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Summary

Formal requirements specifications, eg, software cost reduction (SCR) specifications, are chal-

lenging to analyse using automated techniques such as model checking. Since such specifications

are meant to capture requirements, they tend to refer to real-world magnitudes often charac-

terized through variables over large domains. At the same time, they feature a high degree of

nondeterminism, as opposed to other analysis contexts such as (sequential) program verifica-

tion. This makes model checking of SCR specifications difficult even for symbolic approaches.

Moreover, automated abstraction refinement techniques such as counterexample guided abstrac-

tion refinement fail in many cases in this context, since the concrete state space is typically

large, and reaching specific states of interest may require complex executions involving many

different states, causing these approaches to perform many abstraction refinements, and mak-

ing them ineffective in practice. In this paper, an approach to tackle the above situation, through

a 2-stage abstraction, is presented. The specification is first relaxed, by disregarding the con-

straints imposed in the specification by physical laws or by the environment, before being fed

to a counterexample guided abstraction refinement procedure, tailored to SCR. By relaxing the

original specification, shorter spurious counterexamples are produced, favouring the abstraction

refinement through the introduction of fewer abstraction predicates. Then, when a counterex-

ample is concretizable with respect to the relaxed (concrete) specification but it is spurious with

respect to the original specification, an efficient though incomplete refinement step is applied

to the constraints, to cause the removal of the spurious case. This approach is experimentally

assessed, comparing it with related techniques in the verification of properties and in automated

test case generation, using various SCR specifications drawn from the literature as case stud-

ies. The experiments show that this new approach runs faster and scales better to larger, more

complex specifications than related techniques.
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1 INTRODUCTION

The requirements process, consisting of thoroughly describing the features that software artifacts must possess, is recognized as an important

phase in the development of quality software [1–3]. This phase often involves some requirements specification framework or language specifically

designed for the task, whose usage leads to better requirements elicitation, eg, by exposing imprecisions in the description of software features,

missing cases, and even contradictions among different requirements. Thus, a main benefit of a rigorous requirements process lies in its potential

to expose errors at early stages of software development, when these are easier and less expensive to correct.

Various approaches aim at aiding in eliciting, describing, and organizing requirements, most of which are based on informal notations (eg, the

approaches by Stevens et al. [4] and Maiden and Alexander [5]). Some approaches, on the other hand, are based on formal notations, leading to

https://doi.org/10.1002/stvr.1657
http://orcid.org/0000-0003-0532-5296


inherently unambiguous specifications, better suited for automated or semiautomated analyses. Software cost reduction (SCR) [6, 7, 8] is a formal

methodology for describing software requirements.

Software cost reduction's distinctive feature is its tabular notation that allows one to organize large and unstructured requirements into smaller

and well-structured tables, yielding more modular requirements specifications that are easier to understand and mantain. Software cost reduction

is useful to describe the interactions between a software system and its operating environment, as well as the particular features imposed by the

nature of the environment itself.

Software cost reduction has been successfully used for eliciting the requirements of many safety critical applications, including an aircraft's oper-

ational flight program [6], a submarine's communications system [9], the control software of a nuclear power plant [10], among others [11–13]. It

has also been used as part of a process for developing human-centric decision systems [14] and as part of an approach to the development of trust-

worthy autonomous systems [15] and to derive event-based transition systems from goal-oriented requirements models [16]. In addition, several

tools supporting automated analysis of SCR specifications have been developed, most notably the toolset introduced by Heitmeyer et al. [17], which

performs type checking, consistency checking (no contradictory requirements, no missing cases, etc), simulation of user provided scenarios, and

other analysis tasks. Two particularly difficult analyses regarding SCR specifications are test case generation, ie, producing executions of the system

from the specification of the requirements and the verification of properties of the specification. The former is very important for contrasting the

expected behaviour of the system, as specified by the formal requirements, and the actual behaviour of the system once it is implemented (it is in

fact an instance of the so-called model based testing approach). The latter is very useful as a way of checking properties that are expected to emerge

as a consequence of the requirements. For both these analyses, a typical mechanism used in the context of SCR specifications is model checking,

including some rather sophisticated approaches (eg, those introduced by Bultan and Heitmeyer [18]).

A main limitation in automated analyses is the state explosion problem: Automated analyses are at least polynomial on the size of the state

space of a specification, and such size grows exponentially with the complexity of the specification (eg, increasing number of variables or the size

of their domains and increasing number of components in a specification). In requirements specifications, there is typically a need to refer to

real-world magnitudes, which are often formally characterized through variables over large domains, increasing the size of the state space. Also,

since they correspond to early phases of software development, they often feature a high degree of nondeterminism, compared to other more

concrete descriptions, such as designs and source code. Thus, model checking requirements specifications are a challenging task, even for sym-

bolic approaches. Approaches that use abstraction as a way of tackling state explosion, by producing more abstract versions of a specification that

are better suited for analysis, have also been used for requirements analysis. However, these mechanisms also suffer from known limitations.

Some approaches require manual abstractions [17, 19]. Heitmeyer et al. [17] perform ad hoc abstractions on specifications, while Gargantini and

Heitmeyer [19] propose manually shrinking the domains of numeric variables before analysis. Ad hoc abstractions require careful observation

of the specification and the property to be verified, or the goal to be reached in the case of test case generation, by an experienced engineer, a

time-consuming and expensive activity; on the other hand, proving a property true or reaching a goal in a specification with manually reduced

domains does not guarantee that the property holds or the goal is actually reached in the original specification. This is an important problem,

in particular, in relation to test case generation, where the produced test cases are used to contrast expected behaviour with the actual system

behaviour; when these scenarios come from manually abstracted specifications, they will need to be (manually) concretized to be contrastable

with the system.

Techniques that automatically refine abstractions for analysis, eg, counterexample guided abstraction refinement (CEGAR) [20, 21], also have

difficulties to be applied in the domain of requirements specifications, since the concrete state space in such specifications is typically large, and

reaching specific states of interest may require complex executions involving many different states, causing these approaches to perform many

abstraction refinements and making them ineffective in practice.

In this paper, an approach to tackle the above situation, through a 2-stage abstraction, is presented. The specification is first relaxed, by disregard-

ing the constraints imposed in the specification by physical laws or by the environment, before being fed to a CEGAR procedure, tailored to SCR.

Essentially, the first stage is motivated by the observation that, by disregarding environmental constraints imposed on monitored (numerical) vari-

ables of SCR requirements specifications, one obtains a relaxed specification, adequate for the verification of properties that do not need to precisely

track the validity of such environmental constraints. At the same time, by relaxing the original specification, shorter spurious counterexamples are

produced, favouring the abstraction refinement through the introduction of fewer abstraction predicates. The second stage is a standard CEGAR

procedure [22], designed to exploit inherent characteristics of SCR specifications such as the division of the state space in mode classes, to achieve

better performance. It is complete with respect to the relaxed specifications it is fed with. However, concretizable counterexamples may still be spu-

rious with respect to the original specification. These receive a lightweight treatment that only allows it to remove spurious cases when infeasibility

can be blamed on atomic transitions, through the addition of transition invariants that cause their removal, constituting an incomplete refinement

of the relaxed specification.

The presented technique is evaluated for verifying properties of requirements specifications and generating tests from specifications, on a num-

ber of case studies taken from the literature. These experiments show that this technique outperforms previous approaches (including previous

work by authors of this article [23], by orders of magnitude). Moreover, these cases show that indeed many properties do not need to precisely

track the validity of environmental constraints, witnessed by the very low number of refinements required on the relaxed specifications and that



the lightweight refinement of the relaxed specification is powerful enough to handle the assessed specifications, not falling into its source of

incompleteness in any of these cases.

The remainder of this article is organized as follows. In Section 2, the SCR method is discussed, as well as the motivation for this work. In Section 3,

the lazy abstraction approach for the analysis of SCR specifications is presented, which serves as a core of the whole analysis approach, described

in Section 4. Later on, in Section 5, the experimental evaluation is presented. Finally, Section 6 discusses related work, while the conclusions are

presented in Section 7.

2 SOFTWARE COST REDUCTION

Software cost reduction is a method and a language for describing software requirements [24,25]. A distinctive feature of SCR is its tabular notation

for describing requirements, resulting in specifications that are more modular and easier to understand and maintain. Software cost reduction is a

formal language with a precisely defined semantics. An SCR requirements specification describes how the system must interact with its environment

to accomplish its desired goal, eg, ensuring that some property always holds in the environment. In SCR, the system is conceived as an actuator

that reads the values of some quantities of interest from the environment via its monitored (input) variables, and based on such inputs dictates

which values the system must produce on its controlled (output) variables, which in turn produce changes in output devices to (indirectly) alter the

environment to accomplish the system's goal. From the point of view of the system, the environment nondeterministically triggers input events, via

(feasible) changes in the monitored variables. The system is aware of the environmental alterations associated to input events through changes in the

monitored variables and constantly reacts to these alterations producing values for controlled variables, to maintain the intended properties in the

environment. Formally, the requirements are described in SCR by means of a mathematical relation among the system's monitored and controlled

variables, called REQ, defining, for fixed values of monitored variables, the accepted values for the system's controlled variables. Furthermore, SCR

allows one to describe constraints of the system's environment by means of another (mathematical) relation, called NAT.

As an example, that will be used as a running case study throughout this article, consider the safety injection system (SIS) [26] and whose SCR

specification is depicted in Figure 1. Safety injection system is in charge of partially controlling a nuclear power plant by tracking the water pressure

of a cooling subsystem via a monitored variable mWaterPres and the state of 2 user-controlled switches, one that prevents the system from being

engaged (monitored variable mBlock) and another that reactivates the system after being blocked (monitored variable mReset). Safety injection

system requirements (relation REQ) should state that when the water pressure level is too low (dangerous), the system must administer a “safety

injection” that takes the water pressure back to a normal level. Thus, SIS sets controlled variable cSafetyInjection to true to indicate that a

safety injection must be applied.

Constraints on the SIS environment (relation NAT) may state, for instance, that due to physical laws, the water pressure levels can vary between

0 and 5000 and that the sensoring equipment guarantees that the difference between 2 consecutive measurements of the water pressure level

cannot be greater than 10.

Software cost reduction also introduces the notions of modes and mode classes. A mode class is, essentially, an internal controlled variable that

allows the system to maintain state information, whose possible values are the modes. For example, SIS defines mode class mcPressure, which

(A)

(B)

(C)

FIGURE 1 Tabular specification of the safety injection system



introduces modesTooLow,Permitted, andHigh. These modes indicate that water pressure levels are currently too low (dangerous), normal, and

high, respectively.

Software cost reduction specifications are typed; variables can only take values from their corresponding typesets. A mode class' typeset is the set

of the modes it introduces. For the above example, mode class mcPressure defines modes TooLow, Permitted, and High; monitored variables

mBlock and mReset are of type {On,Off}, and mWaterPres is an integer ranging from 0 to 5000; controlled variable cSafetyInjection is

Boolean. Software cost reduction also features the definition of constants; in SIS, constantsLow (900) andPermit (4000) represent the thresholds

for entering modes TooLow and High, respectively.

The syntax adopted for basic events in SCR is @T(cond), where cond is a logical predicate. Its semantics is that the system (atomically)

transitions from a state where cond does not hold to a state satisfying cond, ie, it intuitively reads as “cond becomes true.” For example,

@T(mWaterPress >= Low) (see the first row in Figure 1A) states that the water pressure level just became greater than or equal to Low (it was

less than Low in the previous state). Expression @F(cond) is the dual of @T(cond) (“cond” just became false). The events that occur in the system

environment and affect the values of monitored variables are called input events. They drive the execution of the system (ie, the system reacts to

input events).

The relation that governs the intended behaviour of the system, namely, REQ, is captured in SCR through a set of tables. Tables can be either

mode transition, event, or condition tables. A mode transition table describes how a system's mode class changes in response to events. Safety injection

system' mode transition table, corresponding to mode classmcPressure, is shown in Figure 1A. For example, the first row states that when the sys-

tem is in mode TooLow and monitored variable mWaterPres is increased reaching or exceeding Low (ie, input event @T(mWaterPres >= Low)

occurs), then the system transitions into mode Permitted. An event table defines how a variable (other than a mode class) changes its value in

response to events. The only event table for SIS is shown in Figure 1B. It defines a term (a kind of auxiliary internal variable of the specification)

called tOverridden. tOverriden is true when the system actions are overridden, ie, when the block switch is pressed and the reset switch is

not, while the mode is not High. Figure 1B shows that tOverriden takes the value True (row 3, column 2) when the mode is TooLow or Per-

mitted (row 2, column 1) and event @T(mBlock=On) when mReset=Off occurs (row 2, column 2). This last expression is an example of a

conditioned event, which is triggered only when mBlock becomes On while mReset is Off. Finally, a condition table defines a variable or term as a

function of other variables in the current state of the system. The condition table of SIS, shown in Figure 1C, defines the controlled variablecSafe-

tyInjection in terms of the values of mcPermitted and tOverriden. For example, the table states that the safety injection must be applied

(cSafetyInjection is On in row 3, column 3) when the system is in mode TooLow (row 2, column 1) and the system actions are not overridden

(row 2, column 3).

2.1 SCR semantics

In this section, the standard SCR semantics is briefly discussed. The reader is referred to the work of Heitmeyer et al. [17] for further details.

In Section 3.1, a slightly different presentation of this SCR semantics, which fits better the introduction of the lazy predicate abstraction (LPA)

algorithm for SCR analysis, is provided. Throughout this section, a fixed SCR specification Spec is assumed.

Formally, the system modelled by Spec is represented by a labelled transition system (LTS) ΣSpec = (S, S0, E, T), where S is the (finite) set of system

states, S0 ⊆ S are the initial states, and E are the input events that it observes from its environment. The transition relation T ⊆ S × E × S is defined

by the SCR tables and the NAT relation of Spec. If the system is in state s ∈ S and input event e ∈ E is triggered, T indicates how to construct the new

system state s′ (the system response to e). Due to the constraints imposed on SCR tables, T is deterministic, ie, given a source state s and an event e,

SCR tables and NAT constraints deterministically define s′ = T(s, e). In addition, T is partial, since not all the input events are reacted to in all states.

Moreover, SCR tables define a dependency relation D between entities (xDy iff y is involved in the table defining x), which must be a partial order.

