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Abstract—What should be the sensing capabilities of agents
in a Multi-Agent System be to solve a problem efficiently,
quickly and economicly? This question often appears when
trying to solve a problem using Multi-Agent Systems. This
paper introduces a method to find these sensing capabilities
in order to solve a given problem. To achieve this, the sensing
capability of an agent is modeled by a parametrized function
and then Genetic Algorithms are used to find the parameters’
values. The individual behavior of the agents are found with
Reinforcement Learning.
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I. INTRODUCTION

In previous works [1], a method was proposed to find
the individual behaviors of a set of N agents to solve the
problem of grouping them anywhere in a toroid. In that
study, knowing what the sensing capability of each agent
should be was a difficulty in itself. This was accomplished
by trial and error, using the situations that the agents
could not solve as feedback. For example, the sensing
capability had to be modified to avoid symmetric situations
that led to cyclic behaviors, and also to avoid obstruction
between agents whose movements interfered with each other.
After each change, a new learning experience was made
and new conclusions were reached. However, when the
grouping criterion was changed (e.g. agents should group
in a well defined geometric shape) the sensing capability
previously found was not enough. The perceptual aliasing
(due to limited sensing capability [4]) made it impossible
to distinguish certain states that were predecessors to the
goal from other states that did not belong to the problem’s
solution.

Finding the best sensing by trial and error is extremely
tedious and time consuming. Therefore, it was decided to
tackle the sensing problem by proposing a method based on
parametrization.

In Section II the proposed method is presented. Section III
describes two experiments carried out for testing the method.
Section IV presents the conclusions.

II. METHOD

The method introduced here proposes to model the
sensing capability of each agent by using a parametrized
sensing function. The parameter values are determined using
an optimization technique such as Genetic Algorithms.
Characteristics of several sensors such as infrared proximity
detectors, ultrasonic sensors, scanner and video camera,
were taken into consideration when the parameters were
defined. For example, an ultrasonic sensor has limited scope
but can measure the distance to an object, while a CCD
camera has unlimited scope but gives no information about
the distance of the objects in front of it.

Five parameters are used to model the main characteristics
of several sensors:
• Scope (ρ): denoting the radius of the sensing area.

Integer value in [1,max(height, width)],
• Aperture (σ): denoting the sensing aperture angle.

Integer value in [0, ρ],
• Closeness (β): denoting the number of layers in which

the sensing is divided. The layers are numbered, 1 being
the layer nearest to the agent and so on. Integer value
in [1, ρ],

• Density(δ): denoting how to measure the quantity of
agents in each layer. There is a value for the first layer
(δ1) and another for the rest of the layers (δr). Integer
value in [1, N ],

• Expansion (ν): denoting the shape of the sensing area.
Integer value in [−ρ+ 1, ρ],

where height and width are the toroid arena sizes and N
is the number of agents involved in the problem. The shape
of the sensing area is determined by the values of σ, ρ
and ν. Figure 1 shows, for one sensor, several examples
for different values of these three parameters.

The range of the value of each parameter can depend on
the values of some of the other parameters. For example, the
maximum value of β depends on ρ. The number of possible
configurations of the agent is determined as a function of β,
δ1 and δr for each sensor (front, right, back, left), where a
configuration is the state representation given by the sensors
of the agent.

Table I shows the number of rows in each layer depending



Figure 1. Scope, Aperture and Expansion Examples. The arrow (↑)
represents the agent. The arrowhead points to the front sensor.

on the value of β and ρ. For example, if β = 3 and ρ = 4,
the first layer has 1 row, the second layer has 1 row and the
third layer has the remaining 2 rows. Figure 2 shows four
possible values for β.

Table I
NUMBER OF LAYERS AND LAYER ROWS.

ρ
β 1 2 3 4 . . .
1 1 2 3 4 . . .
2 - 1,1 1,2 1,3 . . .
3 - - 1,1,1 1,1,2 . . .
4 - - - 1,1,1,1 . . .

Figure 2. Closeness Examples.

Regarding the density of the first layer, the nearest layer to
the agent, it has more varieties in values than the remaining
layers. Table II shows the set of possible values for the first
layer. Remaining layers only have two values as shown in
Table III. In both tables column Meaning shows the different
possibilities for the parameter δ.

