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ABSTRACT KEYWORDS

Automatic Program Repair (APR) is a practical research topic that
studies techniques to automatically repair programs to fix bugs.
Most existing APR techniques are designed for imperative pro-
gramming languages, such as C and Java, and rely on analyzing
correct and incorrect executions of programs to identify and repair
suspicious statements.

We introduce a new APR approach for software specifications
written in the Alloy declarative language, where specifications
are not “executed”, but rather converted into logical formulas and
analyzed using backend constraint solvers, to find specification
instances and counterexamples to assertions. We present ATR, a
technique that takes as input an Alloy specification with some
violated assertion and returns a repaired specification that satisfies
the assertion. The key ideas are (i) analyzing the differences between
counterexamples that do not satisfy the assertion and instances that
do satisfy the assertion to guide the repair and (ii) generating repair
candidates from specific templates and pruning the space of repair
candidates using the counterexamples and satisfying instances.
Experimental results using existing large Alloy benchmarks show
that ATR is effective in generating difficult repairs. ATR repairs
66.3% of 1974 fault specifications, including specification repairs
that cannot be handled by existing Alloy repair techniques. ATR
and all benchmarks are open-source and available in the following
Github repository: https://github.com/guolong-zheng/atmprep.

Alloy specification, Automatic Program Repair, Template-based
Repair and Synthesis, Counterexamples

1 INTRODUCTION

Declarative specification languages have been used for diverse
software engineering problems. In particular, the Alloy specification
language [27], which relies on relational algebra and first-order
logic, has been applied to a wide range of software engineering
tasks, including software verification [8, 19-21, 44, 50, 55, 60, 70—
72], test case generation [32, 45, 49, 58, 63], software design [10—
12, 28, 34, 68], network security [43, 52, 61], security analysis of
emerging platforms, such as IoT and Android platforms [3, 4, 6,
7,9, 13, 50, 51, 56, 59, 62], among others. Moreover, the use of
Alloy for software specification is tightly integrated with the Alloy
Analyzer, allowing users to automatically check that the given
specification satisfies some desirable properties. This, in turn, makes
the problem of testing and verifying Alloy specifications much
easier and directly integrated into the Alloy environment.

Despite the power of the Alloy Analyzer, Alloy users, just like
Java or C developers, can introduce subtle bugs when writing speci-
fications. While the Alloy Analyzer can help to automatically check
properties and generate counterexamples showing assertion viola-
tions, the actual debugging tasks of evaluating and fixing the issues
remain challenging and manual, especially for specifications that
model large systems and complicated behaviors.

Compared to the rich literature and techniques in automatic
program repair (APR) for imperative languages, there are much
fewer APR techniques for Alloy. ARepair [74], arguably the first
APR work for Alloy, mimics APR techniques that fix bugs witnessed
by failing test cases and thus assumes the availability of tests as an
oracle for correctness. While tests are common for programming
languages, they are not often used in Alloy specification settings,
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where users write assertions to describe expectations and employ
the Alloy Analyzer to check them. In addition, just like in “impera-
tive” APR approaches, ARepair suffers from the overfitting problem
when tests are inadequate (i.e., the generated repair passes the tests,
but is incorrect in general).

In contrast, the recent BeAFix [25] technique directly uses as-
sertions as correctness oracles and reduces the overfitting problem.
However, this approach can be slow as it exhaustively enumerates
the possible candidate repairs up to a certain bound and checks if
any of them successfully satisfies the failing assertions. Indeed, as
shown in this work, BeAFix fails to generate complex repairs for
many Alloy specifications as those would require trying a prohibi-
tively large number of repair candidates.

In this work, we introduce ATR, a new APR technique and tool
that fixes Alloy specifications failing given assertions. Given an
Alloy specification and a property that is not satisfied by the speci-
fication, ATR first uses an existing Alloy fault localization tool as a
blackbox to identify suspicious expressions causing the violation.
ATR next queries the underlying Alloy Analyzer for a counterex-
ample, an instance of the specification that does not satisfy the
property, and then uses a partial max satisfiability (PMAXSAT)
solver [16] to find an instance that does satisfy the property and
is as close as possible to the counterexample. ATR then generates
repairing expressions from predefined templates and uses the coun-
terexamples and satisfying instances to prune candidate repairs.

Thus, unlike ARepair relies on tests, ATR is similar to BeAFix and
uses well-established and widely-used assertions, naturally com-
patible with the specification practices in Alloy. The main novelty
of ATR is that it generates repairs using templates and exploits
the differences between counterexamples and satisfying instances
of the specification to guide the repair process. These instances
are generated by constraint solvers, which are the main underly-
ing technologies in Alloy, and their differences significantly help
ATR prune the search space and synthesize much richer and more
accurate repairs.

We evaluate ATR on two benchmarks, developed by other re-
search groups, consisting of 1974 buggy specifications from ARe-
pair [73] and Alloy4Fun [42]. The experimental results corroborate
that ATR is able to consistently repair faulty Alloy specification
with 66.3% repair rate, compared to 9.8% repair rate of ARepair and
50.9% of BeAFix. The average run time to fix each specification is
364.4 seconds, compared to 1569.8 seconds of BeAFix and 91.9 sec-
onds of ARepair (though ARepair also generates many overfitting
repairs). The experiments show that ATR can repair nontrivial bugs
effectively and in many cases can even synthesize new expressions
to complete empty predicates. The repairs generated by ATR are
similar to manual repairs, i.e., with short syntax edit distance.

To summarize, our contributions are two-fold. First, we present
anovel APR technique for declarative specifications in the Alloy
language. The insight underlying our approach is using templates
and the counterexamples and closely related satisfying instances
to guide and reduce the space of the repair search. Second, we
develop a fully automated APR tool called ATR that effectively
realizes our APR approach. We evaluate ATR using a large list
of buggy Alloy specifications found in prior work and show the
effectiveness of ATR on these benchmarks. We make ATR and all
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Figure 1: Overview of ATR

experimental results open-source and publicly available on Github:
https://github.com/guolong-zheng/atmprep.

