

TESIS DE GRADO EN INGENIERÍA INDUSTRIAL

¿Atomización de la energía a través de fuentes renovables?

AUTOR: Martín Tomás Frank

DIRECTOR DE TESIS: Jorge Tersoglio

DEDICATORIA

A mis padres,

Por todo su apoyo, confianza y esfuerzo para brindarme la mejor educación.

AGRADECIMIENTOS

A Anahí Escala, por su apoyo, por ayudarme a seguir adelante, la compania constante, y la enorme paciencia.

Emilio Mendez por sus consejos y el aliento permanente.

A Paola Scilipotti por su colaboración para con la confección del Summary.

A Jorje Tersoglio, mi tutor, por colaborar conmigo por su orientacion, disponibilidad y excelente predisposicion para recibirme siempre para responder mis innumerables preguntas.

RESUMEN

En los capítulos I, II y III, se analizó el escenario energético en el cual se encuentra el país y de que forma se llegó a éste escenario. A partir de aquí se evaluó en retrospectiva hacia donde llevará la presente situación al país, en un corto plazo. En diversos gráficos se podrá apreciar de qué forma esta evolucionando la demanda energética y cómo el gobierno se esta ajustando a la misma.

La respuesta que esta dando el gobierno a la creciente demanda es ajustarse a esta, en detrimento de unas inversiones que crecen año a año en forma cada vez más abrupta, de esta forma todo indica que llegará un punto en el cual las inversiones necesarias no podrán ser afrontadas.

Por otro lado el gobierno también realiza transferencias a las empresas generadoras eléctricas, para subsidiar al consumidor final de forma tal de mantener estable el valor del kWh que se factura al consumidor final.

Con el crecimiento de la demanda de energía, y la necesidad de inversiones cada vez mayores, los recortes de energía serán inminentes. Cuando éstos se produzcan, el sector más afectado será la industria, que según se podrá apreciar, es el sector más pequeño en cantidad de clientes y por ende el más vulnerable a ser víctima de un recorte.

En el capítulo IV se realizará un análisis de las tecnologías que existen en la actualidad que utilizan fuentes renovables que y que puedan ser utilizadas para satisfacer el consumo doméstico. En este punto se llego a que por la forma de aprovechamiento y las tecnologías existentes, los turbogeneradores eólicos no son adecuados para el modelo propuesto, y si lo es la energía fotovoltaica. De esta forma se procederá a estimar el requerimiento básico de consumo de energía que tendrá una casa de familia promedio.

Ya en el capítulo V se describirá el modelo de negocio propuesto en la presente Tesis, para afrontar la crisis que se avecina según se vio en los capítulos precedentes.

El modelo consiste en que cada casa de familia adquiera un equipo de generación eléctrica, dimensionado de tal forma que cumpla las necesidades energéticas del hogar, pero en lugar de utilizarlo para consumo propio, la energía producida será vendida a la red de distribución eléctrica a una tarifa mayor que la que el hogar paga por la consumida. De esta forma la generación de energía se atomizará y dará una vía de escape a las empresas eléctricas existentes.

También en el capítulo V se realizo un análisis de cuanto consumirá una vivienda promedio, y que tipos de conductas cotidianas deberían tener las personas comprometidas con el uso racional de la energía eléctrica.

Una vez obtenida la demanda de energía promedio de una casa de familia, en el capítulo VI. Se realizó un análisis del mercado de los paneles solares, y se encontraron los precios que mejor se adaptan a las necesidades del modelo de negocio propuesto en el capítulo V.

Con la demanda promedio, y con los equipos necesarios para el desarrollo del modelo con sus respectivas prestaciones de servicio, se dimensionará, la cantidad de paneles necesarios para una vivienda. De esta forma se obtendrá el valor final de la inversión necesaria para adquirir los equipos generadores.

Una vez obtenido el valor final de la inversión se realizará un análisis financiero, que consistirá en calcular el valor mensual de la cuota necesaria para pagar el crédito en el cual el pequeño inversor entrará, para adquirir los equipos de generación de energía fotovoltaica.

Con la cuota mensual para el pago del crédito se realizará un contraste entre ésta última y el monto obtenido mensualmente por vender energía al estado. En este punto se verán las diferencias existentes entre el valor de la cuota y el monto percibido por la venta de la energía eléctrica al estado, y porque el modelo propuesto no puede ser llevado adelante.

Por último en las conclusiones se verá que debería sucederle al actual escenario para que el presente modelo pueda ser llevado a cabo, por parte del estado como condiciones que deberá cumplir la tecnología existente en el país.

SUMMARY

In chapters I, II and III I have analyzed the power scenario in which our country is immersed and also how this scenario has been reached. From this point I have evaluated in retrospection where the current situation will lead the country in a short period of time. Different graphics will show the development of the power demand and how the government is adjusting to it.

The answer that the government is giving to the increasing demand is to adjust to it, to the detriment of inversions that are abruptly growing every year. This shows that the necessary investments could not be afforded.

On the other hand the government is also making transfers to the electricity companies to subsidize the consumer in order to maintain stable the price of the kWh that is invoiced to the consumer.

With the growth of the power demand and the need of mayor investments, the power cuts will be imminent. When those cuts appear, the most affected sector will be the industry which is the smallest one in terms of customers and the most vulnerable one to be a victim of cuts.

In chapter IV I will make an analysis of the current technologies that use renewable sources which can be used to satisfy domestic consumption. As regards this point, I have come to the conclusion that the wind power turbogenerators are not adequate to the proposed model because of the use and existing technologies, but the photovoltaic power is. In this way I will proceed to estimate the basic requirement of power consume that an average family house will have.

In chapter V I will describe the business model proposed in this Thesis to face the coming crisis shown in the previous chapters.

The model consists of each family home getting electric generator equipment, assessed in such a way that fulfils the power needs of the home. But instead of using it for self-consume, the power produced will be sold to the electricity red at a higher price than the one paid by the family home. In this way, the generation of electricity will be atomized and it will give a way out to the existing electric companies.

In chapter V I have also made an analysis of how much an average house will consume and how people should behave in connection to the rational use of electric power.

Once I have obtained the average power demand of a family home in chapter VI, I have made a market analysis of the solar panels; I have also found the prices that adapt better to the needs of the model proposed in chapter V.

With the average demand and with the necessary equipments to develop the model with its corresponding service benefits, I will calculate the amount of panels which are necessary for a house. In this way, I will get the final amount of money necessary for the investment in order to buy the generators.

After obtaining the final cost of the investment I will make a financial analysis that will consist of calculating the monthly fee cost which is necessary to pay the credit that the small investor will have to afford to get the photovoltaic power generator equipments.

With the monthly fee to pay the credit I will make a contrast between the credit fee and the amount of money obtained each month from the selling of energy to the government. At this point the existing differences between the fee cost and the amount of money obtained each month from the selling of energy to the government will be noticeable. What is more, at this precise moment I will also show why the proposed model cannot be carried out.

Last but not least, in the conclusion section I will illustrate what the government should do to the current scenario, in order to carry out the proposed model to fulfil the existing technology in the country.

vii

ÍNDICE

I.	Ald	cance del proyecto:	. 0
II.	Int	roducción:	. 1
III.		Identificación del problema y esbozo de solución:	. 2
A.		Panorama energético en Argentina	. 2
	1.	Evolución de las inversiones, subsidios y consumo	. 4
	2.	Tipos de fuentes de energía en argentina	. 5
IV.		Estado de la tecnología	. 7
A.		Energía Eólica.	. 8
	1.	Otros inconvenientes de la energía eólica	. 8
	2.	Prototipos	. 9
В.		Energía Solar	11
С		Descripción general de un EFCR	12
D		Diversos son los aspectos que centran el interés de los EFCR:	14
V.		Atomización de la energía en zonas urbanas	15
A.		Descripción del modelo	15
	1.	Casa de Familia	15
	2.	La municipalidad	16
	3.	Proveedores de tecnología	16
	4.	El inversor	16
В.		Consumo doméstico promedio	17
С		Políticas de Ahorro de Energía	19
	1.	Electrodomésticos	19
	2.	Hábitos con los electrodomésticos	19
	3.	Iluminación2	20
	4.	Hábitos con la Iluminación	20
	5.	Diseño Racional de Edificios	20
	6.	Cuestiones acerca del Ahorro de Energía2	20
VI.		Modelos tecnológicos:	21
A.	•	Inversión inicial para el desarrollo de un EFCR	21
	1.	Módulos fotovoltaicos	21
	2.	Inversores de tensión de conexión a la Red2	22

3.	Seguidor Solar	23
4.	Otros elementos	23
5.	Dimensionamiento del equipamiento.	23
6.	Resumen de las inversiones.	24
7.	Rendimiento económico de los módulos	25
B.	Consumo vs. Producción del EFCR	27
VII.	Conclusiones	29
VIII.	Anexo	30
A.	Cantidad de clientes dentro del Mercado eléctrico	30
B.	Consumos por clientes	31
C.	Generación de energía en Argentina	32
D.	Consumo y producción de energía entre los años 1970 y 2006	33
E.	Tipos de fuentes de energía	34
F.	Inversiones en desarrollo energético	35
G.	Compensaciones para el subsidio de la tarifa de energía	37
Н.	Velocidades del viento en buenos aires	39
IX.	Bibliografías y páginas WEB:	40

I. Alcance del proyecto:

En la presente tesis de grado se analizará la viabilidad de un modelo atomizado de producción de energía con fuentes renovables desde el punto de vista tecnológico y económico.

Se llamará modelo atomizado a la generación minorista de energía eléctrica en cada domicilio, con generadores eólicos, solares o ambos, de forma tal que esta generación alcance para satisfacer la demanda mensual de la vivienda.

Esto implica que no se analizarán inversiones para una generación de energía superior a los 2 MWh mensuales.

II. Introducción:

El consumo de energía eléctrica creció 32 % entre mayo de 2003 y julio de 2006. Se pasó de un registro máximo de demanda de energía diaria de 13.200 megavatios al récord de 17.395 megavatios en el mismo lapso de tiempo. Según el INDEC, la actividad económica se incrementó un 32,4% entre mayo de 2003 y agosto de 2006. La actividad industrial creció 31,3 % para el mismo período. La producción de autos se incrementó 213,2 % en septiembre de 2006 respecto de mayo de 2003.

El consumo de electrodomésticos subió 353,3 % en el 2º trimestre de 2006 respecto del 2º trimestre de 2003. A esto también se agrega el consumo de equipos de aire acondicionado que aumentó un 381,9 % en el 1º trimestre de 2006 comparado con igual período de 2003.

En particular las últimas ratios marcan un importante aumento de la demanda de energía eléctrica que quedará insatisfecha, revelando un déficit que deberá ser absorbido – tal la estructura del mercado actual de energía – en un 100% a través de las tradicionales fuentes y de la red de distribución.

Con este panorama, el problema que se pretende analizar es la morigeración – en su caso reversión total – de la creciente crisis energética que aqueja al país a través de un sistema de energía autónoma interconectada. Una solución que implique que solo el consumo doméstico urbano deje depender de los recursos energéticos implicaría un ahorro para la comunidad. (Tanto casas de familia como alumbrado público, escuelas y otras instituciones públicas).

