, and numerically robust control synthesis techniques to produce 
a controller that can be implemented in real time. This control design method should 
be simple enough to allow real-time implementation, but at the same time, it should 
have sufficient dynamical richness to overcome the obstacles mentioned in the Intro-
duction. According to that, good candidates for an AP controller design are Linear 
Parameter-Varying (LPV) models or sets of switched LPV (LTI) models.

Several LPV models have been proposed in the past [53–58]. In [53] and [54], 
the Bergman minimal model [59] was considered and transformed into a quasi-LPV 
model by an appropriate choice of parameters. In [55–57], the Sorensen compartmen-
tal model [60] was linearized at different points, which were defined as the vertexes 
of an affine-LPV model, which covers the original nonlinear one. This model was 
used as an uncertainty LTI model set, and an H∞ controller was designed to control 
it; hence the time-varying characteristics were not exploited. Finally, in [58], an LPV 
approach using the Cambridge model [61] was developed.

The control-oriented LPV model used to design the ARG algorithm was devel-
oped by two of the authors in [62,63]. Model identification and tuning were per-
formed using the distribution version of the UVA/Padova metabolic simulator [64, 
65]. Without going into greater detail, in [63], a low-order LTI model is proposed,



similar to that in [48], where the input corresponds to the subcutaneous insulin infu-
sion (in pmol/min) and the output to the glucose concentration deviation (in mg/dl):

G(s) = k
s + z

(s + p1)(s + p2)(s + p3)
e−15s . (4.1)

Next, the time-varying behavior of the insulin–glucose dynamics is covered through
the construction of an average LPV model. To that end, the parameter p1 is made to
vary with respect to the glucose concentration g, whereas the values of the others are
fixed as follows: z = 0.1501, p2 = 0.0138, and p3 = 0.0143. The gain parameter k is
also time-invariant but is adjusted for each particular patient j according to the 1800
rule. In [62,63], it was detected that the 1800 rule in the UVA/Padova simulator is
verified on average starting from an initial glucose concentration of 235 mg/dl. Thus
the value of kj should be such that when the model is excited with 1 U of insulin at
235 mg/dl, the glucose drop matches the 1800 rule. The larger the glucose drop, the
more sensitive the patient is to insulin, and the greater is the absolute value of kj .

In summary, a low-order average LPV model is first proposed and then personal-
ized through a parameter that can easily be obtained. Finally, for each patient j , the
following state-space representation affine in the parameter p1 can be obtained:

ẋ(t) = A(p1)x(t) + Bu�(t), (4.2)

y�(t) = Cx(t),

with

A(p1) =
⎡
⎣0 1 0

0 0 1
0 −p2p3 −(p2 + p3)

⎤
⎦ + p1

⎡
⎣ 0 0 0

0 0 0
−p2p3 −(p2 + p3) −1

⎤
⎦ ,

(4.3)

B = [
0 0 1

]T
, C = kj

[
z 1 0

]
.

Since this modeling strategy is intended for controller design, the ν-gap metric
(see [66], [67]) is employed to quantify the quality of achievable closed-loop per-
formance afforded by the control-oriented model. In [63], it is shown that this LPV
model has a better fit with the simulator in terms of the Root Mean Square Error
(RMSE) and also with the ν-gap metric than others presented previously in this area.
This fact indicates a potentially better closed-loop performance when designing a
controller based on this personalized LPV model.

Additionally, (in)validation results have been produced, which not only verify the
effectiveness of the initial (nominal) model presented previously, but also provide a
set of models described by the nominal one and a (dynamic) uncertainty bound [69]
as follows: G = {G(ρ)[1 + Wδ(s)�],� ∈ C, |�| < γ }. This framework is adequate
for robust controller design methods such as H∞ optimal control, LPV, or switched
(LTI) LPV control. The theory for model (in)validation has been initially proposed
in [70] and can be illustrated through Fig. 4.1. Note that, according to Popper [68],



FIGURE 4.1

Identification/invalidation setup.

a theory (or in this case a dynamical model) can only be falsified or invalidated with
certainty, never validated. This is because future data (that might (in)validate the
theory) are not accessible. This justifies the use of the term (in)validation.

There an initial LPV model represented by G(ρ), where ρ is a measurable
time-varying parameter, is (in)validated against experimental data provided by vec-
tors [u(tk), y(tk), ρ(tk)], k = 1, . . . ,m. An optimization problem finds the minimum
bounds on the uncertainty � ∈ C and the output noise d so that the data streams
[u(t), y(t), ρ(t)] could have been produced by this model with noise and uncertainty
belonging to the sets inside these bounds. This is defined as consistency, and for
these bounds, the model, uncertainty, and noise sets are not invalidated by the exist-
ing data. The optimization process either fixes one bound and minimizes the other or
minimizes a weighted combination of both bounds simultaneously.

