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Abstract. In this work, we present goodness-of-fit tests related to the
Kolmogorov-Smirnov and Michael statistics and connect them to graph-
ical methods with uncensored and censored data. The Anderson-Darling
test is often empirically more powerful than the Kolmogorov-Smirnov
test. However, the former one cannot be related to graphical tools by
means of probability plots, as the Kolmogorov-Smirnov test does. The
Michael test is, in some cases, more powerful than the Anderson-Darling
and Kolmogorov-Smirnov tests and can also be related to probability
plots. We consider the Kolmogorov-Smirnov and Michael tests for detect-
ing whether any distribution is suitable or not to model censored or
uncensored data. We conduct numerical studies to show the performance
of these tests and the corresponding graphical tools. Some comments
related to big data and lifetime analysis, under the context of this study,
are provided in the conclusions of this work.

Keywords: Anderson-Darling Kolmogorov-Smirnov and Michael
tests · Big data · Censored data · Test power

1 Introduction

Several efforts have been conducted to develop goodness-of-fit (GOF) techniques 
that allow us to handle the problem of fitting distributions to different types 
of data. In general, GOF tests permit us to assess whether the distribution
under a null hypothesis (H0) is adequate to model a data set or not. For this 
hypothesis, there are two options: (i) the distribution can be completely specified 
(known parameters) or (ii) some (or all) of its parameters are unknown. In the 
second case, the parameters need to be properly estimated, for example, with the
maximum likelihood (ML) method. Depending on the distribution under H0, ML  
estimates of its parameters cannot be easily calculated and iterative numerical
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procedures must be used. However, problems of convergence can arise, which are
not yet completely studied; see [6] for more details about this.

According to [12, pp. xi–xiii], GOF methods can be of graphical or inferential
(tests) type, where the corresponding tests are based on distances which use the
empirical cumulative distribution function (ECDF), among other types of GOF
methods. Most of the test statistics used for assessing GOF, such as Ander-
son-Darling (AD) and Kolmogorov-Smirnov (KS), compare the ECDF and the
hypothesized theoretical cumulative distribution function (CDF) assumed for
the data. The AD test is often more powerful than the KS test. Note that the
AD test is more sensitive to detect discrepancies at the tails of the distribution,
whereas the KS test does it at the center of the distribution. For more details
about the AD and KS statistics, see [12, Chap. 4].

A graph that allows us to relate the ECDF with a specified theoretical CDF is
the probability versus probability (PP) plot. Analogously, ordered observations
corresponding to empirical quantiles can be plotted versus the theoretical quan-
tiles of a specified distribution in a graph known as the quantile versus quantile
(QQ) plot [23]. The KS test is related to the PP and QQ plots [10]. However,
a disadvantage of the PP plot associated with the KS test is that some points
in this graph can have more variability than others. Michael [24] proposed a
modification of the KS test based on the arcsin transformation to stabilize the
variance of the points in the PP plot. The graph related to this variance stabi-
lizing transformation is known as the stabilized probability (SP) plot and the
statistic associated with the Michael test is denoted as MI. [24] studied the MI
test and showed that it results to be more powerful than the KS test for certain
alternative hypotheses.

In reliability and survival analysis, and also in other areas, it is frequent
to find situations where not all the individuals or instruments on examination
complete the event under study, which can be called without loss of generality as
a “failure”. Samples involving such situations are named as “censored”. Several
books and articles on the GOF topic related to censored and uncensored can be
cited; see, for example, [15–18].

When a parametric statistical analysis with censored data needs to vali-
date its distributional assumption, the classical GOF test statistics need to be
adapted to consider censorship following two options. The first of them con-
sists of using GOF tests for uncensored data adapting the type-II right censored
data to become an uncensored (complete) data sample, while the second option
adapts the test statistics to type-II right censored data [5,12,21].

[8,9] proposed GOF tests for the lognormal and normal distributions with
type-II right censored data. [7] studied GOF tests for location-scale distributions
with type-II right censored data and unknown parameters. Other works on the
topic based on different types of censoring are attributed to [4,21,25,26].