III. Identificación del problema y esbozo de solución:

A. Panorama energético en Argentina

En el presente capítulo se analizará la actual situación energética en la argentina. Para dicho análisis se estudiará cómo se distribuyen las categorías de consumidores de energía y sus respectivos consumos. También se estudiará el comportamiento del consumo de energía eléctrica a lo largo de los últimos años, los tipos de fuentes utilizadas para satisfacer la demanda del mercado, las inversiones realizadas por el Estado para cubrir las necesidades del país y cómo se subsidia a las empresas productoras de energía por parte del Estado.

La República Argentina a fines del 2006 contó con un total de 12.708.265 usuarios de la red eléctrica. Cada uno de ellos extrajo energía de la red de distribución eléctrica y según informes de la Secretaría de Energía estos consumidores se categorizan tal como se muestra en el siguiente diagrama (para mas detalle ver Tabla XX en el Anexo):

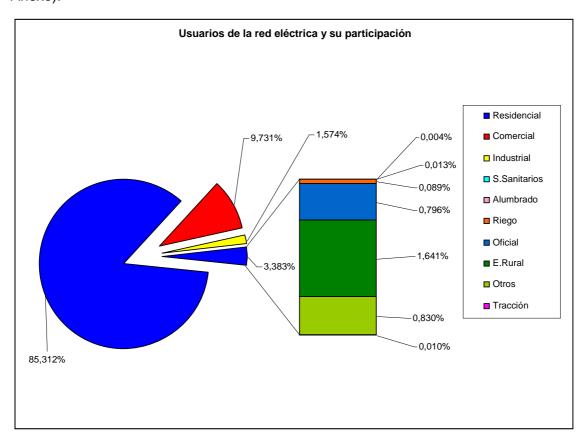


Gráfico 1

Claramente se aprecia en el diagrama que el mayor volumen de los clientes se compone de clientes residenciales y en menor medida de clientes comerciales e industriales.

A su vez a todos estos consumidores se les facturaron un total de 86.856 855 MWh durante el 2006. De los mismos informes se pueden apreciar cómo se distribuyó este consumo según cada una de las distintas categorías. Se lo representará a través de un diagrama (para mas detalle ver Tabla XX en el Anexo):

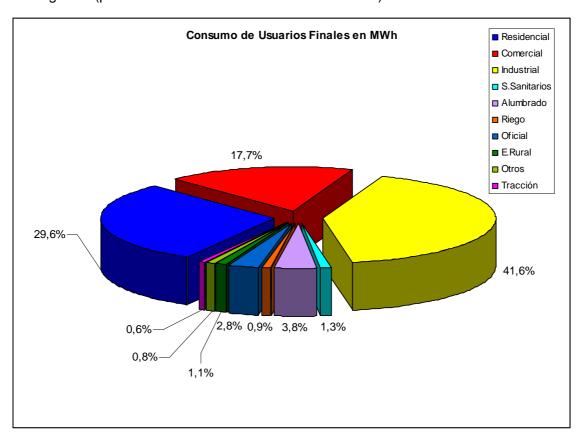


Gráfico 2

De estos dos diagramas se puede apreciar, que si bien el total de consumidores que componen el rubro de la industria es de un 1,5%, éstos consumen un total de 41.6 % de energía extraída de la red de consumo eléctrico. A su vez los clientes residenciales que componen un 85,312% del total de los clientes, consumen un 29,6%. Con los comercios sucede algo similar a lo que ocurre con la industria, pero en una menor relación.

Lo que se remarca en estos puntos es que en caso de surgir una necesidad de realizar recortes de energía por falta de capacidad de generación, el primer rubro damnificado sería la industria y en una segunda instancia el comercio.

Cabe agregar que la oferta de generación de energía eléctrica asociada a redes de transporte y distribución - total del país en el año modelo: fue de 106.660.267 MWh mientras que la demanda total fue de 99.323.623 MWh y la facturación a los consumidores finales de 86.556.855 MWh. De los últimos dos valores se puede apreciar que hay una perdida de un 12% entre la energía demandada y la facturada. Por otro lado hubieron fechas en las cuales los picos de consumo por parte de los clientes residenciales no pudieron ser cubiertos por la capacidad de las redes y fue necesario importar energía desde el Brasil.

Lo que se refleja de estos últimos valores es que el volumen de perdida energética en dicho año fue de 12.766.768 MWh entre lo demandado y lo consumido. En el siguiente apartado se podrá apreciar, entre otras cosas, cómo la tasa de crecimiento del consumo eléctrico de los últimos años, haría prever la crisis energética sobreviniente.

1. Evolución de las inversiones, subsidios y consumo.

A lo largo de los últimos 30 años Argentina tuvo un incremento anual casi constante en su consumo y en su generación de energía eléctrica y sin nuevas inversiones y subsidios esta capacidad llegará a su tope. En el siguiente gráfico se indica cómo creció el consumo y la producción de energía entre 1970 y 2006:

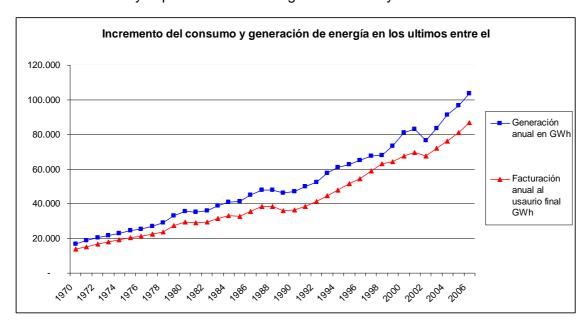


Gráfico 3

Para afrontar estos incrementos el país realizó inversiones para ampliar la capacidad, y todas ellas fueron realizadas en generadores energéticos de fuentes no renovables. A su vez el Estado también realizó inversiones para subvencionar al consumidor pagando una parte de la tarifa. Si bien el crecimiento en el consumo anual fue cubierto por inversiones por parte del Estado, el aumento de los consumos anuales implica para él una necesidad de pagar más subsidios a las empresas de producción de energía eléctrica para mantener la tarifa con el mismo valor.

A continuación se muestra la evolución de las subvenciones realizadas por el Estado para afrontar los incrementos en la demanda eléctrica, como así también las subvenciones destinadas a mantener estable el valor del KWh para el consumidor final.

.

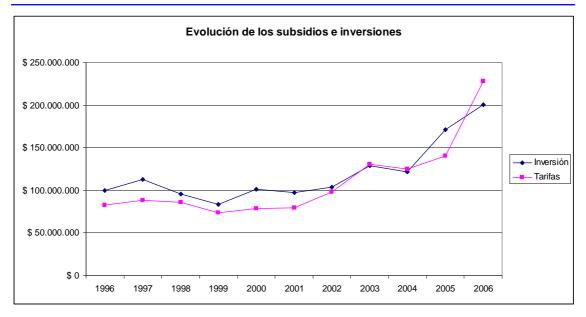


Gráfico 4

Como se puede apreciar en el gráfico anterior Argentina prácticamente duplicó las inversiones realizadas para el desarrollo de nuevas fuentes de energía y lo mismo sucedió con los subsidios otorgados a los proveedores de energía para poder brindar a los consumidores finales una tarifa más accesible.

Lo que se pretende demostrar es que si se confirma la tendencia que marcan los gráficos precedentes, Argentina se encontrará frente a una crisis energética mayor en el corto plazo. El rubro mas damnificado será la industria, debido a que, no obstante representar una pequeña parte de los consumidores de energía, consume un gran porcentaje y no puede prescindir de ella sin afectar su producción.

2. Tipos de fuentes de energía en argentina.

Al desagregar el consumo energético en el país entre sus diversas fuentes de energía se encontrará que el total de la generación bruta se diversifica de la siguiente manera:

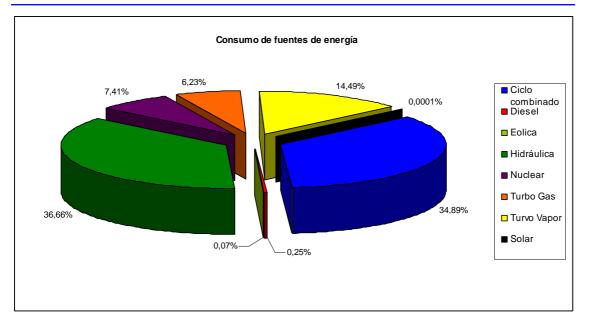


Diagrama 5

Se puede apreciar en el diagrama superior que un 63,3% de la energía producida en el país proviene de fuentes no renovables, y del 36.7% restante prácticamente toda pertenece a energía hidráulica. En tanto a lo que energía a eólica o solar se refiere, las inversiones prácticamente son nulas, y tampoco se promueven políticas que fomenten la generación de las mismas, siendo que argentina posee muy buenas condiciones naturales como para desarrollar este tipo de energías.

La presente tesis de grado no apunta a analizar una problemática ambiental. Sin embargo es un punto que no se debería desestimar debido a que el país libera volúmenes muy importantes de dióxido de carbono que contribuyen al calentamiento global. Además la República Argentina se comprometió a cumplir con las normativas del protocolo de Kyoto con respecto a la emisión de gases. Con la presente crisis energética y las medidas que se toman en el país para solucionarla, se va camino no sólo a no poder cumplirlas si no también a quedar en una posición peor que la que tuvo al momento de firmar el tratado.

Frente a este panorama se propone en el presente proyecto final de ingeniería un modelo que puede representar una vía saludable para evitar una crisis energética de manera sustentable, y que brinde a su vez un alivio al medio ambiente.

IV. Estado de la tecnología

Actualmente todas las fuentes de energía provienen de grandes plantas de energía. Hoy existen en el mercado equipos de abastecimiento de luz solar pensados para zonas rurales y en Europa empiezan a implementarse equipos para zonas urbanas, ya sean casa de familia o edificios. También se están desarrollando en muchos lugares del mundo los parques eólicos, inclusive aquí en Argentina el INVAP trabajó en la construcción de un parque eólico en Comodoro Rivadavia, que actualmente funciona y provee 60 MWh.

En el presente capítulo se analizarán dos tipos de fuentes renovables como modelos para un proyecto urbano, paneles solares de conexión a la red y turbinas eólicas para zonas urbanas.

A. Energía Eólica.

En este apartado se analizará la viabilidad de atomizar la generación de energía eólica en zonas urbanas. Cabe resaltar que, como se menciono en el Capitulo I el modelo propuesto requiere que cada vivienda se convierta en un pequeño productor de energía que alimente la red de distribución eléctrica. Por otra parte, y al igual que la energía solar, este tipo de fuentes se ven en la necesidad de contar con otros tipos de energías y actuar como un sistema hibrido por lo poco predecible de su fuente.

El principal impedimento que se encuentra al utilizar este tipo de fuentes dentro de zonas urbanas, es el requerimiento de velocidades mínimas que tienen las turbinas eólicas para generar energía.

Tomando como ejemplo la ciudad de Buenos Aires, según informes obtenidos de la página de Mercobras, que a su vez genera sus bases históricas de los datos provistos por el servicio meteorológico nacional, nos encontramos que en los últimos 5 años, y los primeros 6 meses del 2008, las velocidades medias de los vientos fueron de 4.95 km/h (Para mas detalle ver anexo H). Por otro lado los generadores eólicos deben ser colocados con una orientación determinada, y en ciertos lugares donde existan corrientes de viento de flujo laminar. Este punto también genera un inconveniente debido a que los vientos, en el ejemplo de Capital Federal, proceden, según los informes meteorológicos, tanto del norte como del sur, casi en la misma proporción.

