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Abstract
Performance indicators of road networks are a long-lasting 
topic of research. Existing schemes assess network proper-
ties such as the average speed on road segments and the 
queuing time at intersections. The increasing availability of 
user trajectories, collected mainly using mobile phones with 
a variety of applications, creates opportunities for develop-
ing user-centered performance indicators. Performing such 
an analysis on big trajectory data sets remains a challenge 
for the existing data management systems, because they 
lack support for spatiotemporal trajectory data. This arti-
cle presents an end-to-end solution, based on MobilityDB, 
a novel moving object database system that extends Post-
greSQL with spatiotemporal data types and functions. A 
new class of indicators is proposed, focused on the users' 
experience. The indicators address the network design, 
the traffic flow, and the driving comfort of the motorists. 
Furthermore, these indicators are expressed as analytical 
MobilityDB queries over a big set of real vehicle trajectories.
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1 | INTRODUCTION

Measuring the performance of road networks is an essential task in traffic management. Administrations use perfor-
mance indicators to quantitatively describe and assess road networks. They are also used for road construction plan-
ning and expenditure, and to enhance transparency, accountability, and reporting. It is hence a core component of the 
daily work of road authorities. Devising performance indicators is not a trivial task. On the contrary, it is a process that 
strongly depends on the availability of the base data that are needed to compute an indicator, the cost of collecting 
it, and the timeliness of the base data. Furthermore, the indicator must accurately capture the management's require-
ments. Following the requirements of engineering literature (Dick et al., 2017), the key performance indicators (KPIs) 
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that measure these requirements can be classified into functional (e.g., the quality of traffic flow, travel time, delay at 
intersection) and non-functional (e.g., safety, environmental quality, cost-effectiveness).

As mentioned in Hohmann and Geistefeldt (2016), there is a lack of uniform definitions and comparable clas-
sification schemes for describing the traffic flow quality (this can been also observed in AECOM (2015) reviewed 
in Section 2). Indicator schemes depend on the measuring entity and the data availability. For example, the Belgian 
Road Safety Institute publishes 25 indicators clearly focused on road safety, the average speed in different regions, 
the average travel speeds, and a speed index for selected roads represented as the ratio between the average speeds 
and the free flow speeds (VIAS, 2017). Transport Infrastructure Ireland, as of 2016 (TII, 2016), lists five classes of 
indicators, namely: road network, economic, road condition, safety, and accessibility and environment. For instance, 
the road network indicators include the total length of roads by type, the number of vehicles per road and per day, 
the flow at rush hours compared to the free flow, trip duration, trip distance, traffic growth rate, and the network 
management facilities. Another well-known indicator is the congestion index, which represents the increase in travel 
time compared to the free flow situation, published by the TomTom traffic index (TomTom, 2004) in real time for 390 
cities around the world.

In spite of the examples above, existing road network performance indicators do not express the users' driving 
experience. They are mainly focused on the technical features of the network construction and operations. The 
notion of user-centered performance is missing in this domain. The indicators mentioned above account for road 
attributes, such as average speed and utilization. This article proposes a collection of user-centered indicators that 
quantify attributes of the user trips. For instance, the traffic congestion and queuing at intersections can be analyzed 
from two perspectives. The network perspective, focused on assessing, for every queuing instance, the queue duration 
and the resulting total delay time of vehicles. On the other hand, the user perspective is focused on the user trips and 
the trip time increase due to the multiple queuing. In other words, the existing road indicators group the observation 
data by road while user-centered indicators group data by user trip. With this perspective, novel indicators can be 
devised. These indicators can be used to improve the users' experience based on factors that actually affect them 
and are not considered in currently used indicators. Furthermore, this article shows how these indicators can be 
computed using moving object databases that account for the actual user trajectories. This is accomplished using 
the moving object database MobilityDB, which is an extension of the popular open-source spatial database PostGIS.

As mentioned, the choice of indicators is limited by the data availability. This is probably the reason why 
user-centered indicators are not currently used. Typically, road administrations install sensors on the roads to count 
the number of passing vehicles, their speeds, the driving lane, and so on. For instance, the Belgian Federal Public 
Service Mobility and Transport collects traffic data for Belgian motorways using single inductive loop detectors 
and cameras at about 1200 places, located before and after almost every group of on- and off-ramps (Vanhove & 
De Ceuster, 2003). Such sensors treat vehicles anonymously. Thus, trip-based indicators cannot be computed. Nowa-
days, the many geo-enabled mobile Apps and in-car GPSs produce massive streams of spatiotemporal trajectories 
making this class of indicators possible.

To produce the kinds of indicators introduced above, data processing tools that can efficiently handle enor-
mous amounts of mobility data are needed. In this article, we use MobilityDB (Zimányi et al., 2019, 2020), a novel 
database built upon PostGIS (the spatial extension of PostgreSQL), that extends the type system of PostgreSQL 
and PostGIS with abstract data types (ADTs) for representing Moving Object (MO) data. Moving objects (Güting & 
Schneider, 2005) are objects (e.g., cars, trucks, pedestrians) whose spatial features change continuously in time. 
Moving object data generally come in the form of long sequences of spatiotemporal points. To facilitate the anal-
ysis, these sequences are split into smaller portions of movement, called trajectories. A continuous trajectory repre-
sents the movement track of an object by means of a sequence of spatiotemporal points occurring within a certain 
interval, together with interpolation functions that allow computing the (approximate) position of the object at any 
time instant. A discrete trajectory contains only a sequence of spatiotemporal points but no interpolation function 
is defined. Moving object databases (MOD) are databases that allow storing and querying the positions of MOs 
at any point in time, that is, they are able to represent continuous trajectories. To represent MOs, the definition 



of appropriate data types is needed (Bakli et al., 2018). The notion of temporal type refers to a collection of data 
types that capture the evolution over time of base types and spatial types. For instance, temporal integers may be 
used to represent the evolution in the number of employees in a department. Analogously, a temporal point may 
represent the evolution in time of the position of a vehicle, reported by a GPS device, which would yield a temporal 
geometry of type point. Over these kinds of data types, MO databases can be implemented. As mentioned, Mobil-
ityDB is the most recently developed MOD. The features of MobilityDB, as well as its ability to run in a distributed 
environment (Bakli et al., 2020), make it appropriate to compute complex indicators like the ones we present in 
this article.