Here the idea is to use the LPV model presented previously, define a very small
noise bound for d , and determine the minimum uncertainty bound for |�| < γ so that
this model is consistent with the experimental noiseless evidence obtained from the
UVA/Padova simulator. This procedure follows the works in [71,72].

Two different inputs have been used to excite all the in silico patients of the dis-
tribution version of the UVA/Padova simulator, except for Adult #007. That virtual
patient has been excluded from the modeling process and from this analysis, because
it has an insulin sensitivity that is not coherent with its TDI. A small bound1 on the
measurement noise ‖d‖ < 0.05 was fixed, and the weight representing the distribu-
tion of uncertainty as a function of frequency was Wδ(s) = 0.2 500s+1

50s+1 . This indicates

a 20% uncertainty for frequencies below 2 × 10−3 rad/min, the latter being the max-
imum achievable closed-loop bandwidth.

The minimum uncertainty bound γ in the model set G is obtained through op-
timization. Two different realistic inputs were applied: a 1 U insulin bolus and a
modulation of the basal insulin depicted in Fig. 4.2 (left). Both inputs were combined
with glucose values of (70,95,120,140,170,200) mg/dl. The results that cover both
cases at all glucose values are presented in Fig. 4.2 (right). Note that with these re-
sults it is possible to personalize each patient’s model set. The values of γ lower

1 ‖ · ‖ represents the energy of the signal: ‖d‖2 = ∫ ∞
0 |d(t)|2 dt .



FIGURE 4.2 Invalidation results.

Modulation of basal insulin infusion rate (left) and uncertainty bounds for the in silico
patients (right).

(greater) than unity indicate that the uncertainty set should be smaller (larger) than
that established initially by Wδ .

4.3 ARG algorithm
For a given subject j , the closed-loop glycemic regulation system with the ARG
algorithm is illustrated in Fig. 4.3. As shown in the figure, the algorithm has two
main components:

• a switched LQG regulator; and
• a safety layer called SAFE (Safety Auxiliary Feedback Element).

In a first instance and with an introductory purpose, the interaction between these
two components will be discussed. Subsequently, each element will be explained with
detail.

As it is usual in a closed-loop system, there is a reference signal r , which in this
particular case is the desired glucose concentration at fasting state. The difference
between the desired glucose concentration and the CGM measurement is defined as
the error signal e, which is the input to the ARG algorithm. Since there is no integral
action, to avoid insulin stacking, the control signal uC generated by the switched
LQG output is added to the patient’s basal insulin infusion rate ib,j , thus generating
the signal u. If the SAFE block were not present, the signal u would command the
insulin pump. However, the presence of the SAFE layer, where u is its input and γ

is its output, modulates the proposed infusion rate u to avoid an insulin overdose. In
this way, the control action that commands the insulin pump is uγ , consisting in the
infusion rate proposed by the switched LQG regulator multiplied by the output of the



FIGURE 4.3

Closed-loop system with the ARG algorithm.

SAFE block γ . For a more detailed description of the algorithm, the reader is referred
to [35].

4.3.1 Switched LQG regulator
Given a patient j , the switched LQG regulator is constituted by two LQG regulators:
K1,j and K2,j . Controller K1,j makes smooth adjustments on the basal insulin infu-
sion rate, whereas K2,j is conceived for fast and aggressive corrections. To switch
into the aggressive mode, the meal can be detected by manually announcing the meal
time or by inferring it, for example, from CGM trends. The problem that arises with
an automatic mechanism is the strong compromise between a fast detection and im-
munity to CGM noise. For this reason, a meal announcement was combined with
CGM trend observation for controller switching during the first clinical trials with
the ARG algorithm, although good in silico results using an automatic mechanism
had been obtained previously [32–34,63].

It should be noted that despite announcing the meal time, patients do not have to
count the amount of carbohydrates that is about to ingest, translating thus in a lower
burden in their daily tasks. Once the meal has been announced, the algorithm does not
commute immediately to the aggressive controller K2,j , but switches into a listening
mode in which the CGM signal trend is processed. When a sustained rise in glucose
concentration is detected, the commutation to K2,j is produced with the purpose
of generating a control action similar to the standard meal bolus. The commutation
from K2,j back to K1,j is produced in an automatic manner after 1 hour of operation
of the aggressive controller, but other strategies involving the SAFE layer could be
exploited.



Concerning the design stage, both LQG regulators are designed based on the fol-
lowing model:

Gj(s) = kj

s + z

(s + p∗
1)(s + p2)(s + p3)

e−15s , (4.4)

which is an LTI version of the aforementioned personalized LPV model with p∗
1 =

p1(120). The reason for evaluating p1 at 120 mg/dl is the closed-loop reference, and
therefore the glucose value approximately reached without external perturbations.