There are some assumptions related to the occurrence of input events in the environment. First, input events are triggered nondeterministically in

the environment. At any given state, any enabled input event might occur. An event is enabled if it is allowed to occur at the current state, according

to its definition, and satisfies NAT. For instance, assuming that NAT states that sensoring intervals guarantee that mWaterPres cannot change

more than 10 units in 2 consecutive measurements, @T(mWaterPres>900) is only enabled in states in which mWaterPres∈ [891..900] (@T(c)

represents the fact that c becomes true in the state, ie, c must be false for the event to be enabled). Second, it is assumed that input events are

triggered one at a time. In other words, exactly one input event occurs at each system transition. This is often called the One-Input Assumption in the

literature [24].

Let us be more precise about the state space of the system. As mentioned before, there are 4 kinds of entities in SCR: mode classes, terms, and

monitored and controlled variables. Each entity has an associated datatype, a finite set of values that the entity can take. Function TY is defined to

map each entity to its corresponding datatype. In the case of a mode class m, TY maps it to {M1, … ,Mn}, the set of modes it defines. A states ∈ S is

a total function mapping each entity x to a value in TY(x); s(x) denotes x's value in s. Since only finite datatypes are allowed in SCR, S is a finite set.

Notice that, as each entity must have a unique value in a given state s, each mode class m must have a unique mode MDm(s) in s (when the system has

only one mode class, the subscript m in MDm is dropped). Without loss of generality, it is assumed that every SCR specification Spec defines a single

mode class.



FIGURE 2 cSafetyInjection
′
s table function

FIGURE 3 tOverriden
′
s table function

2.1.1 Tables

Intuitively, each SCR table Tx defines a dependent entity rx; when an input event occurs, Tx describes the value of rx in either the current state or the

next state (the latter denoted by rx′). More precisely, if r1, … , rk are all the dependencies of rx (ie, (rx, rj) ∈ D for 1 ≤ j ≤ k), then Tx defines a total

function Fx ∶ TY(r1) × … × TY(rk) → TY(rx), called the table function for Tx. Being total functions, the tables ensure that for each state and input

event, exactly one successor state exists (notice that the target state can be the same as the source state, when the corresponding table does not

prescribe a change in the value of the defined entity). Thus, the whole set of SCR tables in Spec describes the transition relation T fromΣSpec, viewing

it as a total function by mapping a state s to itself when an event is not reacted to.

A condition table Tc defines the value of an entity rc as a function of the values of other entities in the current state (ie, it does not depend on

events). The SCR method requires that Tc guarantees completeness and disjointness [24], implying that in every state s ∈ S, Tc must assign exactly one

value to rc. As an example, consider the condition table in Figure 1C that defines controlled variable cSafetyInjection; this variable depends

on mode class mcPressure and term tOverriden, and its table function TcSafetyInjection is as shown in Figure 2.

An event table Te defines an entity re in terms of events. Te then typically must consider both “old” (previous state) and “new” (current state) val-

ues of entities that re depends on. Software cost reduction requires that Te guarantees disjointness, enforcing that 2 different table rows cannot

simultaneously be satisfied. Also, according to SCR semantics, different rows must yield different values for re. Finally, if no event considered by

Te takes place (in the circumstances that Te expects), then Te maintains the same value of re in the next state (ie, re′ = re). As an example, consider

the event table of Figure 1B, defining term tOverriden. This term depends on the values of mBlock, mBlock′ , mReset, mReset′ , mcPressure,

mcPressure′ , and tOverriden, and the table function TtOverriden is as shown in Figure 3.

A mode transition table Tm is a particular case of an event table, defining how the system transitions within modes of a mode class rm when events

occur. Thus, the table function Fm for Tm is defined similarly to event tables. In addition to the conditions imposed on event tables, Tm has to meet a

reachability condition ensuring that all modes in TY(rm) can be reached from its prescribed initial mode.

2.1.2 Executions, reachable states, and the verification of invariant properties

Let ΣSpec = (S, S0, E, T) be Spec's associated LTS. For set F ⊆ E, F∗ (resp, F+) is defined to be the set of all sequences (resp, nonempty sequences) of

events in F. The following notation is introduced. For every e ∈ F and es ∈ F∗, e · es is the sequence resulting from prepending e to the beginning of

es, #es is the length of es, and es ↑ i is the sequence containing the first i elements of es. For states s, s′ ∈ S, and event e ∈ F, s
e
⇝ s′ denotes T(s, e) = s′.

Furthermore, for monitored variable mv, s
mv
⇝ s′ denotes that there exists an input event e modifying mv (e ∈ mv) such that s

e
⇝ s′ . The definition of

⇝ is lifted to sequences of events in the usual way: s
𝜆

⇝ s′ iff s = s′ (𝜆 represents the empty sequence), and s
e·es
⇝ s′ iff there exists a state s′′ such that

s
e
⇝ s′′ ∧ s′′

es
⇝ s′. In addition, s

F∗

⇝ s′ (resp, s
F+

⇝ s′) stands for ∃es ∈ F∗ | s
es
⇝ s′ (resp, ∃es ∈ F+ | s

es
⇝ s′). Hence, for monitored variable mv, s

mv+

⇝ s′

indicates that there exists a nonempty sequence of events that modify monitored variable mv that makes the system transition from s to s′.

An execution of ΣSpec is a sequence es ∈ E∗ of input events, starting at an initial state s0 ∈ S0. Given an execution 𝜎, #𝜎 is the number of states in 𝜎.

Also, 𝜎.i yields 𝜎's ith state, for 0 ≤ i < #𝜎, ie, if s0

es↑i
⇝ si, then 𝜎.i = si.

The set Reach(ΣSpec) of reachable states of ΣSpec is defined as the ending states of executions: Reach(ΣS𝑝ec) = {s | ∃s0 ∈ S0.s0

E∗

⇝ s}.

An invariant property is a predicate P over S that holds in every s ∈ Reach(ΣSpec). A transition property is a predicate PT over S × S that must be true

in every pair (s, s′) of consecutive reachable states, ie, states such that there exists an execution 𝜎 and value i such that 𝜎.i = s and 𝜎.(i + 1) = s′.

A traditional way for verifying that an invariant property P holds in ΣSpec is to prove that the set Reach(ΣSpec) does not intersect with the set of

states satisfying ¬P. Notice that proving that any overapproximation (superset) of Reach(ΣSpec) does not intersect with ¬P also suffices to prove P

valid in ΣSpec. As feasible transitions only lead to states in Reach(ΣSpec), then proving a transition property PT valid can be done by proving that no

transition executed from states satisfying Reach(ΣSpec), or any overapproximation of it, satisfies ¬PT. The computation of overapproximations is the

core of abstract interpretation based approaches for verification, like the work presented in this paper.



2.2 Abstraction based analysis for SCR and the numerical variables problem

Instead of directly dealing with the verification of a reachability property on a potentially very large concrete LTS, abstraction-based analyses

propose to do so on an abstract state space, to increase scalability. That is, given an LTS  = (S,Σ,→), an abstraction-based approach proposes con-

sidering regions, ie, abstract states that represent sets of states from S, and abstract transitions that overapproximate the→ transitions between the

states constituting the regions. More precisely, a region structure for LTS  is a structure  = (R,⟂, ⊔, ⊓, pre, post, [.]), consisting of a set R of regions,

where each region r represents a set [r]* of states of S; ⟂ represents the empty set of states, r ⊔ r′ and r ⊓ r′ are the union and intersection operators

of [r] and [r′], respectively; pre(r, l) and post(r, l) are the weakest precondition and strongest postcondition operators with respect to labels (pre(r, l)
returns the largest region such that, from all its states and traversing arcs labelled by l one arrives at states in r; post(r, l) returns the largest set of

states that can be reached from states in r through transitions labelled by l), respectively. An abstraction structure  = (, pre, post, ⊴) for an

LTS  complements a region structure  for  with abstract preoperators and postoperators pre and post, and a precision preorder⊴, such that

pre(r, l) ⊆ pre(r, l), post(r, l) ⊆ post(r, l) (ie, abstract transitions overapproximate concrete transitions between sets of states), assuming that r ⊆ r′

denotes [r] ⊆ [r′]. Moreover, pre and post must be monotonic with respect to (⊴ ∩ ⊆), ie, the precision preorder⊴ intuitively indicates how close

the abstract preoperators and postoperators are to the concrete ones, for given regions.

The above described general abstraction setting can be instantiated in various ways, in particular, through an effective one known as predicate

abstraction. In predicate abstraction, regions are characterized by sets of state properties called support predicates, and the concretization is simply

the set of states satisfying the corresponding predicates. More precisely, if P is a set of predicates over S (ie, for every p ∈ P, [p] ⊆ S), an abstraction

structure AP() = (P(), preAP , postAP , ⊴P) can be defined as follows:

• P() = (R,⟂, ⊔, ⊓, pre, post, [.]), where the regions in R are pairs (𝜑,Γ), withΓ ⊆ P being a finite set of (local) support predicates, and𝜑 is a Boolean

formula over the predicates of Γ. The remaining elements of P() are defined as follows: ⟂= (false, ∅); (𝜑,Γ) ⊔ (𝜑′,Γ′) = (𝜑 ∨ 𝜑′,Γ ∪ Γ′); (𝜑,Γ) ⊓
(𝜑′,Γ′) = (𝜑 ∧ 𝜑′,Γ ∪ Γ′); pre((𝜑,Γ), l) = (𝜑𝑝re

l
,Γls), where 𝜑𝑝re

l
is the weakest precondition of 𝜑 with respect to l and Γls is the least superset of Γ,

which contains all predicates in𝜑𝑝re
l

. Operator post is defined in a similar way. The concretization [(𝜑,Γ)]of (𝜑,Γ) is defined as [𝜑] (the set of states

satisfying𝜑).

• The abstract operator postAP is defined as follows: let (𝜑,Γ) be a region with 𝜑 = 𝜑1 ∨ · · · ∨ 𝜑k in disjunctive normal form (DNF) (with support

predicates as atomic formulas), and l be a label. postAP ((𝜑,Γ), l) is the disjunction𝜓1 ∨ 𝜓2 ∨ · · · ∨ 𝜓k, where each𝜓 i is a conjunction of all literals 𝛾

appearing positively or negatively in Γ and such that𝜑i ⇒ pre(𝛾, l). The operator preAP is defined in a similar way.

• ⊴ is defined in the following way: (𝜑,Γ) ⊴ (𝜑′,Γ′) iff Γ ⊇ Γ′.

An important fact about abstraction-based analyses, including predicate abstraction ones, is that the process is sound but incomplete with respect

to unreachability. That is, if a state is determined unreachable in the abstract state space, it is guaranteed that it is unreachable in the concrete state

space; but a state may be reachable in the abstract state space while being unreachable in the concrete state space. This fact leads to possibly hav-

ing spurious counterexamples, ie, abstract counterexamples that cannot be “concretized” (reproduced in the concrete state space). These spurious

counterexamples can be removed by refining the abstraction, adding appropriate abstraction predicates that make such counterexamples cease,

making the abstraction closer to the concrete state space. These new abstraction predicates can actually be computed automatically from spurious

counterexamples, eg, via interpolation, leading to automated CEGAR. Of course, the larger the set of abstraction predicates, the more concrete the

abstract state space, and the more expensive the analysis becomes, so it is important to maintain the set of abstraction predicates small. Notice that

the above characterization of predicate abstraction, called lazy predicate abstraction and introduced in Henzinger et al. [22], allows it to maintain

abstraction predicates local to the regions, thus allowing one to refine only parts of the abstract state space, as required, during a CEGAR process.

For illustration purposes, let us consider the following simple analysis scenario. Suppose that one wants to check whether mode Permitted is

reachable in the SIS specification or not, starting from a particular initial state in whichmcPressure = TooLow∧mWaterPres = 14. The initial

abstraction will have a single abstraction predicate, namely,𝜙0 ∶ mcPressure=Permitted, and the abstract state space is as shown in Figure 4A.

A first abstract trace reaching modePermitted is shown in Figure 4B, which is clearly spurious, since according to NAT, an input event can increase

mWaterPres in at most 10 units at a time. In this case, the abstraction may be refined by introducing a new abstraction predicate. Many approaches

have been proposed to (automatically) suggest such predicates. In the present case, when using an interpolation-based approach implemented on

the MathSAT tool, the first abstraction predicate that is added to remove the spurious counterexample is mWaterPres <= 24, which leads to the

refined abstraction in Figure 4C. Now, for the refined abstraction, a new spurious counterexample is obtained, shown in Figure 4D. Clearly, since at

least 89 input events modifyingmWaterPresmust take place for the system to transition toPermitted from the initial state, the process will need

to “discover” 88 abstraction predicates (mWaterPres = i, with i ∈ {24,34,44, … ,894}) before obtaining a (minimal) concretizable abstract

counterexample, thus proving the reachability of mode Permitted.

Since the size of the abstract model constructed in any predicate abstraction-based approach grows exponentially with respect to the number

of abstraction predicates [27], requiring 88 abstraction predicates makes this simple analysis scenario rather difficult. Notice how the restrictions

*[.] ∶ R → 2S is the function that maps each region to the set of states it represents.
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FIGURE 4 A simple predicate abstraction and abstract counterexamples for the safety injection system specification
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FIGURE 5 A simple example illustrating the difference between lazy abstraction and predicate abstraction



imposed by NAT affect the number of abstraction predicates required to produce concretizable abstract counterexamples; for instance, if NAT

asserts that mWaterPres can change in at most 5 units in 2 consecutive measures, then the previous simple abstraction predicate-based analysis

will require 176 abstraction predicates. Clearly, numerical monitored variables with large domains that vary in small leaps (small compared to the

size of the domain) are problematic for abstraction-based approaches. Since monitored variables with these characteristics appear frequently in

SCR specifications, as acknowledged by cases reported in the literature [17, 18, 28].