This article presents a collection of user-centered indicators and their computation using MobilityDB (https://
github.com/MobilityDB/MobilityDB). Each indicator is explained, along with the user perspective it reflects. The 
indicators, expressed in SQL extended with the MobilityDB temporal types, are also presented and discussed. Finally, 
we include visualization examples for the different indicators that are introduced. A data analytics approach is used, 
where data are first cleaned, indicators are computed and validated, and finally visualized. The performance of the 
indicators is studied using a data set containing 114 GB of vehicle GPS tracks. These data were provided by bey2ollak 
(https://desktop.bey2ollak.com), an important provider of traffic news in Egypt. The company runs a mobile App with 
over 1.3 million users. Users agree to share their driving tracks with bey2ollak, which extracts and broadcasts a traffic 
index for major roadways as well as other traffic events.

The contributions of this article can thus be summarized as follows:

• A new class of network performance indicators, that take into account the user's perspective is proposed.
• The use of a moving object database (MobilityDB) as a backend for storing and querying user trajectories and

computing the proposed indicators is studied and discussed. All indicators proposed are expressed in SQL
extended with MobilityDB data types and functions.

• A use case based on a large real-world data set. In this case study, an end-to-end data-driven analysis, starting
from the raw user trajectories and ending with the computation of the indicators, is carried out and discussed.
This big data set requires some special techniques to be developed, like distributed map matching. We show that 
the distributed technique and framework we used allow us to obtain an improvement of orders of magnitude over 
the default Barefoot (https://github.com/bmwcarit/barefoot) map matching library.

The remainder of the article is organized as follows. Section  2 discusses the related work, while Section  3 
presents MobilityDB in some detail to make the article self-contained. Section 4 explains the data preparation tasks 
needed to compute the indicators proposed in this article and also reports some metrics of the data set used for this 
case study. Section 5 presents the indicators together with the SQL/MobilityDB expressions that compute them, 
and Section 6 presents and discusses the values of these indicators computed over the use case data set. Section 7 
concludes the article.

The authors would like to remark that the article is not aimed at getting conclusions from the indicator values 
that are computed in the experiments. This is because reference values are missing. Generally, indicators are used to 
compare two different road networks or the same network at two different time instants, which is not done in this 
article. The intention of the article is to propose methods and tools to perform such analysis.

2 | RELATED WORK

In this section, we first discuss the related work on performance indicators for the road sector. We then review the 
main proposals for preprocessing moving object data for obtaining trajectories for analysis. Finally, we remark that 
since the indicators in the present article are computed using MobilityDB, this database is presented in detail in 
Section 3.

https://github.com/MobilityDB/MobilityDB
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2.1 | Road performance indicators

There is an extensive literature about the use of car data to compute road performance indicators. In Krogh et al. (2012), 
GPS trajectories are used to estimate the free flow speed over road segments, to compute flow indicators at inter-
sections, and to assess the coordination between the different traffic signals that affect traffic flow on a road. A 
microscopic analysis is performed for two selected roads using a set of GPS trajectories. This allows exploring inter-
esting correlations between the vehicle's position on a road, the speed, and the traversal duration. It further develops 
a fine-grained specification of the free flow speed and queuing. A network scale approach is presented in Meng 
et  al.  (2017), where loop detectors are used in combination with taxi GPS trajectories to derive accurate traffic 
volume information. The authors argue that using only GPS trajectories might not give accurate indications, as the 
source vehicles remain a small and possibly biased sample of the whole traffic. In Bechtel et al. (2018), user tracks 
collected from cell phones and GPS are used to evaluate a congestion metric at thousands of roadway bridges in New 
Jersey, USA. None of these works include the user's perspective to compute the proposed indicators.

Traditionally, road administrations have developed their own schemes of performance measures. A study was 
commissioned by the EU Commission directorate general Mobility and Transport, aimed at establishing common KPIs 
for the road transport and ITS sectors (AECOM, 2015). The study reviews 228 indicators in use in EU countries. This 
big number shows that there is little consistency between the indicators used by the different countries and admin-
istrations. The study listed nine main reasons for this, including the different types of data and their different avail-
ability levels. The surveyed data sources generally lack GPS tracks. The study concludes with a set of recommended 
KPIs. Both, the surveyed indicators and those recommended by the study, lack the user's perspective. In 2013, the 
World Bank performed a study about the traffic congestion in Cairo, the capital of Egypt (Nakat, 2013). Manually 
classified traffic counts were collected at 24 locations and survey cars were used to collect floating car data. The data 
collection was done during the peak periods between 7:00 and 11:00 and between 15:00 and 19:00. Two indicators 
were computed in this study: traffic volume and average speeds.

The notion of customer perspective is introduced in Hohmann and Geistefeldt (2016) as a method of rating the 
traffic flow. Test persons were asked to attend test rides, and to continuously give their subjective rating of traffic. 
In these tests, the average travel speed was selected as the basic parameter used to define different traffic states. 
The authors argue that this decision was taken to facilitate user's understanding of the road traffic experience. In 
this experiment, 15,000 individual evaluations for 13 freeway segments and 37 urban road segments were taken 
into account and a subjective evaluation of the traffic flow quality was given by individuals. Finally, the authors 
come up with a categorical classification scheme just based on the average travel speed sensation provided by the 
users. Although an interesting first step to account for the users' perspective, the work in the present article goes 
far beyond this effort, providing a wider range of indicators that are tested over very large data sets making use of 
moving object technology.

In conclusion, some works use GPS trajectories for assessing the road network performance, although they are 
mainly focused on assessing network attributes. A scheme of indicators that assesses the network from the user 
perspective is still missing.

2.2 | Data preprocessing and preparation

Using GPS trajectories for computing performance indicators is not straightforward. The data come with many inac-
curacies, such as random, missing, and repeated signals. However, data cleaning is not always detailed in research 
articles. For instance, considering the works mentioned above, Krogh et  al.  (2012) only mention that the work 
selected trajectories that follow the chosen paths, without any further explanation; also Meng et al. (2017) just report 
that map matching was used to infer the average speeds. We argue here that data cleaning is essential to trajectory 
analysis and that it deserves a detailed treatment. As we explain later in this article, two-thirds of the data set used 



here are cleaned out, due to many reasons. The effect of cleaning in our use case is illustrated in Figure 1 for a small 
area of Cairo, showing to what extend the data set is reduced after the cleaning process takes place.