Figure 3 shows a parametrization example for a sensor
and Figure 4 shows a parametrization example of an agent
with four sensors.

The state of each agent is represented by a 5-tuple
(F,R,B,L,G), where F , R, B and L are the output values
of the F ront, Right, Back and Left sensors. Position G
represents the grouping of all agents in any place in the
toroid. When an agent arrives at some position where there
are other agents, they start to interchange information about

Table II
DENSITY FOR FIRST LAYER.

δ1 = i
Value Meaning

0 No agents.
1 At least 1 agent on either side.
2 At least 2 agents on either side.
3 . . .

i− 1 At least i− 1 agents on either side.
i 1 agent in front.

i+ 1 1 agent in front and at least 1 agent on either side.
2i− 2 1 agent in front and at least i − 2 agents on either

side.
2i− 1 1 agent in front and at least i − 1 agents on either

side.

Table III
DENSITY FOR THE REMAINING LAYERS.

δr = 1
Value Meaning

0 No agents.
1 At least 1 agent.

δr = 2
Value Meaning

0 No agents.
1 At least half of the positions

with agents.
2 More than half of the positions

with agents.
3 All positions with agents.

Figure 3. Sensor Parametrization. The arrow (↑) represents the agent. The
arrowhead points to the front sensor.

whether they are seeing other agents or not. If all agents
are together, then the component G is set to 1, otherwise it
is 0. The remaining elements of the 5-tuple are calculated
as follows. Being sF (layer), sR(layer), sB(layer) and
sL(layer) the given values of front, right, back and left
sensors, respectively, for each layer of an agent in particular.
Let sF , sR, sB and sL be the corresponding arrays for each
sensor in each layer, and δF , δR, δB and δL the density
arrays for each layer for each sensor. Then, the sensor output
value for this agent is calculated as follows:



Figure 4. Four Sensor Parametrization. The arrow (↑) represents the agent.
The arrowhead points to the front sensor.

F (β, δF , sF ) = sF (β)+
β−1∑
i=1

2β−i∗sF (i)∗
β∏

j=i+1

δF (j), (1)

R(β, δR, sR) = sR(β)+
β−1∑
i=1

2β−i∗sR(i)∗
β∏

j=i+1

δR(j), (2)

B(β, δB, sB) = sB(β) +
β−1∑
i=1

2β−i ∗ sB(i) ∗
β∏

j=i+1

δB(j),

(3)

L(β, δL, sL) = sL(β)+
β−1∑
i=1

2β−i∗sL(i)∗
β∏

j=i+1

δL(j). (4)

According to the number of possible values of
each sensor, the agent can represent actual states of
the environment in a number of Conf(.) different
configurations, given by:

Conf(β, δF , δR, δB, δL) =

= 24β
β∏
i=1

(δF (i) ∗ δR(i) ∗ δB(i) ∗ δL(i)).
(5)

To obtain the parameter values, Genetic Algorithms [3]
are used as a searching method in the parameters’ space

of the sensing function. This algorithm has the following
requirements:
• The chromosome is composed of gene groups

representing each sensor parameter values.
• Elite/Roulette is used for both, selection and

replacement.
• Crossover uses one parent elected from the set of

chromosomes obtained with Elite and the other parent
chosen from the set obtained with Roulette.

• Q-learning, a Reinforcement Learning technique, is
added as a genetic operator. It is used to train
agents to learn (using the sensing parametrized in the
chromosome) policies that allow them to solve a given
problem. The number of trainings that take place with
the information in the chromosome is established at
the beginning of the method. The values obtained for
Q during training i are not initialized in training i+ 1
for each agent in each chromosome.

• The fitness function used is the result of testing
individual policies obtained by Q-learning, starting at
different initial states each time. The testing process
is carried out using the sensing capability represented
in a chromosome That is, the agent uses the sensing
capability expressed in the chromosome and the
policy obtained during training (described above). The
testing process counts as successful each time the
grouping problem is solved. This process is performed
a predetermined number of times, all with the same
number of iterations. The fitness value is the percentage
of times that agents remain grouped.

