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A formulation of an LPV control problem with regional pole placement constraints is presented, which is suitable for the
application of a Full Block S-Procedure. It is demonstrated that improved bounds can be obtained on the induced L2 norm of
closed loop systems, while satisfying pole placement constraints. An application consisting in the 6 degrees of freedom (DOF)
control of a space vehicle is developed as an example, with hardware in the loop (HIL) simulation. This shows that the method
is appealing from the practical point of view, considering that the synthesized control law can be implemented satisfactorily in
standard flight control systems. Conclusions with remarks towards the practical use of the method are presented as well.

1. Introduction

An interesting technique that has allowed linear parameter
varying (LPV) control synthesis algorithms to obtain less
conservative performance bounds is given the name of
Full Block S-Procedure (FBSP). See [1, 2] and references
therein. The formulas in [3, 4], render synthesis conditions
combining the techniques of [1, 5], to develop a generalized
framework for LPV control, based upon parameter depen-
dent Lyapunov functions (PDLFs) and full block multipliers
(FBMs). Yet these results provide linear matrix inequality
(LMI) constrains with an infinite number of inequalities. In
practice, one must resort to gridding the parameter variation
set in order to apply the methods.

Subsequent work presented in [6] makes focus in
particular form of PDLFs, namely, PDFLs that depend on the
parameter in a linear fractional fashion, for systems whose
open loop state space matrices depend on the parameter in a
linear fractional way as well. In the sequel we will call the
former LFT PDLFs and the latter LFT systems. From the
practical point of view, the technique, which is based upon
[4], is most appealing considering renders a set of constraints
with a finite number of LMIs.

Another reference that is relevant from the practical
point of view in LPV control is given by [7]. This work
compares the results of [5] with an extension to LPV systems
of the results in [8]. Helpful hints are given, in order to obtain
LPV controllers that can be implemented in practice. The
synthesis methods seek to establish stability and performance
making use of PDLFs.

It must be recalled that synthesis conditions like the ones
presented in [5] require a first step in order to establish
feasibility of the problems and a second step to calculate
the controllers. Under certain rank restrictions imposed on
the state space matrices of the augmented plant, closed
form expressions can be given for the calculation of the
controllers. As opposed to this case, in [8] like results, an
optimization is directly carried out, on a set of variables
which are equivalent to the final state space matrices of the
controller, through a nonlinear change of variables, which is
the approach followed in this work.

It is rather frequent, in the application of LPV meth-
ods, that feasible problems with acceptable γ-performance
indexes (see [5, 9] for a definition) show undesirable
transient response. With a slight abuse of terminology, it
can be posed as LPV systems having closed loop “poles”
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in undesirable locations. It is actually the poles of each
linear time invariant system (LTI) resulting from holding
the parameter vector constant, that turn out to have a
nonconvenient loci. It has been reported previously that LPV
synthesis, in particular when approached through a single
quadratic Lyapunov function (SQLF), shows a problem
called “fast poles” (see [10]).

The aspect of transient response of systems has not
been dealt with in the FBSP framework of [6]. The work
presented here extends the application of the FBSP, together
with LFT PDLFs, to the same kind of LFT systems [6]
deals with. The proposed approach includes the possibility
of having the closed loop poles of each LTI system resulting
from LPV dynamics with constant parameter trajectories,
to have their loci in a prescribed region. This idea is
most appealing from the practical viewpoint, in order to
carry out the simulation and implementation of controllers.
An application to the problem of 6 degrees of freedom
(DOF) control of a spacecraft is presented with numerical
hardware in the loop (HIL) simulations, as an application
example.

The paper is organized as follows. Section 2 presents
the developed formulas for LPV control with closed loop
regional pole placement and FBMs. In Section 3, the synthe-
sis method is employed to design the 6 DOF control for a
rocket. Concluding remarks are given in Section 4.

2. Synthesis Method

In this section the synthesis method of LPV control with
FBMs, PDLFs, and regional pole placement constraints is
presented.

2.1. Background. The set P ⊂ Rs is such that for each
θ = (θ1, . . . , θs) ∈ P , |θi| ≤ 1. On the other hand, for some
ν = (ν1, . . . , νs) ∈ Rs with νi > 0, all ν = (ν1, . . . , νs) ∈
V ⊂ Rs are such that |νi| ≤ νi. An rα = (rα1 , . . . , rαs) ∈ Ns

defines the sets Θα = {Θα = diag{θ1Irα1
, . . . , θsIrαs } : θ ∈

P } and Θ̇α = {Θ̇α = diag{θ̇1Irα1
, . . . , θ̇sIrαs } : θ̇ ∈ V}.