In Parent et al. (2013), a generic three-step trajectory preprocessing methodology is proposed. Trajectories are 
first cleaned, then map matched, and finally compressed. For cleaning, an implementation using regression-based 
smoothing and outlier removal is presented in Yan et al. (2013). Yet, the general practice in trajectory data cleaning 
is to manually investigate the data set at hand, with the goal of spotting errors and cleaning them (Fu et al., 2016). 
Existing works limit the cleaning to GPS signal errors. In the experiments presented in this article, many errors that 
are not treated in the existing literature are found in the data set. They are addressed in detail in Section 4.

Map matching is a well-known technique to the GIS community. It refers to the transformation of absolute GPS 
coordinates into a sequence of road segments. It constrains the raw GPS observations to the spatial coverage of the 
roads, to the speed limits, and to the road directions. GPS points that violate these constraints are skipped according to 
the tolerance of the map matching algorithm. As a result, the GPS observations are either aligned to the road network or 
removed. There are two flavors of map matching, online and offline (Wei et al., 2013). The former incrementally matches 
incoming GPS observations using only the data and the previous history. The latter works for trajectories and might look 
ahead for the following observations. Big data sets currently available require new map matching algorithms and tech-
niques that can efficiently cope with the new requirements imposed by such large data sets. Recent work by Peixoto 
et al. (2019) introduce a framework for parallel map matching using Spark technology. Distributed algorithms for big 
data map matching are also proposed in Almeida et al. (2016) and Francia et al. (2019). Our approach in the present 
article extends the Barefoot library to allow efficient parallel execution. We explain this technique in Section 4.2, where 
we show that we obtained an improvement of orders of magnitude over the default Barefoot map matching library.

3 | MOBILITYDB

Given that the indicators are computed using the MobilityDB MO database, this section presents a brief overview 
of this database to make the article self-contained. Further details can be found in the system's documentation 
(Zimányi, 2020).

MobilityDB defines temporal types for handling objects whose values change over time, for example, stock 
prices, temperature, and of course moving objects. For this task, MobilityDB provides the following temporal types: 
tbool, tint, tfoat, ttext, tgeompoint, and tgeogpoint. These temporal types are based on the corresponding base  types
provided by PostgreSQL, and on the geometry and geography base types provided by PostGIS. Temporal types are 
initially built from a discrete set of values, and represent the evolution of the value of an object during a sequence 
of time instants. Since MO databases represent a continuous function, values between discrete time instants are 
interpolated using either a stepwise or a linear function.

All temporal types are based on four time types: the timestamptz type provided by PostgreSQL, and three new 
types, namely period, timestampset, and periodset. The period type is a more efficient implementation of the tstzrange

F I G U R E  1   Trajectory preprocessing effect for a portion of the Cairo use case.



type provided by PostgreSQL. The former has a fixed length and disallows empty periods while the tstzrange type 
has a variable length and allows any value. The timestampset type is a collection of one or more timestamptz values, 
and the periodset is a non-empty collection of ordered and non-overlapping period values. Two range types are also 
introduced, namely intrange and floatrange. These ranges are pairs of upper and lower bounds that can interact with 
out-of-the-box operators like < @ (contained in).

The type system defines only the building blocks of MobilityDB's functionality. There is also a collection of func-
tions that can be classified as follows:

(a) Functions and Operators for time types and range types: Perform different operations on time types and
ranges. These are generally polymorphic functions that receive a data type and perform different calculations. For 
example:

(b) Functions and Operators for Temporal Types: Perform different operations on Temporal types. These opera-
tions apply the traditional operations at each instant and yield a temporal value as result. For example:

A spatiotemporal object is generally built from a series of discrete timestamped location points. However, since 
trajectories are continuous, to represent and query the state of the object at any time MobilityDB interpolates the 
points using a linear function, generating a continuous approximation. This interpolation allows estimating the state 
of an object at any instant of a given interval. MobilityDB provides two different spatiotemporal object types, namely 
TemporalGeometryPoint and TemporalGeographyPoint, which correspond to PostGIS' data types. The difference 
between the two is the reference system: geography points use a geodesic reference system and offset accuracy
for complexity, while geometry points use a Cartesian reference system and allow calculation of speed and other
distance-related metrics.

Once the object's evolution is stored in the system, MobilityDB provides multiple functions to access and 
manage its values. Some of these functions such as speed and direction return temporal values, allowing the user to 
take full advantage of the database's type system. We illustrate the use of MobilityDB through some simple example 
queries next.

The first example query deals with temporal integers. The first SELECT statement below constructs two tints
and then adds them. The resulting value is also a tint. Results are also shown, for clarity.

Our Second example query computes the intersection between a temporal point and a given geometry, using the 
SELECT operation. The resulting value is a temporal Boolean value tbool.



Finally, the following script shows how values are stored in a table. The SELECT statement returns the value of 
MOs (e.g., cars) at a specific timestamp, resulting in a point. The table Trips contains the trajectories of two MOs.

4 | TRAJECTORY DATA PREPARATION

This section describes the end-to-end data analytics pipeline that we propose for computing indicators from a big 
data set of user trajectories. This pipeline goes from data acquisition to the computation of the indicators. Figure 2 
summarizes the phases and tools that we used in our case study. Data acquisition, loading, and cleaning are presented 
in Section 4.1. These processes prepare data for the map matching process described in Section 4.2. Finally, from 
the map-matched trajectories, continuous trajectories are produced and loaded into MobilityDB as moving objects 
trips. This is studied in Section 4.3. The computation of the indicators using these trajectories is studied in Section 5.

4.1 | Data loading and cleaning

As mentioned in Section 1, the work reported here uses a data set consisting of 114 GB of vehicle GPS tracks shared 
by a traffic news provider in Egypt. The data come as multiple csv files containing 832 million GPS recordings in the 
following format:

<id, latitude, longitude, speed, tripId, accuracy, battery, bearing, created, 

transId, timeonserver>.