Frente a este escenario climático se presenta inviable la posibilidad de realizar inversiones en este tipo de tecnologías para la generación de energía en la ciudad de Buenos Aires, dado que no se alcanzan a las velocidades mínimas de trabajo de una turbina. Cabe señalar que este escenario se cumple en muchas de las ciudades de la república argentina.

Por este motivo para el presente estudio se descarta la utilización de aerogeneradores para la aplicación del modelo, que se propondrá en el capítulo V.

1. Otros inconvenientes de la energía eólica.

Los inconvenientes que se mencionan a continuación tienen una menor relevancia frente al impedimento mencionado anteriormente:

- Contaminación acústica: Todos los generadores eólicos producen ruido que se debe a la fricción producida por la pala con el aire. Para el tamaño de los generadores que se proponen en el presente texto, el sonido no supera los valores mínimos permitidos por la ley, con la densidad de población que existe en una ciudad la suma de muchas fuentes de sonido si superan a los máximos permitidos por la ley (45db).
- O Contaminación visual: Los aerogeneradores son siempre elementos altamente visibles en el paisaje, de lo contrario, no están situados adecuadamente desde un punto de vista meteorológico. Debido a esto proyectarán una sombra en las áreas vecinas cuando el sol esté visible. Si vive cerca de un aerogenerador es

posible que se vea molestado si las palas del rotor cortan la luz solar, causando un efecto de parpadeo cuando el rotor está en movimiento.

Este tipo de inconvenientes ya están siendo resueltos con los nuevos modelos que se espera empiecen a comercializarse en forma masiva a partir del año 2009, debido a que las empresas que los producen todavía no tienen, la capacidad de producción, la logística armada, ni la difusión adecuada, como para comenzar a comercializarse en la República Argentina. Algunos de estos ejemplos se pueden apreciar en el siguiente apartado.

2. Prototipos.

En la actualidad se están implementando en los Estados Unidos novedosos modelos de turbinas eólicas. Existen dos prototipos muy diferentes entre si pero igualmente aplicables.

Uno de estos tipos de turbinas es el Helix Wind. Ésta puede producir energía con una velocidad mínima de 2 m/s. Además sortea los obstáculos que tienen hoy los aerogeneradores verticales, ya mencionados anteriormente, como la contaminación acústica y la visual, como así también el inconveniente que presenta la variación en la orientación del viento. La novedosa estructura geométrica que posee permite la máxima captación cualquiera sea la dirección del viento, incluso si la dirección es vertical. A continuación se muestra una Figura con la geometría del prototipo, y su eficiencia frente a un turbo generador tradicional.

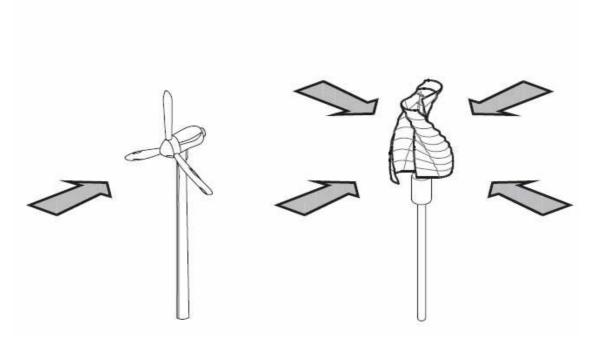


Figura 1

Este prototipo esta especialmente diseñado para ser instalado en zonas urbanas, donde aprovecha las corrientes de aire formadas por edificios. Además su tamaño y diseño requiere de mucho menos espacio a diferencia de los turbogeneradores

verticales que debe estar colocado a una altura de 4,5 metros y tiene un diámetro de aspas de 3,2 metros.

Pro otro lado la empresa Magenn desarrolló un prototipo de aerogenerador de generación de energía eólica integradas en un globo de helio que se suspende entre 200 y 300 metros, sujetas mediante un cable que sirve, además, para descargar la energía producida hasta el suelo. A éstas alturas, donde las corrientes de aires son mayores y consigue un mejor rendimiento. A continuación se puede ver una figura d un prototipo:

Figura 2

De todas formas una aplicación como esta última no se ajusta al modelo que se propondrá en la presente tesis, debido a que el presente prototipo, no puede ser utilizado para uso personal.

B. Energía Solar.

Los sistemas fotovoltaicos conectados a la red eléctrica (en algunos lugares también llamados Edificios Fotovoltaicos Conectados a la Red), han dejado de ser meras experiencias piloto para integrarse en el conjunto urbanístico de numerosas localidades en distintos países (europeos sobre todo), y todo parece indicar que continuarán expandiéndose con vigor en el futuro al amparo de la creciente toma de conciencia sobre los problemas medioambientales que conlleva la estructura actual de la producción de electricidad, fuertemente dependiente de la quema de combustibles fósiles.

La extensión a gran escala de esta aplicación requiere el desarrollo de métodos ingenieriles específicos que permitan, por un lado, optimizar su diseño y funcionamiento y, por otro, evaluar su impacto en el conjunto del sistema eléctrico y a su vez representar un modelo de negocio al que el ciudadano pueda acceder con facilidad. A ello, precisamente, dedica sus esfuerzos el presente proyecto final de ingeniería.

C. Descripción general de un EFCR.

Un Edificio Fotovoltaico Conectado a la Red, denominado en lo sucesivo EFCR, debe su nombre al hecho de disponer de un sistema fotovoltaico conectado a la red eléctrica convencional e integrado arquitectónicamente, en mayor o menor medida, en el propio edificio. De este modo combina las características de generador y consumidor de energía, con el consiguiente intercambio energético entre el edificio y la red eléctrica: el EFCR *vierte* energía a la red cuando la generación supera al consumo en un determinado instante y extrae energía de ella en caso contrario.

Figura 3

En la figura xx se aprecia el funcionamiento de un EFCR y sus componentes los cuales son:

- Generador solar: este estará dimensionado con los módulos necesarios para la generación de la energía, según las necesidades de carga de potencia del usuario.
- Sistema de montaje: esta compuesto por soportes de aluminio que fijan los módulos a la superficie fija. En este punto también se puede instalar un seguidor solar que orienta los módulos en la dirección del sol incrementando hasta un 60% el tiempo de acción del sol.
- 3. Cableado: utilizado para la interconexión de los equipos entre si.
- 4. Caja de conexión del generador: en general se ubican en este punto los reguladores e interconectan los módulos con el resto de la instalación.

- 5. Inversor de conexión a la red: este equipo es altamente costoso y su función es la de entregar la energía recolectada por los módulos de acuerdo a las normas reguladas para la red.
- 6. Contador bidireccional: Este equipo se encarga de medir la energía entregada a la red y la consumida por la vivienda.
- 7. Punto de acceso a la red: es el punto de entrada para la red de distribución de energía hacia la vivienda.
- 8. Aparatos de consumo: La lámpara representa todos los puntos de consumo que tiene la vivienda.

D. Diversos son los aspectos que centran el interés en la energía solar:

A continuación se detallan algunos pontos relevantes acerca de la energía solar:

- O Desde el punto de vista energético, se trata de la aplicación de la energía solar fotovoltaica de mayor eficiencia, ya que la generación tiene lugar en el lugar de consumo —se evitan pérdidas de transporte y distribución—, con pocas pérdidas de transformación —los inversores operan típicamente a elevados niveles de eficiencia y en baja tensión—, y puede aprovecharse en su totalidad, debido a la elevada fiabilidad de la Red. Además, la coincidencia de las horas de máxima generación con las de mayor consumo, tendencia cada vez más constatada en numerosos países, supone un beneficio adicional en términos de aplanamiento de la curva de carga de la Red.
- Desde el punto de vista funcional, el generador fotovoltaico es susceptible de ser empleado como elemento constructivo con diversos fines arquitectónicos: estético, innovador, protector, recubrimiento, etc.
- Desde el punto de vista medioambiental, estos edificios suponen una forma eficiente de reducir las emisiones de agentes contaminantes a la atmósfera (CO₂, SO₂ y NO_x, principalmente, derivados de la generación de energía mediante combustibles fósiles.

Por otra parte, los Edificios Fotovoltaicos Conectados a la Red (EFCR) difieren substancialmente de las centrales fotovoltaicas convencionales —véase la Tabla 1—, debido fundamentalmente a la integración del sistema fotovoltaico en el edificio — simplifica en gran medida la instalación— y a la consiguiente cercanía al lugar de consumo. Así, las razones que motivan su implementación y los factores que regulan su actividad económica son muy diferentes.

	Central fotovoltaica	EFCR
Generación	Centralizada	Descentralizada
Lugar de ubicación	Precisa compra/alquiler de terreno	Ya existente (edificio)
Instalación	Precisa obra civil previa	Infraestructura sencilla
Conexión a la Red	Precisa realizar	Ya existente (del edificio)

Tabla I. Diferencias entre una central fotovoltaica convencional y un EFCR

En la práctica, la combinación de todos estos factores, unida a motivaciones de índole social (educación, concienciación en temas energéticos y medioambientales, imagen pública, etc.) y económica (políticas favorecedoras), determinaría en la actualidad importantes inversiones en EFCR mucho antes de haberse alcanzado los niveles de competitividad con la energía convencional, en términos estrictos de coste económico de la energía producida.

V. Atomización de la energía en zonas urbanas.

En este capítulo se abarcará el modelo propuesto para afrontar la solución al problema planteado en los capítulos II y III.

A. Descripción del modelo

Se desarrollará un modelo de negocio dentro del cual intervienen cuatro actores fundamentales:

- o La Comuna o Municipalidad.
- o La casa de familia.
- o Los proveedores de tecnología.
- El inversor.

Cada uno de estos actores tiene un papel fundamental en el esquema y el circuito es el siguiente:

La Municipalidad le ofrece a cada propietario de casa familiar la posibilidad de colocarse un panel fotovoltaico, y venderle a la Municipalidad la energía obtenida para ser incorporada a la red de distribución general. Cada dueño de casa de familia accede a los panales a través de un crédito a pagar en 20 años. Éste vende a la municipalidad la energía que produce a X\$ el Watt. La Municipalidad, a su vez, provee de energía a la casa de familia a través de la red a X\$ multiplicado por Y% el Watt ("Y" representa un porcentaje que se estudiará en la presente tesis), y con la diferencia obtenida por el dueño la casa de familia, éste paga el crédito al inversor por la compra del panel.

Para este modelo no se debe olvidar que todos los tipos de fuentes renovables que pueden ser utilizadas en una vivienda, ya sean paneles solares o turbinas eólicas, deben ser complementadas con otras fuentes, como por ejemplo de represas hidroeléctricas. Esto se debe a la estacionalidad de éste tipo de recursos, los paneles solo generan durante el día y las turbinas eólicas generan cuando hay viento.

A continuación se comentan los beneficios de cada uno de los integrantes del circuito:

1. Casa de Familia

El consumidor doméstico esta realizando un negocio al producir energía eléctrica desde su hogar. Las viviendas que incurran en éste proyecta serán aquellas que tendrán una cultura ahorrista que les permitirá, no solo no pagar mas luz sino tener una ganancia extra en forma de un crédito fiscal que, por ejemplo, podrá deducir de sus impuestos municipales. También puede existir algún acuerdo entre la entidad que financie al pequeño productor y la municipalidad que haga que la ganancia que tenga la vivienda sea directamente descontada del crédito en el cual incurre el pequeño productor para comprar la instalación. De esta forma el consumidor no tendría ni siquiera que realizar ningún tipo de trámite para ir pagando las cuotas del crédito.