2 OVERVIEW

Fig. 1 gives the overview of ATR, which takes as input a specifi-
cation that violates an asserted property. ATR first invokes a fault
localization tool to obtain a list of suspicious expressions. ATR next
generates pairs of counterexamples and satisfying instances of the
specification concerning the asserted property. To have a more
accurate comparison among these instances, ATR uses a PMAXSAT
solver to generate satisfying instances that are as similar as the
counterexamples as possible.

From the generated instances, ATR then generates a set of boolean
templates using atoms, signatures, and fields and prunes these tem-
plates based on their results evaluated from the counterexample
and satisfying instances. From the remaining templates, ATR gen-
eralizes them to Alloy expressions and combines the expressions
using logic operators.

Finally, ATR patches the suspicious statements with the gen-
erated expressions and checks if Alloy can find counterexamples
for the assertion in the modified specification. If Alloy finds no
counterexample, then ATR has found a fix. Otherwise, ATR uses the
new counterexamples to generate satisfying instances and repeats
the repair process.

2.1 Background

Alloy. An Alloy [26] specification captures a formal software
model using the following main elements: (1) sigs (signatures) are
used to define basic data domains, which may be structured us-
ing fields, defining relationships between sigs; (2) facts introduce
always-hold constraints (model assumptions) written in Alloy’s
logic (first-order logic with relational operators, including closures);
funs (functions) are named parameterized Alloy expressions, and
preds (predicates) are named parameterized Alloy formulas, which
can be used to define model operations and properties, as well as
for defining facts; and (3) check and run commands invoke an au-
tomated analyzer for checking asserts (assertions, Alloy formulas)
and running preds, respectively.
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Alloy’s automated analysis is provided by the Alloy Analyzer,
which translates Alloy specifications into propositional formulas
and uses underlying SAT solvers to find counterexamples violating
the asserted properties (when invoked with check), and specification
instances satisfying predicates (when invoked with run). Intuitively,
given a specification M and an assertion p, Alloy Analyzer will
search for counterexamples by solving a propositional formula for
the constraints of M A —p; in contrast, when p is a predicate, Alloy
Analyzer will search for instances satisfying p by solving M A p.
Alloy’s analysis is bounded-exhaustive, i.e., given a specification M,
an assertion (resp. a predicate) p, and a bound k (called the scope in
the context of Alloy), the Alloy Analyzer will find a counterexample
(resp. satisfying instance) for p of size bounded by k, if and only if
such k-bounded counterexample (resp. instance) exists.

Fault Localization. One of the main components of an APR tech-
nique is fault localization, which identifies suspicious statements in
the program where the error occurs. An effective fault localization
algorithm can significantly reduce the search space and guide the
repair process to the relevant code region.

The current implementation of ATR uses the FLACK fault local-
ization tool for Alloy [77]. FLACK takes as input an Alloy speci-
fication violating some assertion and returns a list of suspicious
expressions likely contributing to the violation. Because ATR treats
fault localization tool as a blackbox, it can use other Alloy fault
localization tools such as AlloyFL [75].

Partial Maximum Satisfiability. To synthesize and prune relevant
candidate repairs, ATR searches for an instance that satisfies the
given specification but is closely similar to the counterexample.
To do this, we reduce this task to a PMAXSAT (partial maximum
satisfiability) problem [39] and solve it using Pardinus [16].

The PMAXSAT problem is defined as follows: given a set of hard
clauses and a set of soft clauses, find a solution that satisfies all the
hard clauses and as many soft clauses as possible. ATR encodes the
specification M and the property p as the hard constraints and the
counterexample as the soft constraints, and finds an instance that
satisfies p and is as similar to the counterexample as possible.

2.2 Illustrative Example

Fig. 2 shows an Alloy specification for a room access control prob-
lem. First, we define several classes or types (sig’s): Room has one
subclass SecurelLab; Person has two non-overlapping subclasses
Employee and Researcher sharing a common field owns that repre-
sents a set of keys owned by a person; and Key has a field opened_by
representing exactly one Room opened by the key. We also define a
couple of facts capturing additional constraints. The first specifies
that there are at least one employee and one researcher, at least
one key to open SecurelLab, and some employee owns more than
one key.

The second specifies that every room can be opened by some
key, and each employee owns some key and this key can not open
Securelab. Next, we have a predicate CanEnter, a boolean function
checking that a person can enter a room only if they own a key to
that room. Finally, to ensure the secure access of SecurelLab, we
use the assert is_secured to check that only researchers can enter
the secure lab.

sig Room {}
one sig SecureLab extends Room {3}

abstract sig Person { owns : set Key }
sig Employee extends Person {3}
sig Researcher extends Person {}

sig Key { opened_by: one Room }

fact {
some Employee && some Researcher
some e : Employee | #e.owns > 1

}

fact {
all r : Room | some opened_by.r
all e : Employee | some k : Key | k in e.owns
and SecurelLab != k.opened_by //bug
//and e !in owns.opened_by.SecurelLab //missing constraint

3
pred CanEnter(p: Person, r:Room) {r in p.owns.opened_by}

assert is_secured {
all p : Person | CanEnter[p, SecurelLab]
implies p in Researcher

}

check is_secured

Figure 2: A buggy Alloy specification.

To check the assertion, we run the Alloy Analyzer on this specifi-
cation with the check command as shown on line 28. The Analyzer
disproves the assertion by generating a counterexample, shown in
Fig. 3, which describes a scenario in which an employee owns a
key that opens SecurelLab. Thus, the specification contains a bug
violating the asserted property. Our goal is then to use ATR to fix
the bug.

Fault Localization. Similar to most APR approaches, ATR first
identifies where the bug occurs. By using the Alloy fault localization
tool FLACK [77], we find that the fault is likely caused by the fact
on line 18. This fact specifies that every employee owns some key
that can not open SecureLab. However, this fact misses a constraint
that an employee can not own keys that can open the secure lab.

To repair this “under-constraint” defect, ATR needs to synthesize
this new constraint and add it to the expression on line 18. We note
that none of the existing Alloy repair techniques can fix this speci-
fication violation. For example, both ARepair [74] and BeAFix [25]
tools indicate that they fail to repair the violation.

Counterexample and Satisfying Instances. ATR exploits the rich
details captured by instances generated by the Alloy Analyzer. To
synthesize a repair for the suspicious expression returned by fault
localization, ATR analyses the differences between instances that
do not satisty the assertion (i.e., counterexamples) and those that do
satisfy the assertion (i.e., satisfying instances) to reduce the search
space.