The first step of the data preparation task consists in loading the data into the database system, PostgreSQL in 
our case. This is a challenging task because of the data volume and errors such as missing values, illegal characters, 
and inconsistent formatting of dates and strings. The PGLoader tool (Fontaine, 2014) developed for PostgreSQL is 
used for this task. PGLoader parallelizes reads and writes over multiple threads, uses shared queues between them, 
and performs them in patches. All of these allow a very fast loading process.

The original data contain two timestamps: created and timeonserver, corresponding to valid time and
transaction time, respectively, in temporal database terminology (Tansel et al., 1993). Recall that valid time refers 
to the time when an event occurs in the real world, while transaction time refers to the time when a data element 
is recorded in the database. In this work, valid time is used. Furthermore, the GPS logging system, from which the 
data are obtained, contains the complete trajectory in a single transaction. This means that all the GPS observations 
of a trajectory may have the same transaction time. The data also contain multiple keys: id is a unique sequence
over the whole file; and both (tripId, and transId) form a composite key, that helps identifying different trips.
This composite key is kept, along with the valid time and the coordinates. The remaining attributes are removed to 
reduce the data size since they are not needed for the analysis. Specifically, the speed attribute is removed and more 
accurately calculated during the map matching process, as explained later in this section. The attributes kept for the 



analysis are, thus: gps(tripId, transId, longitude, latitude, created). The accuracy attribute is
not directly used, but it is reflected in the map matching process results (see Table 1).

After loading the data, a cleaning process is carried out, due to usual errors in the data set. The whole data clean-
ing process is implemented as SQL queries. The steps of the process are as follows:

1.	 Remove partially duplicated trajectories. Around 19,000 trajectories are partially repeated in the data. That is, for a
part of the trip, the same combination of tripId, transId, longitude, latitude is repeated with different created times-
tamps. Although it could be possible to distinguish between the original and the duplicated trajectories (e.g., using the 
created attribute for splitting), this is a hard and error-prone task; therefore, we decided to remove these trajectories.

2. Remove duplicated trajectories. Around 183 K trajectories are repeated in the data, with different keys. That is,
two different key pairs (tripId, transId) have exactly the same sequence of longitude, latitude, with 
different time shifts. Note that even if two vehicles drive together on the same route, it is extremely improbable
that their GPS sensors will log the observations at the same sequence of coordinates. This redundancy in the data 
suggests that either the GPS logger or the App server repeatedly store the same data with different keys. To clean 
this, only the trajectory with the smallest initial timestamp is considered as the original and thus kept in the data
set, while the remaining copies are removed.

3. Remove duplicated trajectories that have different keys. Similar to the previous error, some trajectories are
repeated (yet partially), with different keys. From every such group, the trajectory with the longest sequence
of GPS observations is kept. Note that this is different than the first case above, because here the keys of the
repeated sub-sequences are different.

4. Removing stationary and short trips. Stationary and short trips are filtered out to avoid the bias in results that they 
may create. Stationary trips reduce the speed average in relevant calculations. Short trips, on the other hand, do
not reflect real trips. It could be the case, for instance, where the application users initiate the logging of a trip by 
accident, while not driving. Stationary trips typically appear as a sequence of GPS points that jump around a park-
ing location. They are identified by their small bounding box, and the high fluctuation of speed. To identify short
trips, an histogram of the number of observations per trip is built. The trips with less than 50 GPS observations are 
deleted (about 162, 000 trips). Finally, the trips that are spatially out of the analysis area, which covers the extent 
of Cairo and Alexandria, are also deleted.

F I G U R E  2   Methods and tools used in the data preparation pipeline.

Mean 12.1431 Median 8.3570

First quartile 3.5610 Standard deviation 10.6561

Third quartile 18.9519 Variance 113.5514

T A B L E  1   Statistics for the distance between the original points and the map-matched points



On the whole, the cleaning process took the data size from 832 M down to 377 M GPS points, and from 968 M 
to 579 K trips.

4.2 | Map matching

A trip trajectory in GPS file format is a sequence of absolute coordinate values. These values typically have inaccu-
racies due to weak and lost GPS signals. These inaccuracies can greatly affect calculations of trip attributes such as 
speed, heading, and travel distance, among others. Map matching aims at fixing these kinds of errors, aligning the raw 
observations to the road network. It maps the input GPS observations into coordinates located on the road network. 
It additionally enriches the coordinates with the identifiers of the road segment, and the relative position from its 
start. Figure 3 illustrates a raw trajectory and its map-matched counterpart. A good map matching algorithm can 
fix reasonable GPS shifting errors, and exclude outlier points. Additionally, data are enriched with the map context.

Barefoot (GmbH, 2015) is the tool used for map matching in this work. We used a base map downloaded from 
Open Street Maps (OSM). Barefoot is a Java library that integrates with PostGIS and provides both offline and online 
map matching. It implements a Hidden Markov Model (Newson & Krumm, 2009). A point in the raw data is matched 
to a point on the map based on two probability values. First, the emission probability quantifies the opportunity that 
a given position on the map is observed with the GPS coordinate in hand. Thus, a GPS observation can be associated 
with many map positions with different emission probabilities, called the candidate vector. The transition probability 
quantifies the opportunity of reaching a map point from the candidate vector, given a map point from the candidate 
vector of the previous observation in the trajectory. Points that cannot be map matched (i.e., noise) are skipped. 
In this data set, 83 million such noisy GPS points were found, representing almost 70% of the data after cleaning. 
Certain situations lead to splitting the input trajectory into multiple disconnected map-matched trajectories, for 
instance, when many consecutive GPS observations cannot be matched, when there is a long temporal gap between 
observations, and when the spatial distance between observations is too long.