Let us now elaborate on the importance of a lazy abstraction approach, in contrast with a standard predicate abstraction mechanism. Consider

the abstract state transition representation of the safety injection example, shown in Figure 5A. This abstract transition system corresponds to an

abstraction built from only 2 abstraction predicates, namely, mcPressure = TooLow and mWaterPres = 14, similar to the example used pre-

viously in this section; solid arrows correspond to valid abstract state transitions triggered by changes in the water pressure, while dotted lines

indicate infeasible transitions that had to be checked in the construction of the abstract model. Suppose that, while trying to concretize an abstract

counterexample reaching state mcPressure != TooLow∧mWaterPres != 14 in 2 steps, the abstraction predicate mWaterPres <= 24 is

discovered. A lazy abstraction approach would introduce this new predicate only in states in which mcPressure != TooLow (the mode where

the abstract trace failed to be concretized), leading to a new abstract transition system, shown in Figure 5B. In this abstract transition system, infea-

sible states that need to be checked for feasibility are crossed, and again valid and infeasible transitions are depicted with solid and dotted arrows,

respectively. On the other hand, if a standard predicate abstraction approach is used, then the new abstraction predicate will be used in all states,

leading to more states and more detailed transitions, as shown in Figure 5C. Notice how, even for this very small example, the number of states and

transitions that need to be checked for feasibility increases significantly.

Lazy abstraction, originally introduced by Henzinger et al. [22], has proved to have an important impact in abstraction-based verification tools.

This is acknowledged by the effectiveness of tools like BLAST [29] and the increased scalability observed in various applications of the concept of

lazy abstraction [30–34].

3 LPA FOR SCR

The end of the previous section motivates the approach that is introduced here, to analyse SCR requirements specifications via (lazy) predicate

abstraction. Given a specification Spec, and some invariant property𝜙 to verify on Spec, the approach starts by disregarding the NAT constraints in it,

obtaining a relaxed specification RSpec. Then, an LPA is performed, to attempt to verify𝜙on RSpec; since RSpec is weaker than Spec, the satisfaction of

𝜙 on RSpec implies its satisfaction on Spec. The LPA on RSpec is, in essence, a traditional lazy abstraction with automated CEGAR, tailored to exploit

specific characteristics of SCR specifications.

Notice that the approach consists of 2 abstraction steps. The first is the relaxation resulting from the removal of the NAT constraints; the second

is the LPA. One may then obtain 3 kinds of counterexamples: (1) spurious counterexamples resulting from the LPA, ie, executions that are feasible

in the abstract model but infeasible in RSpec; (2) spurious counterexamples resulting from the removal of NAT constraints, ie, executions that are

both feasible in the abstract model and in RSpec, but are infeasible in Spec; and (3) real counterexamples, ie, abstract counterexamples that can be

reproduced both in Spec and RSpec and thus constitute actual violations to the property𝜙. Different approaches are used to deal with the first two,

which are described later on in the paper.

Since, despite its importance, the first abstraction is rather straightforward, let the current focus be on the second abstraction, the LPA tailored

to SCR specifications. This abstraction, whose preliminary version was originally introduced by Degiovanni et al. [23], maintains the same precision

as the concrete specification as far as the modes are concerned, while having a degree of precision in all other respects that may vary for different

modes, ie, is lazy (in the sense of the term as used by Henzinger et al. [22]) with respect to modes.

Let us provide a high level overview of how this abstraction process works, with references to the rest of the section, where further technical

details are provided. The abstraction process can be captured as an algorithm, LPA-SCR, that takes as inputs an SCR specification Spec and an invari-

ant property𝜑prop that one wants to prove true in Spec (alternatively, reachability analyses like those required for test generation can be performed

with exactly the same mechanism). LPA-SCR attempts to construct an abstract reachability tree for Spec, by using the abstract transition relation

post to expand forwardly the successors of already created abstract states. During the construction of the tree, LPA-SCR checks that any newly cre-

ated abstract state satisfies𝜑prop. If LPA-SCR constructs the whole abstract reachability tree with all states satisfying𝜑prop, then it has computed an

overapproximation of the set of reachable states of Spec that in turn constitutes a proof that𝜑prop holds in Spec. However, LPA-SCR might find abstract

states where𝜑prop does not hold. An abstract execution (a path in the abstract reachability tree) 𝜎 ending in a state where𝜑prop does not hold con-

stitutes an abstract counterexample. LPA-SCR invokes a decision procedure (MathSAT) to figure out if 𝜎 encodes a real (concrete) execution t of Spec

violating 𝜑prop. If such a t exists, LPA-SCR returns it as a witness of the violation of 𝜑prop and terminates. If there is no concrete execution for 𝜎, 𝜎

is determined to be a spurious counterexample. In this case, LPA-SCR uses an interpolation-based process, further discussed in Section 3.5, to extract

support predicates from𝜎 that refine the current abstract reachability tree and get rid of𝜎. After the refinement, LPA-SCR resumes the construc-

tion of the abstract reachability tree trying to verify𝜑prop in Spec. LPA-SCR falls in the well-known category of CEGAR algorithms, that is, it realizes

an abstraction algorithm that increases the precision of the abstract model as needed, using the information encoded in spurious counterexamples.



The rest of this section is devoted to the technical details of the abstraction process, including a precise definition for algorithm LPA-SCR. This

abstraction is better introduced if the SCR semantics is provided in a different way, modularizing the global transition relation of a specification

with respect to modes and input events, as presented below. A fixed SCR specification Spec is assumed, with mode class M = {m1, … ,mk}, whose

associated LTS is referred to as ΣSpec = (S, S0, E, T).

3.1 Mode explicit SCR semantics

The mode explicit semantics for SCR defined here splits each input event e = (mv, v, v′) into several input events with fixed modes for the current

and next states when e is triggered. In this way, in the mode explicit semantics, after triggering an event in the current state, it is known exactly what

the mode of the next state will be. The reachable states of the mode explicit and the traditional semantics are guaranteed to be the same (Theorem

3.3). Hence, an invariant property is satisfied in the mode explicit semantics of Spec if and only if it is satisfied in the original semantics; then the

abstraction algorithm referring to the mode explicit semantics can be safely implemented.

A mode-explicit input event is a triple em = (m, e,m′), where m,m′ are modes and e = (mv, v, v′) is an input event in the original semantics. Triggering

mode-explicit event em takes the system from state s to s′ if MD(s) = m (the mode of s is m), MD(s′) = m′ (the mode of s′ is m′), s(mv) = v and

s′(mv) = v′. The set of all mode-explicit input events is denoted by EM×M; by considering all possible combinations of events with source/target modes,

it is guaranteed that no behaviours are lost with respect to the original semantics. The expression (m,mv,m′) denotes the set of mode-explicit input

events modifying monitored variable mv that transition from a state in mode m to a state in mode m′, ie, (m,mv,m′) = {(m, e,m′) ∈ EM×M|∃(v, v′) ∈
𝛾mv · e = (mv, v, v′) ∈ E}.

The mode-explicit semantics for SCR is given by the LTSΣM×M
S𝑝ec

= (S, S0, EM×M, T). Notice that here, the set of input events EM×M is used in the definition

of the LTS, instead of E as in the original semantics. For each input event em ∈ ΣM×M
S𝑝ec

, T(s, em) = s′ is denoted by s
em
⇝ s′ . Also, for monitored variable

mv, s
mv
⇝ s′ indicates that there exists a mode-explicit input event em ∈ (MD(s),mv,MD(s′)) such that s

em
⇝ s′.

The following results prove that ΣM×M
S𝑝ec

and ΣSpec produce the same sets of reachable states.

Lemma 3.1. For every execution 𝜎 of ΣSpec = (S, S0, E, T), there exists an execution 𝜎m of ΣM×M
S𝑝ec

= (S, S0, EM×M, T) such that #𝜎 = #𝜎m, and 𝜎.i = 𝜎m.i for

each 0 ≤ i ≤ #𝜎 + 1.

Proof. The proof proceeds by induction on the length of 𝜎. For the base case, if #𝜎 = 0, 𝜎 ∶ s0

𝜆

⇝ s0, and the mode-explicit execution satisfying

the conditions of this lemma is 𝜎m ∶ s0

𝜆

⇝ s0. For the inductive case, assume that 𝜎 ∶ s0

es
⇝ s with es ∈ E∗, #𝜎 = k, and that s

e
⇝ s′, where

e = (mv, v1, v2). By the inductive hypothesis, there exists 𝜎m ∶ s0

esm
⇝ s, for some event sequence esm ∈ (EM×M)∗, such that #𝜎 = #𝜎m, and 𝜎.i = 𝜎m.i

for each 0 ≤ i ≤ #𝜎+1. Let us call m1 = MD(s),m2 = MD(s′). Then, event em = (m1, e,m2) ∈ EM×M is enabled in s and s
em
⇝ s′ , completing the proof.

Lemma 3.2. For every execution 𝜎m of ΣM×M
S𝑝ec

= (S, S0, EM×M, T), there exists an execution 𝜎 of ΣSpec = (S, S0, E, T) such that #𝜎m = #𝜎, and 𝜎m.i = 𝜎.i for

each 0 ≤ i ≤ #𝜎m + 1.

Proof. Again, the proof proceeds by induction on #𝜎. The base case can be proved as in Lemma 3.1. For the inductive case, assume that 𝜎m ∶
s0

esm
⇝ s with esm ∈ (EM×M)∗, #𝜎m = k, and that s

em
⇝ s′, where em = (m1, e,m2), m1 = MD(s),m2 = MD(s′), e = (mv, v1, v2). By the inductive

hypothesis, there exists 𝜎 ∶ s0

es
⇝ s, for some event sequence es ∈ E∗, such that #𝜎m = #𝜎, and 𝜎m.i = 𝜎.i for each 0 ≤ i ≤ #𝜎 + 1. But clearly

s
e
⇝ s′ for e = (mv, v1, v2) ∈ E, and the Lemma holds.

Theorem 3.3. For every SCR specification Spec, Reach(ΣM×M
S𝑝ec

) = Reach(ΣSpec).

Proof. Follows from Lemmas 3.1 and 3.2 and the definition of Reach.

3.2 Modularizing the transition relation

To improve the abstraction algorithm, the transition function T of ΣM×M
S𝑝ec

is modularized. That is, a set of simpler functions T1, … , Tk is derived from

T that when combined are equivalent to T, but that can be used separately in the process of abstraction, allowing for an improvement in analysis

performance. Two different modularizations are proposed, described below.

3.2.1 Event-based modularization

Notice that if a monitored variable mv is changed in a transition, by the One-Input assumption, all the other monitored variables cannot change

during the same transition. Furthermore, events that do not depend on mv are not triggered in this situation (formally, event e is said to depend on

mv if e refers to some entity n such that n is mv or (n,mv) ∈ Dnew+). Thus, for each monitored variable mv, a simplified version Tmv of the transition



function T is computed by removing formulas of the table functions coming from events that do not depend on mv. So, when an event e ∈ mv is

triggered, Tmv is equivalent to T, ie, Tmv(s, e) = T(s, e) for any state s ∈ S. Notice that this modularization step can only be performed with event and

mode transition tables, as condition tables are not described in terms of events.

As an example, recall table functions FtOverriden and FmcPressure, defining term tOverriden and mode class mcPressure, respectively (Section

2.1). The modularization of FtOverriden and FmcPressure with respect to events mReset is as follows:

tOverriden′ =

FtOverridenmReset (mBlock,mReset,mcPressure,tOverriden,mBlock
′,mReset′,mcPressure′) =

⎧⎪⎨⎪⎩

𝑓alse if (mcPressure = TooLow ∧ mReset′ = On ∧ mReset = Off)∨
(mcPressure = Permitted ∧ mReset′ = On ∧ mReset = Off)

tOverriden otherwise

mcPressure′ = FmcPressuremReset (mWaterPres,mcPressure,mWaterPres
′) =

{
mcPressure true

Notice that the only event in the table defining tOverriden (Figure 1B) that depends on mReset is @T(mReset = On) (second row second

column of the table). Thus, this is the only event considered in the modularized table function FtOverridenmReset . On the other hand, none of the events

in the mode transition table defining mcPressure (Figure 1A) depend on mReset (mReset cannot trigger a mode change). Hence, FmcPressuremReset
always returns the original value of mcPressure.

Considering that mv1, … ,mvj are the monitored variables of Spec, the abstraction algorithm first modularizes T as described above, obtaining

Tmv1
, … , Tmv𝑗 . It is important to remark that this process is completely automated, as the dependencies (relation Dnew+ and the dependency relation

for events) can be automatically determined from a syntactic analysis of Spec [35]. Then, when computing the abstract successors for an abstract

state with respect to event Tmvi
(1 ≤ i ≤ j), the algorithm selects the corresponding Tmvi

to be applied. As evidenced by the example above, the modu-

larized transition functions can be encoded more succinctly as logic formulas than the whole transformation function T. This presents 2 advantages

for the abstraction algorithm: The computation of abstract successors becomes faster (as it calls a decision procedure with a smaller formula), and

the precision of the computed abstract model is increased, as in practice, the interpolation-based refinement procedure (Section 3.5) computes

stronger interpolants with the reduced formulas (Section 5).

3.2.2 Mode-based modularization

The mode explicit semantics enables the abstraction algorithm to perform a different modularization of the transition relation, exploiting the fact

that, when a mode explicit input event is triggered, it is known exactly which modes participate in the previous and next system states. For every

pair m,m′ of modes, a simpler transition relation Tm,m′ will be derived from T by removing all the events and conditions that cannot occur when

transitioning from m to m′. That is, from a pair m and m′ of source and target modes, Tm,m′ is constructed by discarding from T all rows that involve

events that do not start at m, or that do not transition to m′. As for the previous modularization, the abstraction algorithm will use Tm,m′ to compute

the abstract successors when an event e = (m, ·,m′) is triggered (e modifies any monitored variable, but the modes of the previous and next states

are m and m′, respectively). Consider for instance that event e = (High, ·,High) is triggered, that is, being in modeHigh, a change is produced by event

e but the system stays in mode High. FcSafetyInjectionHigh,High and FtOverridenHigh,High for table functions FcSafetyInjection defining cSafetyInjection

(Figure 1C) and FtOverriden defining tOverriden (Figure 1B) are as follows:

cSafetyInjection =

FcSafetyInjectionHigh,High (mcPressure,tOverriden) =
{
Off if mcPressure = High

tOverriden′ =

FtOverridenHigh,High (mBlock,mReset,mcPressure,tOverriden,mBlock
′,mReset′,mcPressure′) =

{
tOverriden true

Notice how in these cases, only formulas with source mode High are kept. Observe in particular that in FtOverriden, there is only one formula with

source mode High, which consists of the event @F(mcPressure = High). However, @F(mcPressure=High) is clearly not enabled when the

target mode is High, thus FtOverridenHigh,High
always returns the old value of tOverriden.