The Alloy Analyzer has already provided the needed counterex-
ample violating the assertion, e.g., Fig. 3. However, we still need
a satisfying instance. One way to find such an instance is creat-
ing a predicate pred is_secured with similar contents as those
from assert is_secured and asking the Alloy Analyzer to find an
instance, such as the one given in Fig. 4, that satisfies the predicate.
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We hypothesize that the differences between the counterexample
and satisfying instances can help debug the issue. However, in this
case, the counterexample in Fig. 3 and the satisfying instance in
Fig. 4 are too different to be useful. For example, Researchero
owns a Key1 that opens Room in the satisfying instance but does
not own any key in the counterexample. However, this difference
is unrelated to the defect. Indeed, satisfying instances randomly
generated from the Alloy Analyzer often give many irrelevant
differences to the counterexamples.

We need counterexamples and satisfying instances that have as
few differences as possible. To obtain this, we treat the problem as a
PMAXSAT problem, in which we set the counterexample as soft
constraints and the Alloy specification and the predicate as hard
constraints, and then use a PMAXSAT solver to find an instance
that satisfies all the hard constraints (i.e., satisfying the specifica-
tion) and as many soft constraints as possible (i.e., similar to the
counterexample).

In this example, using the Pardinus [16] PMAXSAT solver, ATR
obtains the satisfying instance in Fig. 5 that is very similar to the
counterexample in Fig. 3. The only difference here is that Employee
does not own Key1 that opens the secure lab. This difference is
precisely the property causing the counterexample to violate the
assertion.

Candidate Repairs. Unlike a traditional program (e.g., C), com-
posed of multiple simple statements, Alloy has fewer but more
complicated expressions. Thus, the search space is more extensive
as we need to consider candidate fixes for the entire expression on
line 18 and its subexpressions.

ATR uses the details from the counterexample and instances to
generate relevant expressions to repair the buggy one on line 18.
Moreover, to further reduce the search space, we generate new
expressions under a specific grammar (template) consisting of com-
monly used Alloy binary and unary boolean and relational opera-
tors (given in Fig. 6 and described in § 3.3).

Here, ATR uses seven atoms Employee®, Researchero, Key@, Key1, Roomo,
Room1 and SecureLabe, which are atoms shared between the counterex-
ample and the satisfying instance; five sigs Employee, Researcher, Key,
Room and SecureLab; and two fields owns and opened_by, that are col-
lected from all defined sigs and fields in the specificaiton. From
these, ATR uses the relational operators in line 2 in Fig. 6 to gen-
erate relational terms such as Key.opened_by, Employee + Researcher,
Employee.xowns, and combines them with boolean operators in line 7
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Figure 5: PMAXSAT instance

to form expressions such as no Key®.opened_by, some Employee.*owns,
Key1 in Researcher.owns.

Note that the generated expressions (e.g., eyl in Employee.o wns)
contains atoms (e.g., key1) that are specific to the generated instances
and are not valid Alloy expressions. Thus, when patching repairs,
ATR generalizes these to live variables or relation terms in the
specification scope (e.g., Keyl becomes k or Key).

Pruning. Depending on the differences and the defect, we could
generate many possible repair candidates. However, we can prune
candidate expressions that give the same results when evaluating
against the counterexample and satisfying instances. This is because
while the counterexample and satisfying instances are similar by
design, they inherently have different semantics (one does and the
other does not satisfy the instance) and must give opposite results.

For example, the candidate expression no Keyo.opend_by is pruned
because it evaluates to False for both instances in Figs. 3 and 5.
In contrast, Key1 in Employee.owns is kept as it evaluates to False in
the satisfying instance and True in the counterexample. In our
experience, this step helps reduce the search space significantly.

Synthesizing Repairs. ATR replaces the buggy expression with
each candidate and checks that the Alloy analyzer cannot find any
counterexample for the new specification (i.e., the specification
does not violate the assertion). Note that ATR also requires the
Alloy analyzer to find some satisfying instance for the new speci-
fication (otherwise this means the specification is too strong and
not satisfiable). If the Alloy Analyzer found a satisfying instance
and no counterexample, we consider the new specification as a
valid fix. Otherwise, ATR repeats the process with the old and new
counterexamples.

Note that if the original specification has other predicates and
assertions other than the violated assertion, then the new specifi-
cation, which fixes the violation, also preserves similar behaviors
for those predicates and assertions as to the original one. This is
similar to the positive and negative tests in traditional APR, where
a repair candidate has to pass both the existing positive tests and
the negative ones.

For this example, ATR finds the following repair:

all e : Employee | some k : Key | k in e.owns and
SecureLab != k.opened_by and
e !lin owns.opened_by.SecureLab // added constraint



Table 1: Mutation Operations

MO ‘ Description ‘ Example
UOM | Unary Operator Modification *xa > ~a
UOD Unary Operator Deletion *a > a
UOA Unary Operator Addition ar> *a
BOM | Binary Operator Modification a+b—a-b
BOD Binary Operand Deletion a+b—b

BOS Binary Operand Swap a in b—b in a
LOM List Operator Modification a8&b8&&c +— al |b]|c
LOD List Operand Deletion allbl|lcH—allc

which adds a new constraint requiring the keys to open the secure
lab are not owned by any employee.

Complex Repairs and Program Synthesis. For demonstration pur-
poses, the above example is relatively simple and thus allows ATR
to generate the repair in the first iteration. However, for more
complicated cases, ATR might need multiple iterations to find the
fix. For example, the specification classroom_inv13_32.als in
our experiment requires two iterations to generate the expres-
sion Tutors.Person in Teacher 8& Person.Tutors in Student to fix the
bug no Student.Tutors.

Note that ATR can also be used as a synthesis tool that generates
missing expressions in an Alloy specification. This is useful because
many Alloy violations are due to missing information or facts. For
example, the bst(binary search tree) example in our benchmark has
an empty predicate, and ATR was able to synthesize the expression
no n.left || no n.right to it (in 2 iterations) and thus completes the
specification.