2. La municipalidad

Con el excedente generado por las casas de familia que se incorporan a la red de distribución, la Municipalidad deja de pagar a las empresas proveedoras de servicio eléctrico por el alumbrado público y también por el consumo de algunos edificios

municipales tales como escuelas, bibliotecas, etc. De este modo pasa a ser su propio proveedor, prescinde de la empresa de energía y administra el costo y la tarifa. A si mismo, en razón de la atomización de la provisión de energía eléctrica se contribuye a través de este sistema a reducir los apagones masivos.

En este punto cabe mencionar el impacto social que genera en la comunidad el sentirse parte de un proyecto que colabora con el medio ambiente.

3. Proveedores de tecnología

La industria se encuentra frente a un mercado completamente nuevo y fértil para la venta de sus productos. Si bien requiere una inversión inicial grande, si el proyecto es acompañado por políticas que apoyen el desarrollo de éstas energías, la demanda será muy alta y el riesgo de la inversión será muy bajo. Por otro lado la misma empresa puede ser quien financie la inversión del cliente, y de esta forma deja afuera del modelo al inversor.

4. El inversor

Este integrante sería el encargado de entregar préstamos a pequeños emprendedores quienes estarían pagando su inversión con una financiación a largo plazo y a tasas de mercado. Este rol de inversor lo puede cumplir cualquier actor, ya sea un banco, el Estado, un fondo de inversión o la misma empresa proveedora de tecnología.

B. Consumo doméstico promedio

En este punto se analizará el consumo promedio de una casa de familia estándar. El motivo del mismo es analizar el alcance tecnológico necesario para cubrir las necesidades energéticas del consumidor promedio. Con esta información se dimensionará luego la tecnología

Se tomó una muestra representativa de los electrodomésticos típicos y de uso diario, en una casa pequeña donde viven dos personas:

Aparato	Potencia (Promedio)	Tiempo de uso al día (Períodos	Tiempo de uso al mes	Consumo mensual
	Watts	Típicos)	Horas	Kilowatts-hora (kWh)
Videocassetera o DVD	25	3hr 4vec/sem	48	1.2
Tostadora	1000	10min.diarios	5	5
Radio grabadora	40	4 hrs.diarias	120	8
Secadora de pelo	1600	10 min/día	5	9
Horno de microondas	1200	15 min/día	10	13
Lavadora automática	400	4hr 2vec/sem	32	13
Tv color (19-21 pulg)	70	6 hrs.diarias	180	13
Ventilador de techo	70	8 hrs.diarias	240	17
Focos de bajo consumo (6 de 60W c/u)	120	4 hrs.diarias	150	24
Plancha	1000	3hr 2vec/sem	24	24
PC	300	4 hora/dia	120	36
Refrigerador (11- 12 pies cúbicos)	250	8 hrs/dia	240	60

Tabla 2.

En la tabla 2 se observan los aparatos, la potencia promedio de cada uno, el tiempo de uso diario o semanal, las horas totales de utilización al mes y los Kilowats consumidos

a lo largo de un mes. Con esto se obtiene un consumo promedio diario de 222 kWh mensuales (tomando un mes promedio de 30 días) por casa de familia que nos da un consumo diario de unos 7400 W.

Una casa de familia que adquiera un equipo de generación solar es seguramente una familia que tiene un compromiso con el medio ambiente y por ende está dispuesta a aplicar ciertas políticas que pueden llevar a que su consumo diario se reduzca hasta un 50%, permitiendo tomar como muestra testigo un consumo de 3700 W de consumo diario. Para ello, tiene varias alternativas, ejemplos de éstas políticas son vistos en detalle en el siguiente apartado.

C. Políticas de Ahorro de Energía

El Ahorro de Energía o Eficiencia Energética es una práctica empleada durante el consumo de energía que tiene como objeto procurar disminuir el uso de la misma, manteniendo el mismo grado de satisfacción de la necesidad. Esta práctica conlleva un aumento del capital financiero, ambiental, de la seguridad nacional, de la seguridad personal y del confort humano. Los individuos y las organizaciones que son consumidores directos de la energía pueden desear ahorrar energía para reducir costes energéticos y promover la sostenibilidad económica, política y ambiental. Los usuarios industriales y comerciales pueden desear aumentar la eficacia y maximizar así su beneficio. Entre las preocupaciones actuales está el ahorro de energía y el efecto medioambiental de la generación de energía eléctrica.

1. Electrodomésticos

Los electrodomésticos tienen mucha importancia en el ahorro de energía doméstico. En Europa la mayoría de ellos tiene un etiquetado especial denominado etiqueta energética que indica su eficiencia en el consumo y cuan respetuoso es con el medio ambiente. No todos los electrodomésticos poseen la etiqueta, sólo aquellos que consumen mucho o que pasan encendidos gran parte de su vida útil. Algunos ejemplos son: heladeras, freezers y congeladores, lavarropas, secarropas, fuentes de luz doméstica, hornos eléctricos y aires acondicionados.

La normativa europea expresa la eficiencia energética de los electrodomésticos en una escala de 7 clases de eficiencia, y se identifican mediante un código de color y letras que van desde el verde y la letra A, para los equipos con mayor eficiencia, hasta el color rojo y la letra G para los equipos de menor eficiencia. Un electrodoméstico de clase A puede llegar a consumir un 55% menos que el mismo en una clase media, la elección de un electrodoméstico con esta información puede suponer un ahorro económico.

2. Hábitos con los electrodomésticos

Por regla general las recomendaciones se centran en un uso racional y en un correcto mantenimiento:

Refrigeradores: Mantener bien cerrada la puerta en todo momento, abrirla el menor número de veces posible y conservar los congeladores sin hielo.

Lavadora y Lavavajillas: Planificar los lavados de tal forma que cada lavado tenga su máxima carga. La lavadora consume casi igual a plena carga que a media.

Aire Acondicionado: Graduar el aire acondicionado a una temperatura de 25°C. Cada grado que disminuya la temperatura estará consumiendo un 8% más de energía. Desconectarlo cuando no haya nadie en casa o en la habitación que esté climatizando. Instalar burletes adhesivos en puertas y ventanas. Se ahorrará entre un 5 y un 10% de energía.

INSTITUTO TECNOLOGICO DE BUENOS AIRES
- UNIVERSIDAD PRIVADA-

3. Iluminación

El gasto de iluminación eléctrica en las viviendas suele estar entre el 18 % y el 20% del consumo doméstico. En algunos casos basta con una actitud preventiva adquiriendo, por ejemplo, bombillas de bajo consumo, éstas pueden llegar a consumir hasta un 80% menos de energía con la misma funcionalidad que una lámpara incandescente. Otros métodos pueden ser utilizando múltiples fuentes de luz de bajo consumo en lugar de uno, aumentando la superficie de las ventanas.

4. Hábitos con la lluminación

Para ahorrar basta con adquirir hábitos, como por ejemplo: apagar luces en estancias donde no se habite, emplear una fuente de luz eliminando las fuentes luminosas redundantes si se dispone de la opción y abrir ventanas y emplear la luz natural en lugar de la artificial.

5. Diseño Racional de Edificios

El diseño de edificios debe considerar los aspectos de ahorro de energía, por ejemplo poniendo ventanales amplios mirando al norte para que los días de invierno al abrir las ventanas el simple calor solar caliente los recintos, aislamiento de superficies para que no existan fugas de calor, colocación de paneles solares que aumenten la independencia de la energía eléctrica, colocar doble vidriado en las ventanas para mejorar la aislamiento térmica.

En Europa existe una normativa aplicable a los edificios similar a la etiqueta energética de los electrodomésticos. La idea es construir edificios bioclimáticos encargados de aprovechar la energía del entorno.

6. Cuestiones acerca del Ahorro de Energía

Desde los inicios de la revolución industrial en el siglo XVIII se ha debatido mucho acerca del ahorro de la energía. El pensador William Stanley Jevons publicó en 1865 un libro titulado "The Coal Question" (La cuestión del carbón). En él enunció la paradoja de que lleva su nombre: "aumentar la eficiencia disminuye el consumo instantáneo, pero incrementa el uso del modelo lo, que provoca un incremento del consumo global". Una paradoja análoga a esta es la paradoja del ahorro. ¹

20

con él la demanda agregada y el ingreso mundial, lo cual hará que caiga el ingreso personal, y así sucesivamente

Explica que si en una recesión todos los habitantes tratan de ahorrar más, es decir dedicar al ahorro un porcentaje mayor de sus rentas, la demanda agregada caerá y el ahorro total de la población será más bajo. Esto se debe a que el ingreso total de la población es igual a la suma de los ingresos de sus individuos. Dado que el ingreso personal puede ser destinado al consumo o al ahorro, y que el consumo forma una parte esencial de la demanda agregada y del ingreso mundial, si aumenta el porcentaje de ahorro, lógicamente el consumo disminuirá, por lo que disminuirá también

VI. Modelos tecnológicos:

A. Inversión inicial para el desarrollo de un EFCR.

Para el presente análisis fue necesaria la realización de un estudio en el mercado de equipos solares. Se efectuó un análisis a nivel mundial indagando los diversos modelos y marcas de paneles, sus eficiencias y sus precios. Así también inversores de tensión de conexión a la red seguidores solares, reguladores de carga, cableado contadores bidireccionales y otros accesorios.

1. Módulos fotovoltaicos.

Las marcas mas destacadas en este rubro fueron: Kyocera, Xantrex, MKS, Sanyo, Sunways, Kaneka, REC, SMA, Outback, TBS y Conversion Devices, todas ellas marcas extranjeras con unos rendimientos muy buenos pero de costos elevados, aún sin tener en cuenta los de importación.

En la tabla 3 se pueden apreciar algunos de los modelos y sus respectivos precios en el exterior:

	Modelo	Pp (W)	Imp (A)	Vmp (V)	Isc (A)	Voc (V)	Peso (Kg)	Dimensiones (mm)	Precio (Euros)
KYOCERA	KC40	40	2,34	16,9	2,48	21,5	4,5	526X652X50	358,39
KYOCERA	KC50	50	3	16,9	3,1	21,5	5	639X652X50	427,87
KYOCERA	KC85	85	3,75	17,4	3,99	21,7	6	751X652X50	647,64
SANYO	HIT195BE	200	3,59	55,8	3,83	68,7	14	1319x8940x50	1680
MSK	QFS190	190	7,36	25,8	8,18	32,3	19	1480x985x50	1369

Tabla 3

A nivel nacional existe un proveedor que importa las fotoceldas para luego armar los paneles solares dentro del país. Estos tienen costos mucho más accesibles y si bien cuentan con rendimientos inferiores en sus módulos, siguen compensando la diferencia de precios existentes con los modelos importados.