The main objectives of this work are: (i) to present GOF tests related to the
KS and MI statistics and (ii) to connect them to PP and QQ plots with censored
and uncensored data. These tools can be used for any distribution, as long as
its parameters are known or properly estimated. With the provided tools, it is



possible to decide what distribution fits best the data set with censoring or not
based not only on existing GOF tests, but also on graphical methods.

The remainder of this work is organized as follows. Section 2 introduces a
methodology to perform GOF tests, in addition to presenting some useful trans-
formations to carry out graphical GOF tools. Furthermore, in this section, we
establish the hypotheses of interest and the corresponding test statistics to assess
goodness of fit for any distribution to censored and uncensored data. In Sect. 3,
applications with real-world data are provided. In Sect. 4, we discuss conclusions
and future works, including a connection between big data and lifetime analysis,
under the context of this study.

2 Methodology

2.1 Hypotheses

Consider the hypotheses: H0: “the data were generated from a model with CDF
F” versus H1: “the data were not generated from that model”. The hypothesized
model (distribution) with CDF F is indexed by a parameter vector θ that can
contain location (μ), scale (β), shape (α) parameters, or any other parameter
not necessarily of location, scale, or shape. This means that the random variable
(RV) of interest T can follow any distribution. If the CDF is completely specified
in H0, that is, θ is assumed to be known, the data must be transformed for testing
uniformity. Otherwise, the parameters must be consistently estimated and the
data transformed to test normality from the distribution under H0.

2.2 GOF Test Statistics with Uncensored Data

In order to test H0 established in Subsect. 2.1, when F is completely specified,
and then to assess goodness of fit for a distribution to a censored or uncensored
data set, we consider test statistics based on the ECDF defined as

Fn(t) =
1
n

#{j: tj ≤ t},

where n is the size of simple and #A denotes de cardinality of the set A. The
most common statistics constructed with the ECDF use vertical distances, that
is, between Fn and F by means of the supremum and quadratic classes. Statistics
that consider the supremum class are KS and MI given by

KS = sup
t

∣
∣Fn(t)− F (t)

∣
∣ = max

{

sup
t

{
Fn(t)− F (t)

}
, sup

t

{
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}}

, (1)

MI = max

{
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t

{
2

π
arcsin(Fn(t))− 2

π
arcsin(F (t))

}

,

sup
t

{
2

π
arcsin(F (t))− 2

π
arcsin(Fn(t))

}}

. (2)

Now, consider
U = F (T ) (3)



follows a uniform distribution on [0,1], denoted by U(0,1), for any continuous
F , which is known as probability integral transformation. Then, KS and MI
statistics defined in (1) and (2) can be implemented in practice by the formulas

KS = max
{

max
1≤j≤n

{
wj:n +

1
2n

− Uj:n

}
, max

1≤j≤n

{
Uj:n − wj:n +

1
2n

}}
, (4)

MI = max
{

max
1≤j≤n

{
2
π

arcsin
(
wj:n +

1
2n

) − 2
π

arcsin(Uj:n)
}

,

max
1≤j≤n

{
2
π

arcsin(Uj:n) − 2
π

arcsin
(
wj:n − 1

2n

)}}
, (5)

where
wj:n =

j − 0.5
n

(6)

and Uj:n = F (Tj:n) is the jth order statistic (OS) of a sample of size n extracted
from an RV U ∼ U(0, 1), with uj:n = F (tj:n) being its observed value, for
j = 1, . . . , n. More details about expressions provided in (1) and (5) can be
found in [12, Chap. 4] and [24]. Quantiles of the distribution of the KS statistic
must be obtained under H0. However, if the distribution under this hypothesis
is not completely specified, its parameters must be properly estimated and the
KS and MI statistics must be modified for the distribution under H0. These
modified statistics are denoted by KS� and MI�, whereas their calculated values
by ks� and mi�, respectively. In this case, new quantiles of the distributions of
KS� and MI� must be computed under H0.