3 THE ATR APPROACH

In § 2 we give an overview of ATR in Fig. 1 and show how ATR
works using a concrete example. In this section we describe the
main ideas and designs of ATR.

3.1 Preprocess with Mutation

There are many bugs that can be repaired by simple mutations, for
example, in addr.als of ARepair benchmark, the buggy expression
all b : Book | n : Name | lone b.n.listed can be repaired by simply
changing lone to some. To rapidly repair those simple bugs and gen-
erate initial counterexamples, ATR mutates the buggy expressions
before starting template-based searching.

ATR uses eight mutation operations defined in Table 1: UOM
(Unary Operator Modification) that changes a unary operator; UOD
(Unary Operator Deletion) that deletes a unary operator; UOA
(Unary Operator Addition) that adds a unary operator; BOM (Bi-
nary Operator Modification) that changes a binary operator; BOD
(Binary Operand Deletion) that deletes a binary operand; BOS (Bi-
nary Operand Swap) that swaps the position of two operands if the
binary operator is asymmetric; LOM (List Operator Modification)
that changes a list operator; and LOD (List Operand Deletion) that
deletes a list operand).

Given an expression, ATR applies mutation operators multiple
times upto a certain bound, e.g., a in b becomes b in ~a using 3
mutations: BOS, UOD, and UOA.

For each mutant, ATR checks if the Alloy analyzer generates any
counterexamples. If no counterexample is generated, ATR considers
this mutant as a repair and returns; otherwise, ATR checks if previ-
ous counterexamples are also counterexamples for the mutant. If
all previous counterexamples satisfy the mutant, i.e., not counterex-
amples of the mutant, ATR considers the mutant a different mutant
and asks the Alloy analyzer to generate a counterexample and adds
it to the initial counterexample suite; otherwise, ATR considers the
mutant the same as previous mutants and continues.

3.2 Instance Generation

Given a counterexample and an assertion, ATR generates one single
instance that satisfies the asserted property with minimal differ-
ences from the counterexample. The reason for this is that while
every counterexample and every satisfying instance will be differ-
ent, we want pairs with the fewest differences possible so that we
can analyze them effectively.

Thus, to obtain the desired satisfying instance that is as close
to the counterexample as possible, ATR treats this problem as a
PMAXSAT problem as described in § 2.1. More specifically, ATR
converts the assertion to a predicate, and sets the predicate with the
Alloy specification as the hard constraints, and the counterexample
as the soft constraints. In this work, ATR uses the Pardinus [16]
solver to solve the PMAXSAT problem and returns an instance
that satisfies the predicate and has minimum differences with the
counterexample.

As demonstrated in § 2.2, the reason to generate instances with
minimal differences is to narrow the search space for candidate
repair. While we can use the Alloy Analyzer to generate a satisfying
instance, such randomly generated instances are quite different
from the counterexample (cf. Fig. 3 and Fig. 4). More specifically,
such randomly generated instances often contain properties that are
irrelevant to the defect, hindering the discovery of properties related
to the defect. Besides, the names of atoms in the Alloy analyzer are
also randomly assigned, which may lead to mismatching between
shared atoms and misleading the search process.

For example, considering the counterexample in Fig. 3 and the
random Alloy generated instance in Fig. 4, the difference shows that
Researcher@ ownsKey1 that opens Room, which does not affect the
satisfiablity of the counterexample and the satisfying instance, and
it may lead to over-constraint repairs that preventing Researcher
to own Key to Room. With the PMAXSAT generated instance in
Fig. 5, those unrelated differences are pruned out, and ATR can
easily identify the crucial difference that Employee should not own
key to SecureLab.

3.3 Generating and Pruning Templates

ATR generates repair candidates by enumerating candidate tem-
plates using the grammar given in Fig. 6. There are three different
templates: relational templates (or terms) that connect variables
using relational operators, shown in lines 5-7; boolean templates
that connect relational expressions using boolean operators, shown
in lines 1-3; and logic templates that connect templates using logic
operators, as shown in lines 9-11.

Given a pair of counterexample and satisfying instances, ATR
first generates all possible relational terms using shared atoms,



<RT> := <V> | <RUO> <RT> | <RT> <RBO> <RT>

<RUO> := ~ | * | * <RBO> := . | & | + | -
<v> := atoms + sigs + fields

<BT> := <BUT> | <BBT>

<BUT> := <BUO> | <RT> <BBT> := <RT> <BBO> <RT>
<BUO> := no | lone | some | one <BBO> := = | in | != | lin
<LT> := <LUT> | <LBT> | <BT>

<LUT> := <LUO> <LT> <LBT> := <LT> <LBO> <LT>
<LUO> :=! <LBO> := || | && | => | <=>

Figure 6: Repair Templates

sigs, and fields up to a certain bound by the number of relational
operators. For example, Employee. xowns.Key1 is generated using sig
Employ, field owns and atom Key1, with a bound of three operators:
two dot join (.) operators and one transitive closure * operator.

Next, ATR generates boolean expressions by filling the holes in
the boolean templates with the generated relational expressions.
For example, given two terms Employee. owns and Key, for a asymmetric
template __ in __, two expressions are generated: Employee.owns in Key
and Key in Employee.owns. For a symmetric template = only one
expressions is generated: Employee.owns = Key.

J—

Pruning. When filling the holes, instead of using concrete rela-
tional terms, ATR uses values to fill the holes in the templates. Given
an instance, many terms evaluate to same value and are semanti-
cally equivalent in that context. For example, Key.opened_by and Room
are considered equivalent in Fig. 3 because they both evaluate to
value Roomo + secure_labe.

If a term evaluates to the same value in the counterexample and
satisfying instance, we use that value to represent the term; other-
wise, we use the term. For example, some Key.opened_by and some Room
become some Roomé+secure_labe because Key.opened_by and Room both
evaluate to Roomo+secure_labe. Whereas some owns cannot be repre-
sented by value as owns evaluates to Keye+key1 in the counterexample
and Keyo in the satisfying instance.

The similarity introduced by the PMAXSAT helps to reduce the
number of different values significantly. For the instances in Fig. 3
and Fig. 5, there are 2855 relational terms, but only 136 different
values and 23 different terms, which reduces the search space of
each hole from 2855 to 159.