Since the CGM sensor does not send measures continuously, but rather every
5 min, the continuous-time model Gj(s) is discretized by means of a zero-order hold.
Given the following realization of the discrete-transfer function:

x(k + 1) = Ajx(k) + Bju�(k), (4.5)

y�(k) = Cjx(k),

with u�(k) = u(k) − ib,j and y�(k) = y(k) − 120 mg/dl, a state feedback control is
proposed:

u�(k) = −Ki,j x(k), (4.6)

which minimizes the following functional cost:

Ji(u�,y�) =
∞∑

k=0

(
Riu

2
� + Qy2

�

)
(4.7)

with R1 = 1, R2 = 0.5, and Q = 5 × 103. The parameter R2 is defined smaller than
R1 in order K2,j (z) to be more aggressive than K1,j (z). In addition, the states are
estimated with a Kalman filter of the form

x̂(k + 1|k) = Aj x̂(k|k − 1) + Bju�(k) + Li,j [y�(k) − Cj x̂(k|k − 1)],
(4.8)

where Li,j is obtained assuming that the process noise w(k) and the measurement
noise v(k) correspond to white noise satisfying

E[w(k)w(k)T ] = W, E[v(k)v(k)T ] = Vi, (4.9)

with W = V1 = 3 and V2 = 45 × 10−4. Here V2 is defined smaller than V1 in order
K2,j (z) to have a faster response than K1,j (z).

Both controllers K1,j (z) and K2,j (z) have an observer structure with state feed-
back and constitute the switched controller. To build a multicontroller, the results
presented in [73] have been applied. The details are beyond the scope of this chapter,
but the basic idea is to arrange the switched controller into a framework where it can
arbitrarily switch between both LQG controllers in a simple manner and without the
need to reset the states.



4.3.2 SAFE layer
The SAFE layer, depicted in Fig. 4.3, is based on the sliding-mode reference con-
ditioning technique, developed by one of the authors in his PhD thesis [74]. This 
technique, designed in general for control of constrained systems, was first applied 
in T1DM in [36] and then successfully tested on clinical trials in Spain. Its main 
objective is to modulate the gain of the controller to prevent IOB from stacking by 
imposing a constraint IOB(t). Thus this layer helps to minimize the risk of hypo-
glycemia in late postprandial periods.

The core element of any sliding-mode control is the switching logic, which in this 
case is

w(t) =
{

1 if σSM(t) > 0,

0 else,
(4.10)

where σSM(t) is the sliding function defined simply as the difference between the
actual IOB level and the imposed personalized limit:

σSM(t) = IOBj (t) − IOB(t). (4.11)

The limit IOBj (t) is a priori considered piecewise constant, as it is explained later.
Because IOB cannot be measured in real time, it must be estimated. To this effect,

the model presented in [75] is considered:

İsc1(t) = −KDIAIsc1(t) + uw(t), (4.12)

İsc2(t) = KDIA [Isc1(t) − Isc2(t)] ,

IOB(t) = Isc1(t) + Isc2(t),

where Isc1 and Isc2 are, respectively, the amount of nonmonomeric and monomeric
insulin in the subcutaneous space, uw is the exogenous insulin infusion rate in
pmol/min/kg, and KDIA [min−1] is a constant rate. The advantage of this model
is that it can be easily customized via KDIA so as to replicate each patient’s duration
of insulin action (DIA) [47]. It should be noted that DIA is a clinical parameter ad-
justed in commercial insulin pumps. As a starting point, an average DIA of 5 hours
was selected, leading to a KDIA fixed at 16.3 × 10−3 min−1 [37].

When the IOBj (t) limit is reached by the IOB estimation, a sliding regime is
established over the surface σSM(t) = 0. During this mode, from (4.10), the signal
w(t) switches at high frequency between 0 and 1 to fulfill the imposed restriction and
forces system (4.12) to remain within the invariant set

	 = {x(t) | σSM(t) ≥ 0}, (4.13)

where x(t) ∈ R
2 are the states of (4.12). The switching signal w(t) is then smoothed

by a first-order filter (or averaged between infusion intervals), giving place to γ (t),
which is the factor that finally modulates the signal commanding the pump.



Observation: It is easy to prove that the derivative of the switching function σSM(t)

depends on the control action uw(t) and therefore on the discontinuous action w(t),
which is a necessary condition for establishing the sliding mode, known as transver-
sality condition.

Like the main controller, the SAFE layer is implemented in a discrete way, ob-
tained from (4.12) as follows:

x(k + 1) =
[

1 − KDIATr 0
KDIATr 1 − KDIATr

]
x(k) +

[
1
0

]
uw(k),

IOB(k) = [
1 1

]
x(k), (4.14)

where Tr = 0.1 min is the selected sample time. It should be noticed that Tr is smaller
than Ts = 5 min since the SAFE algorithm is programmed entirely in software, and
thus the switching frequency is only limited by the speed of the platform’s micropro-
cessor.