It is necessary to know the ceiling values used during
mutation. Max Density for layer is defined with the values
of ρ, σ, ν and ρ and it is calculated by:

δ(l) = 1 + 2
f(l)+l−1∑
i=l

ap(i) ∀1 ≤ l ≤ β, (6)

where l is the layer number, δ(l) is the ceiling density in
the layer l, (consider that if l = 1 ⇒ δ(l) = δ1 and if
l > 1 ⇒ δ(l) = δr). Function f(l) used in (6) determines
the number of rows in each layer and can be calculated by:

f(l) =

{
1 l 6= β

ρ− β + 1 l = β,
(7)

ap(i) is the Aperture in each row and is calculated by:

ap(i) =


σ Cond1 = True

0 Cond2 = True

ap(i+ sgn(ν))− 1 otherwise,

(8)



where

Cond1 =


True i = g(sgn(ν)) ∨

∨ sgn(|ν| − ρ+ i ∗ sgn(ν)) = sgn(ν)
False otherwise,

(9)

Cond2 =


True i 6= g(sgn(ν)) ∧

∧ ap(i+ sgn(ν))− 1 < 0
False otherwise,

(10)

Table III shows that if l ≥ 2 ∧ δ(l) > 2⇒ δ(l) = 2.
Function g(x) used in (9) and (10) determines how to

calculate the aperture and can be obtained by:

g(x) =
ρ− 1

2
∗ x+

ρ+ 1
2

. (11)

III. EXPERIMENTS AND RESULTS

Two different experiments were conducted to validate
the proposed method: 1) find the sensing capability to
solve the grouping problem and compare it with a known
one (explained in section III-A); 2) find the appropriate
sensing capability when the agents must group in a particular
geometric shape. The aim of this experiment was to force
policy differentiation (explained in section III-B).

In both cases the fitness value was reached by testing
the obtained policy 300 times after 7 trainings with 1400
iterations each [1]. The population was composed of 25
individuals. In both experiments, each agent had four sensors
with three genes each. The three genes represented: β, δ1
and δr, respectively. Once the optimal set of parameters has
been obtained, the policy is improved with an extra training.
For this to happen, the agents were trained 15 times with
11200 iterations.

A. Experiment 1

In this experiment the proposed method was tested by
finding a sensing capability to solve the grouping problem
and comparing it with that obtained by trial and error. The
agents were indistinguishable, so it is not necessary to learn
different policies.

Parameters ρ, σ and ν were set in an analogous way for
each sensor with the values shown in Table IV.

Table IV
FIXED PARAMETER VALUES USED IN EXPERIMENT 1.

ρ σ ν
Front 2 1 2
Right 2 1 1
Back 2 1 2
Left 2 1 1

Table V
FIXED PARAMETER VALUES USED IN EXPERIMENT 2.

ρ σ ν
Front 4 1 -1
Right 2 1 1
Back 2 1 2
Left 2 1 1

Table VI shows the values for β, δ1 y δr for sensing
capability found by trial and error and Table VII shows the
values of the same parameters but for the sensing capability
found with the method. Effectiveness with both sets of
parameters was 100%.

Table VI
PARAMETER VALUES FOR β , δ1 AND δr OBTAINED BY TRIAL AND

ERROR.

β δ1 δr
Front 2 2 1
Right 2 1 1
Back 1 1 1
Left 2 1 1

Table VII
PARAMETER VALUES FOR β , δ1 AND δr OBTAINED WITH THE PROPOSED

METHOD.

β δ1 δr
Front 2 2 1
Right 1 3 1
Back 1 1 1
Left 2 1 1

Notice the difference between the number of
configurations for the sensing capability obtained by
trial and error, which was 1024, versus the number of
possible configurations for the sensing capability obtained
using the proposed method, which was only 768. A
considerable decrease can be observed in the quantity of
configurations without affecting the problem resolution.

B. Experiment 2

In this experiment the agents must group in a square
shape, which is shown in Figure 5. Position numbers and
agent numbers are equivalent. Notice that the way in which
each agent contributes to building a specific geometric shape
of grouping (e.g. triangle, square, etc) depends on the region
shape to be completed. It is necessary to distinguish two
groups of different positions in the shape:
• the four corners (positions 0, 2, 6 and 8), named set of

even agents, and
• the four remaining places (positions 1, 3, 5 and 7),

named set of odd agents.
Parameters ρ, σ and ν are set in an analogous way for

each sensor with the values shown in Table V.
It is important to notice that in this case agents should

learn different policies (differentiation) and they could



Figure 5. Shape to be reached in experiment 2. Each position in the
objective shape has been enumerated from 0 to 8 in consecutive order.
Position 4 determines where the shape has to be formed in the toroid.

probably acquire different sensing capabilities. For this
reason chromosomes have a group of 12 genes for each
agent.