ATR then prunes the generated expressions based on the coun-
terexample and the satisfying instance. ATR evaluates each ex-
pression in the context of the counterexample and the satisfying
instance and keeps the ones with different evaluation results, i.e,
True in the counterexample and False in the satisfying instance, and
vice versa. If we can trust the counterexample and the satisfying
instance, i.e, the satisfying instance is the expected instance, we
can select the expressions evaluating False in the counterexam-
ple and True in the satisfying instance. However, the satisfying
instances are generated from a “Faulty” specification and may not
be an expected instance; we thus need to consider more situations.

Those different expressions are potential properties that differ-
entiate between P and —P and can help repair the defects. While
the expressions with the same evaluation results are pruned out, as
they are most likely implied by the bug-free part of the specification,
and may not relate to the defect.

3.4 Synthesizing Repairs

The boolean expressions contain atoms that are bounded to the
specific pair of counterexample and satisfying instance. ATR gen-
eralizes those boolean expressions to valid Alloy expressions by
replacing the atoms with live variables at the buggy location. At the
buggy line 18 in Fig. 2, we collect 2 live variables of type Key: k and
Key, and Key1 in Employee.owns can generalize to k in Employee.owns Or
Key in Employee.owns.

ATR then combines the boolean expressions using logic op-
erators to generate complete expressions. For example, the ex-
pression k in Employee.owns => some owns is generated by connecting
k in Employee.owns and some owns with implies.

ATR patch the buggy specification with these expressions in
three ways. For example, given the buggy expression:

all e : Employee | some k : Key | k in e.owns
and SecurelLab != k.opened_by

and the synthesized expression opened_by.SecureLab !in e.owns, ATR
generates the following patches:

(1) Connecting with the buggy expression using logic operator.

all e : Employee | some k : Key | k in e.owns &&
SecurelLab != k.opened_by implies
opened_by.SecureLab !in e.owns

(2) Replacing part of the buggy expression.

all e : Employee | some k : Key | k in e.owns &&
opened_by.SecureLab !in e.owns

(3) Replacing the whole buggy expression.

all e : Employee | some k : Key |
opened_by.SecureLab !in e.owns

To ensure the repair is as similar as the original expression and to
avoid overconstraint as much as possible, ATR applies these patches
in the following order: first try (1), then (2), and finally (3).

Finally, for each new specification, ATR checks if the Alloy ana-
lyzer generates any counterexamples and any satisfying instance.
If no counterexample is generated, ATR considers that the repair
is done and returns; otherwise, ATR generates its corresponding
satisfying instance and checks if the pair already exists, if so, the
patched expression has no impact on the defect, thus is abandoned
and the corresponding expression is removed in the next iteration;
otherwise, the patch is saved, and ATR repeats the process with
this patched version and the new pair of a counterexample and a
satisfying instance.

4 EVALUATION

ATR is implemented in Java. It builds on top of Alloy 4.1 and uses
the Pardinus [16] PMAXSAT solver. The tool takes as input an
Alloy specification that fails an assertion and returns a specification
satisfying that assertion while preserving other behaviors of the
original specification (i.e., satisfying other existing assertions and
predicates in the specification).

To evaluate ATR, we consider three research questions:

(1) RQ1: Can ATR repair Alloy bugs effectively?
(2) RQ2: What are some interesting characteristics of ATR re-
pairs?



(3) RQ3: How does ATR compare to other Alloy repair tech-

niques?

To investigate these questions, we evaluate ATR using two differ-
ent benchmarks shown in Tab. 2. The first one is from the Alloy4Fun
project [42] and consists of 1936 buggy specifications collected from
student submissions for six Alloy problems (classroom models class
registrations, ¢v models work and source distribution problem,
graphs models different graph properties, such as acyclic and com-
plete, Its models a labeled transition system, production models an
automated production line, and trash models a file system trash
can).

The second benchmark is from the ARepair project [73] and con-
sists of 38 buggy specifications collected from 12 Alloy problems:
six from the Alloy Analyzer (addr models an address book, cd mod-
els object and class hierarchy, ctree models undirected trees, farmer
models the chicken crossing problem, bempl and other model the
security lab access problem, and grade is a gradebook specification)
and the rest from graduate student homework (arr models sorted
arrays, blancedBST models balanced binary search tree, dll doubly
linked lists, fsm models finite state machines, and student models
sorted linked lists).

The specifications are relatively small, i.e., tens or hundreds lines
of code. However, they contain real bugs written by humans and
consist of a wide variety of defects, from simple ones that can be
repaired by modifying a single operator to complicated ones that
require synthesizing new expressions and replacing the whole pred-
icate body. Moreover, the correct versions of these specifications
are provided with the benchmarks and used as ground truths to
check our results.

For our experiments, we use ATR’s default setting. We set 5 as the
maximum depth of relational expressions, i.e., generated relational
expressions contain at most 5 relational operators. We set 3 as
the maximum depth of logic structures, i.e., generated expressions
contain at most 3 logic operators. For each specification, we use a
1-hour timeout, as used in BeAFix [25]. ! All these parameters can
be modified by the user, and we choose this configuration based on
experience.

All experiments reported here were run on a 2.4GHz Intel Xeon
CPU with 16GB of RAM with Ubuntu 16.04. ATR and all benchmarks
are open-source and available in the following Github repository:
https://github.com/guolong-zheng/atmprep.

4.1 ROQ1: Performance of ATR

Tab. 2 presents our results. Columns Models and #specs show
the model groups and the number of buggy specifications in the
groups. Column #repair shows the total number of correctly re-
paired specifications. Column #dist shows the average syntactic
distance between the repaired expression and the manual repaired
expression. Column overfit shows the number of fixes that are
overfitting (satisfies the given requirements but incorrect in gen-
eral). Finally, column time shows the average time in seconds,
which includes both fault localization and repair time. Note that the
average fault localization time is negligible, i.e., less than 1 second.

! ARepair used a 15-hour timeout, but its benchmark only contains 38 specifications.
Due to the large size of our benchmarks, i.e., 1974 specifications, we choose a 1-hour
timeout as BeAFix.