The number nα := ∑s
i=1 rαi is used later. In the sequel, any

rβ = (rβ1 , . . . , rβs) ∈ Ns will be regarded as defining a number
nβ and a couple of sets Θβ, and Θ̇β, in the same fashion as
nα, Θα, and Θ̇α before. With the subindex omitted, it will be
just r = (r1, . . . , rs) ∈ Ns, defining np := ∑s

i=1 ri, Θ and Θ̇.
Throughout this paper, systems state space matrices depend
on s-dimensional parameter trajectories evolving in the set
F ν

P = {θ ∈ C1(R+,Rs) : θ(t) ∈ P , θ̇(t) ∈ V, for all
t ∈ R+}.

The following lemma is crucial in order to use FBMs for
LPV control.

Lemma 1 (Full Block S-Procedure). Let

G(Θ) = Θ�

⎡

⎣
G11 G12

G21 G22

⎤

⎦ := G22 +G21Θ(I −G11Θ)−1G12

(1)

be a linear fractional transformation (LFT) where G11, G12,
G21 and G22 are real matrices of compatible dimensions. Given
a real symmetric matrix M, the quadratic matrix inequality

GT(Θ)MG(Θ) < 0 (2)

holds for all Θ ∈ Θ, if and only if there exists a real symmetric
full-block multiplier Π such that for any Θ ∈ Θ,

⎡

⎣
∗
∗

⎤

⎦

T

diag{Π,M}

⎡

⎢
⎢
⎢
⎣

G11 G12

I 0

G21 G22

⎤

⎥
⎥
⎥
⎦
< 0,

⎡

⎣
I

Θ

⎤

⎦

T

Π

⎡

⎣
I

Θ

⎤

⎦ ≥ 0.

(3)

Proof. See [6].

Remark 1. Condition (3) consists of an infinite number of
constraints. Considering Θ a compact set defined by its 2s

vertices, additional constraints can be added in order to turn
(3) into a condition with a finite number of constraints.
Namely, partition the multiplier Π as

Π =
⎡

⎣
Π11 Π12

ΠT
12 Π22

⎤

⎦, (4)

and request Π22 < 0. Then condition (3) will be convex with
respect to Θ. As a consequence, if for all vertices Θi of Θ, the
following LMI constraints

⎡

⎣
I

Θi

⎤

⎦

T⎡

⎣
Π11 Π12

ΠT
12 Π22

⎤

⎦

⎡

⎣
I

Θi

⎤

⎦ ≥ 0 (5)

are satisfied, then inequality (3) will be so itself. This
remark is important from the computational point of view.
Notice that, while acceptable in practice, the approach can
be conservative. Moreover, as observed in [6], fulfillment
of constraint (3) is achieved if it is further enforced that
Π11 = −Π22 > 0, with Π11, Π22 being symmetric, Π12 being
skew-symmetric, and all of them being commutable with all
Θ in Θ.

In order to state the control problem, consider an LFT
parameter-dependent plant:
⎡

⎢
⎢
⎢
⎣

ẋ(t)

e(t)

y(t)

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

A(Θ(t)) B1(Θ(t)) B2(Θ(t))

C1(Θ(t)) D11(Θ(t)) D12(Θ(t))

C2(Θ(t)) D21(Θ(t)) D22(Θ(t))

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

⎡

⎢
⎢
⎢
⎣

x(t)

d(t)

u(t)

⎤

⎥
⎥
⎥
⎦

,

(6)

where Θ(t) ∈ Θ, ẋ, x ∈ Rn, d ∈ Rnd is the disturbance, e ∈
Rne is the controlled output, u ∈ Rnu is the control input and
y ∈ Rny is the measurement for control. The underbraced
state space matrices of (6) depend on the parameter θ in a
linear fractional way as follows:
⎡

⎢
⎢
⎢
⎣

A B1 B2

C1 D11 D12

C2 D21 D22

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

B0

D10

D20

⎤

⎥
⎥
⎥
⎦
Θ(t)(I−D00Θ(t))−1

[
C0 D01 D02

]
.

(7)
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It is assumed that the LFT representation is well-posed; that
is, (I − D00Θ(t)) is invertible for any allowable parameter
values. It is also assumed that the triple (A, B2, C2) is
parameter-dependent stabilizable and detectable for all θ ∈
F ν

P . This guarantees the existence of a stabilizing output
feedback LPV controller. The class of LPV controllers we are
interested in is of the form

⎡

⎣
ẋk(t)

u(t)

⎤

⎦ =
⎡

⎣
Ak
(
Θ(t), Θ̇(t)

)
Bk
(
Θ(t), Θ̇(t)

)

Ck
(
Θ(t), Θ̇(t)

)
Dk
(
Θ(t), Θ̇(t)

)

⎤

⎦

⎡

⎣
xk(t)

y(t)

⎤

⎦,

(8)

where xk ∈ Rnk . The dimension of controller state nk is yet
to be determined.

The synthesis method used in this paper is based upon
the results in [6] for LPV systems and [8] for LTI H∞
synthesis with pole clustering. The following definition is
taken from [8].