After map matching, the transition between two consecutive GPS points of a trip is matched to a sequence of 
road segments, that the vehicle has most probably traversed between the two points. This is represented in two 
relations matchMaster and matchDetail shown in Figure 4. A tuple in the matchMaster relation represents
a pair of consecutive GPS observations of the same trip. The id attribute is a counter, added as a primary key. The
tripId and transId attributes are kept, making it possible to join the matchMaster table with the input rela-
tion. Attributes p1 and p2 are two temporally consecutive GPS points from the same trip in the input. Attributes t1
and t2 are, respectively, the timestamps of the former. Attributes mapPoint1 and mapPoint2 are the coordinates
that result from map matching p1 and p2. Since mapPoint1 and mapPoint2 can be located on different road
segments, the matchDetail relation represents the road segments that are traversed between them. One tuple in
matchMaster joins with at least one tuple (probably more) in matchDetail. Starting from mapPoint1 in ascend-
ing order of matchDetail.id, the relation matchDetail stores every traversed road segment until mapPoint2.
For every road segment, it stores its wayId which can be used to join with the base OSM map. It also stores the
segment length, for speeding up queries. The startFraction and endFraction attributes define the part of
the road segment that has been traversed between mapPoint1 and mapPoint2. The first and the last segments
(i.e., the ones that, respectively, contain mapPoint1 and mapPoint2) may be partially traversed. Every segment
in-between them will be fully traversed, that is, it will have values startFraction=0 and endFraction=1.
Finally, the speed and the time spent by the vehicle on this segment are computed and denoted duration-
Millisec, assuming a constant driving speed between mapPoint1 and mapPoint2. Again this helps speeding
up queries. This speed is computed as the ratio of the network distance between mapPoint1 and mapPoint2
over the driving time t2-t1. Since mapPoint1 and mapPoint2 are coordinates corrected from the original GPS
coordinates p1 and p2, respectively, this speed value is more accurate than the one that was originally given in the
input data.



The tuples that belong to a single trajectory in the matchDetail relation represent, among others, the speed curve 
of the trajectory. It can be abstracted as a function speed(t)→real, that maps every time instant in the trajectory lifetime 
into a speed value. In the data set used in this work, as expected, the speed function contains noise and spikes. Map 
matching reduces such errors, although it does not completely eliminate them. To reduce the effect of these errors, a 
smoothing curve is applied to the speed function. For this, a k-nearest neighbor kernel average was used, with k = 7, 
that is, the three preceding and the three following observations are considered. This window size was chosen based on 
the sampling rate in the data. Shorter windows may not smooth the curve as required and larger values may smooth the 
curve in excess. Since about 80% of the trips have a sampling period between 1.5 and 20 s, the chosen window maps 
to a duration ranging between 10.5 and 140 s, a reasonable temporal range for smoothing the speed of a vehicle. Thus, 
every speed value in the matchDetail relation is updated with the average speed of its window. In the remainder of 
the article, mentions to the trajectory speed refer to this smoothed speed. The SQL query that implements the above is:

F I G U R E  4   The analysis database schema.

F I G U R E  3   Left: the original track, right: the map-matched track.



4.3 | Distributed map matching

The map matching process is extremely demanding in terms of execution time, particularly for high data volumes as the 
one at hand. For this work, then, the map matching process is distributed over a cluster of machines, as shown in Figure 5. The 
cluster consists of one coordinator node and several worker nodes. All nodes have the same software stack, consisting of 
PostgreSQL, PostGIS, MobilityDB, PgRouting, and DbLink. The PgRouting extension is used to compute the shortest path 
between two spatial points. The DbLink extension is used to send and receive an SQL query from one node to another. 
This is used to transfer the input data table and the final results after doing the map matching. The Barefoot algorithm has 
been modified to make it work with different data tables in parallel. Barefoot itself does the spatial searching in parallel 
although this parallelization does not exploit all the existing cores of the machine. Therefore, only half of the machine 
cores are used for the searching algorithm, and the remaining cores are used to map match trajectories in parallel.

The coordinator partitions the input trajectories using the range partitioning method, producing a set of sepa-
rate partitions. Each partition contains trips within a range of trip and transaction identifiers. The DbLink extension 
opens a connection with the worker nodes and transfers the partitions into separate tables on the worker nodes. The 
number of partitions in every worker is decided based on metadata collected from the workers. For instance, if the 
worker contains 12 cores, then six partitions can be transferred. The new update for the Barefoot is packed into an 
a.jar file and transferred using a shell command to the worker nodes. Once everything is ready, the coordinator sends 
a shell command to the worker nodes to start the map matching in parallel. When the map matching is done for one
trajectory, the result is stored in the analysis database whose schema is depicted in Figure 4.

The distributed map matching architecture achieves significant speed up over the default single-node Barefoot. 
In this case, 579,120 trajectories containing 377 million spatiotemporal points were map matched in 3 days and 4 h. 
Every minute 127 trajectories are map matched on a cluster of one coordinator and four workers. We remark that the 
default Barefoot is only able to match four trajectories on average every minute on a machine with12 cores. Therefore, 
it would have required more than 3 months to finish the map matching. The choice for using Barefoot was due to its 
accuracy and the possibility of parallelizing the map matching.

As an example of the results of this process, Table 1 shows the statistics concerning the distance (in meters) 
between the original points and the map-matched points.

4.4 | Trip generation

To load the trajectories into MobilityDB, the tgeompoint data type is used to represent a trajectory as a sequence
of interpolated points. The matchMaster table describes the movement of the object as a set of units. Each unit
describes the movement from a point p1 to a point p2 in a time interval (t1,t2), which can be defined as a second. 
The end point p2, with timestamp t2, represents the starting movement of the next unit. Therefore, a conversion
of each unit into an instant (i.e., point and time) is required. This is the base for constructing a tgeompoint. The
following SQL query generates the trajectory instants:



The schema of the trips table is as follows:

With this schema, and after generating the instants the trip is simply created using the following query:

Using MobilityDB to store the trajectories is much simpler than using complex SQL queries using PostGIS. For 
example, the speed function allows calculating the speed of a moving object at every timestamp. The results are
stored in a MobilityDB temporalfloat type. Therefore, the speed values can be analyzed to detect, for example,
the changes in the gear type. The matchMaster relation contains 178 M tuples, and the matchDetail relation
contains 286 M tuples. These relations represent the map-matched trajectories of 579 K trips. For MobilityDB, only 
the trips table is used, containing 579 K trajectories. The total travel distance of all trips is 2.1 M kilometers. The time 
span ranges from March 2016 through April 2017. Finally, indexes are created to speed up the queries.

5 | USER-CENTERED INDICATORS

In this section, we introduce and describe the proposed user-centered indicators, together with the MobilityDB 
queries that compute them, which are explained in detail. We finally show how they can be visualized using typical 
GIS tools.

F I G U R E  5   Distributed map matching architecture.



Indicators are characterized in two classes as follows:

1. �Road network indicators.
• Deviation from the shortest-distance path.
• Deviation from a straight-line path.