Table 2: ATR’s Results on the ARepair and Alloy4Fun bench-
marks

Model #specs #repair dist overfit time(s)
classroom 999 688 4 0 601.8

§ cv 138 38 8 0 376.2
E,.; graphs 283 260 5 0 156.9
o | Its 249 70 4 0 487.3
< production 61 43 6 0 332.8
trash 206 187 3 0 254.6
Summary 1936 1286 5 0 368.3
addr 1 1 1 0 0.7

arr 2 1 1 0 1.9
balancedBST 3 1 4 1 584.9
bempl 1 1 1 1 3.3

o | cd 2 2 2 0 92.2
S [ ctree 1 0 - 0 3600
% dil 4 2 4 0 1615.2
farmer 1 0 - 0 3600
fsm 2 2 3 1 3.9
grade 1 1 5 1 1.8
other 1 1 7 1 2.9
student 19 10 4 3 443.6
Summary 38 22 3 8 829.2
Total 1974 1308 5 8 364.4

Successes. ATR was able to repair 1308/1974 (66.3%) specifications
using an average time of 364.4s. For the Alloy4Fun benchmark, ATR
repairs 1286/1936 (66.4%) specifications using 368.3s on average. For
the ARepair benchmark, ATR repairs 22/38 (57.9%) specifications
using 829.2s on average.

ATR can repair various kinds of bugs, from simple ones that
can be repaired by a single mutation to complicated ones that
require multiple templates. For example, in addr_1.als, ATR uses
just one unary operator modification mutation to change the
buggy expression all b:Book | all n:b.entry | lone b.listed[n]
to all b:Book | all n:b.entry | some b.listed[n] to satis-
fies the assertion that all entries have at least one
listed item. For the more complicated specification
classroom_inv13_14.als, ATR changes the buggy expres-
sion all t:Teacher,s:Student | t->s in Tutors (all teacher tutors all
student) to Tutors.Person in Teacher & Person.Tutors in Student (a
person tutors must be a teacher and a person tutored must be a
student) using the binary template __ in __ twice and the logic
template __ 88 __ once.

ATR can also repair defects that cannot be repaired by BeAFix
and ARepair. For example, in classroom_inv12_61, the user ex-
pects that each teacher teaches some groups in some class. BeAFix
and ARepair both report no repair found for the buggy expression
all t:Teacher | some g:Group | t.Tutors in g.~(Class.Groups), which
specifies that each teacher tutors some students without constraints
over the teach relation. ATR generates the following fix:

all t:Teacher | some (t.Teaches).Groups

which specifies that each teacher teaches some groups and therefore
satisfies the user’s intention.
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Fails. ATR was not able to repair 666/1974 (33.7%) specifications.

This is due to the inaccuracy of fault localization and the complexity
of the bugs (responsible for 556 fails).

First, inaccurate results from FLACK cause ATR to fail to fix 110
specifications. Just like most APR approaches, ATR might not be
effective if its fault localization tool does not give accurate results.
For example, in student19.als, FLACK ranks the buggy expres-
sion at 8th place of the ranking list, and ATR times out for this
specification. If we manually specify the buggy location for ATR, it
finds the correct fix that is the same as the ground truth using 37
seconds. Thus, a more accurate underlying fault localization tool
will significantly improve the ATR’s performance.

Second, ATR failed to fix 556 specifications due to the complexity
of the required repairs. One common failure we observe is that
many repairs require introducing new variables. For example, in
cv_inv1_13.als, the ground truth fix for the buggy expression
some User.visible 1S all u:User | u.visible in u.profile, which intro-
duces and uses a new qualifer “u”. ATR does not consider templates
that introduce such arbitrary qualifiers and therefore cannot find
such repairs. We can extend ATR for this, e.g., by introducing a
new template all u : __1 | __2 in __3. However, the introduction
of new variables expands the search space exponentially, e.g., __1
and __2/__3 have 5790 and 17370 possible expressions, respectively,
and thus this template alone has 1.7e'? possible candidates.

4.2 RQ2: Repair Analysis

Similarity to ground truths. ATR’s 1308 repairs are simi-
lar to the ground truth specifications. O n a verage t hey are
5 syntactic edits from the ground truths, i.e., specifications
generated by ATR can be transformed to the ground truths
with 5 edits, including deleting, adding, and replacing nodes
on the AST’s. For example, in 1ts_inv5_16.als, ATR trans-
forms the buggy expression all s1,s2:State | s1.trans = s2.trans
to all s1,s2:State | State.trans.State = s2.trans.State using one bi-
nary boolean template ? = 2, which is 1 edits away from the manual
fixalls1,s2:State | s1.trans.State= s2.trans.State, ie., replacing s1
by State.

We manually analyze the buggy and ATR’s patched expressions
and find that the ATR’s patches do not depend on the syntactic com-
plexity of the buggy expression or the similarity between the buggy
expression and the ground truth. Instead, they mainly depend on
the syntactic complexity of the correct expression, i.e., the number
of operators and variables involved in the expression. Thus, ATR is
able to generate fixes even if the buggy expressions are largely dif-
ferent from the correct ones. For example, in Trash_inv7_52.als,
the user writes ~link.link in iden to specify that no file links to
Trash, which underconstrains and allows a Trash file links to itself.
ATR generates the fix Trashin (File - File.link) which specifies
that Trash are files that no file links to and is semantically equiva-
lent to the ground truth.

For mutation-based techniques, this fix requires atleast five
mutation operations. Both ARepair and BeAFix fail to find this fix
within their time limits. ATR uses templates to replace the buggy
expression, and is able to find this fix quickly using 78s (in the first
iteration).

A Synthesis Tool. In addition to being an APR tool, ATR can
also be used as a stand-alone synthesis tool that infers missing
expressions in an Alloy specification. This is useful because many
Alloy problems are due to missing information or facts (many of
the bugs in the benchmarks we used are incomplete specifications.)

For example, the bst specification in ARepair benchmark con-
tains an empty predicate:

pred HasAtMostOneChild( n : Node ) {3}

which violates an assertion specifying that a node has at most
a child node. For this bug, ATR synthesizes the expression
no n.left || no n.right specifying that a node n has either no left
child or no right child in the predicate and thus completes the
specification.