Although there may be different criteria to define the IOB limit, in this first ap-
proach, the following classification of the meal size was defined:

• Small meal < 35 gCHO. IOBs,j (t) = IOBss,j (t) + 40 gCHO/CRj (t).
• Medium meal [35,65) gCHO. IOBm,j (t) = IOBss,j (t) + 55 gCHO/CRj (t).
• Large meal ≥ 65 gCHO. IOBl,j (t) = IOBss,j (t) + 70 gCHO/CRj (t).

Here IOBss,j (t) is the steady-state value of model (4.14) corresponding to the pa-
tient’s basal insulin rate ib,j (t), and X gCHO/CRj (t) is the insulin bolus related
to X grams of carbohydrates (gCHO) using the patient’s Carbohydrate Ratio (CR)
in [g/U]. When the system is not at a prandial period, the IOB limit is fixed to
IOBs,j (t). In this manner, the controller has an extra degree of freedom to make
adjustments to the basal infusion rate when necessary.

4.3.3 Auxiliary modules
To minimize the risks of hypo- and hyperglycemia, two auxiliary modules, which
are discussed below, have been added to the ARG algorithm to make it more robust
against the time-varying nature and high uncertainty of the insulin–glucose dynamics.

Hypoglycemia-related module (Hypo-RM)
Here an algorithm to lower the IOB limit when low glucose values are detected or
predicted is defined as follows.

1: At every sampling time:
2: The glucose measured by the CGM sensor (g) in mg/dl is received, and a lin-

ear extrapolation strategy is used to estimate the glucose rate of change ( ˆ̇g30) in
mg/dl/min. Besides, the future glucose concentration is predicted with a fore-
casting horizon of 15 min (ĝ15), considering the last six glucose measurements,
that is, the CGM samples received during the last 30 min.



3: The IOB limit is set according to previous sections.
4: if g < 60 then
5: IOBj (t) = 0
6: else if g < 70 then
7: IOBj (t) = 0.5IOBss,j (t)

8: else if i = 1 and 
 = 0 then
9: if ˆ̇g30 < −0.5 or [ ˆ̇g30 < 0.5 and IOB(t) ≥ IOBss,j (t)] then

10: if ĝ15<70 then
11: IOBj (t) = 0.5IOBss,j (t)

12: else if ĝ15<100 then
13: IOBj (t) = 0.75IOBss,j (t)

14: else if ĝ15<120 then
15: IOBj (t) = IOBss,j (t)

16: end if
17: end if
18: end if
In this way, the Hypo-RM module has the following levels of action:

• Level A: IOB(t) = 0.
• Level B: IOB(t) = 0.5IOBss(t).
• Level C: IOB(t) = 0.75IOBss(t).
• Level D: IOB(t) = IOBss(t).

In addition, note that the code below Line 8 is executed only if the controller is in
conservative mode (i = 1) and in nonlistening mode (
 = 0).

Hyperglycemia-related module (Hyper-RM)
This module generates a Correction Bolus (CB) in [U] based on the patient’s Correc-
tion Factor (CF) in [U/mg/dl] when a persistent hyperglycemic excursion cannot be
mitigated by the conservative mode of the ARG algorithm.

1: At every sampling time:
2: A Boolean variable HYPOFLAG is set to unity if the Hypo-RM was activated and

to zero otherwise.
3: The glucose rate of change ( ˆ̇g30) and the future glucose concentration (ĝ15) de-

termined in the Hypo-RM are considered here, together with the glucose rate of
change estimated from the last three CGM samples ( ˆ̇g15).

4: The mean value of the last six CGM samples (g30) is calculated.
5: A Boolean variable G160FLAG, which is zero by default, is set to unity if the last

six CGM samples are higher than 160 mg/dl.
6: Timers CCBOLUS and CAGGCON that count the minutes elapsed from the last CB

and from the last aggressive–conservative commutation are updated.
7: if i = 1 and 
 = 0 then
8: if HYPOFLAG=0 and CCBOLUS≥ 120 and CAGGCON≥ 180 then
9: if (G160FLAG=1 and ˆ̇g30 ≥ 0 and ˆ̇g15 ≥ −0.5) or g30 >200 then

10: CB = 0.8[min(g30,ĝ15)-120]/CF



11: end if
12: end if
13: end if

Note that according to the conditions that have to be fulfilled for the generation
of a CB, this module is likely to be activated only during fasting periods of persistent
hyperglycemia. The minimum between g30 and ĝ15 and the 0.8 factor are considered
to be conservative, because the measurement noise could lead to overestimate the
value of the CB. In addition, for safety, the CB is not directly infused to the patient.
Instead, it is added to the insulin bolus proposed by the ARG algorithm to avoid
violating the IOB limit.