2. �Road traffic indicators
• Queuing time.
• Travel time between landmarks.
• Deviation from free flow.
• Rate of gearing.

These indicators are explained next.

5.1 | Road network indicators

The two indicators in this class are as follows: (a) Deviation from the shortest distance path, which aims at meas-
uring to what extent a driver on a road network follows a path other than the shortest one; (b) Deviation from a 
straight-line path, which measures for a road network, to what extent trips between origin and destination differ from 
a straight-line trajectory. The former is related to the road and traffic conditions, while the latter is also related to the 
network design.

5.1.1 | Deviation from the shortest distance path

In ideal road and traffic conditions, drivers would follow the path with shortest distance. However, because of poor 
road conditions or high traffic on the shortest distance path, drivers often follow alternative paths. This has economic 
and environmental consequences, like more fuel consumption and higher pollution. This indicator aims at measuring 
to what extent users deviate from the shortest path. The two quantities involved in the calculation are the trajectory 
length, and the shortest distance path. The deviation value is then calculated per trajectory as the ratio (trajectory 
length/shortest path length).

In MobilityDB, the total traveled distance of each trip can be computed using the length function on the trip
column.

This query retrieves the distance in meters. The computation of the shortest-path distance is performed by the 
function pgr_dijkstraCost, provided by the pgRouting extension of PostGIS (pgRouting Community, 2013). The 
SQL query in MobilityDB is as follows:



The first part calculates and stores in a temporary table the source and target line segments of each trip, which 
are used when calling the pgr_dijkstraCost function. In addition, the length of each trip is computed, and the
actual distance between source and target is returned. To compute the source and the target, the ST_Intersects
function is applied, between the start or end point of the trip and every line segment in the network. The second 
part shows a Common Table Expression (CTE) query that calculates the shortest distance between every source and 
target. Then, the actual length and shortest distance of each trip are returned.

We computed this indicator over the Cairo data set. The preliminary results showed that trips were, on aver-
age, 326% longer than their shortest path distance. Since this difference suggested some error, a closer inspection 
revealed that some trips end at locations near to their start, that is, they are round trips. Thus, they were removed 
from the data set, filtering source and target points less than 2 km apart. The remaining trips deviated from their 
shortest path by 160%. More statistics concerning this indicator are shown in Table 2.

5.1.2 | Deviation from a straight-line path

This indicator aims at assessing the convenience of the design of the road network to users. The shortest distance 
between two points in the free space is the length of the straight line that connects them, which would be the 
ideal path from a driver's point of view. While it is impossible to structure the street network like this, the closer 
to the straight-line distance is the network, the better and more convenient results the network structure to 
users.

To compute this indicator, we first need to compute the ideal straight-line trajectory. For this, we use The Euclid-
ean distance between the start and end points of a trajectory. This will be compared against the actual user trajectory 



over the network. A distance-preserving spatial projection needs to be applied first. For this data set, the EPSG 
projection 32,636—WGS 84/UTM zone 36 N is used, which is adjusted to the zone of the data set, namely, Cairo 
and Alexandria. The total length of the trajectory is also calculated, as in the previous indicator. For each individual 
trajectory, we then compute the indicator as the quotient (trajectory length/Euclidean distance[start, end]).

In MobilityDB, the computation is straightforward, since the trip distance and the straight-line distance between 
the source and target are obtained using MobilityDB functions. The MobilityDB query is given next.

The query calculates the actual distance for each trip using the length function. For the straight-line distance,
the ST_Distance function of PostGIS is used. This function takes the starting and ending points of the trip and
returns the distance between them.

Similar to the previous indicator, round trips are excluded from the result. Over the Cairo data set, the deviation 
of the remaining trips from their straight-line distance is 240%. Other statistics about this indicator are shown in 
Table 3. It can be noticed that the number of trajectories in the table is higher than the one in Table 2, because for 
some trajectories it was not possible to compute the shortest path due to the clipping of the map.

5.2 | Road traffic indicators

The four indicators in this class are as follows: (a) Queuing time, which measures the time that a moving object in a 
trajectory spends at a traffic queue; (b) Travel time between landmarks, that measures the average travel time between 
predefined points of interest in a road network; (c) Deviation from a free flow, that measures the difference between 
the travel time of a moving object trajectory, with respect to the travel time under free flow traffic conditions; and (d) 
Rate of gearing, that measures the number of changes of gear per kilometer.

5.2.1 | Queuing time

The queuing time indicator quantifies the time lost per trip due to queuing on a road network. Queuing events occur 
mainly at intersections and at u-turns. They happen when the drivers have to reduce speed, wait for traffic lights, or 
wait for the preceding vehicles to exit the road. Queuing can also happen due to obstacles on the road, accidents, 
security checks, and wait at toll gates, among other reasons. A queuing event is characterized by low speeds and 
frequent events of accelerations and stops, that occur during long periods. Note that this indicator differs from 
well-known indicators explained in Sections 1 and 2, that quantify the total time lost due to queuing at a certain road 
facility. To compute the queuing time indicator, queuing events need to be identified within individual trajectories, 
along with their start and end times. For this, periods of at least 5 min of speed less than 15 km/h are detected. Short 
intervals of speedups during such periods are ignored or smoothed. The events that last for more than 30 min are 
discarded, since these are more likely parking events.

To compute the queuing time using MobilityDB, the speed of the trip is calculated, and the waiting time between 
every two consecutive points is checked. The query reads:



The query above retrieves the start and end times of every queuing event during each trip.  The function 
speed returns the speed of the object at every timestamp as a tfloat type. The value of the temporal float can
then be compared against a specific float range, using the atRange function. This function returns the portion of
the trip that is within that range. That is, if the speed value is within the specified range (i.e., less than 15 km/h in 
our case), it means that the car might not be moving at this timestamp, and thus the waiting interval is computed 
using the timespan function in the WHERE clause. If there are multiple stops on different intervals, this function
only computes the sum of the waiting intervals ignoring the gaps between them. If the waiting interval is between 
5 and 30 min, then it can be said that the street is crowded. The gettime function in the SELECT clause returns a
period set type that represents the queuing time period for each stop. For example, below we can see the output 
for a given trip.

In this study, the value of the indicator is 61% as an average for all trips.