The d11 specification in ARepair benchmark also has an empty
predicate ConsistentPreAndNxt, which trying to specify that in a dou-
bly linked list, the next node’s previous node is itself. ATR com-
pleted the specification by synthesizing and inserting the expres-
sion nxt = ~pre, which specifies that relation nxt is equivalent to the
inverse of relation pre.

Pruning. The ability to scale a large search space of candidate re-
pairs is crucial for any APR and synthesis approaches. ATR employs
several tactics to prune repairs such as analyzing counterexamples
and satisfying instances and only generating repairs under certain
templates as described in § 3.

To show how pruning helps ATR, we ran ATR on the same bench-
mark with pruning disabled. Unsurprisingly, we found that ATR’s
performance significantly degrades, in both increasing running
time and producing much fewer fixes, when we do not use pruning.
More specifically, ATR with pruning repairs 629 more specifications
and saves about 15 mins of runtime on average. In short, we found
that pruning is effective (in fact, required) in reducing the search
space and helps ATR find correct fixes quickly and in general repair
more specifications in the given time limit.

Overfitting. Overfitting is a major issue in APR where the fixes
pass the given "oracles” (e.g., tests), but are incorrect in general.
Assertions typically are an ideal oracle because they can capture a
large set of tests. Nonetheless, if the assertions are not sufficiently
strong, APR tools including both BeAFix and ATR can still generate
overfitting fixes.

ATR produces overfitting fixes for 8/38 ARepair specifications
and zero Alloy4Fun specifications. For ATR, these fixes are “cor-
rect” where the Alloy analyzer finds no counterexamples and some
satisfying instances. However, they are incorrect in general as the
patched specifications are not semantically equivalent to the ground
truth specifications.

We found that ATR’s overfitting fixes are mostly caused by in-
accurate fault localization, where the bug happens in a predicate,
but the fault localization tool reports expressions in a fact. For ex-
ample, the assertion in balancedBST3_2.als specifies that for a
balanced tree, the height of a node’s left subtree and the height of
its right subtree differs at most one. The buggy expression occurs
in the predicate Balanced, but the FLACK localization tool reports a
spurious location in one of the facts. Surprisingly, ATR still can gen-
erate a repair candidate that satisfies the assertion (i.e., passes the
oracles). Nonetheless, the generated fix, which forces that all nodes



must have exactly one parent, is too strong and is thus incorrect
in general. If we provide ATR with the correct buggy location in
balancedBST3_2.als, it generates a correct fix that is semantically
equivalent to the ground truth.

Note that other Alloy repair tools such as ARepair and BeAFix
can also face overfitting issues. As described next in § 4.3), ARepair
is more prone to overfitting as it relies on tests. BeAFix does not
generate overfitting patches because it requires the user to provide
suspicious locations. If we provide BeAFix with the same inaccurate
fault localization information, it would also generate an overfitting
repair for the balancedBST2_3. als specification.

4.3 RQ3: Comparing Alloy Repair tools

We compare ATR with ARepair [74] and BeAFix [25], the two state
of the art Alloy repair tools we are aware of. Similar to ATR, BeAFix
uses assertions and thus we reuse the same assertions from BeAFix’s
experiments [25]. ARepair uses Alloy unit tests instead of assertions
as oracles, and we use AUnit [69] to automatically generate such
tests to represent assertions (the same way ARepair uses to repair
assertion violations [74]). To better evaluate the automatic repair
ability, we did not consider additional tests that the ARepair authors
manually added. Consequently, our experimental results might be
different from those reported in [74]. We use the best performance
setting of ARepair as reported in [74]. We set a 1-hour timeout for
all tools, the same time limitation used in the experiment of both
ARepair and BeAFix.

Tab. 3 presents the results. Column correct shows that total
number of correct repaired specifications. Column overfit shows
the total number of overfitting patches . Column time shows the
average time in seconds.

In summary, for 1974 specifications, ARepair generates patches
for 1694/1974 (86%) specifications using an average time of 91.9
seconds. However, 1500 (88.5%) of 1694 generated patches are over-
fitting fixes. As observed in [25], the overfitting is caused by the
limitation of using test suites as oracles and can be improved by
providing ARepair with stronger test suites.

BeAFix generates fixes for 1005/1974 (50.9%) specifications with
no overfitting using an average time of 1569.8 seconds. ATR gener-
ates correct fixes for 1300/1974 (67.1%) specifications and 8 over-
fitting patches using an average time of 364.4 seconds. Note that
BeAFix requires the user to specify suspicious statements to re-
pair, and if such information is inaccurate, BeAFix also generates
overfitting repairs as discussed in § 4.2.

ATR shows the best repair rate, 67.1% against 9.8% of ARepair
and 50.9% of BeAFix. Manually checking the repaired cases for all
tools, we find that ARepair and BeAFix complement ATR, i.e., there
are cases ARepair and BeAFix can repair but not ATR, and vice
versa. For example, ARepair and BeAFix correctly repair arri.als
and fsm1.als, that could not be repaired by ATR. 3 In contrast,
ATR repairs 1ts_inv1_14.als and graphs_oriented_9.als that
could not be repaired by ARepair and BeAFix. Thus, the mutation-
based approaches ARepair and BeAFix complement our template-
based ATR approach.

2Qverfitting patches pass all tests but are not equivalent to the correct specifications.

3For arr1.als, the repair needs a template not considered by ATR. For fsm1.als,
ATR failed to generate a similar counterexample and satisfying instance due to the

overconstraint of the bug.

4.4 Threats to Validity

The main threat to external validity is the generalizability of the
benchmarks used in the evaluation, i.e., the Alloy specifications and
bugs in the benchmarks may not represent general cases. The two
benchmarks used in our evaluation have been used to evaluate other
Alloy repair tools. All the bugs in both benchmarks are not synthetic
but introduced by humans in real-life usage. The benchmarks are
admittedly consisting of small Alloy specifications, and may not
capture the complexity of large specifications. However, they do
involve some complex kernels characteristic of larger realistic Alloy
specifications.

ATR builds on top of multiple off-the-shelf tools, e.g., Alloy and its
underlying SAT4]J solver, and the Pardinus solver. These tools also
include some degree of randomness. We run our experiment several
times and notice negligible impacts of the solver’s nondeterminism.