4.4 Simulations
All the in silico experiments were carried out with the UVA/Padova simulator con-
sidering:

• a Dexcom G4 Share CGM;
• a generic insulin pump with a quantization of 0.1 U and a maximum bolus of 25 U

(these characteristics are analogous to Roche Accu-Check Combo pump);

FIGURE 4.4 How the ARG algorithm works.

Closed-loop response for an in silico adult of the UVA/Padova simulator when a mixed meal
is ingested. The meal intake happens 5 hours after the beginning of the simulation.



• a glucose reference of 120 mg/dl; and
• meal time announcement.

Fig. 4.4 shows how the ARG algorithm works. In that figure, the response to a mixed
meal (milk, white bread, low-fat cheese, butter, oil; CHO = 111.0 g) from the meal
library presented in [76] is depicted. Note that the glucose rate of appearance (Ra)
associated with this meal has two peak values: one at meal time and the other one
around 3 hours later. The controller K1 was in charge of the insulin infusion most
of the time, whereas K2 only worked during the prandial period. Once the con-
troller K2 was selected, larger insulin boluses were delivered to avoid postprandial
hyperglycemia. These boluses were modulated by the SAFE layer through the signal
γ to avoid the violation of the imposed constraint on the IOB. In this way, excessive
insulin stacking was avoided, and the risk of hypoglycemia was reduced. From this
analysis it can be seen that while the aggressive controller (K2) diminishes hyper-
glycemia, the SAFE protection avoids hypoglycemia. Both systems work together
in such a way to maintain the patient glycemia in the desirable [70,180] mg/dl or
acceptable [70,250] mg/dl range. Finally, Fig. 4.4 also illustrates how both auxiliary
modules assist in regulating the glucose level. The Hypo-RM lowers the IOB limit
when hypoglycemic situations are predicted, whereas the Hyper-RM generates CBs
to complement the action of the conservative controller when necessary. In this case,
a CB was generated because the late second peak in Ra could not be completely
mitigated by the conservative controller K1.

Another important aspect to point out is that the peak in the insulin infusion hap-
pens after the meal intake, opposed to the traditional therapy where the meal bolus
is ideally delivered minutes before eating. This delay is due to the feedback strategy.
Here the effect of the meal on the glucose level is not detected by the CGM until some
minutes after the intake. This results in an inevitable increase in glucose concentra-
tion, which is later compensated by the aggressive LQG controller. Other control
strategies have a hybrid structure, in which a feedforward meal bolus is injected at
meal times and the controller is only in charge of regulating the basal delivery rate.
In this way, postprandial peaks could be reduced as the bolus would be infused at
an earlier time than with the proposed strategy. Nonetheless, the patient would be
responsible of carbohydrate counting, which is rarely exact in daily life and also im-
poses a task that goes against his/her quality of life.

Fig. 4.5 depicts the average closed-loop responses and the Control Variability
Grid Analysis (CVGA) plot for all the in silico adults of the complete UVA/Padova
simulator to meals of 25, 50, and 75 gCHO. In all cases, a medium-meal IOB limit,
that is, IOBj (t) = IOBm,j (t), was set to test the robustness of the ARG algorithm to
errors in meal size classification.

The different regions of the CVGA represent glycemic control as follows: A-zone,
accurate control; lower and upper B-zones, benign deviations into hypo- and hy-
perglycemia; B-zone, benign control deviations; upper and lower C-zone, over-
correction of hypo- and hyperglycemia; lower and upper D-zone, failure to deal with
hypo- and hyperglycemia; and E-zone, erroneous control. As previously mentioned,
since a feedforward insulin bolus is not injected at meal times, the upper B-zone has



Table 4.1 In silico closed-loop data. In silico closed-loop results with the ARG
algorithm. The overall (O) and the postprandial period (PP) defined previously
are analyzed separately.

25 gCHO meal 50 gCHO meal 75 gCHO meal
Mean Median IQR Mean Median IQR Mean Median IQR

Blood Glucose [mg/dl] O 127 126 [121, 131] 134 133 [128, 137] 143 142 [136, 148]
PP 135 133 [126, 141] 160 159 [150, 167] 188 186 [175, 196]

% time in [70, 250] mg/dl O 99.7 100 [100, 100] 99.6 100 [100, 100] 96.7 100 [94.8, 100]
PP 99.4 100 [100, 100] 99.0 100 [100, 100] 89.7 100 [83.3, 100]

% time in [70, 180] mg/dl O 98.7 100 [100, 100] 89.8 90.9 [88.1, 92.2] 83.0 83.8 [80.6, 86.8]
PP 96.3 100 [100, 100] 67.7 71.0 [62.0, 75.0] 46.4 48.0 [38.0, 57.8]

% time > 250 mg/dl O 0.0 0.0 [0.0, 0.0] 0.3 0.0 [0.0, 0.0] 3.2 0.0 [0.0, 5.2]
PP 0.0 0.0 [0.0, 0.0] 0.9 0.0 [0.0, 0.0] 10.3 0.0 [0.0, 16.8]