5.2.2 | Travel time between landmarks

This indicator aims at reflecting the users' experience with the traffic conditions by considering the travel times 
between certain landmarks (e.g., from a university campus to a train station). The quality of this indicator of course 
depends on an appropriate selection of landmarks. In the case study presented in this work, we extracted 26 land-
marks from the Bey2ollak mobile application, which is the source of the data set as mentioned in Section 1, and 
contains the main landmarks in Cairo and Alexandria. Every neighborhood is represented as a spatial point, namely 
its center.

To compute the indicator, every trip is annotated with the closest landmarks to its source and to its destination. 
If no landmark is found within 5 km of either points or if the source and destination landmarks are the same, the 
trip is discarded. Then the travel time is averaged per different source and destination landmark pair. There are 
650 such possible pairs and not all of them had enough traversing trajectories in the data set. A certain number of 
trajectories must exist between a pair of landmarks to consider the aggregated average as significant. Here, this 
threshold is set to 100. The number of landmark pairs that fulfilled this condition is 158. The SQL query in Mobil-
ityDB is given next.

# Trajectories 525,009 Mean 1.604

First quartile 1.04 Median 1.31

Third quartile 1.79 Standard deviation 5.52

Variance 30.456 Standard error 0.0176

T A B L E  2   Traveling distance deviation from the shortest-path distance



In this query, the landMarkTrips CTE aggregates the average trip duration for all pairs of landmarks that have 
at least 100 traversing trips. The trip duration is calculated simply using the duration function that returns the total 
trip duration, including the waiting time intervals. For each trip, the initial landmark is obtained by performing a spatial 
K-nearest neighbor query, that returns the top most closest landmark to the starting point of the trip. An analogous
process is performed for the end point of the trip, to return the final landmark.

5.2.3 | Deviation from free flow

The free flow speed for a street segment represents the speed of cars under good conditions, such as no congestion, 
good weather, no accidents, and no temporary obstacles. There are many ways of estimating the free flow speed 
on a given street (Fazio et al., 2014; Krogh et al., 2012). Some of them add 5–10 km/h to the regulatory speed limit 
as an estimation. Other proposals conduct field surveys, take actual measurements, and fit them to some statistical 
distributions. The estimation and method must adapt to different places. The method used here for estimating the 
free flow is briefly explained next. We first sort the observed speed values per road segment. Then, the highest 10% 
values are ignored and the next value is chosen to represent the free flow speed. The ignored 10% accounts for errors 
and outliers. The MobilityDB query is given next.

# Trajectories 579,120 Mean 2.45

First quartile 1.5 Median 1.954

Third quartile 2.792 Standard deviation 1.59

Variance 2.529 Standard error 0.004978

T A B L E  3   Traveling distance deviation from the straight-line distance



The freeFlowSpeed CTE computes, for every road segment its estimated free flow speed, which is then used
in the main query to compute the travel time under the free flow condition. In our case, the global aggregate of all 
trips results in the fact that the travel time is on average 375% higher than in a free flow condition. This reflects a high 
level of congestion, which is typical of Cairo. More detailed statistics are reported in Table 4.

5.2.4 | Rate of gearing

The last indicator to be studied is the Rate of gearing, which measures the number of changes of gear per kilometer. 
A gearing event occurs when a driver has to change the gear. It denotes an obstacle, a congestion, or other kinds of 
distraction that interrupt the driving and require a driver response. A high number of such events can be tiring for 
the driver. This is captured by the indicator proposed here, that is defined as the number of gearing events per trip 
kilometer. A high rate of gearing indicates that the network has many distractions. As shown next, this indicator is 
computed by analyzing the speed curve of the vehicle. Note that, of course, this indicator is less relevant for auto-
matic transmission. Since this information is not part of the GPS data used for the analysis, we assume that both 
manual and automatic vehicles have similar speed curves and, thus, the indicator value is not biased by the inclusion 
of automatic transmission vehicles in the analysis. We consider this assumption realistic, since all vehicles are equally 
affected by the traffic and road conditions.

The gearing events in a trajectory are counted by analyzing its speed curve. Some works aim at establishing a 
relationship between the gear choice and the vehicle speed (Eckert et al., 2014; Ericsson, 2000; Ngo, 2012). For 
instance, Ngo  (2012) identify gear shifting profiles using the different driving styles that consider fuel economy, 
maximum power, and optimized performance. Those works reveal that there is a speed band for every gear shift. The 
MobilityDB query is given next.



This query consists of a CTE that defines the gearing events and applies a join between them and every trip. The 
join operation is based on the intersection between any part of the trip speed, and any speed range of the gear-
ing events. That is, if part of the trip speed is within the speed range, then the trip duration during that range is 
computed.

The indicator is computed by dividing the total number of the gearing events, by the total distance traveled by 
all vehicles. For the data set considered in the present work, the indicator's value is of 1.58 gears per km. Figure 6 
shows the average number of gearing events per kilometer per day, for every gear band and per hour (except for 
periods between 0:00–7:00 and 19:00–24:00, which are considered as one period). For each day period, the gearing 
events whose timestamps fall in the period are counted and the total traveled distance of all vehicles is aggregated. 
The figure shows the result of dividing these two components, for every gear. The choice of the day periods is based 
on the analysis done in the Cairo Traffic Congestion Study, carried out by the World Bank in 2013 (Nakat, 2013). The 
figure shows that the rate is almost the same over the whole hour, with a mild increase during both the morning and 
the afternoon peaks. It also shows that the third gear is the most frequent one.

5.3 | Visualizing the results

In this section, we briefly show how these indicators (and any MobilityDB query) can be visualized using typical GIS 
software, to help the analyst's work easier. We also show how of MobilityDB functions can be used to produce ad 
hoc indicators that modify or extend the ones presented in the two sections above.

As an example, consider the analysis of the speed in a road network, which is part of many road performance 
indicators. Figure 7 shows the speed map using QGIS (https://qgis.org/). A gradient color is assigned to each edge, 
ranging from blue to red. This color represents the speed of the trips that traverse the edges of the network. Since 
the maximum speed of edges ranges between 20 and 120 Km/h, it is interesting to compare the speed of the trips 
at an edge, with respect to the maximum speed for that edge. The following query implements such comparison.