Mode-based and event-based modularizations can be combined to produce smaller parts of the transition relation T, “slicing” it in relation to

modes and events of interest. Indeed, the abstraction used in this paper applies a modularization by events first and then the mode-based modu-

larization. That is, for each input event e = (m,mv,m′), a transition relation Tm,mv,m′ is obtained by first computing Tmv as in the previous section and

then applying the mode-based modularization to Tmv.



3.3 The abstraction setting

As mentioned previously, the abstraction algorithm presented in this paper is based on the LPA framework presented in Henzinger et al. [22]. Lazy

abstraction allows different degrees of precision in different parts of the abstract model (ie, different sets of support predicates), as opposed to

previous predicate abstraction approaches where abstraction predicates were considered global [27]. Since LPA was originally devised to analyse C

programs [22], it localizes support predicates to program locations. Thus, to construct an abstract state with location l, lazy abstraction only considers

the support predicates corresponding to l. In addition, the abstraction refinement algorithm of lazy abstraction is defined in such a way that newly

discovered abstraction predicates are added only to the program locations where they are necessary.

In SCR specifications, mode classes define a partition of the set of system's states, and one introduces modes to split the system's state when the

system needs to react differently to events according to the mode of operation. Therefore, it is proposed here to keep the same set of abstraction

predicates for all states that share the same mode, in an SCR specification. The abstraction refinement procedure for the algorithm is also designed

to add discovered predicates “locally,” in the sense that they will refine all states within the same mode.

Following Henzinger et al. [22], the abstract domain used by the lazy abstraction approach algorithm is defined as follows, using LIA formulas

(the language of the quantifier free linear integer arithmetic) to characterize abstract states. LIA is chosen because it is decidable and because there

exists an interpolation algorithm for LIA that is used for the abstraction refinement procedure (Section 3.5).

Let ΣM×M
S𝑝ec

be the mode explicit LTS associated with Spec. An abstract state of the abstraction approach presented in this paper will be defined as a

set of mode explicit atomic regions, defined as follows.

Definition 3.1. A mode explicit atomic region is a tuple a = (m, 𝜑,Π) composed of a mode m ∈ M, a function mapping modes to support

(abstraction) predicates Π ∶ M → 2LIA, and a Boolean formula𝜑 over the predicates of Π(m).

Intuitively, region a = (m, 𝜑,Π) represents the set of states with mode m that satisfy 𝜑, denoted with the region's concretization [a]. Notice that

the modes in abstract regions are maintained explicit. The abstraction approach performs an abstraction process that is precise with respect to modes

and allows for different degrees of precision for states with different modes.

In addition, for any mode explicit atomic regions (m1, 𝜑1,Π1) and (m2, 𝜑2,Π2), the following operations are defined:

• [(m1, 𝜑1,Π1)] = [m1 ∧ 𝜑1], where [f], for f ∈ LIA, denotes the set of states described by f.

• (m1, 𝜑1,Π1) ⊔ (m2, 𝜑2,Π2) = (m1, 𝜑1 ∨ 𝜑2, 𝜆m.Π1(m) ∪ Π2(m)) if m1 = m2; ⟂ otherwise.

• (m1, 𝜑1,Π1) ⊓ (m2, 𝜑2,Π2) = (m1, 𝜑1 ∧ 𝜑2, 𝜆m.Π1(m) ∪ Π2(m)) if m1 = m2; ⟂ otherwise.

• If em = (m1,mv,m1′), 𝑝ost((m1, 𝜑1,Π1), em) = (m′
1
, 𝜑

𝑝ost
em
,Πls), where𝜑𝑝ost

em
is the strongest postcondition of𝜑1 with respect to event em, andΠls(m1′)

is the least superset of Π(m1′) which contains all the predicates in𝜑𝑝ost
em

. Otherwise, if em = (m2, ·, ·) and m1 ≠ m2, then post((m1, 𝜑1,Π1), em) =⟂.

Notice that the strongest postcondition𝜑𝑝ost
em

can be defined by the following LIA formula:

𝜑
𝑝ost
em

= 𝜑1 ∧ em ∧ Tm1 ,mv,m
′
1

= 𝜑1 ∧ (m1 ∧ mv′ ≠ mv ∧ 𝛾mv(mv,mv′) ∧ m′
1) ∧ Tm1 ,mv,m

′
1

where primed variables denote the value of entities in the state returned by post, and the predicate 𝛾mv(mv,mv′) indicates that monitored variable

mv changed satisfying the NAT constraints.

Definition 3.2. Let A be the set of mode explicit atomic regions. A mode explicit region structure  = (R,⟂, ⊔, ⊓, post, [.]) for ΣM×M
S𝑝ec

consists of

• R ⊆ 2A. That is, each mode explicit region r ∈ R is a set of mode explicit atomic regions.

• [r] =
⋃

a∈r[a], for all r ∈ R.

• For r1, r2 ∈ R, the following definitions are considered:

– r1 ⊔ r2 = r1 ∪ r2 ∪ {a1 ⊔ a2 |a1 ∈ r1, a2 ∈ r2},

– r1 ⊓ r2 = {a1 ⊓ a2|a1 ∈ r1, a2 ∈ r2},

– post(r1, em) = ∪a∈r1
post(a, em).

 above is the algorithm's abstract domain. Notice that it is very similar to the abstract domain of the LPA for C programs presented by Jhala [36].

The main differences are that, in the algorithm as presented in this paper, program locations are replaced by modes of the specification in atomic

regions, and the call stack is eliminated, as there are no procedure abstractions in SCR.

To construct abstract states, the following abstraction function is used.

Definition 3.3. The abstraction function𝛼 ∶ LIA × 2LIA → LIA is defined by

𝛼(𝜑,P) =
⋀
𝑝∈P

{𝑝|𝜑 → 𝑝} ∧
⋀
𝑝∈P

{¬𝑝|𝜑 → ¬𝑝}



Intuitively, 𝛼 takes a formula𝜑 and a set of abstraction predicates P as inputs and returns a formula representing the predicate abstraction [27] of𝜑

with respect to P. Formula 𝛼(𝜑,P) always returns a (LIA) predicate involving a conjunction of predicates and negations of predicates from P. Notice

that 𝛼(𝜑,P) is an abstraction of the original 𝜑, in the sense that the states it represents is a superset of the states described by 𝜑. 𝛼(𝜑,P) is said to

overapproximate𝜑, ie, [𝜑] ⊆ [𝛼(𝜑,P)].
To implement 𝛼, one needs to be able to decide whether a predicate p ∈ P or its negation are implied by 𝜑. The MathSAT SMT solver [37] is an

example of a tool that is suitable for this task.

The abstraction structure that is the basis of the present approach can now be introduced.

Definition 3.4. A mode explicit abstraction structure is a tuple  = (, post, ⊴), where

•  is a mode explicit region structure,

• For r ∈ R and mode explicit input event em = (m1,mv,m2), the abstract strongest postcondition operator is defined by post(r, em) =⋃
a∈rpost(a, em). For an atomic mode explicit region a = (m, 𝜑,Π), post is defined by

a. post((m, 𝜑,Π), em) = (m2, 𝛼(𝜑𝑝ost
em
,Π(m2)),Π) if m = m1.

b. post((m, 𝜑,Π), em) =⟂ if m ≠ m1.

• For region r, r.Π is defined as
⋃

(·,·,Π)∈rΠ. For r1, r2 ∈ R with Π1 = r1.Π and Π2 = r2.Π, the precision preorder is defined by r1 ⊴ r2 iff ∀m ∈
M.Π2(m) ⊆ Π1(m)

Intuitively, for a mode-explicit event em = (m1,mv,m2), post((m1, 𝜑,Π), em) returns a region with em's target mode m2, and the set of states

obtained by abstracting the result of executing the concrete post on𝜑, with respect to the set of abstraction predicates associated with mode m2.

Based on the proof strategy by Henzinger et al. [22], the following theorems guarantee that the above-introduced abstraction of Spec character-

izes an overapproximation of Spec's behaviours.

Theorem 3.4. For any r ∈ R, em ∈ EM×M, post(r, em) ⊑ post(r, em).

Proof. To prove this result, it has to be proved that [post(r, em)] ⊆ [post(r, em)]. Then, if for any mode explicit atomic region a ∈ r, [post(a, em)] ⊆
[post(a, em)], the theorem follows by definition of [.]. Let us prove that [post(a, em)] ⊆ [post(a, em)].

Let a = (m, 𝜑,Π) and em = (m′,mv,m′ ′ ). If m ≠ m′, by definition, we have post(a, em) =⟂ and post(a, em) =⟂, and therefore, [post(a, em)] ⊆
[post(a, em)]. If m = m′, then [post(a, em)] = [(m′′, 𝜑

𝑝ost
em
,Πls)] = [m′′ ∧𝜑𝑝ost

em
] and [post(a, em)] = [(m′′, 𝛼(𝜑𝑝ost

em
,Π(m′′)),Π)] = [m′′ ∧𝛼(𝜑𝑝ost

em
,Π(m′′))].

Since 𝛼 is an abstraction function, then [𝜑𝑝ost
em

] ⊆ [𝛼(𝜑𝑝ost
em
,Π(m′′))]. Hence, [m′′ ∧ 𝜑𝑝ost

em
] ⊆ [m′′ ∧ 𝛼(𝜑𝑝ost

em
,Π(m′′))] and the proof is finished.

Theorem 3.5. If r, r′ ∈ R, such that r ⊴ r′, then for any em ∈ EM×M, post(r, em) ⊴ post(r′, em).

Proof. LetΠr = r.ΠandΠr′ = r′.Π′ be the mappings from modes to support predicates of regions r and r′, respectively. As r ⊴ r′, by definition of⊴,

for all mode m ∈ M,Πr(m) ⊆ Πr′ (m). By definition of post, the region post(r, em)will contain the same mapping of r, ie,Πr. Similarly, the mapping

of region post(r′, em) will be the same of region r′, ie, Πr′ . Then, as Πr(m) ⊆ Πr′ (m), by definition of⊴, it follows that post(r, em) ⊴ post(r′, em).

Theorem 3.6. If r, r′ ∈ R, such that, r ⊑ r′, then for any em ∈ EM×M, post(r, em) ⊑ post(r′, em).

Proof. Suppose an atomic region (m, 𝜑,Π) ∈ post(r, em). By definition of post, there must exist an atomic region a ∈ r such that post(a, em) =
(m, 𝜑,Π). Because of the hypothesis r ⊑ r′, the atomic region a must also belong to region r′ (ie, a ∈ r′). Then, (m, 𝜑,Π) = post(a, em) ∈
post(r′, em).

3.4 SCR abstraction algorithm

The SCR abstraction algorithm just presented, shown in Algorithm 1, is a version of the original LPA put forward by Henzinger et al. [22] tailored

to SCR specifications. It uses the mode explicit abstraction structure of definition 3.4, ie, its abstract domain consists of the mode explicit region

structures of definition 3.2, and operator post is used to compute the successors of abstract states (regions). In addition, the present abstraction

assumes that the transition relation of Spec has been modularized (by modes and events) following the steps given in Section 3.2, before executing

the algorithm.



Let us further explain some details of the LPA-SCR algorithm. In this algorithm, a node of the abstract reachability tree is denoted by n ∶ r, where

n is the node's name and r the abstract region (definition 3.2) associated with the node. In addition, Π is a function storing the set of abstraction

predicates currently associated with each mode. Let init be the predicate describing the initial state of Spec and assume that minit is the mode of state

init. In line 2, LPA-SCR initializes Π with𝜑prop as the only available predicate for each mode (except for minit that additionally includes predicate init).

Πwill grow monotonically throughout the execution, as abstraction predicates will be added toΠ each time the refinement algorithm discovers new

predicates to get rid of spurious counterexamples. For simplicity, Π is made a global variable in the algorithm (instead of being part of each region),

and it is assumed that the operator post uses Π to compute abstract successors.

Lines 3 and 4 construct the root node r ∶ r0 of the abstract reachability tree, where r0 consists of an atomic region with mode minit, predicate

𝛼(init,Π(minit)) (the predicate abstraction of init with respect to the predicates in Π(minit)), and (the initial) Π as support predicates.

After the initialization, in the main loop (lines 5-35), LPA-SCR performs an iterative process, where each step consists of either (i) deciding if the

abstract counterexample found (a node violating 𝜑prop) represents a concrete counterexample, or the abstract model has to be refined to get rid of

this spurious violation, (ii) marking a node of the tree as covered due to its region already being computed elsewhere in the tree, or (iii) expanding the

abstract reachability tree by constructing the abstract successors of a node. During this process, the algorithm marks already visited nodes to avoid



processing them twice. When the abstract successors of a node are built, the node is marked as uncovered. Conversely, a node is marked as covered

when its region has been computed in another part of the tree. When the whole abstract reachability tree has been computed, the regions of the

nodes marked as uncovered determine the set of reachable states of the tree, which constitute a proof of the validity of𝜑prop in Spec.

In line 6, the algorithm takes an unmarked node n ∶ rn and decides to perform (i), (ii), or (iii) above, depending on the characteristics of rn.

In case (i), the condition in line 7 is true, that is, 𝜑prop does not appear positively in rn's predicate. In such case, we have an abstract counterex-

ample 𝜎 starting at the root of the tree and ending at n –see line 10. Then, the algorithm needs to invoke the decision procedure with 𝜎 as

input, to find out if there exists a concrete execution violating 𝜑prop encoded in 𝜎. This is performed by function solve in line 12 that represents

an invocation to the decision procedure (the SMT solver MathSAT). The result of executing solve is a triple (feasible, t,Π′). If there exists a con-

crete execution violating 𝜑prop contained in 𝜎, feasible is set to true, and the witness concrete execution stored in variable t (Π′ is undefined in

this case). Then, as feasible is true, LPA-SCR returns the execution t witnessing that 𝜑prop does not hold in Spec (lines 13-15). Otherwise, if 𝜎 is

spurious, solve sets feasible to false and returns in Π′ a mapping with the predicates needed to get rid of the spurious execution. As mentioned

earlier, the computation of Π′ is performed by the interpolation-based refinement algorithm of Section 3.5. If 𝜎 is spurious, in lines 18 to 19,

the algorithm finds out the oldest ancestor n′ of n in 𝜎 that needs to be refined, that is, an n′ such that Π′ does not contain any new predicate

to add to any of the nodes in the path from the root r to n′. Then, in lines 20-22, LPA-SCR drops the subtrees that must be refined taking into

account the newly discovered predicates Π′, that is, the subtrees starting from the parent n′ ′
of n′. In addition, in line 23, n′ ′

is unmarked, so it

becomes eligible again for the computation of its abstract successors in a later iteration, but this time including the new set of predicates allow-

ing to discard 𝜎. Finally, in line 25, Π is updated to include the newly discovered predicates Π′. Notice that the predicates in Π′ are added locally

to the modes where they were discovered, whereas in the original lazy abstraction approach they are added locally to the corresponding program

locations [22].