A continuación se adjunta una tabla de precios provista por los proveedores de paneles con sus respectivas características técnicas:

Marca	Modelo	Pp	Imp	Vmp	Isc	Voc	Peso	Dimensiones	Peso	Precio
		(W)	(A)	(V)	(A)	(V)	(Kg)	(mm)	(Kg)	
SOLARTEC	KS32A	32	2.13	15.00	2.33	18.70	4.40	895X360X50	5.00	835,99
SOLARTEC	KS35	35	2.33	15.00	2.54	18.70	4.40	895X360X50	5.00	912,18
SOLARTEC	KS36S	36	2.07	17.40	2.26	21.70	5.15	1060x370x85	11.50	924,9
SOLARTEC	KS40	40	2.30	17.40	2.51	21.70	5.15	1060x370x85	11.50	1024,8
SOLARTEC	KS43A	43	2.86	15.00	3.20	18.70	6.40	1297x360x50	7.00	1108,9
SOLARTEC	KS46A	46	3.15	15.00	3.34	18.70	6.40	1297x360x50	7.00	1185,2
SOLARTEC	KS50	50	2.87	17.40	3.13	21.70	6.50	1350x370x85	14.60	1286,3
SOLARTEC	KS50S	50	2.87	17.40	3.13	21.70	7.25	1502x370x85	15.90	1332,5
SOLARTEC	KS52A	52	2.99	17.40	3.26	21.70	7.25	1502x370x85	15.90	1413,1
SOLARTEC	KS55	55	3.16	17.40	3.45	21.70	7.25	1502x370x85	15.90	1541,5
SOLARTEC	KS60	60	3.45	17.40	3.76	21.70	7.25	1502x370x85	15.90	1794
SOLARTEC	KS70	70	4.02	17.40	4.39	21.70	8.70	1010x690x85	19.50	1925,5
SOLARTEC	KS75	75	4.31	17.40	4.70	21.70	8.70	1010x690x85	19.50	237,98
SOLARTEC	KS80	80	4.60	17.40	5.01	21.70	8.70	1010x690x85	19.50	2049,7

Nota: **Pp**= Potencia Pico / **Imp**=Corriente Potencia Pico / **Vmp**=Tensión Potencia Pico

Isc=Corriente Corto Circuito / Voc=Tensión Circuito Abierto

SOLARTEC S.A. Se reserva el derecho de modificar las presentes especificaciones sin previo aviso.

Tabla 4

En la tabla 4 se pueden apreciar los diferentes modelos de módulos solares que posteriormente se utilizarán para analizar cual de estos modelos es el que mejor rendimiento puede dar a una vivienda.

2. Inversores de tensión de conexión a la Red.

Estos equipos específicos no se producen en el país y todas las marcas que los producen son europeas u orientales. De prosperar esta propuesta el escenario ideal seria aquel en el cual los equipos se produjeran en el país de forma tal que sus costos

fueran menores. Para el presente estudio se utilizará un inversor Xantrex GT 2.8SP cuyo costo es de 2.709,81 €

3. Seguidor Solar.

Este equipo permite que los módulos estén orientados hacia el sol de forma tal de obtener el mayor rendimiento por parte de los paneles solares. El precio mas económico que encuentra en el mercado es de 249,99 € incluyendo los costos de importación.

4. Otros elementos.

Los demás elementos que componen el modelo, son:

- La caja de conexión del generador.
- El cableado de la instalación.
- o Un contador bidireccional de consumo e inyección a la red.
- o Un punto de conexión a la red.

A todo esto se le debe agregar los costos de mano de obra de la instalación. Se considerará que todos estos costos equivalen a un 20% adcional a la inversión inicial

5. Dimensionamiento del equipamiento.

Para realizar el dimensionamiento del equipamiento, que se tomara como modelo para realizar el cálculo de la inversión se tomarán como premisas algunos de los datos ya obtenidos con anterioridad. Ellos son:

- o El consumo promedio diario de un hogar es de 3.7 kW que llamaremos W_D.
- o Se utilizarán seguidores solares que mejoran el rendimiento de los paneles hasta un 35%, por un valor de 249,99 €.
- El resto de los elementos constitutivos junto con la mano de obra equivalen a un 20% del resto de la inversión.
- Se adquiere un inversor de tensión de un valor de 2.709,81 €

Con esto solo resta obtener la cantidad de paneles necesarios para realizar la instalación y el tamaño de éstos, para ellos utilizaremos los modelos solartec que figuran en la tabla 4.

Para el cálculo de la cantidad de módulos necesarios se utiliza la siguiente metodología. Se llamará N al numero de módulos necesarios: $N_{\rm S}$ serán la cantidad de módulos conectados en serie y $N_{\rm P}$ na cantidad de módulos conectados en paralelo. N surge de la siguiente fórmula:

$$N = N_{s} * N_{p}$$
 (1)

El número de módulos que se deben conectar en serie surge del cociente de la tensión nominal del sistema sobre la tensión de trabajo de los módulos. Para este estudio se tomará este cociente como igual a uno. Por ende todos los módulos serán conectados en paralelo para mejorar su diferencia de potencial de salida. Entonces:

$$N_S = 1$$

$$N = N_B$$
 (2)

Para el cálculo de N_P primero se deberá calcular la cantidad de Intensidad demandada diariamente (I_D) ésta se obtendrá de:

$$I_D = \frac{W_D}{V_N}$$
 (3)

Donde V_n es la tensión nominal y es un dato brindado por el fabricante de los módulos. Luego N se obtendrá de la siguiente ecuación:

$$N = \frac{F_S * I_D}{T * I_B} \tag{4}$$

Donde F_s es el factor de seguridad para el dimensionamiento del módulo y se considerará de 1.2, I_P es la intensidad pico obtenida del módulo y es un dato suministrado por el fabricante. T es el tiempo de captación diario a una radiación solar de 1 kW/m², para la provincia de Buenos aires se considera este valor de 3,9 horas diarias y si se consideran los seguidores solares que incrementan en un 35% el valor anual, se obtendrá un valor de 5.27 horas diarias.

El número N de módulos difícilmente será un valor entero por ende se utilizará el entero inmediato superior, siempre que este sea par o impar dependiendo de la cantidad de seguidores que sean necesarios invertir. De este modo el valor total de energía que se producirá por la instalación será superior al valor para el cual fue dimensionado en un principio (3700 Wats diarios)

6. Resumen de las inversiones.

De esta forma se llega a que la inversión total necesaria para el desarrollo estará compuesta por los siguientes elementos:

Item	Costo
Módulos solares	N * Valor del panel seleccionado
Sistema de montaje (Un seguidor solar soporta hasta 4 m²)	Numero de seguidores * 249.99 €
Inversor de tensión Xantrex GT 2.8SP	2.709,81 €
Promedio de los costos extra un 20% de los 3	20% del valor total

Tabla 5

Como se refleja en la tabla 5 solo resta analizar cual es el modelo óptimo para utilizar en el modelo de negocio. Dado que todos los modelos presentados podrían satisfacer la demanda de un hogar se hará un análisis de su rendimiento económico.

7. Rendimiento económico de los módulos

El método para calcular el modelo de paneles mas adecuado es analizando la inversión. Para ello se considerará que se solicita un préstamo equivalente al Capital (K) necesario para realizar la inversión en todo el equipamiento, y el que tenga un menor valor de la cuota. Para ello se utilizarán como parámetros los siguientes valores:

Variable	Valor tomado
Tasa de cambio de \$ argentinos a €	5 \$/€
Tasa de interés anual	12%
Duración del financiamiento	20 años

Tabla 6

Para el cálculo del valor de la cuota del préstamo se utilizó la siguiente fórmula:

$$C = K \frac{i(1+i)^n}{(1+i)^n - 1}$$
 (5)

Al analizarse uno por uno todos los módulos propuestos se llegara a la conclusión de que la menor cuota anual posible obtenida es para el modelo KS75 de la marca SOLARTEC. Con la obtención de este dato se obtendrán los siguientes datos constitutivos del modelo.

- La cantidad de módulos instalados en paralelo (N) será de 10
- o La cantidad de seguidores solares necesarios será de:2
- Remplazando estos valores en la tabla XX3 el valor total de la inversión será de: 7.794.31 € o 38.971,57 \$
- El valor de la cuota será de 5.217,47 \$.

Con todos estos es posible dar la proyección de la financiación a lo largo de 20 años:

Año	monto	Cuota	interés	Capital
1	\$ 38.971,57	\$ 5.217,47	\$ 4.676,59	\$ 540,88
2	\$ 38.430,69	\$ 5.217,47	\$ 4.611,68	\$ 605,78
3	\$ 37.824,91	\$ 5.217,47	\$ 4.538,99	\$ 678,48
4	\$ 37.146,43	\$ 5.217,47	\$ 4.457,57	\$ 759,89
5	\$ 36.386,54	\$ 5.217,47	\$ 4.366,38	\$ 851,08
6	\$ 35.535,46	\$ 5.217,47	\$ 4.264,25	\$ 953,21
7	\$ 34.582,24	\$ 5.217,47	\$ 4.149,87	\$ 1.067,60
8	\$ 33.514,65	\$ 5.217,47	\$ 4.021,76	\$ 1.195,71
9	\$ 32.318,94	\$ 5.217,47	\$ 3.878,27	\$ 1.339,19
10	\$ 30.979,74	\$ 5.217,47	\$ 3.717,57	\$ 1.499,90
11	\$ 29.479,85	\$ 5.217,47	\$ 3.537,58	\$ 1.679,88
12	\$ 27.799,96	\$ 5.217,47	\$ 3.336,00	\$ 1.881,47
13	\$ 25.918,49	\$ 5.217,47	\$ 3.110,22	\$ 2.107,25

14	\$ 23.811,25	\$ 5.217,47	\$ 2.857,35	\$ 2.360,12
15	\$ 21.451,13	\$ 5.217,47	\$ 2.574,14	\$ 2.643,33
16	\$ 18.807,80	\$ 5.217,47	\$ 2.256,94	\$ 2.960,53
17	\$ 15.847,27	\$ 5.217,47	\$ 1.901,67	\$ 3.315,79
18	\$ 12.531,47	\$ 5.217,47	\$ 1.503,78	\$ 3.713,69
19	\$ 8.817,78	\$ 5.217,47	\$ 1.058,13	\$ 4.159,33
20	\$ 4.658,45	\$ 5.217,47	\$ 559,01	\$ 4.658,45

Tabla 6

En la tabla 6 se aprecia como será pagada la deuda a lo largo de 20 años con un sistema francés.

B. Consumo vs. Producción del EFCR.

Se analizará en este punto el contraste existente entre lo que será consumido en la vivienda frente a lo producido por los paneles. Para el caso testigo utilizado de una vivienda que consuma 222 kWh por mes o 444 kWh bimestrales por ende su factura bimestral será como se muestra a continuación:

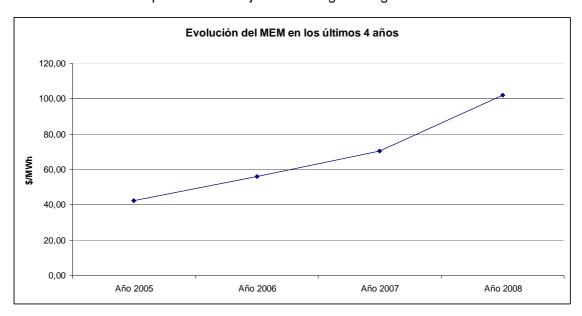

Cargo	Variables	Facturado
Cargo Fijo		\$ 16,20
Cargo Variable (\$/Wat)	\$ 0,0430	\$ 19,09
Subtotal por servcio electrico		\$ 35,29
Iva	21,00%	\$ 7,41
Contribución municipal	6,383%	\$ 2,25
Fondo provincial por santa Cruz	0,60%	\$ 0,21
Subtotal cargas impositivas		\$ 9,88
Total		\$ 45,17

Tabla 7

Según se puede aprecia en la tabla el valor mensual que se le cobrará a esa vivienda será aproximadamente de \$22.59. Este monto no se debe contemplar dentro de los gastos mensuales debido a que según el modelo propuesto, el cliente final seguirá pagando la factura por el consumo eléctrico.