% time > 180 mg/dl O 1.0 0.0 [0.0, 0.0] 10.1 9.1 [7.8, 11.8] 16.9 16.3 [13.2, 19.4]
PP 3.1 0.0 [0.0, 0.0] 32.2 29.0 [25.0, 38.0] 53.6 52.0 [42.3, 62.0]

% time < 70 mg/dl O 0.3 0.0 [0.0, 0.0] 0.1 0.0 [0.0, 0.0] 0.1 0.0 [0.0, 0.0]
PP 0.6 0.0 [0.0, 0.0] 0.1 0.0 [0.0, 0.0] 0.0 0.0 [0.0, 0.0]

% time < 50 mg/dl O 0.0 0.0 [0.0, 0.0] 0.0 0.0 [0.0, 0.0] 0.0 0.0 [0.0, 0.0]
PP 0.1 0.0 [0.0, 0.0] 0.0 0.0 [0.0, 0.0] 0.0 0.0 [0.0, 0.0]

LBGI 0.1 0.0 [0.0, 0.1] 0.1 0.0 [0.0, 0.0] 0.0 0.0 [0.0, 0.1]
HBGI 0.9 0.8 [0.6, 1.2] 2.0 1.8 [1.5, 2.3] 3.6 3.3 [2.7, 4.0]

IQR, interquartile range.

a larger density of points. However, this does not imply a greater risk to the patients’
health. In addition, the fact that a few subjects are in the C (2.7%), D (1.3%), and
E (0.3%) zones could be analyzed as follows. On one hand, it must be considered
that not every in silico patient has parameters that make sense physiologically, given
that the database was generated for statistical ends. On the other hand, the proposed
strategy allows tackling the singular cases where the controller action was either too
conservative or too aggressive by slightly regulating the IOB constraint in terms of
postprandial hypo- or hyperglycemia frequency.

Numerical outcomes for all the considered cases are presented in Table 4.1. There
the closed-loop results obtained in both the overall (O) and the 5-hour time interval
following the start of the meal (postprandial period, PP) are analyzed separately. The
Low Blood Glucose Index (LBGI) and the High Blood Glucose Index (HBGI) are
also included. The scale for these indexes are defined according to [77]:

• Risk of hypoglycemia: LBGI ≤ 2.5 (low); 2.5 < LBGI ≤ 5 (moderate); LBGI
> 5 (high).

• Risk of hyperglycemia: HBGI ≤ 4.5 (low); 4.5 < HBGI ≤ 9 (moderate); HBGI
> 9 (high).

We can observe that the ARG algorithm allowed achieving minimal risk of hypo-
and hyperglycemia. Even though the results are satisfactory, they can be further im-
proved with the addition of the aforementioned meal size classifier to help establish a
more adequate IOB constraint. For example, when the small-meal IOB limit IOBs,j

is used in the simulations with the 25 gCHO meal, the mean time in hypoglycemia
is reduced from 0.5% to 0.2%, maintaining a mean time of 96.5% in the range



FIGURE 4.5 In silico closed-loop responses.

Upper top: Closed-loop responses for all the in silico adults of the complete UVA/Padova
simulator to 25, 50, and 75 gCHO meals. The solid lines indicate the mean glucose, and
the shaded areas are ±1 standard deviations. Bottom top: Mean insulin infusions. Bottom:
CVGA plot.

[70,180] mg/dl in the postprandial period. On the other hand, when the large-meal
IOB limit IOBl,j is used in the simulations with the 75 gCHO meal, the mean time
in the range [70,180] mg/dl increases from 46.3% to 52.5% during the postprandial
period, with a minimal increase in the mean time in hypoglycemia from 0.0 to 0.1%.

To further test the performance of the ARG algorithm, simulations considering
different initial glucose values and errors in the adjustment of the basal insulin in-
fusion rate were performed with the adult cohort of the distribution version of the



UVA/Padova simulator. Two examples are illustrated in Fig. 4.6. In one case, a high
initial glucose concentration of 210 mg/dl along with an insulin infusion rate that
leads to a low steady-state glucose value of 70 mg/dl is considered (case 1). In the
other case, the opposite scenario is tested, that is, a low initial glucose concentration
of 70 mg/dl along with an insulin infusion rate that leads to a high steady-state glu-
cose value of 210 mg/dl (case 2). As shown in the figure, the ARG algorithm was
able to safely regulate the glucose level in both cases independently of the conditions.
Indeed, the mean time in the range [70,180] mg/dl was 91.1% for case 1 and 77.1%
for case 2, whereas it is 90.0% when considering 120 mg/dl as initial and steady-state
glucose value.