5 RELATED WORK

Program Repair and Synthesis. APR techniques have steadily
gained research interests and produced many novel repair tech-
niques. Constraint-based repair approaches, e.g., Angelix [47],
AFix [29], SemFix [53], FoRenSiC [15], StarFix [76], Gopinath et
al. [22], Jobstmann et al. [30], generate constraints and solve them
for patches that are correct by construction (i.e., guaranteed to
adhere to a specification or pass a test suite). In contrast, generate-
and-validate repair approaches, e.g., GenProg [38], Pachika [17],
PAR [33], Debroy and Wong [18], Prophet [41], find multiple repair
candidates (e.g., using stochastic search or invariant inferences) and
verify them against given specifications. Learning-based repair ap-
proaches, e.g., Fixminer [35], DLFix [40], DeepDelta [48], iFixR [36],
learns fixes from repair examples.

Some program synthesis and repair researches, e.g., [5, 37, 47,
53, 54, 66, 67], integrate existing tools, e.g., test-input generation
or symbolic execution, to synthesize desired programs. Such in-
tegrations are common in modern synthesis techniques, which
generalize program repair by searching for code to fulfill given
specifications, including the multi-disciplinary ExCAPE project [1]
and the SyGuS competition [2], and have produced many practical
and useful tools such as Sketch that generates low-level bit-stream
programs [65], Autograder that provides feedback on programming
homework [64], and FlashFill that constructs Excel macros [23, 24].

PMAXSAT has been utilized by many researches to locate bugs
and generate patches for imperative programs. For example, Agx-
Faults [57] uses PMAXSAT to locate faults by finding the minimal
set of suspicious statements, DirectFIx [46] applies PMAXSAT to
find the simplest patch with minimal changes, TINTIN [14] uses
PMAXSAT for regression aware localization and repair, and Con-
cBugAssist [31] uses PMAXSAT and model checking to diagnose
concurrency bugs. These techniques focus on imperative programs
and formulate statements and control flows into PMAXSAT formu-
las, which are not applicable in the context of a declarative language
like Alloy. ATR is different from them in that it uses PMAXSAT to
generate “tests” and uses the “tests” to prune the search space.

Alloy Repair. Comparing to APR and synthesis approaches for
imperative programs, there are few works for APR techniques
for Alloy. ARepair [74] is the first APR approach for Alloy and
generates fixes for Alloy specification violating tests. This work



Table 3: Comparison to ARepair and BeAFix.

Benchmark ‘ ARepair ‘ BeAFix ‘ ATR

Model ‘ # Cases ‘ correct | overfit ‘ time(s) ‘ correct | overfit ‘ time(s) ‘ correct | overfit ‘ time(s)
classroom 999 88 713 59.2 387 0 2221.7 688 0 601.8

g cv 138 2 116 2.2 82 0 1472 38 0 376.2
= graphs 283 19 243 1.4 232 0 673.1 260 0 156.9
E‘ Its 249 1 238 0.4 41 0 3013 70 0 487.3
E‘ production 61 27 32 2 56 0 311.4 43 0 332.8
trash 206 48 140 4.7 183 0 405 187 0 368.3
Summary ‘ 1936 185 1492 31.5 981 0 1788.3 1286 0 368.3
addr 1 1 0 5.1 1 0 0.5 1 0 0.7

arr 2 2 0 4.7 2 0 2.4 1 0 1.9
balancedBST 3 1 1 268.6 1 0 2400.1 0 1 584.9

bempl 1 0 0 3.3 0 0 3600 0 1 3.3

= cd 2 0 2 2.2 2 0 0.7 2 0 92.2
g ctree 1 1 0 3.9 0 0 3600 0 0 3600
é dll 4 0 3 20.2 3 0 902 2 0 1615.2
< farmer 1 0 1 32.7 0 0 3600 0 0 3600

fsm 2 2 0 3.9 1 0 1800.2 1 1 3.9

grade 1 0 1 101.7 0 0 3600 0 1 1.8

other 1 0 0 29 1 0 3.1 0 1 2.9

student 19 2 10 248.7 13 0 1185.6 7 3 443.6
Summary | 38 | 9 | 18 | 1522 | 24 | o | 13512 | 14 | 8 | 8292
Total | 1974 | 194 | 1500 | 919 | 1005 | o0 | 15698 | 1300 | 8 | 3644

relies AUnit [69] tests, which are unit tests represented as Alloy
predicates, AlloyFL [75] fault localizer, which also use unit tests
to identify suspicious program statements, and mutation-based
repairs (e.g., [38] which attempt to repair bugs by randomly mutate
Alloy expressions. However, ARepair suffers from overfitting due
to using tests as oracle, from which the generated repairs pass all
tests but can not generalize to unseen tests.

BeAFIX [25] mitigates the overfitting problem by repairing Alloy
based on assertions, which are more natural than tests in Alloy de-
velopment and represent large sets of tests. BeAFix does not perform
fault localization and instead relies on the user providing suspicious
statements. BeAFix finds repairs by mutation, but unlike existing
mutation-based approaches that limit search space by mutation
operations, BeAFix exhaustively searches all possible candidates
up to a certain bound. BeAFix also uses Alloy counterexamples,
however mainly for checking variabilization feasibility.

FLACK [77] aims to find suspicious Alloy expressions responsible
for failing assertions. Similar to ATR, FLACK analyzes counterex-
amples and PMAXSAT instances to identify relevant information.
ATR adapts and extends this approach to generate repairs. In par-
ticular, it generates candidates repairs using templates and uses
information from differences among counterexample and satisying
instances to prune candidates.

6 CONCLUSION

We introduce a new automatic program repair technique for declar-
ative specifications written in the Alloy language. Our insight is that
we can generate Alloy expressions that fix an assertion violation
by analyzing and comparing the counterexamples and satisfying

instances from the Alloy Analyzer. We present ATR, a tool that
implements these ideas to generate candidate repair expressions
in specification. ATR uses a PMAXSAT solver to find satisfying
instances similar to counterexamples generated by the Alloy Ana-
lyzer, analyzes satisfying instances and counterexamples to prune
candidate repair templates. Preliminary results on a large set Alloy
benchmarks show that ATR is effective in repairing complex Alloy
bugs that existing Alloy APR techinques cannot.
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