Por otro lado los paneles adquiridos producirán bimestralmente un total de: 582 kWh bimestrales (el valor final es superior debido al redondeo de la cantidad de módulos invertidos como se explico en *Dimensionamiento del equipamiento.*) o 291 kWh mensuales. Según el modelo propuesto esta producción deberá cubrir por medio de una subvención del Estado el costo mensual más la cuota mensual de la deuda contraída para la compra del equipamiento equivalente a \$ 457,38 mas el valor mensual de la factura eléctrica (la mitad del valor obtenido anteriormente).

La evolución del valor del MWh en el Mercado Eléctrico Mayorista (MEM) a enero en los 4 últimos años se puede ver reflejado en el siguiente gráfico:

Gráfico 5

De aquí se puede especular que el valor promedio durante el 2008, será de alrededor de 100 \$ por MW/h.

Si tenemos en cuenta que una casa de familia produce 0.582 MWh por mes, cada casa estará percibiendo un total de 58,2 \$ valor que solo alcanza para pagar la factura mensual y tener un pequeño excedente de alrededor de unos 35,62 \$. El excedente cubre menos del 10% de la cuota mensual que se debe pagar al banco.

VII. Conclusiones

La primera conclusión que se obtiene de todo el análisis realizado, es que en la actual situación del país, con los proveedores de tecnología existentes y el valor MEM del kWh, no es posible llevar adelante el modelo.

Otro punto que se remarca de éste análisis es que este proyecto nunca podrá ser llevado a cabo si el estado no comienza a subvencionar la generación de energía a través de fuentes renovables, y sobre todo subvencionar a los pequeños productores. Como se mostró en el capítulo III en la República Argentina existe una política de subvención de la tarifa de energía eléctrica, y esto se ve al relacionar el valor MEM del kWh (0.10 \$/kWh) y del facturado en la factura (0.0430 \$/kWh) que es mas de un 50%.

De ésta forma si se dejara de subvencionar el valor de la tarifa energética cobrada al consumidor residencial que no genera energía, y a su vez se generara una subvención para la compra por parte del estado de la energía producida por el pequeño productor (o productor doméstico), el proyecto estará en mejores condiciones para ser llevado adelante.

Por último, se encuentra en éste análisis con la necesidad de contar con la tecnología necesaria, a un precio acorde con las posibilidades económicas de una casa de familia, y que haga que la inversión se atractiva para éstos. En la actualidad ninguna casa de familia realizará una inversión de 40.000 \$, si no va a obtener una buena rentabilidad por la misma.

Un modelo como el que se propone, es altamente rentable en países europeos. Como se pudo apreciar en el capítulo VI, el valor total de la inversión ronda los 8000 €. Por otra parte el valor MEM del kWh., por ejemplo en España, es pagado por el consumidor final a 0.14 €/kWh. Es decir que si se plantea éste modelo, en países europeos, nos encontramos con que el pequeño emprendedor no solo consigue pagar la cuota del préstamo, si no que obtiene una ganancia de dinero de casi un 100% más sobre el valor de la cuota.

Aún así según se puede apreciar en el capítulo VI, en el gráfico 5 "Evolución del valor MEM del kWh" en los últimos 4 años, éste valor creció en forma exponencial hasta duplicarse a lo largo de estos. Por otro lado las tecnologías mejoran cada año en el país y cabe esperar que estos valores hagan que el valor final de la inversión sea cada vez más accesible, y que la suba del valor del kWh acompañe a esta última de forma tal de que el modelo pueda ser aplicado en el país.

VIII. Anexo

A. Cantidad de clientes dentro del Mercado eléctrico

La siguiente tabla muestra, como se distribuyeron la cantidad de clientes que extrajeron energía de la red de distribución eléctrica diferenciados por categoría y por zona del país a lo largo del 2006:

JURISDICCION	Total	Residencial	Comercial	Industrial	S.Sanitarios	Alumbrado	Riego	Oficial	E.Rural	Otros	Tracción
BSAS-Zona Altantica	786.639	685.962	70.954	3.504	17	64	83	3.931	12.126	9.998	0
BSAS-Zona Norte	657.826	545.536	73.959	4.898	61	742	139	5.186	27.012	293	0
BSAS-Zona Sur	244.589	210.550	25.048	868	28	62	1	1.779	6.212	41	0
C.FEDERAL-EDESUR C.FEDERAL-	1.044.937	872.581	155.396	13.308	1	1	0	2.647	0	0	1.003
EDENOR	491.063	437.482	37.605	6.307	1	1	0	468	0	9.194	5
CATAMARCA	88.068	76.753	8.302	643	5	16	94	1.681	0	574	0
CHACO	246.609	207.287	22.051	3.032	32	29	1	3.454	8.289	2.434	0
CHUBUT	140.766	121.271	15.009	847	17	30	7	1.895	1.608	82	0
CORDOBA	1.077.290	918.345	113.745	5.656	105	212	149	12.330	24.914	1.834	0
CORRIENTES	209.243	183.914	15.308	1.950	26	26	156	1.738	5.079	1.046	0
ENTRE RIOS	379.711	311.689	39.186	2.316	6	37	82	7.143	18.512	740	0
FORMOSA	119.905	52.834	8.389	629	5	29	0	1.640	6.239	50.140	0
GBA-ZONA EDELAP	302.916	261.755	33.823	5.595	0	6	0	1.737	0	0	0
GBA-ZONA EDESUR	1.150.527	1.032.641	100.856	11.751	12	12	0	4.957	0	0	298
GBA-ZONA EDENOR	2.006.382	1.737.430	173.721	73.100	14	20	0	5.160	0	16.928	9
JUJUY	144.810	107.384	9.288	91	0	11	297	2.654	25.029	56	0
LA PAMPA	163.558	131.785	19.096	1.076	15	41	26	3.223	6.870	1.426	0
LA RIOJA	89.921	77.523	9.770	633	4	18	300	1.673	0	0	0
MENDOZA	489.278	397.614	37.530	19.797	26	29	8.444	3.350	22.469	12	7
MISIONES	239.036	210.116	16.035	4.036	19	22	0	2.897	5.844	67	0
NEUQUEN	161.031	140.780	8.749	1.597	3	23	143	1.012	0	8.724	0
RIO NEGRO	201.262	167.140	19.054	2.292	8	14	533	2.845	7.987	1.389	0
SALTA	241.117	214.135	21.109	2.857	21	23	260	2.712	0	0	0
SAN JUAN	177.435	161.459	7.170	6.679	16	19	472	1.620	0	0	0
SAN LUIS	127.596	111.340	13.361	1.236	0	9	0	1.650	0	0	0
SANTA CRUZ	74.453	64.204	9.073	217	18	20	0	775	39	107	0
SANTA FE	1.073.651	891.470	111.553	22.295	45	64	100	17.880	29.844	400	0
S. DEL ESTERO	175.683	151.705	19.462	1.609	47	27	0	2.407	426	0	0
TIERRA DEL FUEGO	36.072	31.030	3.800	505	1	4	0	732	0	0	0
TUCUMAN	366.891	327.980	38.245	649	0	17	0	0	0	0	0
Totales en MWh	12.708.265	10.841.695	1.236.647	199.973	553	1.628	11.287	101.176	208.499	105.485	1.322

Tabla XX

B. Consumos por clientes

La siguiente tabla muestra, como se distribuyeron los consumos de clientes que extrajeron energía de la red de distribución eléctrica diferenciados por categoría y por zona del país a lo largo del 2006:

				Facturado a	Usuario Final	(MWh)					
JURISDICCION	Total	Residencial	Comercial	Industrial	S.Sanitarios	Alumbrado	Riego	Oficial	E.Rural	Otros	Tracción
BSAS-Zona Altantica	3.492.625	946.033	813.193	1.288.373	38.810	163.396	1.899	128.458	56.282	56.181	0
BSAS-Zona Norte	5.827.693	981.443	549.281	3.868.481	37.652	175.092	1.070	52.560	159.331	2.783	0
BSAS-Zona Sur	2.453.080	326.311	192.953	1.795.663	4.536	47.866	2	56.686	28.143	921	0
C.FEDERAL- EDESUR	7.623.169	2.437.543	3.400.344	805.332	68.455	143.260	0	606.635	0	0	161.600
C.FEDERAL- EDENOR	2.893.267	1.348.364	1.085.747	174.627	111.244	63.238	0	18.554	0	65.373	26.119
CATAMARCA	1.481.259	152.703	102.866	1.070.553	1.594	30.903	33.366	22.304	64.428	2.541	0
CHACO	1.085.683	579.941	194.975	130.877	35.369	64.300	1.216	50.726	17.380	10.898	0
CHUBUT	3.799.745	275.456	118.913	3.287.640	31.838	52.037	358	28.735	3.766	1.002	0
CORDOBA	5.598.365	1.718.719	776.495	2.477.131	16.659	240.865	31.619	148.556	174.190	14.130	0
CORRIENTES	1.093.302	446.997	165.440	311.195	31.561	66.035	6.089	38.380	20.096	7.510	0
ENTRE.RIOS	1.985.798	691.632	352.668	592.795	9.695	106.224	9.998	133.359	67.642	21.786	0
FORMOSA	446.680	160.120	94.199	25.981	8.982	32.690	0	30.923	16.596	77.189	0
GBA-ZONA EDELAP	2.387.574	631.309	304.034	1.167.009	0	88.741	0	196.482	0	0	0
GBA-ZONA EDESUR	7.078.476	3.019.357	1.198.173	2.159.224	132.550	300.477	0	142.600	0	0	126.095
GBA-ZONA EDENOR	13.604.255	5.232.346	2.448.916	4.683.007	124.959	587.000	0	47.075	0	324.375	156.576
JUJUY	663.965	215.456	120.884	193.223	0	33.268	27.157	25.319	47.556	1.101	0
LA.PAMPA	471.288	196.399	81.267	99.915	3.997	30.100	2.762	22.856	20.547	13.444	0
LA,RIOJA	794.066	219.288	117.802	233.816	34.670	32.478	127.893	28.121	0	0	0
MENDOZA	4.561.740	913.208	511.724	2.357.583	30.380	168.055	408.510	50.948	40.899	72.670	7.764
MISIONES	1.137.095	465.655	134.534	381.876	45.208	56.589	0	37.695	12.962	2.574	0
NEUQUEN	1.731.392	334.329	183.588	978.753	21.013	45.946	5.584	158.787	0	3.392	0
RIO.NEGRO	1.356.133	321.439	187.198	685.218	26.458	56.714	16.356	35.841	21.869	5.039	0
SALTA	1.085.486	426.619	257.222	194.173	64.508	78.078	17.916	46.971	0	0	0
SAN.JUAN	1.434.684	458.494	127.880	695.608	21.832	47.336	41.496	42.038	0	0	0
SAN.LUIS	1.042.684	243.537	169.362	538.075	0	53.873	0	37.837	0	0	0
SANTA.CRUZ	666.785	141.947	64.690	363.863	29.320	34.396	0	21.214	122	11.234	0
SANTA.FE	7.952.230	1.560.057	1.058.749	4.502.026	139.053	323.931	9.755	204.444	151.767	2.447	0
S.DEL.ESTERO	637.070	336.834	144.063	72.836	13.100	34.511	0	30.402	5.323	0	0
TIERRA DEL FUEGO	320.550	89.547	53.470	139.647	158	16.057	0	21.671	0	0	0
TUCUMAN	1.850.716	735.365	311.408	712.895	0	91.047	0	0	0	0	0
Totales	86.556.855	25.606.448	15.322.038		1.083.601			2.466.177			478.154

Tabla XX

C. Generación de energía en Argentina

La siguiente tabla Refleja la energía producida en el país para satisfacer la demanda del país, de donde proviene cada una de las fuentes, los intercambios provinciales y el porcentaje de pérdidas.