If node n ∶ rn does not violate𝜑prop, LPA-SCR considers case (ii) above. Thus, in line 26, LPA-SCR checks if there exists another uncovered (marked)

node n′ ∶ rn
′ such that the set of states represented by rn

′ includes those represented by rn (denoted by rn ⊑ rn
′). Notice that this is a very simple

syntactic check: If a support predicates p in rn
′ is set to true (resp, false), then p should be true (resp, false) in rn too. When rn ⊑ rn

′, LPA-SCR does not

need to continue expanding n, since all of n's successors must be checked to satisfy𝜑prop in its own part of the reachability tree, and the set of states

defined by any successor of n′ is included in the set of states defined by some successor of n (more precisely, for any event em ∈ EM×M, postA(rn, em)
has to satisfy𝜑prop, and postA(rn, em) ⊑ postA(rn

′, em)). In this case, n is said to be covered by n′, and LPA-SCR marks n (as covered) so it is not picked up

again in future iterations.

Finally, when cases (i) and (ii) do not apply, in line 29, LPA-SCR starts the computation of the successors of node n ∶ rn. This corresponds to case

(iii) above. Thus, in lines 31-34, LPA-SCR creates an unmarked node n′ ∶ rn
′ with rn

′ = postA(rn, em) for each event em = (m,mv,m′), where m,m′ ∈ M

and mv is a monitored variable. In addition, it adds an edge to the reachability tree from n to n′ (line 34). Then, n is marked as uncovered to indicate

that its abstract successors have been computed (line 35).

In the next section, the refinement algorithm implemented by the solve procedure is explained in greater detail.

3.5 Interpolation-based abstraction refinement

To get rid of spurious counterexamples, LPA-SCR uses an interpolation-based abstraction refinement approach, introduced first for the original

lazy abstraction by Henzinger et al. [38]. In this section, the details of how this refinement approach is applied to remove the kind of spurious

counterexamples that appear in LPA-SCR are explained. The reader interested in learning more about interpolation is referred to the work of

Henzinger et al. [38].

Definition 3.5. Let 𝜑1, 𝜑2 be 2 formulas such that their conjunction is unsatisfiable. An interpolant for (𝜑1, 𝜑2) is a formula 𝜓 such that (i) 𝜑1

implies𝜓 , (ii)𝜓 ∧ 𝜑2 is unsatisfiable, (iii)𝜓 only contains variables that appear both in𝜑1 and𝜑2.

For some logics (including LIA), interpolants can be extracted automatically from the proof of unsatisfiability of𝜑1 ∧ 𝜑2, in an efficient way.

Let us now discuss how LPA-SCR uses interpolation to get rid of spurious counterexamples. Assume that𝜎 is a spurious counterexample returned

by LPA-SCR, and let𝜎 = 𝜎

1
∶ 𝜎

2
be a splitting of𝜎 into a disjoint prefix𝜎

1
and suffix𝜎

2
. In addition, let𝜑1 (resp,𝜑2) be an encoding of prefix (resp,

suffix)𝜎

1
(𝜎

2
)as a logical formula. Notice that𝜎 is unsatisfiable since it is spurious. Hence,𝜑1∧𝜑2 is unsatisfiable as well. Thus, an interpolant𝜓 can

be computed for (𝜑1, 𝜑2). By (i) above, 𝜓 represents an overapproximation of the states obtained by executing prefix 𝜎

1
(and it is clearly true after

the execution of 𝜎

1
). By (ii), it follows that suffix 𝜎

2
cannot be executed starting from states satisfying 𝜓 . Therefore, 𝜓 is the abstraction predicate

we need to rule out 𝜎

1
∶ 𝜎

2
.

The actual implementation of solve (invoked in line 12 of Algorithm 1 to get rid of 𝜎) repeats the above process for each feasible splitting of 𝜎

(into nonempty prefixes and suffixes). Let 𝜎 be composed of nodes n1 ∶ r1, n2 ∶ r2, … , nk ∶ rk. Because 𝜎 is an execution computed by LPA-SCR,

there must exist events e1, … , ek−1 such that post(ri, ei) = ri+1, for i = 1 … k − 1. An invocation of solve with 𝜎 yields formulas 𝜓1, 𝜓2, … , 𝜓k−1,

such that each 𝜓 j(j = 1 … k − 1) is an interpolant for prefix n1 ∶ r1 … nj ∶ rj and suffix nj+1 ∶ rj+1 … nk ∶ rk. 𝜓1, 𝜓2, … , 𝜓k−1 are the abstraction

predicates required to refine the current reachability tree and rule out 𝜎.



The encoding of spurious counterexamples into logical (LIA) formulas will be used to build formulas (𝜑1, 𝜑2) for prefixes and suffixes that will then

be fed to the decision procedure that performs the computation of interpolants. Let 𝜎 be as above. Assume that each region ri contains exactly one

mode explicit atomic region, ie, ri = {(mi, 𝜑i,Π)}. The encoding of 𝜎 as a LIA formula is (m1 ∧ 𝜑1) ∧ (m2 ∧ 𝜑2) ∧ … ∧ (mk ∧ 𝜑k). That is, each state of

𝜎 adds a conjunction of its mode and its predicate to the resulting formula. Notice that this encoding can be applied to any prefix and suffix of 𝜎.

Now, assume that solve(𝜎) yields formulas𝜓1, 𝜓2, … , 𝜓k−1. Intuitively, each𝜓 i is an overapproximation of the execution n1 ∶ r1, n2 ∶ r2, … , ni ∶
ri, at abstract state ni. But as ri = {(mi, 𝜑i,Π)}(i = 1 … k − 1), and LPA-SCR's abstraction is precise with respect to modes, mi is the mode where𝜓 i is

relevant for discarding 𝜎. Thus, solve returns the computed interpolants as a mapping Π′, such that for all mi, Π′(mi) is the set of all interpolants that

are relevant at mode mi. In this way, LPA-SCR avoids adding the interpolants as global abstraction predicates. Indeed, in LPA-SCR, the abstraction

predicates are local to the modes where they are useful for ruling out𝜎. This allows LPA-SCR to speed up the computation of abstract successors, as

it is often the case that a lesser number of (relevant) abstraction predicates have to be considered when they are added locally to modes. The original

interpolation-based refinement algorithm for LPA is similar, but it uses program locations instead of modes to localize abstraction predicates.

The assumption made in this paper, that there is only one atomic region per abstract state, enables LPA-SCR to simplify the formulas that will be

fed to the decision procedure, which in turn allows for the computation of simpler interpolants. Thus, the implementation of LPA-SCR enforces this

assumption (although it could be dropped without compromising correctness).

It is important to remark that the implementation of solve uses the MathSat SMT solver [37] to compute interpolants (for LIA formulas).

4 ABSTRACTION WITH CONSTRAINT RELAXATION

The overall analysis approach proposed in this paper has been described before, with its lazy abstraction component analysed in detail. It remains

to describe, in more detail, the constraint relaxation that is performed prior to abstraction. Figure 6 depicts the main stages of the overall approach.

In this figure, it can be seen that the process takes an SCR specification Spec and an invariant property P as inputs. It then tries to verify that P holds

in Spec, in a completely automated way. As a result of the verification process, it either returns that P holds (property valid in the figure), or P does

not hold and an execution of Spec that violates P is generated, or the analysis is inconclusive (Fail).

A verification attempt consists of 2 main steps. First, a relaxed specification RSpec is constructed, by removing NAT constraints of the monitored

numeric variables of Spec. This step is discussed in detail below, in Section 4.1. Then, the CEGAR procedure described in the previous section is

executed, trying to prove that RSpec satisfies P.

The CEGAR procedure (Algorithm 1 of Section 3.4) is invoked with RSpec and P as inputs. If LPA-SCR proves that P is valid in RSpec, then P is also

valid in Spec (Theorem 4.1 of Section 4.1 states that RSpec is a conservative abstraction of Spec). Hence, the whole process terminates informing the

user that P holds. Otherwise, LPA-SCR returns an abstract counterexample: an execution 𝜎R of RSpec that may or may not represent an execution

of the original Spec violating P. (This happens because an abstract counterexample of RSpec might involve input events that are forbidden by Spec's

NAT.)

A second CEGAR process is in charge of dealing with abstract counterexamples 𝜎R that were deemed concretizable with respect to RSPec. This is

implemented by the refinement module of Figure 6. First, the concretization leverages existent model checking techniques [35] to explore the state

space of abstract counterexample 𝜎R, looking for an actual execution 𝜎 of Spec violating P. If such a 𝜎 exists, the process terminates returning 𝜎 as

a witness of the violation of P. The details for the concretization procedure are given in Section 4.2. If 𝜎R does not encode a concrete execution of

Spec, it is said that 𝜎R is spurious. The predicate discovery module tries to learn a logical predicate Pred from spurious 𝜎R (also using model checking),

FIGURE 6 Overview of our approach



such that Pred encodes the cause of the 𝜎R's spuriousness. Furthermore, when added to RSpec, the discovered predicate Pred discards 𝜎R as a

valid execution of RSpec (and possibly other spurious counterexamples), allowing LPA-SCR to start over. However, the refinement algorithm is not

complete, and it might fail in some cases. When this happens, the process must return Fail, as it cannot continue trying to prove P.

The remainder of this section is devoted to the technical details of the constraint relaxation phase, as well as the spuriousness checking of RSPec

counterexamples with respect to Spec.

4.1 Relaxing NAT constraints

Recall from previous sections that the behaviour of a monitored variable mv can be modelled as a binary relation 𝛾mv, called the transition relation

for mv. For example, the transition relation for variable mWaterPres in SIS is as follows:

𝛾mWaterPres = {(x, x′) | x′ ≠ x ∧ 0 ≤ |x′ − x| ≤ 10 ∧ x, x′ ∈ {0 … 5000}}

In this formula, constraint 0 ≤ |x′ − x| ≤ 10 is imposed by SIS' NAT. The relaxation step consists of removing the NAT constraints that limit the

behaviour of monitored numeric variables. In the SIS example, removing the aforementioned NAT constraint yields a new SCR specification, RSIS,

where the behaviour of mWaterPres is described by relation 𝛾R
mWaterPres below:

𝛾R
mWaterPres = {(x, x′) | x′ ≠ x ∧ x, x′ ∈ {0 … 5000}}.

This achieves the desired effect of letting mWaterPres vary arbitrarily within its domain.

In general, let 𝛾mv below be the transition relation of monitored numeric variable mv in Spec:

𝛾mv = {(x, x′) ∶ x′ ≠ x ∧ NAT(x, x′) ∧ x, x′ ∈ TY(mv)},

where NAT(x, x′) is a constraint imposed by NAT and x, x′ ∈ TY(mv) enforces the right types for x and x′. The relaxation step removes NAT(x, x′) from

𝛾mv, producing a new specification 𝛾R
mv as below:

𝛾R
mv = {(x, x′) ∶ x′ ≠ x ∧ x, x′ ∈ TY(mv)}.

This process applies the above procedure for each monitored numeric variable mv of Spec, to produce RSpec. If the LTS for Spec is ΣSpec = (S, S0, E, T)
and mv1, … ,mvk are Spec's monitored variables, then the LTS for RSpec is ΣRSpec = (S, S0, ER

, T), with

mvR
i = {(mvi, v, v′) | (v, v′) ∈ 𝛾R

mvi
} ER =

k⋃
i=1

mvR
i

Notice that, for monitored variable mvi that is unconstrained by NAT, we have that 𝛾mvi
= 𝛾R

mvi
. In contrast, if 𝛾mvi

was altered by the relaxation, then

𝛾mvi
⊆ 𝛾R

mvi
. Therefore, mvi ⊆ mvR

i
for i = 1 … k, and in turn, E ⊆ ER. Intuitively, this means that all the input events of Spec are events of RSpec and

that there might be events of RSpec that are not events of Spec. For example, e = (mWaterPres,14,904) ∈ ER (e is an event of RSIS) but e ∉ E (e is

infeasible in SIS).

By the above, an execution 𝜎R of RSIS that contains infeasible events of SIS is not a valid execution of RSIS. Conversely, all the executions 𝜎 of SIS

are valid in RSIS. This implies that RSpec is an abstraction of Spec: It possesses the same executions of Spec plus many others. It should be clear now

that the reachable states of Spec are a subset of the reachable states of RSpec.

Theorem 4.1. Let ΣSpec,ΣRSpec be the LTS associated with Spec and RSpec, respectively. Then, Reach(ΣSpec) ⊆ Reach(ΣRSpec)

Thus, RSpec is a conservative abstraction of Spec: Any invariant property that holds in RSpec also holds in Spec. For this reason, when our analysis

process proves an invariant property P in RSpec, it can conclude that P holds in Spec.

As discussed earlier and evidenced by the experiments in Section 5, the relaxation of NAT greatly speeds up the execution of LPA-SCR, as a signifi-

cantly smaller number of abstraction predicates are required for proving properties of RSpec (recall the discussion at the end of Section 2). However,

executing LPA-SCR with RSpec and property P might return an execution𝜎R of RSpec violating P. An execution𝜎R is called an RSpec counterexample that

might or might not encode a valid execution of Spec violating P. In the next section, it is discussed how this approach analyses RSpec counterexamples,

building real counterexamples of Spec, or getting rid of them if they are spurious.