4.5 Clinical trials
The first clinical trials with an AP in Latin America were carried out in two stages at
the Hospital Italiano de Buenos Aires (HIBA). The first one was in November 2016
with the algorithm of the University of Virginia that had been tested internationally
in several occasions. The second trial was in June 2017 with the ARG algorithm,
fully developed in Argentina, in collaboration between researchers from the Instituto
Tecnológico de Buenos Aires (ITBA), the Universidad Nacional de Quilmes (UNQ),
and the Universidad Nacional de La Plata (UNLP). Both stages had the same numbers
of patients (5) and hardware and followed the same clinical protocol. However, the

FIGURE 4.6 In silico closed-loop responses.

Above: Closed-loop responses for all the in silico adults of the distribution version of
UVA/Padova simulator to different glucose initial conditions and basal insulin rate
adjustments. The solid lines indicate the mean glucose, and the shaded areas are ±1
standard deviations. Below: Mean insulin infusions.



main difference between both trials is that in the latter, the patients had neither to 
count CHO nor to apply an insulin bolus. Here we focus on this second clinical trial.

The selection of five patients with T1DM that participated in the trials was made 
according to the clinical protocol, particularly the inclusion and exclusion criteria as 
indicated in NCT02994277 (www.clinicaltrials.gov).

4.5.1 Hardware and software
For the implementation of the AP, the following devices were used in each patient:

• CGM Dexcom G4 Share;
• Accu-Check Combo insulin pump from Roche; and
• a NEXUS-5 smartphone based on Android containing the Diabetes Assistant

(DiAs) from the University of Virginia (UVa) [78].

The Diabetes Assistant (DiAs) is a software that includes several mobile applica-
tions and allows every 5 minutes the communication between the control algorithm,
the CGM sensor (through Android Bluetooth Low Energy), and the insulin pump
(through standard Bluetooth). Due to FDA regulations, to be accepted as a Class III
medical device, the phone, navigator, Android Market, games, and so on were re-
moved. The system also includes the SQLite database for the asynchronous data
management for requests from the user.

The DiAs is a modular system where the control algorithm is contained. The ARG
algorithm was programmed in the DiAs using object-oriented programming on the
Eclipse IDE for Java Developers version: Kepler Service Release 2, with the plugin
Android Development Tools (ADT).

4.5.2 Clinical procedures
Patients were called to attend the HIBA nine days before the trial. That day, the proto-
col was explained in detail, the Informed Consent was signed, the inclusion/exclusion
criteria were revised, and a blood extraction was made for laboratory screening.
These results and a supervised glycaemia control were reviewed two days before the
trial. That same day, the insulin pump and the CGM were connected to each patient,
with a brief training in the use of both devices. The communication among these
devices with the smartphone was verified, and the systems remained in open loop
(without the algorithm active in the smartphone) in order for the patients to perform
their usual controls. For comparison purposes, they also had to perform eight daily
capillary glycaemia measurements until the day of the trial.

The trial started at 1700 hs on day 0 and ended the morning of day 2. The loop
was closed by activating the control algorithm in the smartphone, and all patients
had five meals during the 36 hs tests: two dinners, one lunch, one breakfast, and one
afternoon snack with a continuous monitoring of their glycaemia and injected insulin
values from the medical and researcher staff room.

https://www.clinicaltrials.gov


The menu was coordinated by the nutritionist and had the following contents of
CHO: breakfast or afternoon snack 28 g (wholegrain bread, water crackers, diet jam,
spread cheese with tea, coffee or mate); dinner or lunch 55 g (wheat pasta with natural
filetto sauce and lean meat with smashed potatoes, in both cases with fresh fruit).

4.5.3 Results

Table 4.2 Clinical trial data. Comparison of the statistical data
obtained from 36 hs in UC vs CL, considering a confidence
interval of 95%.

UC CL
Mean CI 95% Mean CI 95%

% time [70, 250] mg/dl 82.9 [67.3, 98.6] 88.6 [82.4, 94.7]
% time [70, 180] mg/dl 59.1 [41.9, 76.2] 74.7 [68.1, 81.4]
% time < 70 mg/dl 7.6 [2.9, 12.4] 5.8 [1.6, 10.0]
% time < 50 mg/dl 1.7 [0.3, 3.1] 0.8 [0.2, 3.5]
LBGI 2.8 [1.8 3.7] 2.3 [1.4, 3.1]
HBGI 7.2 [3.4, 11.0] 4.9 [2.9, 6.9]

Next, a brief description of the results is presented. The Usual Care (UC) analysis
was considered from 7 p.m. on the 21/09 up to 7 a.m. on the 23/09. In the case of the
Closed Loop (CL) period, the time interval was considered from 7 p.m. on the 23/09
up to 7 a.m. on the 25/09. The insulin pump of one of the patients had an occlusion
during the first night in CL, and therefore these hours were not considered in the
analysis. The UC is used as a reference of their habitual glucose management, and
it should be noted that the patients did not follow strictly the same diet during UC
and CL. In Table 4.2 we can see the statistical data obtained from the 36 hours of
CL trial and the comparison with those obtained in UC. We can observe that there
is a significant improvement in the patient’s glucose regulation when using the ARG
algorithm. The null hypothesis at a level of significance of 5% (ρ = 0.05), defined
as the difference between the results obtained in UC and CL have zero mean, can
be rejected in the percentage of time in euglycemic range [70,180] mg/dl, being
statistically significant (ρ = 0.0356).