2.3 GOF Test Statistics with Censored Data

To test H0 when F is completely specified and then to assess goodness of fit in
practice with r uncensored data and n − r type-II right censored data, we use
the results presented in [12, Chap. 4] and adapt the statistics given in (4) and
(5) as

KSr,n =max
{

max
1≤j≤r

{
wj:n +

1
2n

− Uj:n

}
, max
1≤j≤r

{
Uj:n − wj:n +

1
2n

}}
, (7)

MIr,n = max
{

max
1≤j≤r

{
2
π

arcsin
(
wj:n +

1
2n

) − 2
π

arcsin(Uj:n)
}

,

max
1≤j≤r

{
2
π

arcsin(Uj:n) − 2
π

arcsin
(
wj:n − 1

2n

)}}
. (8)

The quantiles of the distribution of the KSr,n and MIr,n statistics given in (7)
and (8) must be obtained under H0. However, if the distribution under H0 is
not completely specified, its parameters must be properly estimated, taking into
account the censorship, and the statistics must be modified for each case under
H0. We denote these statistics by KS�

r,n and MI�r,n, and their calculated values
by ks�

r,n and mi�r,n, respectively. Also, new quantiles of the distribution of KS�
r,n



and MI�r,n must be computed under H0. For more details about how to obtain the
quantiles of the distributions of the corresponding test statistics under H0, which
have been studied for different distributions of the location-scale family with
uncensored and censored, see [7–9,12]. In the next subsections, we mention that,
for any distribution, analogous results for assessing GOF with both uncensored
and censored data can be considered.

2.4 GOF Tests for any Distribution with Uncensored Data

If the hypotheses of interest H0 is F (t) = Φ((t−μ)/β) with unknown parameters,
we can consider the procedure detailed in Algorithm 1.

Algorithm 1 GOF test for normality with uncensored data
1: Collect data t1, . . . , tn and order them as t1:n, . . . , tn:n.
2: Estimate μ and β of Φ((t − μ)/β) by μ̂ and ̂β, respectively, with t1, . . . , tn.

3: Obtain ûj:n = Φ(ẑj), with ẑj = (tj:n − μ̂)/̂β, for j = 1, . . . , n.
4: Evaluate KS� and MI� statistics at ûj:n.
5: Compute the p-values of the KS� and MI� statistics.
6: Reject H0: F (t) = Φ((t − μ)/β) for a specified significance level based on the

obtained p-values.

We consider a procedure that can be applied to any distribution based on
the work proposed by Chen and Balakrishnan [11], which provides an approxi-
mate GOF method. This method first transforms the data to normality and then
applies Algorithm 1, generalizing it. Testing normality in H0 allows us to com-
pute the critical values of the corresponding test statistics, independently of the
parameter estimators, if they are consistent and the sample size is large enough.
To test the hypotheses of interest defined in Subsect. 2.1, for α > 0 and β > 0
unknown, we consider a generalization of Algorithm 1 detailed in Algorithm 2.
Following [11], we recommend in general to use a sample size n > 20, so that
the approximations work well. This is also valid for the algorithms presented in
the next sections.

Algorithm 2 GOF test for any distribution with uncensored data
1: Collect data t1, . . . , tn and order them as t1:n, . . . , tn:n.
2: Estimate α and β of F (t; α, β) by α̂ and ̂β, respectively, with t1, . . . , tn.

3: Compute v̂j:n = F (tj:n; α̂, ̂β), for j = 1, . . . , n.
4: Calculate ŷj = Φ−1(v̂j:n), where Φ−1 is the N(0, 1) inverse CDF.
5: Obtain ûj:n = Φ(ẑj), with ẑj = (ŷj − ȳ)/sy, ȳ =

∑n
j=1 ŷj/n and sy = (

∑n
j=1(ŷj −

ȳ)2/(n − 1))1/2.
6: Repeat Steps 4-6 of Algorithm 1 with F (t) = F (t; α, β).



2.5 GOF Tests for any Distribution with Censored Data

As mentioned, GOF tests for any distribution with uncensored data can be
considered for censored data adapting them or the GOF statistics.

To test the hypotheses of interest defined in Subsect. 2.1, for α > 0 and
β > 0 both of them unknown, with type-II right censored data, we first transform
censored data into uncensored data by using

Vj:n =
Uj:n(Br,n−r+1(Ur:n))1/r

Ur:n
, j = 1, . . . , r, r = 1, . . . , n, (9)

where Br,n−r+1(x) = Ix(r, n−r+1) is the Beta(r, n−r+1) CDF, with Ix being
the incomplete beta ratio function. Hence, the OSs V1:n, . . . , Vr:n obtained from
the transformation given in (9) are distributed as the OSs from an uncensored
sample of size r from V ∼ U(0, 1). Algorithm 3 details the corresponding GOF
procedure.