4.2 Dealing with RSpec counterexamples

The general form of an RSpec counterexample, returned by LPA-SCR during an attempt to prove property P, is shown below:

𝜎R = s
0

mvR
0 s

1
mvR

1 … mvR
m−1 sm . (1)

Furthermore, S0 ⊆ [s
0
], 𝑝ost(si,mvi) = si+1 for all i, and P must not appear positively in𝜑m (otherwise, 𝜎R would not represent a violation of P).

Counterexamples 𝜎R of RSpec are dealt with differently depending on whether they only involve feasible events of Spec or not. In the first case,

one has mvR
i
= mvi for any monitored variable mvi. Hence, 𝜎R only represents valid executions of Spec. The solve procedure of LPA-SCR (Algorithm 1)



FIGURE 7 Graphical representation of abstract counterexample 𝜎R
RSIS

can be used to generate a valid execution of Spec violating P from 𝜎R. Notice that 𝜎R must represent some valid execution of RSpec; otherwise, it

would have been removed by the refinement algorithm of LPA-SCR.

In the second case, there is mvR
i
∈ ER such that mvR

i
∉ E, that is, 𝜎R involves at least an event of RSpec that is infeasible in Spec. Therefore, 𝜎R might

represent executions that are infeasible in Spec due to NAT. Thus, using solve to generate a concrete execution from 𝜎R might produce a spurious

counterexample: an execution that is infeasible in Spec.

Model checking is used to generate only feasible executions of Spec from the latter type of abstract counterexamples, avoiding false positives. To

simplify the explanation of the technique, let us assume that there is only one event mvj in (1) such that mvR
𝑗
∉ E (extending the technique for the

general case is trivial). Then, (1) can be rewritten as

𝜎R = s
0

mv0 s
1
… s

𝑗
mvR

𝑗 s
𝑗+1

… sm−1
mvm−1 sm . (2)

All feasible executions of Spec represented by 𝜎R, denoted by [𝜎R], have to be explored to find out if there exists one that violates P.

Let us formally define what it means for an execution 𝜎 of Spec to be represented by 𝜎R.

𝜎 ∈ [𝜎R] ⇐⇒ ∃s0 ∈ [s
0
], … , sk ∈ [sk ] | s0

mv0
⇝ s1 … s𝑗

mv𝑗
⇝

+
s𝑗+1 … sk−1

mvk−1
⇝ sk.

Notice that the effect of mvR
𝑗
(∈ ER) is “simulated” by executing a sequence of events corresponding to mvj ∈ E: This is denoted by s𝑗

mv𝑗
⇝

+
s𝑗+1 (see

Section 2.1.2 for the definition of mv𝑗+). Also, observe that due to the definition of [𝜎R], the resulting 𝜎 is an execution of Spec.

This process encodes [𝜎R] in Promela, the input language of the model checker SPIN [39], and then asks SPIN to find a counterexample 𝜎 ∈ [𝜎R]of

P. The encoding consists of a modified version of the approach introduced by Bharadwaj and Heitmeyer [35] for the analysis of whole SCR specifica-

tions. The approach by Bharadwaj and Heitmeyer [35] is discussed in Section 4.2.2. In Section 4.2.1, an example illustrating the concepts introduced in

this section is also provided. Furthermore, this example will be used in Section 4.2.3, where the encoding of counterexamples in Promela is described.

4.2.1 An example

Let P be the following (invalid) SIS property: mcPressure=Permitted∧tOverriden→mWaterPres≠Permit-1. Feeding LPA-SCR with RSIS

and P yields the abstract counterexample 𝜎R
RSIS

of Figure 7.

In this figure, below each abstract state s
i

, the formula yielded by [s
i
] is indicated, describing all the states represented by s

i
. The pc=i

annotations in the figure can be ignored for the moment.

𝜎R
RSIS

indicates how to obtain an execution 𝜎 of SIS(𝜎 ∈ [𝜎R
RSIS

]) violating P. It states that one must start at the initial state (represented by s
0

in

the figure) and modify monitored variablemWaterPres several times, until a state with modePermitted and where mWaterPres is not equal to

Permit-1 yet is reached (represented by s
1

). Then, the block switch has to be activated, making the system behaviour overridden in the next state

(tOverriden holds at s
2

). Notice that P is satisfied at states characterized by s
2

. But modifying mWaterPres to make it equal to Permit-1 leads

to a state where P does not hold (represented by s
3

).

Section 4.2.3 describes the proposed encoding for [𝜎R
RSIS

]. Let us now discuss the original SCR encoding in Promela put forward by Bharadwaj and

Heitmeyer [35].

4.2.2 Encoding SCR specifications in Promela

This section explains the approach by Bharadwaj and Heitmeyer [35] by means of an example, using the SIS specification. For further

details, the reader is referred to the work of Bharadwaj and Heitmeyer [35]. A snippet of the translation of SIS into Promela is shown

in Figure 8.

Variable declarations are omitted in Figure 8 due to space restrictions. However, it is worth mentioning that 2 SPIN variables (with the right type)

must be declared for each SIS entity, storing the prevalue and postvalue of the entity at each transition of the system. For example, the Promela

code involves variables mWaterPres and mWaterPresP (of numeric type), denoting the prevalue and postvalue of mWaterPres, respectively. In

addition, it is assumed that all variables are initialized to their values in the SIS initial state.



FIGURE 8 Promela encoding for SIS

Recall that the system described by an SCR specification is always reacting to input events triggered in its environment. Hence, the behaviour

of the system is modelled as an infinite loop: See lines 1 to 44 of Figure 8. Each iteration of the loop atomically performs the following sequential

steps: A unique input event (modifying a monitored variable) is triggered nondeterministically (lines 3-19); the SCR transition function (defined by

the tables) is used to compute the next state of the system, by propagating the changes performed by the input event to the remaining entities (lines

21-39); the new values for variables become the current values, so the next iteration starts at the newly computed state (lines 40-41). The atomic

keyword of line 2 makes SPIN to execute each iteration indivisibly.

The translation heavily uses Promela's if..fi statements. These are typical nondeterministic guarded alternative command: Exactly one guarded

command whose guard is true at the current state is picked for execution. True guards can be ommited, as is the case with the outer if of lines 3 to 19.

Thus, each of the inner if's of lines 4 to 7, 8 to 11, and 12 to 18 model the execution of a different input event. For example, the new value of mBlock

can be set to Off in line 5, if it is currently On (the guard is mBlock!=Off) and vice versa in line 6.

To understand the translation of the SCR transition function, consider the available mode transitions when the current mode isTooLow, depicted

in lines 23 to 26 of the figure. Line 24 states that when the water pressure is currently below constant Low and it becomes greater or equals to

Low, then the system must transition to mode Permitted. In any other case, the mode must be kept the same; this is achieved by Promela's skip

command in line 26.

Some final remarks on the translation of the transition function are in order. The d_step keyword of line 20 orders SPIN to execute the transition

function atomically and deterministically. That is, d_step enables SPIN to pick a fixed, deterministic way of executing any nondeterminism in the code

enclosed by it, thereby improving its runtime performance. This works well for the transition function because it is deterministic. In addition, the



transition function must respect the dependency relation D of the specification. If entity e1 depends on entity e2, ie, the value of e2 must be computed

before the value of e1, then the Promela code for the table defining e2 must appear before the code for the table defining e1.

4.2.3 Encoding RSpec counterexamples in Promela

This section describes how the encoding of the previous section is adapted to deal with RSpec's counterexamples. Again, the presentation is driven

by means of an example. Let 𝜎R
RSIS

be the counterexample given in Figure 7, explained in Section 4.2.1. Part of the Promela code describing the set of

executions (of Spec) represented by 𝜎R
RSIS

([𝜎R
RSIS

]) is shown in Figure 9.

As in the previous encoding, it is assumed that variables are initialized to their values at the initial state. Let w be the number of events in 𝜎R
RSIS

.

An integer variable pc such that pc=i, 0 ≤ i < w, is introduced to indicate that events modifying variable mvi of 𝜎R
RSIS

are being executed. Notice

the pc=i annotations within brackets at the left of each event in Figure 7. In addition, pc=w holds at the last state of 𝜎R
RSIS

(although pc=3 is not

shown in the figure). Notice that the last (abstract) state of 𝜎R
RSIS

represents states violating the property being verified, P. Thus,pc=w indicates that

a violation contained in 𝜎R
RSIS

has been found. Variable pc is set to 0 at the initial state.

The encoding of [𝜎R
RSIS

] consists of a main loop (lines 1-41), where each iteration triggers an input event modifying the monitored variable corre-

sponding to the current value of pc. At the beginning of each iteration, the approach asserts that pc!=3, using Promela's assert clause (line 4). If

the model checker is currently at a state that violates the assert, ie,pc=3, it returns the whole execution that took it from the initial state to the cur-

rent state. Due to the encoding, this is an execution of Spec contained in [𝜎R
RSIS

] that violates P. Otherwise, the model checker continues its execution

starting from the line following the assert.

FIGURE 9 Promela encoding of the SIS counterexample 𝜎R
RSIS

of Figure 7



In lines 5 to 9, monitored variable mVar is selected according to the value of pc (see the pc=i annotations in Figure 7). Then, in lines 10 to 27, an

input event modifying mVar is triggered nondeterministically—the guards added to the outermost if ensure that only mVar can be modified at the

current iteration.

In lines 28 to 32, the transition relation is used to obtain the new system state, resulting from executing the selected event (modifying mVar). As

before, the last step is executed atomically and deterministically (see the comments about d_step in the previous section).

The key step of the encoding is how pc is updated. This is done in lines 33 to 40. Figure 7 starts at an abstraction of the initial state, s0
, where

pc=0.pc=0 has associated event mWaterPresR , meaning that several events modifyingmWaterPres have to be executed until s
1

is reached andpc

becomes 1. Intuitively, line 34 indicates that a feasible option when pc=0 is to stay with pc=0, hence executing another event modifying mWater-

Pres. The other possible option is, when s1
 has been reached, to set pc=1, as shown in line 35. This means that one event modifying mBlock has

to be executed (since mBlock is not an event of RSIS) and transition to pc=2. This is done in line 36. The event associated to pc=2 is mWaterPresR

again and proceeds similarly as when pc=0.

If the model checker reaches a state withpc=3, it returns a witness of P not holding in Spec. Otherwise, [𝜎R
RSIS

] is spurious (it does not represent any

feasible execution of Spec) and must be removed from RSpec for the analysis to continue the verification process. This is the topic of the next section.

A comparison of Figures 8 and 9 shows the main advantage of analysing abstract counterexamples instead of the whole specification: The order

of execution of input events is (mostly) fixed in abstract counterexamples, whereas they can be triggered in any order in the whole specification.

Thus, there are significantly less interleavings to be considered by the model checker when analysing abstract counterexamples, and therefore, it

can achieve better runtime performance. The experimental evaluation presented in Section 5 supports this claim.

Finally, it is important to remark that the ideas underlying this analysis approach are independent of the selection of a specific model checking

tool, and it can be easily adapted to work with different model checkers.

4.3 Refinement phase

The refinement module of the RSpec analysis takes as input a spurious RSpec counterexample𝜎R, deemed as spurious by the concretization approach

of the previous section, and attempts to produce a predicate Pred that discards 𝜎R when added to RSpec. That is, counterexample 𝜎R originates

from an abstract counterexample that could be concretized with respect to the relaxed specification (without NAT constraints), but which was

unrealizable once NAT constraints are taken into account.

Let us now introduce some notation that will be useful in the rest of this section. Let 𝜎R be as in formula (1) (Section 4.2). The prefix of 𝜎R up to

state i, i ≤ m, is denoted by 𝜎R(..i). Notice that the concretization operator is well defined for prefixes of abstract counterexamples. Thus, [𝜎R(..i)]
denotes the concretization of the prefix 𝜎R(..i).

To attempt to learn Pred from 𝜎R, the refinement approach starts looking for the cause of infeasibility of 𝜎R in a forward manner. That is, it starts

an iterative process, initializing a variable i in 1, and finishing when i = m. At each iteration, the approach checks whether [𝜎R(..i)] contains at least an

execution of Spec, using the technique presented in the previous section (ie, translating [𝜎R(..i)] to Promela and running SPIN over the translation).

If such an execution exists, [𝜎R(..i)] is not spurious and i is increased by one to start the next iteration. Once the smallest spurious prefix [𝜎R(..i)] is

found, it will proceed by considering that transition s
i−1

mvR
i−1

s
i

might be the culprit.

The approach consists simply in using a model checker, in the same way as done in the previous section, to explore [s
i−1

mvi−1
R s

i
], ie, to try to

find an execution 𝜎 of Spec that takes the system from a state represented by s
i−1

to another state represented by s
i

, via the execution of an event

modifying variable mvi−1. If no such execution exists, then one can take Pred = [s
i−1

] ∧mvR
i−1

⇒ ¬[s
i
]; this ensures that starting at a state where [si−1]

holds, the execution of event mvR
i−1

of RSpec cannot lead to a state where [s
i
]holds. Pred is then added to RSpec, allowing the analysis to get rid of the

spurious 𝜎R. On the other hand, if there exists a sequence 𝜎 witnessing [s
i−1

mvi−1
R s

i
], then the assumption that the last transition was responsible

of the spuriousness was misleading. In this case, the process simply terminates the analysis, regarding it inconclusive.

Notice that this lightweight approach for refinement is incomplete: The last transition is considered in isolation, so the feasibility of the transition

may not imply the feasibility of the whole prefix. One may of course find an appropriate refinement for RSpec, to remove the spurious counterex-

ample, but the approach would derive in a second, standard CEGAR process again. By taking this simpler approach, one may be missing cases, of

course. However, as shown in the experimental evaluation, for the analysed models, one seldom falls into this situation.

To learn about the spuriousness of s
i−1

mvR
i−1

s
i

, the approach uses a translation from SCR to the input language of the model checker ALV, sim-

ilar to the one presented by Bultan and Heitmeyer [18] (and conceptually similar to the translation to Promela given in the previous section). This

translation will not be discussed here; the interested reader should refer to the work of Bultan and Heitmeyer [18]. The choice of ALV over SPIN

here is based on an experimental comparison of the efficiency of both model checkers when analysing s
i−1

mvR
i−1

s
i

. While in the experiments

SPIN was often (much) better at generating witnesses for abstract counterexamples, ALV had a (large) edge in proving them spurious. This might

have to do with the different natures of the tools: SPIN is an explicit model checker (it stores traversed states explicitly), whereas ALV is sym-

bolic (it represents set of states by formulas, in an attempt to reduce the required memory space). This conclusion matches that of Bultan and

Heitmeyer [18], who also compared these model checkers. Furthermore, ALV makes it easier to describe a set of initial states, as in s
i−1

mvR
i−1

s
i

,

than SPIN, and ran faster in the experiments when a large number of initial states were present. As ALV suffers from performance problems when



FIGURE 10 A spurious counterexample 𝜎R of RSIS

generating witnesses, a timeout of 1 minute is set for the analysis of s
i−1

mvR
i−1

s
i

. If ALV does not answer before the timeout, the refinement

process fails.