In this query, a CTE query restricts the trip to the geometry of the edge and computes the time-weighted average 
of the speed. After that, the average for each edge is used to produce the speed map. Note that the ST_Buffer
function is used to cope with the floating point precision required.

6 | PERFORMANCE EVALUATION

In this section, the implementation and performance of the proposed indicators in MobilityDB are evaluated on both a 
single- and a multi-node cluster. The multi-node cluster setup consists of a coordinator node and three other worker nodes, 
all of them running MS Citus, an open-source extension to PostgreSQL that turns the latter into a distributed database 

https://qgis.org/


(https://www.citusdata.com/). Citus distributes data and queries across nodes in a cluster of commodity machines, horizon-
tally scaling PostgreSQL using sharding and replication. Its query engine parallelizes incoming SQL queries across these serv-
ers to enable real-time responses on large data sets. The latest version of Citus also allows columnar storage, which makes 
Citus appropriate for analytical queries. All nodes in the cluster have the same stack of software: PostgreSQL 13, PostGIS 
2.5, PgRouting 3.1.1, MobilityDB 1.0 beta3, and MS Citus 10 running on Ubuntu 18.04. Each node is equipped with 6 cores 
per socket (2 sockets and 2 threads per core), Intel i7-7800X @ 3.50 GHz CPU, 1 TB SSD, and 24 GB of RAM. The trips
table (i.e., the table containing the continuous trajectories) is distributed using the hash partitioning method provided by 
Citus into 30 partitions. These partitions are stored in the worker nodes, where each node contains 10 partitions. To support 
the local optimization of the queries, we build spatiotemporal indexes on the trajectory attribute in each partition. In
MobilityDB, indexes are defined as extensions to the generalized search tree GiST and the space partitioning search tree 
SP-GiST. Both indexes are used to improve the performance of the spatiotemporal predicates such as Intersects. The
use of Citus is aimed at devising an efficient query plan for distributing the workload over the cluster partitions.

Table 5 compares the execution times of the indicators over the cluster versus a single-machine implementation. 
It can be seen that, as expected, the distributed computation of the indicators outperforms the single-node compu-
tation since queries are executed on load balanced small partitions. Each query has been executed five times and the 
average execution time is reported. All queries are of the broadcast join type, which means that one table (e.g.,  trips)
is distributed, while the other ones are replicated in each node (e.g., the table representing the road network). Repli-
cating the lookup tables allows to distribute the join computations over workers so that the joins are evaluated locally 
in each partition. Therefore, all queries fall into the pushdownable class of MS Citus, which distributes the Mobili-
tyDB query into all partitions and aggregates the results on the coordinator.

Although it may appear obvious that a clustered architecture would deliver better performance that a single 
node one, the performance gain due to distribution varies depending on different factors such as the amount of 
data transfer over the network and the amount of work done on the coordinator node. For example, for the indi-
cator in Section 5.1.1 (deviation from shortest path), finding the source and destination of each trip is done on the 
worker nodes, while loading the network into pgRouting and calculating the shortest path distance between every 
source and destination are done on the coordinator node. Computation at the coordinator node takes most of the 
response time. Because of this, this indicator does not benefit much from a distributed evaluation. For the other 
indicators, most of the query evaluation is distributed over the workers. Therefore, their performance on the cluster 
is up to one order of magnitude faster than on the single node. This is, for example, the case of the computation 
of the deviation from free flow indicator (Section 5.2.3). This query is very expensive because it must compute the 
join between the trip trajectories and the segments of the full road network. This query is optimized using the GiST 
index although the join cardinality remains huge. The second factor impacting this query is that it uses expensive 
functions such as atGeometry. In conclusion, distributed computation of the performance indicators (in this case, 
using the distributed version of MobilityDB) is crucial given the usual sized of the mobility data sets.

7 | CONCLUSIONS

This article introduces the idea of user-centered road network indicators, that is, indicators that account for the 
user experience and perspective, opposite to the most usual ones that normally just consider the road and traffic 

# Trajectories 579,120 Mean 3.75

First quartile 2.05 Median 2.77

Third quartile 4.216 Standard deviation 2.87

Variance 8.25 Standard error 0.0076

T A B L E  4   Trip time deviation from the free flow condition

https://www.citusdata.com/


conditions, regardless of how the users feel about their driving experience. The work classifies the indicators into two 
broad classes: road network and traffic indicators, defines them precisely, and shows how that they can be efficiently 
implemented even for the big mobility data sets. The indicators account for three key aspects of user experience in a 
road network: driving comfort, flow convenience, and network convenience to motorists. Furthermore, the indicators 
are computed using MobilityDB, a moving object database that extends the well-known PostgreSQL database with 
spatiotemporal data types and functions.

The whole process of acquiring data, transforming, cleaning, and map matching the data to the road network, 
computing, and visualizing the results is also explained and discussed using a real-world large data set containing data 
of Cairo traffic in Egypt. In addition, the data set size allows us to show how the indicators are computed in a distrib-
uted environment. Running times in centralized and distributed settings are compared, and the effect of distribution 
is reported and discussed, showing how it dramatically reduces execution times. The SQL and MobilityDB expres-
sions that compute all indicators are included and sample visualizations of the results are also shown.

F I G U R E  6   Count of each gear per traveled km per day period.

F I G U R E  7   Visualization of the network edges according to the number of trips that traversed the edges.



The article also reviews the many road performance indicators and classifications currently available and shows 
that they do not consider the user's experience or do this just to a very limited extent. We believe that accounting 
for user's experience in a road performance analysis cannot be avoided in modern times. Furthermore, given the 
amount of data available nowadays, defining indicators and computing them efficiently as shown in this article, can 
provide the analysts important tools for their work and is more practical that carrying out costly and limited surveys 
(as proposed in some works discussed here) that also can take a long time to prepare and complete. We showed how 
current technology allows us to efficiently process large mobility data sets.

As future work, new indicators can be developed to address different situations and audiences. Furthermore, 
since the study presented in this work averages the indicators over all vehicle profiles (e.g., personal cars, taxi, etc.), 
over all trip purposes (e.g., work, leisure, etc.), and over all driver profiles, as future work it would be interesting to 
segment the trajectories and compute fine-grained indicators. In another direction, the work opens the possibility 
of defining indicators for smaller extents or even individual road segments, to assess the effect of road works on the 
driver's experience.
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