Algorithm 3 GOF test 1 for any distribution with censored data
1: Repeat Steps 1-3 of Algorithm 2.
2: Determine v̂′

j:n = v̂j:n(Br,n−r+1(v̂r:n))1/r/v̂r:n, for j = 1, . . . , r and r = 1, . . . , n.
3: Repeat Steps 4-6 of Algorithm 2 replacing v̂j:n by v̂′

j:n in Step 4.

Second, as mentioned, another way to perform a GOF test for any distribu-
tion with censored data can be obtained adapting the GOF statistics, which is
detailed in Algorithm 4.

Algorithm 4 GOF test 2 for any distribution with censored data
1: Repeat Steps 1-5 of Algorithm 2.
2: Evaluate KS�

r,n and MI�
r,n statistics at ûj:n.

3: Determine the p-values of KS�
r,n and MI�

r,n statistics.
4: Reject the corresponding H0 for a specified significance level depending on the

obtained p-values.

Next, based on Algorithm 4, we provide acceptance regions for the KS and
MI statistics which allow graphical tools to be obtained for assessing goodness
of fit in any distribution.

2.6 PP and SP Plots

PP and QQ plots are well known, but this is not the case of the SP plot. We
recall that, if the distribution under H0 is U(0,1), then the corresponding QQ
plot is essentially the same as the PP plot [8]. [24] used the arcsin transformation
to stabilize the variance of the points on probability graphs associated with the



KS test to propose the SP plot. This is due to that, if U ∼ U(0, 1), then the RV
given by the SP transformation

S =
2
π

arcsin(
√

U) (10)

follows a distribution with probability density function (PDF) given by

fS(s) =
π

2
sin(πs), 0 < s < 1.

The OSs S1:n ≤ · · · ≤ Sn:n, associated with a sample of size n from the distribu-
tion of the transformed RV S given in (10), have a constant asymptotic variance,
because as n goes to infinity and j/n to q, Var(nSj:n) goes to 1/π2, which is
independent of q, for j = 1, . . . , n [24]. Formulas to construct PP and SP plots
are provided in Table 1. In this table, uj:n is given as in (3), wj:n in (6) and sj:n

as in (10).

Table 1. Formulas for the indicated probability plot.

Plot Abscissa Ordinate

PP wj:n uj:n

SP xj:n = 2
π

arcsin
(√

wj:n

)

sj:n = 2
π

arcsin
(√

uj:n

)

2.7 Acceptance Regions for Probability Plots

Acceptance regions for PP and SP plots can be constructed by means of KS and
MI statistics. Thus, we can display acceptance bands to assess whether the data
can come from the distribution under H0 with these two statistics [8,9]. Formulas
to construct 100× �% acceptance regions on PP and SP plots with right type-II
censored data, based on KS�

r,n and MI�r,n and where � is the significance level,
are displayed in Table 2. In this table, w and x are continuous versions of wj:n

and xj:n, respectively, given in Table 1 to construct the acceptance bands. If all
of the r data points lie inside the constructed acceptance bands, then H0 cannot
be rejected at the � level. Also, if a noticeable curvature is detected, we can
question such a hypothesis. Table 2 may be adapted to the uncensored case with
r = n and the quantiles must be replaced by the quantiles of the distribution of
the corresponding statistics without censorship.

To test H0 defined in Subsect. 2.1, for some α > 0 and β > 0, with type-II
right censored data, we consider a graphical tool whose procedure is detailed in
Algorithm 5 based on Algorithm 4 and Tables 1 and 2, which is valid for censored
or uncensored data. We consider the general case for unknown parameters of the
distribution under H0, but it can also be used when the parameters are known.



Table 2. 100×�% acceptance regions for the indicated plot and statistic with 100×�th
quantiles ks�

r,n,� and mi�r,n,�.