4.3.1 Refinement example

Consider the counterexample𝜎R (of RSIS) shown in Figure 10 that took place during the experiments of Section 5. In𝜎R, the system starts at the initial

state and moves to an abstract state with modePermittedwheremWaterPres>=Permit holds, by executing RSIS' event mWaterPresR . However,

𝜎R is spurious in the original SIS, asmWaterPres>=Permit triggers a transition to modeHigh (starting from modePermitted), and the only way

to go back to a state in mode Permitted is when mWaterPres takes a value lower than Permit. ALV can prove that 𝜎R is infeasible in SIS in a few

seconds. Then, the refinement process produces the following predicate that removes 𝜎R from RSIS:

Pred = (mcPressure=TooLow ∧ mWaterPres′ ≠ mWaterPres ⇒

¬(mcPressure′=Permitted ∧ mWaterPres′>=Permit))

5 EXPERIMENTAL EVALUATION

The experimental evaluation is presented to answer the following research questions:

RQ1) Is the lazy abstraction approach (algorithm LPA-SCR) better suited than traditional lazy abstraction to analyse SCR specifications?

RQ2) Is the whole analysis approach more efficient than alternative techniques to analyse SCR specifications maintaining the original level of

detail?

To answer RQ1, in Section 5.1, the effects of localizing abstraction predicates to modes and modularizing the transition relation, when analysing

SCR specifications, is evaluated. To answer RQ2, the whole analysis process is compared with alternative techniques for automated test case

generation and verification of properties of SCR specifications, in Sections 5.2 and 5.3, respectively.

The evaluation is based on various case studies taken from the literature on SCR specification and analysis [28]. These are a cruise control system

(ccs), the safety injection system (sis) used as a running example throughout this article, an aircraft's autopilot (autopilot), and a car overtaking

protocol for coordinating smart vehicles (car3prop). All the experiments were run on an 2.6GHz Intel Core 2 Duo PC with 3GB of RAM (2.5GB

maximum memory set for the analysis tools), running GNU/Linux 3.0. The prototype tool implementing the proposed analysis approach as well as

the case studies reported here can be downloaded from http://dc.exa.unrc.edu.ar/staff/rdegiovanni/case-studies/SCR_Analysis.zip.

Generating test cases from SCR specifications

Let us briefly explain in what consists the test case generation problem for SCR specifications. Intuitively, a test case is a run of the SCR speci-

fication (see Section 2.1.2) that covers certain functionality. More precisely, a test case is a sequence of input events, together with the outputs

that the events produce in the SCR specification. Then, these test cases can be used for validation (contrasting if the actual specification captures

the user expected behaviour) and verification (checking if the implementation meets the requirements specification).

To use the presented approach to generate test cases for SCR specifications, we follow various different techniques based on model checking

that have been introduced in the literature [19, 28, 41]. First, one needs to build all test predicates corresponding to the coverage criterion of

interest. Each of these test predicates characterizes a particular equivalence class of test cases, in the corresponding test criterion. Then, for

each test predicate P, a trap propertyTP = ¬P is generated. Then, the presented approach is executed with the property TP as input. If the approach

generates a counterexample for TP, then a run that reaches a state satisfying P, ie, a test case for P, has been found. Otherwise, P is an infeasible

test predicate.

Several different coverage criteria have been proposed for SCR specifications. To assess the presented approach, the following are considered:

• Table coverage (T): Every cell of every table is covered at least once.

• Split mode coverage (SM): If a cell refers to various modes, the cell is covered for each of the modes separately.

• Disequality split (DS): Expressions containing disequality operators are covered for the “cases” of the disequality, eg, ≥ is split into> and =.

• Boundary coverage (B): Boundary values of disequalities in expressions are covered. For example, y > C (with x and C integers) is split into

x = C + 1 and x > C + 1.

http://dc.exa.unrc.edu.ar/staff/rdegiovanni/case-studies/SCR_Analysis.zip


• Modified condition decision coverage (MCDC): Each literal (condition) is shown to independently affect the value of the expression (decision)

it is part of.

5.1 Assessing the lazy abstraction algorithm

The goal in this section is to measure the effect of the 2 key features of the lazy abstraction algorithm presented in this paper, in Section 3: Modes

are used for localizing abstraction predicates, and the SCR transition relation is modularized according to modes and events. Notice that here, it is

not the full approach what is being assessed (in particular, the effect of relaxing the NAT relation of the specification is not evaluated). The SCR lazy

abstraction algorithm is evaluated using different configurations:

• LPA: Standard LPA, with modes not part of the initial abstraction, support predicates local to regions, and no modularization of the transition

relation.

• LPA + m.: LPA plus modes in the initial abstraction and support predicates local to modes.

• LPA + mt.: LPA plus a modularized transition relation.

• LPA + m. + mt.: The LPA-SCR algorithm, which uses all the optimization techniques discussed above, including m. and mt.

This experimental evaluation compares different configuration of the approach presented in this paper, to assess how its different components

affect performance. To be able to observe the impact, models that are amenable to all configurations have to be used. This unfortunately is not the

case for most of the original versions of the models considered in this paper: The only model that can in fact be analysed as is with all configurations

is car3prop, because it does not feature numeric domains. To have a more representative analysis, the literature was sought for versions of the

considered models that can be subject to all analyses. As a result of this search, reduced versions for 2 of the cases were found, namely, autopilot

reducedandsis reduced [28]. To have a hint of the extent of the simplification in the specifications, eg,autopilot reduceddeals with integer

variables in the range [0..500], while the original autopilot has these same variables over the range [0..10000].
Table 1 summarizes the results of the experiment. The first row of the table shows the name of the case study and, in brackets, the number of test

predicates to be covered. Column runs indicates the number of times a technique had to be executed to generate tests cases to cover all of the test

predicates, for all criteria. Column c/i/u displays the number of covered (c), infeasible (i), and uncovered (u) test predicates. Covered predicates are

those for which a test case could be generated, infeasible predicates are those marked unrealizable by the corresponding technique, and uncovered

predicates represent cases where the technique was inconclusive (errors). For the covered test predicates, the number of runs needed is indicated

in brackets, since a single run can cover several test predicates. Column time indicates how many seconds took a technique to generate tests cases

for all the considered test predicates. It is important to remark that any individual run that lasted more than 1 hour was stopped and marked the

corresponding test predicate as uncovered.

The results in Table 1 point out that the LPA-SCR approach is 6× faster than standard LPA. More importantly, it is able to cover all the test predi-

cates, as opposed to the alternatives. This happens because either lazy abstraction needs to handle many (nonlocal to modes) abstraction predicates,

or it had to rediscover too many predicates (see below), making the abstract model too expensive to construct within the given time limits.

In the LPA-SCR algorithm, support predicates are local to modes instead of regions. It was argued earlier in this paper that, due to the structure

of tables, regions with the same mode tend to share the support predicates. To validate this hypothesis, a few test predicates were randomly chosen

for each case study and gathered the total number of predicates required to generate each test case, the maximum number of times a predicate has

been rediscovered for different regions with the same mode during standard abstraction, and the number of abstract nodes constructed by each

approach. These results are summarized in Table 2.

Clearly, LPA-SCR is improved by localizing support predicates using the modes of the specification, as this allows it to significantly reduce the

number of support predicates needed and the number of invocations to the abstraction refinement procedure. The aforementioned results are the

main cause of the good behaviour (the competitive performance) of LPA-SCR against lazy abstraction, shown in Table 1. It is important to remark that

models involving numeric variables over large ranges, such as sis, are those in which standard LPA expends more effort in rediscovering support

predicates. This difference becomes notoriously more evident when the original SCR specifications are analysed (recall that here reduced versions

of the models were considered), where more predicates are needed and, so, rediscovered.

TABLE 1 Assessment of our LPA-SCR algorithm

CS car3prop (498 TPs.) sis reduced (91 TPs.) autopilot reduced (409 TPs.)

Runs c/i/u Time Runs c/i/u Time Runs c/i/u Time

LPA 110 402(14)/90/6 33620 19 80(4)/11/0 8496 21 395(7)/10/4 23497

LPA + m. 114 401(17)/96/1 8858 21 80(10)/11/0 5319 81 347(19)/10/52 113401

LPA + mt. 118 402(22)/74/22 69197 20 80(9)/11/0 13032 51 389(31)/10/10 22201

LPA-SCR 119 402(29)/96/0 1795 23 80(12)/11/0 4724 54 399(44)/10/0 3951



TABLE 2 Predicates local to modes vs predicates local to regions

CS LPA LPA-SCR

Nodes Predicates Most Repeated Nodes Predicates

car3prop P1 41 94 30 76 11

car3prop P2 48 75 33 75 8

sis reduced P1 916 158 50 936 65

sis reduced P2 113 25 8 113 17

autopilot reduced P1 1037 126 21 1192 32

autopilot reduced P2 965 126 21 1120 32

5.2 Experimental results for test generation

In this section, the approach REL-LPA-SCR is assessed against alternative techniques for automated test case generation of SCR specifications. In

particular, a broad assessment of several model checkers for this task was presented by Fraser and Gargantini [28]. Then, the approach is compared

against the model checkers used by Fraser and Gargantini [28], on the case studies already mentioned: ccs, sis, autopilot, and car3prop. It

is important to remark that, for the experiments in this section, the full specifications are considered, maintaining numeric data as in the original

description of the specifications (ie, not manually reduced versions as in the work of Fraser and Gargantini [28]). Several model checkers with differ-

ent features are considered (explicit state and symbolic and bounded model checkers) for this comparison: SPIN, NuSMV, Cadence SMV, and SAL.

Three new tools are also considered: CPAChecker [42], a tool for predicate analysis of C programs, based on lazy abstraction and interpolation-based

refinement; Randoop [43], a feedback-directed random test generation tool for Java programs; and Evosuite [44], an automated test case gener-

ation tool for Java programs based on evolutionary computation. CPAChecker is an example of a modern, efficient CEGAR-based model checker.

The other 2 tools are examples of state-of-the-art technology for automated test case generation that are known to perform very well in practice

and do not suffer from the scalability issues that model checkers are often subject to. To run CPAchecker, a C program per each case study was

built, where the nondeterminism associated with the alterations on monitored variables is captured through auxiliary routines of the kind __VER-

IFIER_nondet_int() that the tool provides. To run both Randoop and Evosuite, a Java class per each case study was developed, in which public

methods capture the changes in the monitored variables; by producing tests that exercise these classes through their corresponding APIs, test

sequences for the corresponding cases are produced. All classes and auxiliary programs are provided as part of the bundle for reproducing the exper-

iments, reported earlier in this paper. These tools were run using a variety of settings, and only the best result produced by each tool is reported.

When a model checking tool is not mentioned for one of the case studies, it means that it performed significantly worse than the other model check-

ers. All tools except for Randoop were run once per test predicate. Randoop, on the other hand, since it is not driven by coverage, was let to run for

a whole hour, and then the resulting suite was evaluated, to analyse how many test predicates were covered.

Table 3 shows the results of this experiment. For each case study and technique, the table shows the number of times the tool was invoked (runs),

the number of covered (c), infeasible (i), and uncovered (u) test predicates (when the technique is inconclusive). In each of the covered cases, it

has been indicated, between parentheses, the number of tests produced by each tool, as a single test may cover several test predicates. As in the

previous section, here, all the test criteria are considered to obtain the test predicates (indicated in the table next to the name of each case study).

The column time indicates the total running time, in seconds, for each tool. Additionally, for the whole analysis approach, the time consumed by the

LPA-SCR algorithm, the time required by the model checkers to build a feasible counterexample (M.C. Conc.), and to produce the constraints that

remove spurious violations (M.C. Ref.), are distinguished. Since the original (large) specifications are dealt with, the timeout for covering a single test

predicate is set to 5 minutes and a total analysis time of 5 hours for each technique. The only exception was Evosuite; a test suite per each predicate

to be covered was produced; since the tool has a default timeout of 2 minutes to attempt to achieve coverage, the tool was run with this default

configuration and the total generation time was summed up; the tool may achieve generation before the timeout, but continues to run to improve

(eg, reduce the size) of the test suite. While this provided an advantage to the tool, it still performed worse that other approaches, so the whole

results were reported instead of only those that could be covered within the 5 hours timeout.

Let us discuss the results presented in Table 3. The first issue to notice is that the presented technique is able to generate test cases for almost

all predicates (only one error in the autopilot due to the incompleteness of the abstraction refinement approach), even when other tools fail to

do so. This is more evident in large case studies, like ccs and autopilot, where the models contain many monitored variables with large numeric

domains.

In the largest case study, the ccs model (31 variables, where 10 are numeric with ranges from 0 to 999999), the presented approach

(REL-LPA-SCR) does not fail for any test predicate, whereas most other tools consistently fail due to the huge state space to be explored. SPIN is

the only model checker able to generate test cases for some predicates (about 25% of the total). However, it can only handle “easy” test predicates,

that is, those for which the corresponding tests can be generated by exploring just a small part of the state space (notice that SPIN never marks any

predicate infeasible, since it cannot explore the entire state space). Being an explicit state model checker, SPIN is very fast in generating test cases,

but it generally runs out of memory quickly for large models.



TABLE 3 Comparison between the whole analysis approach (REL-LPA-SCR) and other test
generation tools in the generation of test cases for SCR

Runs Tests (c/i/u) Time LPA-SCR Time M.C. Conc. M.C. Ref.

autopilot(409 TPs.)

SPIN 169 288(48)/0/121 2351 … … …

Cad. SMV 378 36(5)/0/373 Timeout … … …

SAL/SMC 296 116(3)/0/293 Timeout … … …

CPAchecker 409 275(275)/8/126 118323 … … 27315

Randoop 1 201(160025)/0/208 3600 … … …

Evosuite 409 0/0/409 21275 … … …

REL-LPA-SCR 234 398(223)/10/1 1390 227 848 313

ccs(582 TPs.)