Definition 1 (LMI-region). A subset D of the complex plane
is called an LMI region if there exist a symmetric matrix α =
[αkl] ∈ Rm×m and a matrix β = [βkl] ∈ Rm×m such that
D = {z ∈ C : fD(z) < 0} with

fD(z) = α + zβ + zβT = [αkl + βklz + βlkz
]

1≤k,l≤m. (9)

These regions make up a dense subset in the set of regions
of the complex plane, symmetric with respect to the real axis.
This makes them appealing for specifying pole placement
design objectives.

Theorem 1 (LPV basic characterization with pole placement
constraints). Let rS = (rS1 , . . . , rSs ) and rR = (rR1 , . . . , rRs ) ∈
Ns define nS , nR, ΘS , Θ̇S and ΘR, Θ̇R as in the beginning of
this section. Let S(ΘS) = TS(ΘS)TQTS(ΘaS) and R(ΘR) =
TR(ΘR)TPTR(ΘR), with

TS(ΘS) = ΘS �

⎡

⎣
TS11 TS12

TS21 TS22

⎤

⎦,

TR(ΘR) = ΘR �

⎡

⎣
TR11 TR12

TR21 TR22

⎤

⎦,

(10)

be two symmetric and positive definite matrix functions, where
constant matrices Q and P are yet to be found, with ΘS ∈ ΘS

and ΘR ∈ ΘR. Consider the LPV plant governed by (6),
with parameter trajectories in F ν

P . Suppose that there exist
parameter dependent symmetric matrices S and R such as
(10), a positive real number γ, and a parameter dependent
quadruple of state space data Âk, B̂k, Ĉk, and Dk, such that
the following LMI constraints

−
⎡

⎣
R I

I S

⎤

⎦ < 0, (11)

⎡

⎣αkl

⎡

⎣
R I

I S

⎤

⎦ + βklΦ + βlkΦT

⎤

⎦

k,l

< 0, (12)

Ψ =
⎡

⎣
Ψ11 ΨT

21

Ψ21 Ψ22

⎤

⎦ < 0 (13)

are satisfied for all θ ∈ P , θ̇ ∈ V, with

Φ

=
⎡

⎣
AR + B2Ĉk A + B2DkC2

Âk SA + B̂kC2

⎤

⎦,

Ψ11

=

⎡

⎢
⎣
−Ṙ+AR+RAT+B2Ĉk+

(
B2Ĉk

)T
B1 +B2DkD21

(B1 +B2DkD21)T −γI

⎤

⎥
⎦,

Ψ21

=
⎡

⎣
Âk + (A + B2DkC2)T SB1 + B̂kD21

C1R + D12Ĉk D11 + D12DkD21

⎤

⎦,

Ψ22

=
⎡

⎣Ṡ+SA+ATS+B̂kC2 +
(
B̂kC2

)T
(C1 +D12DkC2)T

C1 + D12DkC2 −γI

⎤

⎦.

(14)

Then, there exists a gain-scheduled output-feedback controller
as (8) such that one has the following.

(1) Internal stability is enforced.

(2) γ is a bound on the L2 gain of the closed-loop system
given by the interconnection of (6) with (8).

(3) The poles of each closed-loop LTI system, resulting from
all constant parameter trajectories in F ν

P , are circum-
scribed to an LMI region prescribed by a characteristic
function such as (9).

Proof. See [8, 11].

For the optimization problem to be convex, this method
seeks a unique closed loop Lyapunov Matrix X simultane-
ously valid for L2-gain and pole placement conditions. X
can be computed from S and R. As mentioned in [8], this
approach is potentially conservative, but rarely in practice.

2.2. Main Results. Next, to proceed towards the derivation
of synthesis conditions, a dependence of the so-called
transformed controller matrices Âk, B̂k, Ĉk, and Dk on
the measured parameter vector (θ) is proposed. Let rak =
(rak1 , . . . , raks ) and rck = (rck1 , . . . , rcks ) ∈ Ns define the numbers
nak and nck , and the sets Θak , Θ̇ak and Θck , Θ̇ck as in
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the beginning of this section. The transformed controller
matrices will be given by

Âk = TakAk, B̂k = TakBk,

Ĉk = TckCk, Dk = TckDk

(15)

with Ak, Bk, Ck, and Dk being constant matrices and

Tak
(
Θak

) = Θak �

⎡

⎣
Tak11 TS12

TS21 TS22

⎤

⎦, Θak ∈ Θak ,

Tck
(
Θck

) = Θck �

⎡

⎣
TR11 TR12

TR21 TR22

⎤

⎦, Θck ∈ Θck .

(16)

In order to apply the FBSP on LMIs (11), (12), and (13) in
a way resembling theorem 4 in [6], the following lemma is
presented.