Plot Stat Bands defining acceptance regions

PP KS� [max{w − ks�
r,n,� + 1

2n
, 0},min{w + ks�

r,n,� − 1
2n

, 1}]
PP MI� [max{sin2(arcsin(w

1
2 )− π

2
mi�r,n,�), 0},min{sin2(arcsin(w

1
2 ) + π

2
mi�r,n,�), 1}]

SP KS� [max{ 2
π
arcsin({sin2(π

2
x)− ks�

r,n,� + 1
2n

} 1
2 ), 0},

min{ 2
π
arcsin({sin2(π

2
x) + ks�

r,n,� − 1
2n

} 1
2 ), 1}]

SP MI� [max{x −mi�r,n,�, 0},min{x +mi�r,n,�, 1}]

Algorithm 5 Acceptance regions to test goodness of fit for any distribution
with censored data
1: Repeat Step 1 of Algorithm 4.
2: Draw the PP plot with points wj:n versus ûj:n, for j = 1, . . . , r and r = 1, . . . , n.
3: Display the SP plot with points xj:n = (2/π) arcsin(

√
wj:n) versus sj:n =

(2/π) arcsin(
√

ûj:n).
4: Construct acceptance bands according to Table 2 specifying a � significance level.
5: Decide if H0 must be rejected for the specified significance level.
6: Corroborate decision in Step 5 with the p-values after evaluating KS�

r,n and MI�
r,n

statistics at ûj:n.

3 Applications

In this section, we consider several real-world data sets and the Birnbaum-
Saunders (standard, truncated and generalized [14]), gamma, truncated normal
(TN) and Weibull distributions under H0 to decide whether these data can rea-
sonably come from the hypothesized distribution. The results are also displayed
by means of the probability plots with the acceptance bands proposed in Sect. 2.

3.1 Example 1: Uncensored Sea Data

These data correspond to the sea surface temperature (in oK), which are gener-
ated by a radiometer of high resolution. We call these data as “sea”. The sample
size is n = 88 and the truncation point is κ = 278.187oK; see details in [13]. An
exploratory data analysis (EDA) for sea data is provided in Table 3, including
the coefficients of variation (CV), skewness (CS) and kurtosis (CK), as well as
the standard deviation (SD), minimum (Min) and maximum (Max) values. Our
EDA is also based on Fig. 1, which displays their histogram and boxplot. This
EDA indicates that the truncated Birnbaum-Saunders (TBS) distribution can

Table 3. Descriptive statistics for sea data.

Median Mean SD CV CS CK Range Min Max n

279.5 279.6 0.787 0.003 0.008 3 3.8 278.2 282 88
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Fig. 1. Histogram, boxplot and estimated PDF from TN (top) and TBS (bottom)
distributions for sea data.

be suitable for describing these data, as a competitor of the TN distribution.
Some atypical data are detected in the boxplot, but their study is not consid-
ered here because it is beyond the objective of this work. We consider the TBS
and TN models under H0 with parameters estimated. The R packages named
tbs and truncnorm are used to estimate the corresponding parameters with
the ML method. The associated estimates and p-values from the GOF tests are
displayed in Table 4. According to these p-values, both distributions perform a
good fitting to the data. We show the PP and SP plots in Fig. 2 for the TBS



Table 4. Estimated parameters and values of the statistics for the indicated distribu-
tion under H0 with sea data.

Model Parameter Estimate Estimated statistic p-value

TBS α 0.0057 ks� = 0.0653 [0.4, 0.5]

β 278.8488 mi� = 0.0414 [0.7, 0.8]

TN μ 279.6093 ks� = 0.0600 [0.5, 0.6]

σ 1.0011 mi� = 0.0369 [0.8, 0.9]

distribution. From Fig. 2, note that the points are well aligned, as expected, due
to the high p-values obtained for the TBS distribution, and all the points fall
inside the 95% acceptance bands, which confirms the good fitting of the TBS
distribution to sea data.

3.2 Example 2: Uncensored Forestry Data

These data correspond to the diameter at breast height (DBH, in cm) of trees of
loblolly pine from a plantation in the Western Gulf Coast. We call these data as
“forestry”. The sample size is n = 75 and the left-truncation point is κ = 6 cm;
see details in [19]. Table 5 provides an EDA of forestry data, which indicates
once again that the TBS distribution can be a good model for these data.