SPIN 582 164/0/418 3456 … … …

Cad. SMV 582 0/0/582 Timeout … … …

CPAchecker 582 328(328)/83/171 183661 … … 29545

Randoop 1 139(192073)/0/443 3600 … … …

Evosuite 582 0/0/582 62696 … … …

REL-LPA-SCR 457 482(357)/100/0 4657 1402 1602 1472
sis(91 TPs.)

SPIN 19 80(8)/11/0 146 … … …

NuSMV 27 80(16)/11/0 995 … … …

Cad. SMV 31 80(20)/11/0 420 … … …

SAL/SMC 27 80(16)/11/0 38 … … …

CPAchecker 91 24(24)/11/56 50530 … … 20672

Randoop 1 24(153782)/0/67 3600 … … …

Evosuite 91 0/0/91 6484 … … …

REL-LPA-SCR 70 80(59)/11/0 156 13 111 30

car3prop(498 TPs.)

NuSMV 142 402(46)/96/0 261 … … …

Cad. SMV 160 402(64)/96/0 78 … … …

SAL/BMC 133 402(37)/81/15 56 … … …

CPAchecker 498 345(345)/15/138 130025 … … 19947

Randoop 1 264(289)/0/234 3600 … … …

Evosuite 498 259(13526)/0/239 65730 … … …

REL-LPA-SCR 460 402(364)/96/0 2509 2059 450 0

The second largest specification, autopilot (10 variables, 6 of those are numeric with range from 0 to 10000), shows a similar behaviour to

css, although the model checkers can cover more test predicates in this case (close to 70% with SPIN). Despite the fact that the presented approach

is clearly better in this case study, this is the only case in which our approach reports one error: It runs out of time (5 minutes) when SPIN is run to

build a concrete counterexample. Similar to theccs, notice that no model checker can mark a predicate as infeasible for theautopilot, due to the

big state space to be explored.

However, for small specifications, some model checkers can be faster than the presented approach. For example, thesis case study contains just

3 monitored variables (only one of those is numerical), so it does not represent a big problem for the model checkers. In particular, SAL (a bounded

model checker) is faster than the presented approach, but the times obtained with the technique are still comparable with the other model checkers.

For the car3propmodel, all the model checkers are faster than the approach. It is important to remark that car3prop does not have any numeric

variable and has a large number of monitored variables. Thus, the absence of numeric variables allows model checkers to explore the full state space

very efficiently. On the other hand, the presented analysis approach does not benefit from relaxing the NAT relation, and due to the characteristics

of the model, it has to introduce a high number of abstraction predicates, yielding worse running times than the model checkers.

CPAchecker is included in this evaluation to have a comparison with a standard CEGAR-based model checking approach. While the case studies

had to be encoded as C programs (extended with nondeterministic assignments and other elements), this is not different from other encodings

in Promela that have been described earlier in the paper. The tool showed a poor performance in comparison with the technique; we believe that

the constraint relaxation, as well as the SCR-tailored abstraction, contributed to this difference. Experiments in Section 5.1 provide some evidence

in this direction. The number of predicates introduced for abstraction refinement made the tool timeout in a significant number of cases. Indeed,



while covered/infeasible reachability properties typically demand about 16 refinement predicates in average, those that timeout require 159 in

average, confirming the motivation in the paper (the most significant difference was observed in thesiscase study, with an average of 10 introduced

predicates for those cases that finished as infeasible or covered, and an average of 329 introduced predicates for those that timeout).

Randoop and Evosuite are examples of well-regarded tools for test generation in the context of Java programs. While Randoop can produce a

very large set of test cases very efficiently, the length necessary in many cases to reach some states of interest makes it very difficult for this tool

to achieve good test predicate coverage. Evosuite targets coverage, so it was attempted to encode reachability of the predicates of interest as a

guidance to the tool. Again, the tool could cover many cases, but it does not even meet the performance of some standard model checking tools. It

seems that this particular test generation scenario is better suited for the latter kind of tools.

Finally, from Table 3, it is observed that the abstraction time was significantly lower than the time spent in model checking (with the only exception

of car3prop). This provides evidence to support the initial hypothesis, which establishes that many interesting properties can be proved without

considering the specific values taken by numeric variables. However, for the properties in which the precise value of numeric variables is important,

model checking has to be relied upon to generate the concrete test cases and refine the relaxed specification, a process much more expensive than

the presented abstraction algorithm.

5.3 Experimental results for verification

Let us now concentrate in showing that REL-LPA-SCR can also be used for efficiently verifying properties of SCR specifications. Different state of the

art tools, like the SCR Toolset [17] (generally using SPIN to perform the analysis) and the (infinite state) model checker ALV [18], have been used for

verifying state and transition invariants for SCR specifications. However, they reported that these techniques requires a “manual” abstraction of the

specification, to reduce the state space and be able to successfully complete the analysis of the specification. But, as these manually reduced speci-

fications are not publicly available, the result of running the model checkers (SPIN and ALV) on the original specification are reported. CPAchecker

is also included in this evaluation. Thus, the goal in this section is to evidence that REL-LPA-SCR can verify properties without any manual abstrac-

tion, as opposed to the related techniques. Since the original (large) specifications are dealt with in this section, the timeout for verifying a single

property is set to 1 hour for each technique. Theorem proving based approaches are not taken into account for the comparison, because the focus

is on automated verification techniques.

The state and transition invariants mentioned by Heitmeyer et al. [17], Bultan and Heitmeyer [18], and Bharadwaj et al. [11] are considered: 11

properties for theccsmodel, 4 for thesis, and 2 for theautopilot, respectively. In particular, 9 properties in theccsmodels are valid invariants,

3 in thesis, and 2 in theautopilot. Notice thatcar3prop is not included in this evaluation. This has to do with the fact that, in the literature, no

property verification scenarios were found regarding this case study. Table 4 summarizes for each tool the number of properties that were verified

to be valid (v), the number of generated counterexamples (c), and the number of times the tool was inconclusive (i). The time, in seconds, needed for

each tool to analysed the whole set of properties for each case study, is also reported.

The approach presented in this paper behaves considerably better than the model checkers SPIN, ALV, and CPAchecker. From the point of view

of efficiency, the technique is in general several orders of magnitude faster than alternative techniques. The approach is able to verify and generate

TABLE 4 Comparison between the whole analysis
approach (REL-LPA-SCR) and model checkers in the
verification of properties for SCR specifications

Props. (v/c/i) Time

autopilot (2 properties)

SPIN 0 / 0 / 2 7200

ALV 0 / 0 / 2 7200

CPAchecker 1 / 0 / 1 3657

REL-LPA-SCR 2 / 0 / 0 1
ccs (11 properties)

SPIN 0 / 1 / 10 36004

ALV 6 / 1 / 4 14652

CPAchecker 5 / 2 / 4 16654

REL-LPA-SCR 9 / 2 / 0 44

sis (4 properties)

SPIN 3/1/0 1

ALV 2/0/2 7202

CPAchecker 3 / 0 / 1 3640

REL-LPA-SCR 3/1/0 5



counterexamples for properties in both simple and complex SCR specifications that contain numeric variables. Notice that the only case in which

this approach behaves worse than a model checker is the sis example, where SPIN is faster for the same reasons we explained in the previous

section, when SPIN was faster for test case generation. However, SPIN fails in analysing the bigger case studies. In the case of ALV, it shows a better

behaviour than SPIN when analysing the ccs case study, being able to verify 6 (simple) properties, and even to generate one counterexample (the

same handled by SPIN). However, ALV's performance gets worse when analysing specifications that contain numeric variables, as in the cases of the

autopilot and sis. It is also important to remark that, from the point of view of effectiveness, the approach had in these case studies, no case

reported as inconclusive.

6 RELATED WORK

The SCR Toolset [17] provides a wide set of tools to perform different kinds of analysis to SCR specifications, eg, syntax checking, consistency anal-

ysis, and the verification of properties via theorem proving and model checking [17, 18, 45]. In particular, some of these tools enable one to perform

verification via model checking, which either require manual abstractions from the developer, or do not scale well. With respect to testing, the sim-

ulator in the SCR toolset allows the developer to load specific scenarios, which are in principle provided by the engineer, and check whether certain

associated assertions are violated or not in the particular executions described by the scenarios.

Gargantini and Heitmeyer [19] used a model checker for automatically obtaining executions transiting through particular modes of the SCR spec-

ification. Later on, Fraser and Gargantini [28] made a thorough comparison between various model checkers (symbolic, bounded, explicit state, etc)

to automatically generate test cases from tables and analysed the achieved coverage and scalability issues. With respect to test generation, the eval-

uation of the technique presented in this paper is based on case studies analysed by Fraser and Gargantini, and the comparison with model checkers

uses Fraser and Gargantini's framework of model checkers for test case generation from SCR tables. Bultan and Heitmeyer [18] used the ALV infinite

state model checker to analyse SCR tables. As they mentioned, ALV is not well suited for finding counterexamples, and so, neither it is for generating

test cases. Then, ALV was not considering for assessing the approach presented in this paper for this task. The approach has been then compared

with most of the abovementioned works, which shows that the technique is more effective than other approaches for larger requirements models.

To the best of the authors' knowledge, automated abstraction techniques have been applied to tabular requirements specifications infrequently,

particularly for testing purposes. Bharadwaj and Heitmeyer [35] applied abstraction to SCR specifications, for scalability purposes related to

model checking. That approach is based on the removal of irrelevant variables (slicing) to the property of interest and the transformation of

“internal” variables into monitored ones, with the aim of removing detailed variables (eg, numerical variables). Nevertheless, they only provide

experimental results using a few properties over 2 small SCR specifications. Later on, Heitmeyer et al. [17] assessed these abstraction techniques

under a broader set of examples, mentioning the need of performing different kinds of manual ad hoc abstractions to successfully complete the

analysis of some properties via model checking. In contrast to these techniques, the approach presented in this paper performs the abstrac-

tion process in a fully automated way and is capable of dealing with the SCR specification maintaining the original level of details, as shown

in Section 5.3.

Many successful approaches to verification and test generation have been proposed. Some of these are based on SMT solving, abstraction, com-

binations, and variants. Most works target code analysis rather than requirements specifications. In particular, lazy abstraction with abstraction

refinement based on interpolation was used for automatically generating tests leading to the reachable locations of a program, with successful

applications in device drivers and security critical programs [41]. Other related and successful approaches are those by Henzinger et al. [38] and

Chaki et al. [46]. The LPA-SCR algorithm of the approach presented in this paper is based on that put forward by Beyer et al. [41], which uses lazy

abstraction [22] for test generation, but targets requirements specifications. As opposed to programming domains, in which abstraction was suc-

cessfully applied [47], requirement specifications are not “control intensive,” thus constituting a novel interesting domain. Furthermore, the LPA-SCR

algorithm was especially tailored for SCR requirements specifications, exploiting their particular characteristics to make the analysis of interesting

SCR specifications feasible.

Other automated tools such as Pex [40] and SPF [48] successfully implement automated white box test case generation for .NET and Java pro-

grams, respectively. These target code and are based on symbolic execution instead of predicate abstraction with automated refinement. Two

representatives of well-regarded tools for automated test case generation have been considered in this paper, one that is driven by white-box crite-

ria, namely, Evosuite [44], and a black-box driven tool based on random test generation, namely, Randoop [43]. The experiments showed that while

these tools perform very well in achieving high coverage and mutation score in the context of test generation from code [43, 44], the setting consid-

ered in this paper seems to be inherently different, with the high degree of nondeterminism in specification that has been mentioned earlier in this

paper, leading these tools to a weaker table coverage compared with model checking tools.

Finally, it is worth to mention that this paper extends and improves the work presented by Degiovanni et al. [23]. The main difference that work is

the way in which specifications with large numerical domains are handled. Particularly, while Degiovanni et al. [23] proposed to split the domain of

numerical variables in several smaller intervals, helping the abstraction process to converge, that solution had 2 major drawbacks: It is not trivial to

decide how to split the intervals, and the analysis is very slow, for relatively simple specifications. The new abstraction-based approach presented



in this paper performs a fully automated abstraction process that, as we showed in Section 5, allows us to efficiently analyse SCR specifications

(maintaining the original level of detail).

7 CONCLUSIONS

The requirements process is an important phase in the development of quality software that demands requirements specification frameworks to 
aid requirements elicitation, specification, and refinement. Formal approaches such as SCR, the subject of this article, have an increased potential to 
expose ambiguities, missing cases, and errors in requirements specifications, but their successful application depends greatly on having adequate 
and powerful automated tool support. A well-known limitation in automated analysis is the so-called state explosion problem, which has been tack-

led in various ways, including abstraction-based techniques. In this paper, a number of features inherent to SCR tabular requirements specifications, 
which can be exploited to improve their abstraction-based automated analysis, have been identified. These observations led to a 2-stage abstrac-

tion process, which involves a first relaxation stage, where certain constraints are disregarded from the specification, and a second, more classical, 
CEGAR process. It is during the latter that features of SCR specifications are exploited to modularize and simplify requirements specifications for 
abstraction-based analysis, while the former treats a particular kind of specification element (numerical variables over large domains) to aid the 

latter.

The approach was assessed through a detailed comparison with alternative techniques for test generation and property verification of SCR speci-

fications, on case studies that have been widely used in the literature. This approach showed better efficiency and scalability than existing techniques 
and was capable of analysing all our case studies at their original level of detail, unlike other approaches that failed in several cases, most notably in 
those whose specifications involved monitored numerical variables with large domains.

The motivation for dealing with “larger” specifications is straightforward: It contributes to the scalability in this kind of analysis and facilitates 
the validation and verification activities. On the one hand, for test generation, it is important that the generated tests maintain the level of abstrac-

tion/detail expected by users and present in the implementation. Otherwise, the tests have to be manually adapted by the engineer to be useful in 
the original context: a slow, tedious, and error-prone process. On the other hand, properties verified in reduced models might exhibit violations in 
the original, larger specification. Thus, using reduced specifications is only useful to increase the engineer's confidence in the correctness of the 
specification, but are less effective in ensuring the absence of errors.
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