		Energía (eléctrica provenie	ente de:	Interca provinc		(1)	(2)	[(1) - (2)] /(1)
AÑO 2006 JURISDICCION	DEMANDA TOTAL DEL MEM MWh	Generación Aislada MWh	Interconectada No Despachada Por CAMMESA MWh	Autoprod. MWh	Compras MWh	Ventas MWh	TOTAL MWh	Facturación A Usuario Final MWh	Pérdidas %
CAPITAL FEDERAL Y GBA BUENOS	38.071.234	0	0			5.048	38.066.186	33.586.741	11,77%
AIRES	12.750.020	0	9.381	32	37.538		12.796.971	11.773.398	8,00%
CATAMARCA	1.584.057	2.917	0				1.586.974	1.481.259	6,66%
CHACO	1.421.107	7.333	0			17.466	1.410.974	1.085.682	23,05%
CHUBUT	3.906.041	38.322	44.939	8			3.989.311	3.799.745	4,75%
CORDOBA	7.147.209		0			15.385	7.131.824	5.598.366	21,50%
CORRIENTES	1.701.651	1.499	215			974	1.702.390	1.093.302	35,78%
ENTRE RIOS	2.345.624		0				2.345.624	1.985.797	15,34%
FORMOSA	586.107	3.206	0	240			589.553	446.680	24,23%
JUJUY	627.771	18.855	81.512				728.139	663.965	8,81%
LA PAMPA	589.482	4.174	16.471	423	4.422	25.019	589.953	471.288	20,11%
LA RIOJA	880.214	68	0				880.282	794.066	9,79%
MENDOZA	4.759.453	2.791	72.175	1	186		4.834.607	4.561.740	5,64%
MISIONES	1.186.062	32	265.899		974		1.486.594	1.137.094	23,51%
NEUQUEN	1.898.908	26.760	830	33.627	303	186	1.940.860	1.731.392	10,79%
RIO NEGRO	1.345.534	28.075	82.543	14.245		4.725	1.451.639	1.356.133	6,58%
SALTA	1.157.489	12.958	45.897	212	3.500		1.219.844	1.085.486	11,01%
SAN JUAN	1.536.831	17.479	0				1.554.310	1.434.684	7,70%
SAN LUIS	1.163.067	0	0	1	17.211		1.180.279	1.042.684	11,66%
SANTA CRUZ	431.784	267.801	10.419	1			713.247	666.785	6,51%
SANTA FE	9.955.036	0	176	3.243		30.184	9.955.234	7.952.230	20,12%
SANTIAGO DEL ESTERO TIERRA DEL	745.333	1.243	304	30.206	50.674		797.554	637.070	20,12%
FUEGO	0	352.394	0	793			353.187	320.550	9,24%
TUCUMAN	2.020.116	13.038	0	756		15.821	2.018.089	1.850.716	8,29%
TOTAL	97.810.130	798.942	630.762	83.788	114.808	114.808	99.323.623	86.556.855	12,85%

Tabla XX

·UNIVERSIDAD PRIVADA·

D. Consumo y producción de energía entre los años 1970 y 2006

La siguiente tabla muestra como fue el crecimiento del consumo y de la producción de energía en el período que va desde 1970 al 2006:

AÑO	Generación anual en GWh	Facturación anual al usaurio final GWh	PERDIDA ANUAL	Crecimiento porcentual anual de la generación
1970	16.807	13.798	18%	
1971	18.649	15.222	18%	10%
1972	20.406	16.898	17%	9%
1973	21.610	18.055	16%	6%
1974	23.042	19.092	17%	6%
1975	24.568	20.419	17%	6%
1976	25.218	21.101	16%	3%
1977	27.200	22.546	17%	7%
1978	28.878	23.891	17%	6%
1979	33.021	27.592	16%	13%
1980	35.671	29.452	17%	7%
1981	35.217	29.118	17%	-1%
1982	36.178	29.666	18%	3%
1983	38.903	31.546	19%	7%
1984	40.832	33.093	19%	5%
1985	41.496	32.824	21%	2%
1986	45.021	35.640	21%	8%
1987	48.087	38.396	20%	6%
1988	47.984	38.400	20%	0%
1989	46.424	36.159	22%	-3%
1990	47.009	36.526	22%	1%
1991	50.116	38.553	23%	6%
1992	52.295	41.363	21%	4%
1993	57.867	44.525	23%	10%
1994	61.143	47.936	22%	5%
1995	62.809	51.436	18%	3%
1996	64.934	54.281	16%	3%
1997	67.777	58.907	13%	4%
1998	68.174	62.918	8%	1%
1999	73.169	64.264	12%	7%
2000	81.058	67.615	17%	10%
2001	82.987	69.770	16%	2%
2002	76.636	67.589	12%	-8%
2003	83.687	72.157	14%	8%
2004	91.370	76.349	16%	8%
2005	96.652	81.096	16%	5%
2006	103.815	86.856	16%	7%

Serie Histórica 1930-2006 Fuente : Secretaria de Energia de la Nación

A partir del año 1997, los valores de pot instalada y energia eólica que comienzan a crecer, se han cargado en hidro.

Mayor desagregación se encuentra en los informes anuales y quinquenales cargados en la web de la Secretaria de Energía

Tabla XX

E. Tipos de fuentes de energía

Al desagregar el consumo energético en el país entre sus diversas fuentes de energía se encontrará que del total de la generación bruta, ésta se diversifica de la siguiente manera:

Jurisdicción	Ciclo combinado	Diesel	Eolica	Hidráulica	Nuclear	Turbo Gas	Turvo Vapor	Solar	Generación Bruta
BUENOS AIRES	4.296.664	399	9.628		2.231.018		5.022.231		12.866.887
CAPITAL FEDERAL	9.345.026						6.726.614		16.071.639
CATAMARCA		2.917							2.917
CHACO		7.333							7.333
CHUBUT	303.299	34.670	44.939	3.855.958		838.529			5.077.395
CORDOBA	276.788	0		874.285	5.459.891	244.772	1.000.387		7.856.123
CORRIENTES		1.713		6.627.171					6.628.885
ENTRE RIOS				2.163.174					2.163.174
FORMOSA		3.206							3.206
G.B.A.	9.172.936					912.214			10.085.150
JUJUY		15.944		111.918		25.764		90	153.716
LA PAMPA		4.174	3.864	458.959					466.996
LA RIOJA		68				19.492			19.560
MENDOZA	2.236.519	2.791		3.573.398		399.003	206.231		6.417.942
MISIONES		625		257.314		7.991			265.930
NEUQUEN	3.052.726	26.801	789	17.561.660		1.594.108			22.236.083
RIO NEGRO		17.356		1.525.117		183.678			1.726.151
SALTA	2.284.795	11.340		173.231		6.725	1.765.138		4.241.230
SAN JUAN		17.479		549.242		4.877			571.598
SANTA CRUZ		93.088	10.419						425.911
SANTA FE		176				322.404	324.323		324.500
SANTIAGO DEL ESTERO		1.547		155.209		18.931			175.687
TIERRA DEL FUEGO		4.457				347.937			352.394
TUCUMAN	5.257.135	13.038		169.730		235.136			5.675.039
Total general en MWh	36.225.889	259.122	69.640	38.056.365	7.690.909	6.468.507	15.044.924	90	103.815.445

Tabla XX

F. Inversiones en desarrollo energético

Fondo especial para el desarrollo eléctrico, se detallan las transferencias anuales realizadas a cada provincia y sus totales (Tablas a y b):

PROVINCIAS	1996	1997	1998	1999	2000
Buenos Aires	4.048.398	4.004.060	2.739.861	-	1.752.236
Catamarca	6.103.477	3.757.399	-	10.634.249	6.486.634
Córdoba	3.320.338	4.004.060	3.564.760	2.792.750	3.589.267
Corrientes(**)	5.126.275	5.071.400	4.513.769	3.518.647	4.468.221
Chaco	4.466.825	5.386.565	4.794.119	3.811.960	4.561.003
Chubut	4.683.927	5.648.492	5.026.822	3.994.941	5.054.760
Entre Rios	3.843.771	4.605.094	4.070.158	3.178.124	4.000.759
Formosa	5.162.051	6.224.508	5.539.870	4.259.651	5.411.512
Jujuy	4.164.943	5.022.619	4.470.359	3.555.309	4.437.449
La Pampa	3.695.952	4.426.688	3.932.312	3.107.627	4.064.278
La Rioja	4.871.579	5.835.400	5.157.731	3.927.454	5.096.699
Mendoza	3.780.823	4.559.654	4.058.317	3.163.083	3.935.548
Misiones	4.891.278	5.898.081	5.249.464	3.930.647	5.966.001
Neuquén	4.343.611	5.238.217	4.661.841	3.705.565	4.626.838
Río Negro	4.035.292	4.834.092	4.293.402	3.315.478	4.200.522
Salta	4.128.702	4.946.367	4.371.717	3.327.185	4.319.212
San Juan	3.824.617	4.612.494	4.065.924	3.066.679	3.996.129
San Luís (*)	5.154.289	4.485.944	3.965.700	3.025.272	3.922.222
Santa Cruz	5.273.059	6.358.443	5.658.850	4.498.286	5.402.275
Santa Fe	3.320.338	4.004.060	3.564.760	2.839.846	3.540.144
Sgo del Estero	4.427.861	5.302.734	4.687.765	3.576.107	4.635.189
T. del Fuego	3.876.803	4.675.348	4.161.265	3.180.266	4.055.956
Tucumán	3.409.864	4.084.259	3.628.042	2.825.318	3.551.694
TOTALES	99.954.074	112.985.978	96.176.809	83.234.444	101.074.550

Tabla XXa

PROVINCIAS	2002	2003	2004	2005	2006
Buenos Aires	1.792.274	1.792.927	2.833.497	7.312.116	8.780.326
Catamarca	5.476.339	6.695.081	6.410.773	8.692.103	10.289.790
Córdoba	3.633.584	4.548.690	4.253.586	7.886.563	6.822.275
Corrientes(**)	3.903.968	6.145.245	4.900.485	8.278.288	8.637.759
Chaco	4.885.702	6.442.955	5.719.355	5.870.171	9.174.152
Chubut	5.122.575	6.415.089	5.996.646	5.124.671	9.524.830
Entre Rios	4.204.624	5.265.062	4.922.064	6.777.544	7.882.633
Formosa	5.645.681	7.069.655	6.609.010	9.120.977	10.601.226
Jujuy	4.555.863	5.959.745	5.333.235	7.361.755	8.554.693
La Pampa	4.044.337	4.807.880	4.734.426	6.533.755	7.593.488
La Rioja	5.328.502	6.672.075	6.237.710	8.610.101	10.005.429
Mendoza	4.135.950	5.218.538	4.841.672	6.706.017	7.766.199
Misiones	6.593.838	8.026.238	7.278.709	10.935.726	12.338.613
Neuquén	4.990.468	5.949.255	5.561.356	7.677.192	8.920.874
Río Negro	4.174.547	5.527.275	5.167.495	7.132.786	8.288.749
Salta	4.515.998	5.655.091	5.286.568	7.237.133	8.479.980
San Juan	4.183.728	4.231.886	4.897.602	7.767.486	7.855.970
San Luís (*)	4.098.475	5.130.662	4.797.802	6.621.218	7.693.036
Santa Cruz	5.766.785	7.221.580	6.750.778	9.319.071	10.824.574
Santa Fe	3.633.584	4.548.690	4.253.586	5.870.171	6.822.275
Sgo del Estero	4.844.715	6.064.841	5.671.375	7.824.693	9.096.248
T. del Fuego	4.240.852	4.671.247	4.964.474	6.852.743	7.914.792
Tucumán	3.731.485	5.310.295	4.368.193	6.024.135	7.006.061
TOTALES	103.503.874	129.370.002	121.790.398	171.536.412	200.873.972

Nota (*): En el Cupo 1994 se retuvieron los fondos a la provincia de San Luis, los cuales se reintegraron en los años 1995 y 1996.