Lemma 2. Let ΘR ∈ ΘR, ΘS ∈ ΘS , Θ̇S ∈ Θ̇S , Θ̇R ∈ Θ̇R,
Θak ∈ Θak , Θck ∈ Θck , and Θ ∈ Θ. LMIs (11), (12) and (13)
can be rewritten as

GT(−M)G < 0, GT
ppMppGpp < 0, GT

∞M∞G∞ < 0.
(17)

The G, Gpp, and G∞ are LFTs depending on the open loop data
(6) and on the TS , TR, Tak , and Tck functions. They can be
expressed as

G = Θ̂�

⎡

⎣
G11 G12

G21 G22

⎤

⎦,

Gpp = Θ̂pp �

⎡

⎣
Gpp11 Gpp12

Gpp21 Gpp22

⎤

⎦,

G∞ = Θ̂∞ �

⎡

⎣
G∞11 G∞12

G∞21 G∞22

⎤

⎦

(18)

with Θ̂ = diag(ΘR,ΘS), Θ̂pp = diag(ΘS ,ΘR,Θak ,Θck ,Θ)

and Θ̂∞ = diag(Θ̇S , Θ̇R,ΘS ,ΘR,Θak ,Θck ,Θ). On the other
hand, the M, Mpp, and M∞ matrices depend on the α and
β m × m matrices that specify a design LMI region, as in
Definition 1, and on

(1) a pair of symmetric positive definite P and Q matrices
of the S and R matrix functions,

(2) a quadruple Ak, Bk, Ck, and Dk of controller state space
data,

(3) a real positive performance index γ,

where the enumerated objects are to be determined in the
optimization process.

Proof. See [12] for the definition of matrices M, Mpp, M∞,
G, Gpp, and G∞ and for the proof, which can be obtained
through tedious but straightforward matrix calculations
based upon the results in [6, 8].

Theorem 2 (LPV control with pole placement constraints
and FBMs). The inequalities of (17) are satisfied, if and only
if there exist symmetric positive definite real matrices P and Q,
a performance index γ, a quadruple of controller matrices Ak,
Bk, Ck, and Dk, and symmetric full block multipliers Π, Πpp

and Π∞ such that the following LMIs

[
∗
]T

diag{Π,M}Ĝ<0,

[
∗
]T

diag
{
Πpp,Mpp

}
Ĝpp <0,

[
∗
]T

diag{Π∞,M∞}Ĝ∞ < 0,

Ĝ =

⎡

⎢
⎢
⎢
⎣

G11 G12

I 0

G21 G22

⎤

⎥
⎥
⎥
⎦

,

Ĝpp =

⎡

⎢
⎢
⎢
⎣

Gpp11 Gpp12

I 0

Gpp21 Gpp22

⎤

⎥
⎥
⎥
⎦

,

Ĝ∞ =

⎡

⎢
⎢
⎢
⎣

G∞11 G∞12

I 0

G∞21 G∞22

⎤

⎥
⎥
⎥
⎦

(19)

are satisfied, and for all θ ∈ P and θ̇ ∈ V, the following
conditions

⎡

⎣
I

Θ̂P

⎤

⎦

T

ΠP

⎡

⎣
I

Θ̂P

⎤

⎦ ≥ 0,

⎡

⎣
I

Θ̂Q

⎤

⎦

T

ΠQ

⎡

⎣
I

Θ̂Q

⎤

⎦ ≥ 0,

⎡

⎣
I

Θ̂

⎤

⎦

T

Π

⎡

⎣
I

Θ̂

⎤

⎦ ≥ 0

(20)

are met.

Proof. The application of Lemma 1 to inequalities (17)
produces the desired result.

The computation of the controller’s state space matrices
is carried out following the algorithm prescribed in [7]. All
remarks made in that paper, concerning the use of PDLFs,
which aim towards obtaining controllers whose state space
matrices do not depend on the parameter rate of variation,
are applicable here as well (see [7, Table I]).

As observed in [6], in practice, the considerations of
Remark 1 can lead to significantly reducing the number
of decision variables of the problem. Degradation of the
computed performance bound γ is also a possibility.
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Figure 1: Vehicle diagram.
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Figure 2: Position of frame B with respect to frame D.

3. Application Example

3.1. Nonlinear Model. The example we consider is a sound-
ing rocket (see Figure 1) which should follow a prescribed
trajectory. A dynamic model is presented (see Figure 2),
describing the position, velocity, orientation, and angular
velocity errors of the actual vehicle (frame B) with respect to
the prescribed trajectory (frame D). The differential gravity
force is neglected in this error model for practical reasons.