From the histograms displayed in Fig. 3, note that the fit of the TBS dis-
tribution seems to be better than for the TN distribution. The corresponding
estimates and p-values from the GOF tests are displayed in Table 6. According
to these p-values, both distributions perform a reasonable fit to the data, but
clearly the TBS distribution has a better performance. Figure 4 shows the PP
and SP plots for the TBS distribution. From this figure, note that once again the
points are well aligned, as expected, due to the p-values obtained for the TBS
distribution, and all the points fall inside the 95% acceptance bands, confirming
the good fitting of the TBS distribution to forestry data.

3.3 Example 3: Uncensored Survival Data

These data correspond to the survival times (in days) of pigs injected with a
dose of tubercle bacilli, under a regimen corresponding to 4.0 × 106 bacillary
units per 0.5 ml (log(4.0 × 106) = 6.6). We call these data as “survival”. The
sample size is n = 72 guinea pigs infected with tubercle bacilli in regimen 6.6;
see details in [1,2]. Table 7 and Fig. 5 provide an EDA of survival data. From
this EDA, we detect a distribution skewed to the right with the presence of some
outliers. We propose the BS and BS-t (BS based on the Student-t) distributions
for analyzing survival data. ML estimates of the BS and BS-t parameters, which
are obtained using an R package named gbs, and the p-values from the GOF
tests, are displayed in Table 8. Clearly the BS distribution does not fit properly
these data, whereas the BS-t distribution performs a better fit. Figures 6 and 7
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Fig. 2. PP (top) and SP (bottom) plots with 95% acceptance bands for the TBS
distribution with sea data.



show the PP and SP plots for the BS and the BS-t distributions, respectively.
From Fig. 6, note that the points are not well aligned, specially in the center,
and that one observation (case #15) is outside the KS band. In Fig. 7, the
points are better aligned, as expected, due to the p-values obtained for the BS-t
distribution, and all the points fall inside the 95% acceptance bands, indicating
the good fitting of the BS-t distribution to survival data.

Table 5. Descriptive statistics for forestry data.

Median Mean SD CV CS CK Range Min Max n

8.20 8.19 1.013 0.124 0.053 2.253 4.1 6.2 10.3 75

3.4 Example 4: Uncensored Survival Data with Outliers

Next, we conduct a simple empirical robustness study. First, we add a large
value (outlier) to the data and call them as “survival1”, so that we have now
a sample of size n = 73. This new observation is greater than all the observed
values (t73:73 = 580). Second, we add another large value (t74:74 = 750) to the
data and call them as “survival2”, so that we have now a sample of size n = 74.
Then, we input one more outlier, corresponding to the value t75:75 = 1000, and
call these data as “survival3”. Figure 8 displays usual and adjusted boxplots,
as well as stripcharts, for survival, survival1, survival2 and survival3 data sets.
The adjusted boxplot is often used for skewed data because it includes a robust
measure of skewness [22]. The stripchart is a scatterplot in one dimension, where
all the observations are plotted. From these graphs we can visualize the effect
of the outliers added to the data. In the adjusted boxplot for survival1 (see Fig.
8-center), it is possible to note that the first added value is an outlier, but when
a second atypical value is added for survival2, only this second value is detected
as outlier, but the first one is no longer an outlier for this data set. With the
third value being part of the sample, which is much greater than the others, the
presence of two outliers is detected. The ML estimates and p-values of the GOF
tests for survival1, survival2 and survival3 are provided in Table 9. Note that
little changes in the estimated parameters and in the bounds for the p-values of
the tests are detected. For survival3 data, the differences are more noticeable.
We conclude that the GOF tests are relatively robust to outliers when the BS-t
distribution is considered under H0, specially the MI test, but a more extensive
study about this issue should be carried out.

Figure 9 shows the PP and SP plots for the BS-t distribution using the
survival data with three outliers added. From this figure, note that the points
are not still well aligned, specially in the center, but now the case # 15 is not
near the bands and there is one observation (case # 42) outside the KS band. If
we compare Figs. 7 and 9, there are no apparently visual differences with minor
distinct alignments in the points, specially because the rejection is due to points
in the center and not in the tails of the sample where the outliers are located.



DBH (in cms)

P
D

F

6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

DBH (in cms)

P
D

F

6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

Fig. 3. Histogram, boxplot and estimated PDF from TN (top) and TBS (bottom)
models for forestry data.