This experiment had two phases:
1) Obtaining the sensing capability and behavior for four

agents (Agents 0, 2, 5 and 7 where used).
2) Obtaining the sensing capability and behavior for two

agents (Agents 0 and 7 where used).
The method found the parameters shown in Tables VIII,

IX, X, y XI, with 6% as a fitness value.
Phase 1 showed that the policies and sensing capability

for agent 2 could be interchanged with the policy for agent
0. And the same happened with agents 5 and 7.

Table VIII
PARAMETER VALUES OBTAINED BY THE PROPOSED METHOD AND USED

FOR TESTING DURING EXPERIMENTS FOR AGENT 0.

β δ1 δr
Front 2 2 1
Right 2 1 1
Back 2 3 1
Left 1 2 1

Table IX
PARAMETER VALUES OBTAINED BY THE PROPOSED METHOD AND USED

FOR TESTING DURING EXPERIMENTS FOR AGENT 2.

β δ1 δr
Front 4 2 1
Right 2 1 1
Back 1 4 1
Left 2 1 1

Table X
PARAMETER VALUES OBTAINED BY THE PROPOSED METHOD AND USED

FOR TESTING DURING EXPERIMENTS FOR AGENT 5.

β δ1 δr
Front 2 2 1
Right 1 2 1
Back 2 1 2
Left 2 1 1

The next question to answer was: which were the agents
that contributed to such low fitness?. To answer it, individual
agents were tested. That is, eight agents were located in the

Table XI
PARAMETER VALUES OBTAINED BY THE PROPOSED METHOD AND USED

FOR TESTING DURING EXPERIMENTS FOR AGENT 7.

β δ1 δr
Front 4 3 1
Right 2 1 2
Back 1 4 1
Left 1 2 1

toroid in such a way that they formed an incomplete square
(for example, to test Agent 0, they formed a square with
position 0 empty). The fitness value for each test is shown
in Table XII. It is easy to see that the fitness for Agents 2
and 5 are lower than those for the other two agents.

Table XII
FITNESS VALUE FOR POLICIES AND SENSING CAPABILITIES FOUND

WITH THE PROPOSED METHOD.

Agent 0 2 5 7
Percentage 97 63 64 92

In the goal shape, Agents 0 and 2 have equivalent
positions and the same happens with Agents 5 and 7. The
next step was to use policy and sensing capability from
Agent 0 in Agent 2 and do the same test with Agents 5 and
7. The results showed that the fitness for Agents 2 and 5
was increased by using the policies and sensing capabilities
from the agents with better performance. It can be seen in
Table XIII.

Table XIII
FITNESS FOR AGENTS 2 AND 5 USING INFORMATION FROM AGENTS 0

AND 7, RESPECTIVELY.

Agent 2 5
Percentage 95 86

The remaining agents were tested using the policy and
sensing capability obtained for Agents 0 and 7. Namely, the
policy and sensing capability obtained for Agent 0 were used
for Agents 6 and 8, whereas the information obtained for
Agent 7 was used for Agents 1 and 3. It is worth mentioning
that Agent 4 is used as a seed determining the place in the
toroid where the shape will be taking place. For that reason
it is not trained or tested. The results for each agent (1, 3,
6 and 8) are shown in Table XIV.

Table XIV
FITNESS OBTAINED FOR NOT TRAINED AGENTS.

Agent 1 3 6 8
Percentage 90 89 95 94

The underlying idea in this experiment was to
obtain different behaviors for distinct agents. To verify
specialization a particular test had to be done. Agent 0 was
tested using the policy and sensing capability learned by



Agent 7 and vice versa. The results are shown in Table XV.
The fitness value obtained by Agent 0 being place in position
7 (both positions and agents are interchangeable) has a lower
effectiveness rate than if it used its own information (see
Table XV). The sensing capability in Agent 0 is not enough
to avoid the perceptual aliasing, decreasing the performance
of the agent (see Tables VIII and XI with the sensing
capabilities for each agent obtained during the learning
process). On the other hand, when Agent 0 was tested using
information obtained for Agent 7, the fitness value was 82%.