A simple model of aerodynamic drag and lift forces taken
from [13] is included. According to this model, these forces
depend on the dynamic pressure, the angles of attack α,
and sideslip β (see [14]). The moments resulting from the
aerodynamic forces are computed under the assumption that
the center of pressure (CP) is located above the CM. This
renders unstable aerodynamics posing a challenge on the
control system (see Figure 1). Fxa , F

y
a , and Fza denote the

aerodynamic forces acting on the CP in frame B.
The actuator considered for the rocket is a nozzle gimbal

which allows small rotations around the z-and y-axes. A
couple of gas jets are placed to generate torques around the
x-axis. Hence, the actual control inputs of the plant will be
the thrust, the rotation angles of the gimbal, and the torque
exerted by the jets. For small rotations of the gimbal, a change
of variables is carried out, and as a consequence, the control
inputs of the plant model used in the controller design will
be denoted by Fxth, F

y
th, Fzth, and mx assuming that the forces

are applied at the tail (hence providing torques in the y
and z axes). The following terms will be used to denote the
actuator and aerodynamic forces and moments in the state
space equations:

F =
[

(Fxth + Fxa ) (F
y
th + F

y
a ) (Fzth + Fza)

]T
,

M =
[
mx −(�Fzth + �1Fza) (�F

y
th + �1F

y
a )
]T
.

(21)

Fd and Md denote the counterparts of F and M for the
desired trajectory. As mass variation concerns, it is assumed
that the thrust force acting on the vehicle comes from fuel
exhaustion and that the inertia matrix varies uniformly with
it, that is, the CM does not change. J = diag[Jx Jt Jt]
denotes the diagonal varying inertia matrix. The variables
for the vehicle dynamics will be r, v, [q0, q], and ω
which, respectively, give the position, velocity, orientation
and angular velocity of frame B relative to frame D. Under
these assumptions, the error dynamics of the rocket are

ṙ = v, v̇ = 1
m

(
dCbF − Fd

)
,

q̇ = 1
2

(
q0ω + q × ω), ω̇ = J−1

(
dCbM −Md

)
,

q̇0 = −1
2
q · ω

(22)

with dCb denoting the rotation matrix from frame B to D.

3.2. Linearization: LPV Model. Linearization of (22) will
be carried out, in order to obtain an LPV model of the
plant, under a few extra assumptions related to nominal
control and aerodynamic forces. During ascent, the vehicle
should nominally follow a zero angle of attack trajectory,
hence only withstanding drag. It can be shown that the
nominal actuator forces acting on the y-and z-axes of the
vehicle are negligible as compared to the actual forces that
compensate for disturbances when the actual angle of attack
deviates from zero. It can also be accepted that mx is
nominally zero. Under these assumptions Md = 0, and
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Fd = [( fN − D) 0 0]T where fN is the nominal thrust
and D is the drag force. Let u � [Fxth F

y
th Fzth mx]T and

ud � [ fN 0 0 0]T . Let ri, vi, qi, and ωi (i = 1, 2, 3) be
the components of the corresponding vectors, and the state
variable is x � [xT1 xT2 xT3 x

T
4 ]T with x1 = [r1 v1]T , x2 =

[r2 v2 q3 ω3]T , x3 = [r3 v3 q2 ω2]T , and x4 = [q1ω1]T . The
differential control is δu = u − ud. With these definitions in
mind we seek to linearize (22) which can be rewritten as

ẋ = f (x, δu, θ) = A(θ)x + B(θ)δu + o(x, δu, θ), (23)

where o(x, δu, θ) represents the higher-order terms of the
series expansion of f around (0, 0, θ). A(θ) and B(θ) are the
following Jacobians:

A(θ) � ∂ f (x, δu, θ)
∂x

∣
∣
∣
∣
∣

(0,0,θ)

B(θ) � ∂ f (x, δu, θ)
∂δu

∣
∣
∣
∣
∣

(0,0,θ)

.

(24)

The LPV parameter θ is a function of mass, dynamic
pressure, and the state variables of the actual vehicle.
Mass variations can be estimated with a model of fuel
consumption, and dynamic pressure can be estimated from
inertial position and velocity measurements as well as from
a model of the atmosphere. Hence, θ can be known in real
time as if it were measured.

An evaluation of the Jacobian matrices of (24) through
a symbolic manipulation software package shows that A(θ)
and B(θ) are affine in the parameters, as follows:

θ1 � 2Q0

mS
, θ2 � 1

m
. (25)

It also shows that the system can be decomposed in four
decoupled systems corresponding to the xi parts of the state
variable x (i = 1, 2, 3, 4). As a consequence, the control
problem can be split in four γ-performance problems with
pole placement constraints with each subsystem having a
state space representation as follows (i = 1, 2, 3, 4):

ẋi = Ai(θ)x + Bi(θ)δui , θ =
[
θ1 θ2

]T
. (26)

θ evolves in the parameter variation set which is a square in
R2. Mass and dynamic pressure variations throughout the
nominal trajectory determine the bounds for θ1 and θ2.