FUENTE: Consejo Federal de la Energía Eléctrica y Dirección General de Cooperación y Asistencia Financiera

(**) En el caso de la Provincia de Corrientes, para el año 2002, los fondos del FEDEI, se transfieren a ENECOR SA

Año 2005: Recaudación Enero-Diciembre de 2005 y Remanentes Ejercicios 1998-2003

Tabla XXb

G. Compensaciones para el subsidio de la tarifa de energía

Evolución de las transferencias anuales por provincia por parte del fondo subsidiario para compensaciones regionales de tarifas a usuarios finales (fct) (Tablas a y b)

					AÑO
PROVINCIAS	1996	1997	1998	1999	2000
Buenos Aires	2.459.187	7.803.154	3.765.841	1.657.742	1.757.071
Catamarca	4.498.114	4.223.390	6.600.502	5.072.101	6.047.157
Córdoba	6.754.695	7.067.905	3.460.324	2.479.245	2.594.925
Corrientes	3.082.617	3.100.348	2.895.705	2.419.566	3.041.660
Chaco	3.680.466	3.929.477	3.892.982	3.266.120	3.579.100
Chubut	3.416.605	3.634.254	7.289.402	7.311.982	4.612.071
Entre Ríos	4.066.580	4.451.079	4.313.659	3.681.660	3.853.880
Formosa	3.850.371	3.994.040	3.998.175	4.458.957	5.643.196
Jujuy	3.293.820	3.660.915	3.042.551	2.444.617	2.702.808
La Pampa	3.753.750	4.047.985	3.857.537	3.264.646	3.711.452
La Rioja	4.641.373	3.849.688	3.872.154	3.230.755	3.680.017
Mendoza	2.993.842	3.056.458	2.918.529	2.510.189	2.654.816
Misiones	4.365.737	4.562.009	4.185.398	3.540.200	3.723.654
Neuquén	3.242.429	3.447.729	3.272.349	2.810.793	2.959.921
Río Negro	3.455.806	3.507.329	3.127.678	2.602.286	2.717.131
Salta	3.185.106	3.317.035	3.022.497	2.416.619	2.597.224
San Juan	3.658.262	3.594.896	3.224.006	2.752.588	2.868.409
San Luis	3.840.343	3.759.927	3.305.129	2.794.584	2.886.601
Santa Cruz	3.314.457	3.475.089	3.305.911	2.858.684	3.085.003
Santa Fe	2.209.119	2.591.324	2.453.946	2.062.968	2.172.555
S. Del Estero	3.057.682	2.389.510	4.369.128	5.378.849	6.951.104
T. Del Fuego	2.278.128	2.429.813	3.865.293	2.946.792	3.445.795
Tucumán	3.343.612	2.429.601	2.077.871	1.715.472	1.828.073
TOTALES	82.442.100	88.322.955	86.116.568	73.677.414	79.113.624

Tabla XXa

						AÑO
PROVINCIAS	2001	2002	2003	2004	2005	2006
Buenos Aires	2.446.492	3.485.979	4.283.724	4.486.755	10.433.301	15.845.432
Catamarca	5.309.082	5.765.788	6.058.126	5.063.859	5.862.538	9.821.182
Córdoba	2.572.028	3.062.160	4.266.801	5.783.912	4.402.972	10.327.137
Corrientes	3.628.869	5.736.975	5.102.390	17.772.234	5.706.345	13.752.201
Chaco	3.381.932	4.479.553	5.773.877	4.094.438	6.351.468	7.083.043
Chubut	5.191.840	3.693.192	14.425.358	5.100.112	8.682.267	9.079.877
Entre Ríos	4.041.372	4.658.764	6.026.776	5.393.001	5.996.532	9.628.981
Formosa	5.751.937	6.407.344	8.024.717	7.057.459	8.025.250	10.879.305
Jujuy	3.076.576	4.123.257	5.845.501	6.490.100	5.807.224	9.981.385
La Pampa	4.494.742	5.828.472	7.483.931	7.662.644	8.819.551	14.287.249
La Rioja	3.563.644	4.464.277	5.619.526	4.951.203	5.500.275	9.301.901
Mendoza	2.606.853	3.139.933	4.259.094	4.122.285	10.405.682	15.688.874
Misiones	3.458.882	4.148.608	6.346.858	5.336.465	7.639.127	12.670.624
Neuquén	2.873.400	3.541.390	4.942.319	4.692.042	5.169.124	8.415.559
Río Negro	2.573.293	3.141.208	4.427.456	4.308.559	4.672.678	9.247.897
Salta	2.580.784	3.743.484	4.970.785	5.392.703	4.511.567	7.812.659
San Juan	2.714.427	3.839.945	4.639.709	4.862.170	7.675.924	12.318.362
San Luis	2.544.215	3.124.199	4.460.634	4.112.147	4.927.007	8.493.879
Santa Cruz	3.083.880	3.744.566	5.001.236	4.767.919	5.255.551	8.497.522
Santa Fe	2.070.246	2.535.804	3.499.909	3.302.536	3.711.779	6.203.452
S. Del Estero	5.394.837	6.463.320	5.608.601	3.328.081	3.960.916	7.461.171
T. Del Fuego	4.183.710	6.600.692	3.040.401	4.356.997	3.922.310	6.078.206
Tucumán	2.128.366	2.262.277	6.300.036	2.860.601	3.166.994	5.557.590
TOTALES	79.671.406	97.991.188	130.407.765	125.298.222	140.606.386	228.433.489

FUENTE: Consejo Federal de la Energía Eléctrica y Dirección General de Cooperación y Asistencia Financiera

En los meses de Noviembre y Diciembre de 2000, el aporte a Corrientes se deriva a CAMMESA, para pago de energía, por un total de 653.048,72 \$.

Año 2005: Recaudación Enero-Diciembre de 2005 y Remanentes Ejercicios 1998-2003

Tabla XXa

H. Velocidades del viento en buenos aires

En las tablas precedentes se puede apreciar la velocidad media mes a mes, y la velocidad media que tubo anual del viento como también la dirección desde la cual sopló, entre el 2007 y el 2003

Año	Mes	Vel. Med. (Km/h)	Dirección
2007	1	2.9	SE
2007	2	2.2	SE
2007	3	2.3	SE
2007	4	1.9	SE
2007	5	2.0	SW
2007	6	2.3	NW
2007	7	2.4	SW
2007	8	3.4	NE
2007	9	3.9	N
2007	10	3.2	NE
2007	11	3.6	NE
2007	12	3.5	N

Año	Mes	Vel. Med. (Km/h)	Dirección
2004	1	6.1	SE
2004	2	6.2	SE
2004	3	5.2	SE
2004	4	4.6	SE
2004	5	5.3	SE
2004	6	4.2	NE
2004	7	5.0	SE
2004	8	5.5	SE
2004	9	6.8	SE
2004	10	6.7	SE
2004	11	8.6	Е
2004	12	6.9	SE

2,80

7,60

Año	Mes	Vel. Med. (Km/h)	Dirección
2006	1	5.3	SE
2006	2	4.5	SE
2006	3	3.3	SE
2006	4	3.3	SE
2006	5	2.2	SE
2006	6	3.1	SE
2006	7	3.5	SE
2006	8	3.1	SE
2006	9	3.5	E
2006	10	3.5	E
2006	11	3.7	E
2006	12	2.8	<u>E</u>

Año	Mes	Vel. Med. (Km/h)	Dirección
2003	1	5.7	N
2003	2	5.3	SE
2003	3	5.9	SE
2003	4	5.1	SE
2003	5	5.2	SW
2003	6	4.9	SE
2003	7	4.8	W
2003	8	6.3	SE
2003	9	6.9	SE
2003	10	6.5	Е
2003	11	6.5	SE
2003	12	6.3	<u>E</u>

3,50

5,80

۸۵۰	Maa	Val Mad /Km/k	N Divossión
Año	Mes	Vel. Med. (Km/ł	n) Dirección
2005	1	4.6	E
2005	2	9.5	SE
2005	3	4.0	SE
2005	4	4.0	N
2005	5	4.4	SW
2005	6	4.3	SE
2005	7	4.2	SE
2005	8	5.7	SE
2005	9	4.9	SE
2005	10	5.3	SW
2005	11	6.2	SE
2005	12	6.3	SE

7,40

Tablas XX

IX. Bibliografías y páginas WEB:

- Página de Internet de la Secretaría de energía: http://energia3.mecon.gov.ar/home/
- Página de Internet de TechoSun, distribuidor equipamientos para la industria d la energía solar: http://www.technosun.com/
- Página de Internet de distribuidora Star, distribuidor equipamientos para la industria de la energía solar a nivel nacional: http://www.bateriasmarozzi.com.ar/novedades todas.asp
- Página de Internet de Solartec, distribuidor equipamientos para la industria d la energía solar a nivel nacional: http://www.solartec.com.ar/
- Página de Internet de TechoSun, distribuidor equipamientos para la industria d la energía solar: http://www.teknosolar.com
- Página de Internet de la CNEA http://www.cnea.gov.ar
- Página de Internet del INVAP: http://www.invap.com.ar/
- Página de Internet del Mercobras: http://www.mercobras.com.ar
- Página de Mangen: http://www.magenn.com
- Página de Helix Wind: http://www.helixwind.com/en/
- Antonio Colmenar Santos; Luis Dávila Gómez; Manuel-Alonso Castro Gil (Progensa). Sistemas fotovoltaicos conectados a red: estándares y condiciones técnicas. Editorial: Mairena de Aljarafe (Sevilla): Promotora General de Estudios. ISBN: 84-86505-86-0

- Nestor quadri, R 2003. Energía Solar. Editorial: Librería y editorial Alsina. ISBN 950-553-11-7.
- Nassir Sapag Chain, Reinaldo Sapag Chain, R 2003. Preparación y Evaluación de Proyectos. Editorial: McGraw-Hill Interamericana. ISBN: 970-10-4248-4.