Table XV
FITNESS OBTAINED TESTING DIFFERENTIATION. COLUMN 0 SHOWS

FITNESS FOR AGENT 0 USING INFORMATION OBTAINED FOR AGENT 7.
COLUMN 7 SHOW FITNESS FOR AGENT 7 USING INFORMATION

OBTAINED FOR AGENT 0.

Agent 0 7
Percentage 4 82

Table XVI
FITNESS VALUES FOR AGENTS WITHOUT LEARNING. INFORMATION FOR

AGENT 0 WAS USED FOR EVEN AGENTS, AND INFORMATION FOR
AGENT 7 WAS USED FOR THE REMAINING AGENTS.

Agent 1 2 3 5 6 8
Percentage 82 7 83 82 6 5

The reason why even agents had better performance
than odd ones can be understood by analyzing the sensing
parameters in Tables VIII, IX, X and XI. The greater
the number of possible configurations, the more likely the
sensing capability can be used successfully in any position
of the target shape. The problem is that the greater the
number of configurations, the larger the state space with
its corresponding learning problems. (see [5]).

The next step was to obtain the hits percentages using
policies and sensing capabilities from even agents in odd
agents and vice versa. Results are shown in Table XVI.

All 8 agents were tested leaving Agent 4 docked as a seed.
In that case policy and sensing capability from Agent 0 was
used for even agents, and policy and sensing capability for
Agent 7 was used for odd agents, giving a fitness value of
52%. The results shown in Table XVII let conclude that it is
enough to train as many agents as distinguishable positions
there can be found in the goal shape.

Table XVII
FITNESS FOR EACH AGENT USING INFORMATION FROM AGENT 0 AND

7.

Agent 0 1 2 3 5 6 7 8
Percentage 97 89 95 89 86 95 92 94

In this problem it is possible to distinguish two different
behaviors. One for the agents who occupy the corners and
another for agents who occupy the remaining positions. In
that sense, the method was tested looking for behaviors only

for Agents 0 and 7. The method gave two different sensing
capabilities, one for Agent 0 shown in Table XVIII, and a
distinct one for Agent 7, shown in Table XIX. The fitness
value was 82%.

Table XVIII
PARAMETER VALUES OBTAINED FOR AGENT 0.

β δ1 δr
Front 4 2 1
Right 1 1 1
Back 2 2 1
Left 1 1 2

Table XIX
PARAMETER VALUES OBTAINED FOR AGENT 7.

β δ1 δr
Front 4 3 1
Right 2 1 2
Back 1 4 1
Left 1 2 1

All the experiences made with the behaviors obtained for
4 agents were repeated with the information obtained after
training only Agent 0 and 7. Table XX shows the fitness
value for each agent using the policy and sensing capability
from Agent 0 for the even positions and using the policy and
sensing capability for Agent 7 for odd positions. Remember
that only Agent 0 and 7 where trained.

Table XX
FITNESS VALUES FOR EACH AGENT.

Agent 0 1 2 3 5 6 7 8
Percentage 99 92 100 86 88 98 87 99

When 8 agents were tested together the fitness value was
56%, that was greater than the fitness obtained with the
information gathared in the previous case (52%).

IV. CONCLUSION

This work introduces a method that efficiently allows
finding the sensing capability that agents should have in
order to complete a mission. This is a subject that has not
been researched in depth yet, according with the reviewed
literature. The results reached show that the proposed
method is efficient in obtaining a sensing capability that
allows learning a solution for a given problem.

It is worth mentioning that the grouping problem could
require an appropriate docking of the agents (for example,
if the agents must group forming a geometric shape).
This strongly depends on a precise sensing capability.
Furthermore, it is clear to see that the policies obtained from
the experiments are very sensitive to the region shape to be
completed.

The relevance of these results lies in the fact that the
obtained sensing capability is achieved in an automatic way
and faster than that reached by trial and error (as in [1]).



In the first experience the relevance of the results is
reflected in the fact that the parameter values were obtain
after one day processing. Whereas several weeks of trial and
error were needed to obtain the values used in [1], with a
considerable decrease in the number of configurations.

In the second experiment, besides the detection of
differentiation, it was showed that it was enough to learn
only two different policies and to generalize them to the
other agents in order to solve the problem.
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