Table 6. Estimated parameters and statistic values for the indicated distribution under
H0 with forestry data.

Model Parameter Estimate Estimated statistic p-value

TBS α 0.12804 ks� = 0.07031 [0.4, 0.5]

β 8.23963 mi� = 0.05923 [0.25, 0.4]

TN μ 7.54905 ks� = 0.08201 [0.2, 0.25]

σ 2.42369 mi� = 0.06697 [0.1, 0.2]

Table 7. Descriptive statistics for survival data.

Median Mean SD CV CS CK Range Min Max n

70.00 99.82 81.12 0.81 1.76 5.46 364 12 376 72

Table 8. Estimated parameters and statistic values for the indicated distribution under
H0 with survival data.

Model Parameter Estimate Estimated statistic p-value

BS α 0.7600 ks� = 0.08848 [0.01, 0.05]

β 77.5348 mi� = 0.07318 [0.05, 0.1]

BS-t α 0.6085 ks� = 0.08201 [0.1, 0.2]

β 75.5880 mi� = 0.05908 [0.25, 0.4]

ν 5.0000 – –

3.5 Example 5: Comparison of Two Treatments

Certain clinical trials are aimed at shortening the time-to-discharge. In a double-
blind placebo controlled drug study, times (in hours) of 23 patients on drug and
of 25 patients on placebo were reported. No censoring occurred on this trial.
The hypothesis was that a 4-day ambulatory femoral nerve block decreases the
length of stay after a total knee arthroplasty compared to the usual treatment.
In Fig. 10, the placebo data show a distribution skewed to the right. We con-
sider 12 possible distributions including the Birnbaum-Saunders, gamma and
Weibull models. Notice that the drug data seem to be generated by two different
populations. Only two models fit well the data: the mixture normal and mixture
gamma distributions, being better the last one. We reject the Weibull model with
a p-value < 0.001. The ML estimates and corresponding observed statistics are
omitted. By means of the selected distributions, we estimate that 43.4% of the
patients that received the conventional treatment and 4.4% of the patients that
received the new drug stay in the hospital more than 3 days (the usual estimated
time): the drug works very well reducing the length of stay. Figure 10 shows the
histogram and estimated PDF of the indicated distributions for placebo and
drug data in different scales. We omit here the PP and SP plots for each group.
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Fig. 4. PP (top) and SP (bottom) plots with 95% acceptance bands for the TBS
distribution with forestry data.
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Fig. 5. Histogram, boxplot and estimated PDF from BS (top) and BS-t (bottom) model
for survival data.
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Fig. 6. PP (top) and SP (bottom) plots with 95% acceptance bands for the BS distri-
bution using survival data.
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Fig. 7. PP (top) and SP (bottom) plots with 95% acceptance bands for the BS-t
distribution using survival data.
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Fig. 8. Boxplots (top), adjusted boxplots (center) and stripchart (bottom) for survival
data and three outliers added.
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Fig. 9. PP (top) and SP (bottom) plots with bands for the BS-t model using survival
data and three outliers added.
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Table 9. Estimated parameters and statistic values for the indicated distribution under
H0 with survival data.

Model Parameter Estimate Estimated statistic p-value n Data set

BS-t α 0.6036 ks� = 0.09313 [0.10, 0.2] 73 survival1

β 76.2200 mi� = 0.05916 [0.25, 0.4]

ν 4.0000 – –

BS-t α 0.5806 ks� = 0.095664 [0.05, 0.1] 74 survival2

β 76.0500 mi� = 0.058160 [0.25, 0.4]

ν 3.0000 – –

BS-t α 0.6049 ks� = 0.102022 [0.01, 0.05] 75 survival3

β 77.2200 mi� = 0.060802 [0.20, 0.25]

ν 3.0000 – –

3.6 Example 6: Censored Fatigue Data

These data correspond to fatigue life (in cycles ×10−3) of coupons of aluminium.
We call these data as “fatigue”; see details in [1,14,20]. We consider a censored
fatigue data sample, such as in [5], so that we have r = 80 failures and n −
r = 21 data censored. From the histogram displayed in Fig. 12, note that the
distribution of fatigue data is clearly skewed to the right, with the BS distribution
showing a good fitting to these data, which must be corroborated.