The aerodynamic forces are included in the error dynam-
ics in a first-order approximation for zero angle of attack
nominal trajectories as follows:

Fza =
⎛

⎝ ∂Fza
∂qy

∣
∣
∣
∣
∣

(0,0,θ)

⎞

⎠qy , F
y
a =

⎛

⎝ ∂F
y
a

∂qz

∣
∣
∣
∣
∣

(0,0,θ)

⎞

⎠qz. (27)

These terms end up inside the Ai matrices of the LPV
plants for i = 2, 3 with the derivatives depending on θ1.
Since drag has a maximum for the nominal trajectory, its
variations are neglected in the first-order approximation.
Hence, aerodynamics only affect subsystems 2 and 3.

W2

Gi

W1
Ww

e2 e1
d2

d1 +
yi

d e

yi
Tact

P̃i

δui Pi

Ki

δ̃ui

ỹiui

Figure 3: Block interconnection making up the augmented plant
(left) and Inclusion of low-pass transfer function model of actuator
dynamics (right).

3.3. Controller Synthesis. As a consequence of decoupling,
the control problem is reduced to synthesizing one controller
per subsystem. This simplifies the statement since systemsG1

and G4 depend only on parameter θ2.
For each subsystem an augmented plant as the one in

(6) must be specified. In this problem, for all subsystems,
the disturbance signal is split into a part which represents
disturbance forces or moments, and a part which represents
measurement noise. The performance signal is divided in
two parts as well. One of them involves the state variables
and it represents the design’s commitment with disturbance
rejection at the output. The other one involves the control
force and is included in order to achieve disturbance
rejection with reasonable control action.

For each subsystem the augmented plant is the result
of the block interconnection of Figure 3. The state space
representation of each Gi block is as follows:

ẋi =Ai(θ)xi + Bdi(θ2)d1 + Bi(θ2)δui ,

ỹi = xi.
(28)

For the sake of clarity as notation regards, note that the
Bi matrices of the systems described by (28) play the role
of matrix B2 in the system described by (6). For the final
augmented plants (P̃i, Figure 3) the lowpass transfer function
Tact(s) = 1/((s/ωa)+1), with ωa = 2π ·10 rad/sec, is included
in order to model actuator dynamics. As the Bdi matrix
concerns, it is assumed for all systems that Bdi = ξiBi with
ξi being a design parameter (1 < ξi < 10). The ξi gives the
ratio between the disturbance and control forces or torques.

System G1 involves longitudinal dynamics. The matrices
that make up the plant are as follows:

A1 =
⎡

⎣
0 1

0 0

⎤

⎦,

Ww =
⎡

⎣
50 0

0 .2

⎤

⎦,

B1 =
⎡

⎣
0

θ2

⎤

⎦

(29)

with W1 =W−1
w , ku1 = 10−2 and ξ1 = 10.
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Systems G2 and G3 involve lateral dynamics, with their
matrices being

A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0

0 0 −Dαθ1 + 2 fNθ2 0

0 0 0
1
2

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

A3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0

0 0 Dαθ1 − 2 fNθ2 0

0 0 0
1
2

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

θ2

0

−m0

It0
θ2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

θ2

0
m0

It0
θ2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ww =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

50 0 0 0

0 .2 0 0

0 0
π

180
0

0 0 0 .1
π

180

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(30)

with W1 =W−1
w , ku2 = ku3 = 10−2, and ξ2 = ξ3 = 10.

SystemG4 involves roll dynamics. The matrices that make
up the plant are as follows:

A4 =

⎡

⎢
⎣

0
1
2

0 0

⎤

⎥
⎦,

Ww =

⎡

⎢
⎢
⎢
⎣

θ

180
0

0 .1
θ

180

⎤

⎥
⎥
⎥
⎦

,

B4 =

⎡

⎢
⎣

0
m0

Ix0
θ2

⎤

⎥
⎦

(31)

with W1 =W−1
w , ku4 = 10−2, and ξ4 = 10.

3.4. Synthesis Results. The synthesis procedure was carried
out on all subsystems. The pole placement region used was
D = {z ∈ C,−2π · 8 rad/sec < R(z)}, which takes into
account practical aspects such as ease of implementation and
simulation. The vehicle’s details can be seen in Table 1. In
this example, focus is made on demonstrating the validity
of the presented synthesis method. As a consequence, in

Table 1: Vehicle’s details.

Name Symbol Value

Initial/final Mass m0/mf 500/250 kg

Initial/final Inertia Jx0 /Jx f 60/30 kg m2

Initial/final Inertia Jt0 /Jt f 200/100 kg m2

Aerodynamic Derivative Dα = ∂F
z
a

∂q2
0.1963

Nominal thrust fn 20× 103 N

Distance from CM to nozzle � 2 m

Distance from CM to CP �1 1 m

Maximum Dynamic Pressure Q0max 3× 105 N/m2

order to compare the results obtained here with respect to
previous work [10], SQLFs were employed on each subsys-
tem (i.e., S and R constant). Another design decision that
was taken concerns the choice of the Tak and Tck functions
which prescribe the way controller matrices dependend on
the parameter. For the example these functions were picked
as

Tak =
[
In θ1In θ2In

]
, Tck =

[
Inu θ1Inu θ2Inu

]
.