Since this is the first clinical trial of the ARG algorithm, three initial meals were
used to make the necessary adjustments to the IOB maximum limit. For this rea-
son, if the analysis of the results is concentrated in the last 15 hours of CL and it
is compared with the 15 hours of UC that involve the same period of the day, then
an even more significant control improvement is noticed, as it is shown in Table 4.3.
The null hypothesis at a level of significance of 5% (ρ = 0.05), defined as the differ-
ence between the results obtained in UC and CL have zero mean, can be rejected in
percentage time in euglycemic range [70,180] mg/dl (ρ = 0.0142), in < 70 mg/dl
(ρ = 0.049), LBGI index (p = 0.0383), and HBGI index (ρ = 0.0469), these being
statistically significant.



Table 4.3 Clinical trial data. Comparison of the statistical data
obtained from first 15 hs in UC and the last 15 hs in CL with
a confidence interval of 95%.

UC CL
Mean CI 95% Mean CI 95%

% time [70, 250] mg/dl 73.5 [49.8, 97.2] 94.7 [83.8, 98.4]
% time [70, 180] mg/dl 49.8 [24.5, 75.1] 82.6 [69.9, 95.2]
% time < 70 mg/dl 13.6 [4.4, 22.7] 4.1 [0.8, 18.0]
% time < 50 mg/dl 5.4 [1.6, 16.4] 0.2 [0.0, 3.5]
LBGI 4.2 [2.1 6.2] 1.8 [0.3, 3.3]
HBGI 8.7 [2.9, 14.5] 2.8 [0.1, 5.5]

It is important to remark that taking into account the night period (from 23 p.m.
until 7 a.m.), the ARG algorithm presents a notorious improvement in comparison
with the UC treatment. In Fig. 4.7, it is highlighted the comparison of the glucose
excursion obtained during the second night in UC and in CL (time lapse without
meals). In Table 4.4 the statistical data is presented regarding this period. Again, an
improvement in percentage of time in euglycemia (ρ = 0.0351) and HBGI index
(ρ = 0.0309) was obtained. Finally, in Fig. 4.8, the UC and CL percentage time in
each glucose range and time-in-range cumulative plots are compared for both overall
(36 h trial) and second night periods, showing again the effectiveness of the ARG
algorithm.

Table 4.4 Clinical trial data. Comparison of the statistical data
obtained from the last nights in UC vs CL with a confidence
interval of 95%.

UC CL
Mean CI 95% Mean CI 95%

% time [70, 250] mg/dl 78.1 [29.1, 96.9] 95 [66.9, 99.4]
% time [70, 180] mg/dl 50.3 [23.2, 77.4] 87.7 [76.5, 99.0]
% time < 70 mg/dl 3.6 [0.3, 29.5] 5 [0.6, 33.1]
% time < 50 mg/dl 0 [0.0, 0.0] 0 [0.0, 0.0]
LBGI 2.0 [0.6, 3.4] 1.5 [0.4, 4.1]
HBGI 9.8 [2.8, 16.8] 1.9 [0.4, 5.7]

4.6 Conclusions
In this chapter, a brief review of the AP project in Argentina was presented along-
side with a novel control strategy for glycemic regulation, the ARG algorithm. It
consists of a two-degree-of-freedom control structure that includes a switched LQG
inner controller together with an outer sliding-mode safety loop, the Safety Auxil-
iary Feedback Element (SAFE) mechanism, for IOB constraints. The switched LQG



FIGURE 4.7 Clinical test.

Mean glycemic excursion of all five patients in UC (red (mid gray in print version)) and in
CL (blue (dark gray in print version)) during night time. The solid line indicates mean, and
the gray area ±1 standard deviation.

FIGURE 4.8 Clinical test.

Glucose range percentage times and cumulative time-in-range for all patients in UC (red
(mid gray in print version)) and in CL (blue (dark gray in print version)) during the whole
trial (left half) and during the second night (right half). The dashed lines are the mean
values, and the continuous lines are the envelopes.

control strategy is a simplified version of that in [33]. The switched nature of the
inner controller enables different tunings for dealing with prandial and fasting peri-
ods and can be extended to other situations, for example, physical activity. New and
more complex scenarios could be potentially addressed by redesigning the switching



policy and/or the IOB constraints. The SAFE layer quickly adapts the controller gain
to automatically obtain insulin spikes like the open-loop boluses. Promising results
were obtained both in silico and later in vivo during the first clinical trials in Latin
America.
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