The parameters are estimated at α̂ = 0.1751 and β̂ = 132.2525, by the ML
method, considering the presence of type-II right censoring. The KS and MI
statistics are computed such as in Examples 1 and 2, and their corresponding
p-values based on the BS distribution are in [0.2, 0.25] and [0.4, 0.5]. According
to these p-values, we cannot reject the null hypothesis that the censored sample
comes from a BS distribution, which can be confirmed from the PP and SP plots
shown in Fig. 11. This result is consistent with those obtained by other authors.

3.7 Example 7: Times to Failure in an Accelerated Life Test

We analyze the times to failure in a temperature-accelerated life test for a device;
see details in [15]. The sample is singly censored to the right with 33 failures
and four censored observations at 5000 h. We evaluate the adequacy of five
life distributions, estimate their parameters and then use Algorithm 2. The BS
distribution provides the best fit to these data. The ML estimates of the corre-
sponding parameters and the obtained observed statistics are omitted here, but
for the three of them we obtain 0.9 < p-value < 0.95, indicating an excellent
agreement between the model and the data. Figure 13 shows the PP and SP
plots of the times to failure for device according to the selected model with 95%
acceptance bands. As expected, all the observations fall inside the bands with a
very good alignment.
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Fig. 11. PP (top) and SP (bottom) plots with 95% acceptance bands for the BS
distribution using fatigue data.
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Fig. 12. Histogram, boxplot and estimated BS PDF for fatigue data.

4 Conclusions and Future Research

We have presented goodness-of-fit tests related to the Kolmogorov-Smirnov and
Michael statistics and connected them to graphical methods with uncensored and
censored data. Although the Anderson-Darling test is often more powerful than
the Kolmogorov-Smirnov test, it cannot be related to graphical tools by means
of probability plots, as the Kolmogorov-Smirnov test does. The stabilized prob-
ability plot is related to the Michael test, which is, in some cases, more powerful
than the Anderson-Darling and Kolmogorov-Smirnov tests. We have considered
the Kolmogorov-Smirnov and Michael tests for detecting whether any distribu-
tion is suitable or not to model censored or uncensored data using graphical
tools. We have conducted numerical studies for showing potential applications
of these tests and their corresponding graphical versions.

Data science is being an important topic where statistics plays a relevant
role. A challenging issue in data science is the handling of large amount of data,
known as massive data or big data [3]. Goodness-of-fit methods have been often
used for data sets with a low frequency sampling (small amount of observations).
Today there are instruments that generate big data. Due to the rapid advance-
ment of computers and information technologies, automatic data acquisition is
becoming increasingly common, moving data collection away from historically
low-dimensional approaches. With current technologies, such as digital equip-
ment, analytical sensors and live health monitoring, data generated from these
technologies may be used to detect whether a distribution is suitable to describe
these data. The term big data is often used to describe large, diverse and com-
plex data sets that are generated from different types of instruments, sensors or
computer-based transactions. Big data are information assets, characterized by
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Fig. 13. PP (top) and SP (bottom) plots with 95% acceptance bands for times to
failure data of a device using the BS model.



its large volume, velocity and variety (3Vs), requiring innovative and efficient
solutions to improve the knowledge process when making decisions in organi-
zations. The objective of big data is to provide high technology (hardware and
software) to store, process and analyze large amounts of data (mega, giga, tera,
peta, exa, zetta and yottabyte) and to create value in an organization. Facing on
big data, many statistical concepts need to be updated, particularly, goodness-
of-fit methods. For example, it is known that the power of a goodness-of-fit test
depends on the sample size, because a large number of observations provides a
larger test power. Thus, considering the large number of observations that the
big data brings to the current era, it leads to a great advantage when deciding
whether a distribution fits a large data set, especially in the procedures used
in this work. This advantage affects the process to make decisions, that is, to
choose which is the distribution that best fits the data. Note that a large amount
of data increases the probability of detecting unusual anomalies that cannot be
modeled by some distribution, making it possible to reduce the probability of
obtaining false positives in the hypothesis test. This allows us to filter a large
number of candidate distributions, until finding the adequate model. For this
reason, considering big data in the methodologies of the current times results
in great opportunities for discovering knowledge, particularly when performing
goodness-of-fit tests.
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