(32)

This choice was made, in order to have the same kind of affine
parameter dependence of the original plant in the controller.
Once the controllers for each subsystem were synthesized,
they were appended to make up the complete LPV controller.

A heuristic approach to address the “fast poles” problem,
while using algorithms as the one presented in [6], is
to bound the trace of the R and S matrices. A bound
in the range of the decision variables could be imposed
alternatively. The method is occasionally successful but offers
no guarantee. In this particular application, this heuristic
was useless in order to prevent one single “fast pole” in
the controller, per subsystem. Another heuristic was tried,
consisting in the residualization of the “fast pole” in the
LTI part of the controller. Nevertheless, this approach
showed poor closed loop transient behavior in non-real-
time simulations. As a consequence, it was dropped. On the
other hand, the controller synthesized using the proposed
method showed better time responses with lower overshoot.
The performance γs with the standard algorithm [6] were
in the order of the ones obtained with the proposed one.
The overall conclusion is that the method proposed enhances
the capabilities of the standard LPV technique for real-world
applications.

A considerable increase in the number of decision
variables can take place. For this application, with the
pole placement region being a half plane, the number of
decision variables of the optimization problem for each
lateral controller goes from 73 with the algorithm of [6] to
1363 in this case. A more careful and potentially conservative
restriction of the number of multiplier variables, in line with
Remark 1, could reduce this number. This was not done in
this case, given that the computation time using standard PC
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Figure 4: Response to initial conditions. Error State Variables versus time (sec). (a), (b), and (c): position components (m). (d), (e), and (f):
velocity components (m/sec)). (g), (h), and (i): quaternion components (deg). (j), (k), and (l): angular velocity components (rad/sec).

hardware was acceptable and considering that the number of
decision variables does not influence the implementation of
the controller.

With respect to previous work [10], the improvement
in the performance bounds is a remarkable result (γ =
1.89 versus 162 for subsystem 1, γ = 30.46 versus 96 for
subsystems 2 and 3, and γ = 1.29 versus 169 for subsystem 4).
Moreover, an improvement in the reduction of the sampling
frequency from 125 to 45.45 Hz due to the feasible relocation
of closed loop poles was achieved.

3.5. HIL Simulations. To stress the fact that the method
is not only valid but also applicable, real-time numerical

simulations were carried out. The control law was imple-
mented in a computer based upon an Atmel TSC695E
SPARC7 class microprocessor operating at 20 MHz. This
32-bit microcontroller has been available in commercial
space systems for more than a decade, setting a de facto
standard. The setup for simulation is fairly simple, consisting
of an Atmel VAB695E Evaluation Kit, with an add-on
board containing an Atmel AT7908E CANbus (ISO 11898-
1) controller, connecting this computer with a standard
PC featuring a Peak-PCAN pci CANbus interface board.
The use of CANbus in aerospace applications is fairly
standard [15]. The simulation of the vehicle’s dynamics is
carried out on the PC using GNU Scientific Library [16],
for the real-time simulation of the vehicle’s dynamics. The
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Figure 5: Response to initial conditions. Column 1: error Control Forces Fx(N), Fy(N), Fz(N), and mx(Nm) versus time (sec). Column 2:
error commands fe(N), δy (deg), δz (deg) and mx(Nm) versus time as well.

PC features Xenomai Linux [17] as Real-Time Operating
System. GNU Scientific Library is employed in the VAB695E
software as well, in single precision floating point mode,
for the implementation of the LPV control law. RTEMS
real-time operating system [18] features the VAB695E
board.

To evaluate the response of the system to disturbance
signals the L2-gain criterion accounts for, the PC simu-
lates sensor measurements corrupted by colored, weighted,
pseudorandom noise. An input disturbance is introduced
as well consisting of colored, weighted, pseudorandom
lateral forces. These corrupted simulated measurements are
transmitted upon request from the control computer. The
VAB695E computes control inputs in real time, transmitting
commands to actuators simulated in the PC. This renders
simulated real time closed loop operation.

The simulations carried out show responses with the
initial conditions deviated from the nominal ones as follows:

x(0) =
[
r(0)T v(0)T q0(0) q(0)T ω(0)T

]T
(33)

with

r(0) =
[

6378000 300 300
]T

, v(0) =
[

0 .1 .1
]T

,

q(0)=
[

0 .0316 0
]T

, ω(0)=
[

0 0 0
]T

, q0(0)= .995.

(34)

All quantities in bold face should nominally be zero, except
for q0 which would be nominally one. The prescribed trajec-
tory is a vertical ascent from the north pole. Disturbance of
the initial conditions is useful in order to evaluate transient
behavior.
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In Figure 4 the time history of the state variables can be
seen. Figure 5 shows the control error forces and commands.
The gimbal’s rotations (δy and δz) are simulated with
a saturation at 5◦. Note nevertheless that they remain
unsaturated practically throughout the whole simulation.
The discrete time implementation of the controller, which is
synthesized in a continuous time framework, is carried out
through a zero-order hold transformation on the LTI part of
the LFT controller (see [19]). The sampling frequency picked
for this was 45.45 Hz (22-millisecond sampling time).

4. Conclusions

In this work, the use of FBMs was extended to LPV synthesis
with regional pole placement constraints. The usefulness of
the method was tested on an application example with HIL
simulations. The design of an LPV controller for a 6 DOF
vehicle with pole placement constraints shows an adequate
response without degrading the γ performance index. The
system’s LPV “poles” were satisfactorily placed acceptably
increasing the computational cost of design.

Acknowledgments

This research was partially supported by the Universidad
Nacional de Quilmes, Argentina, through Grant PUNQ
0530/07. The setup for simulation was assembled at the labo-
ratories of CONAE, the Argentine Space Agency. The second
author has been supported by CONICET and a PRH Grant
from the Ministry of Science and Technology of Argentina.
The authors wish to acknowledge the contribution of Dr. Ke
Dong to this work, who gently sent the source code of the
software developed for the example in [6], for us to see.

References

[1] C. W. Scherer, Advances in Linear Matrix Inequality Methods in
Control, chapter 10, SIAM, Philadelphia, Pa, USA, 1999.

[2] C. W. Scherer, “LPV control and full block multipliers,”
Automatica, vol. 37, no. 3, pp. 361–375, 2001.

[3] F. Wu, “An unified framework for LPV system analysis and
control synthesis,” in Proceedings of the IEEE Conference on
Decision and Control, vol. 5, pp. 4578–4583, 2000.

[4] F. Wu, “A generalized LPV system analysis and control
synthesis framework,” International Journal of Control, vol. 74,
no. 7, pp. 745–759, 2001.

[5] F. Wu, X. H. Yang, A. Packard, and G. Becker, “Induced
L2-norm control for LPV systems with bounded parameter
variation rates,” International Journal of Robust and Nonlinear
Control, vol. 6, no. 9-10, pp. 983–998, 1996.

[6] F. Wu and K. Dong, “Gain-scheduling control of LFT systems
using parameter-dependent lyapunov functions,” Automatica,
vol. 42, no. 1, pp. 39–50, 2006.

[7] P. Apkarian and R. J. Adams, “Advanced gain-scheduling
techniques for uncertain systems,” IEEE Transactions on
Control Systems Technology, vol. 6, no. 1, pp. 21–32, 1998.

[8] M. Chilali and P. Gahinet, “H∞ design with pole placement
constraints: an LMI approach,” IEEE Transactions on Auto-
matic Control, vol. 41, no. 3, pp. 358–367, 1996.

[9] G. Becker and A. Packard, “Robust performance of lin-
ear parametrically varying systems using parametrically-
dependent linear feedback,” Systems and Control Letters, vol.
23, no. 3, pp. 205–215, 1994.

[10] A. S. Ghersin and R. S. Sánchez Peña, “LPV control of a 6 DOF
vehicle,” IEEE Transactions on Control Systems Technology, vol.
10, no. 6, pp. 883–887, 2002.

[11] C. Scherer, P. Gahinet, and M. Chilali, “Multiobjective output-
feedback control via LMI optimization,” IEEE Transactions on
Automatic Control, vol. 42, no. 7, pp. 896–911, 1997.

[12] A. S. Ghersin, Implementation of advanced linear parameter
control techniques, Ph.D. thesis, Faculty of Engineering, Uni-
versity of Buenos Aires, Buenos Aires, Argentina, 2009.

[13] M. Noton, Spacecraft Navigation and Guidance, Springer,
London, UK, 1996.

[14] J. Nielsen, Missile aerodynamics, NEAR, 1999.
[15] A. Elfving, L. Stagnaro, and A. Winton, “Smart-1: key tech-

nologies and autonomy implementations,” Acta Astronautica,
vol. 52, no. 2–6, pp. 475–486, 2003.

[16] M. Galassi, J. Davies, J. Theiler, et al., Gnu Scientific Library:
Reference Manual, Network Theory Limited, Bristol, UK, 3rd
edition, 2003.

[17] P. Gerum, “Xenomai—Implementing a RTOS emulation
framework on GNU/Linux, 2004,” http://www.xenomai.org/.

[18] T. Straumann, “Open source real-time operating systems
overview,” in Proceedings of the 8th International Conference on
Accelerator and Large Experimental Physics Control Systems, pp.
27–30, 2001.

[19] P. Apkarian, “On the discretization of LMI-synthesized linear
parameter-varying controllers,” Automatica, vol. 33, no. 4, pp.
655–661, 1997.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


