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Instituto Tecnológico de Buenos Aires

Faculty of Ingenieŕıa
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Abstract

El análisis de los datos históricos es crucial para la gestión estratégica y la

toma de decisiones en diferentes tipos de organizaciones, desde empresas com-

erciales hasta entidades gubernamentales o civiles. A diferencia de los inicios, la

proliferación actual de datos útiles supera los ĺımites de las propias organizaciones.

Por otra parte, los datos que se incorporan al análisis organizacional son muy com-

plejos , involucrando imágenes, funcionalidades geográficas, mapas satelitales, web

logs, información de redes sociales y datos de bioinformática, entre otros.

Para la toma de decisiones, los datos son tradicionalmente consolidados y al-

macenados en grandes repositorios, generalmente denominados data warehouses.

Los mismos están organizados siguiendo el modelo multidimensional, lo cual per-

mite percibir los datos como cubos, en los cuales cada eje corresponde a una

dimensión de análisis (que proporciona el contexto) y cada elemento, denominado

celda, contiene uno o varios valores representando las métricas para las coordenadas

correspondientes. Cada dimensión es organizada como una jerarqúıa de niveles,

para permitir trabajar los datos en diferentes granularidades. Las herramientas

OLAP (On Line Analytical Processing) permiten realizar consultas sobre estas

bases consolidadas de manera eficiente, con la posibilidad de agregar y desagregar

las métricas a lo largo de las dimensiones. Aunque en la actualidad, el acceso a

datos se ve facilitado por el avance de Internet y de las redes sociales colaborativas,

la gran cantidad, variedad y complejidad de estos datos hace muy dif́ıcil su manip-

ulación por parte de los usuarios finales. Los enfoques actuales requieren consultar

los diferentes tipos de datos utilizando herramientas y lenguajes apropiados para

cada tipo, y luego integrar la información de manera ad hoc, con el fin de obtener

el resultado deseado. De esto se desprende que, el analista debe ser capaz de

manipular datos complejos y combinar los resultados parciales obtenidos en cada

fuente con la información almacenada en los repositorios relacionales. Teniendo en
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cuenta que los analistas están muy familiarizados con los cubos OLAP, su tarea

se simplificaŕıa notablemente si todos los tipos de datos a manipular pudieran ser

percibidos como cubos de datos, sin importar su verdadera naturaleza.

A la luz de lo anterior, proponemos un modelo genérico de datos, junto con

un lenguaje de alto nivel, que permite realizar consultas en un nivel conceptual,

utilizando solamente los t́ıpicos operadores OLAP, bien conocidos por los analistas:

roll-up, drill-down, slice, dice y drill-across.

Aśı, el problema que abordamos en esta tesis es la falta de un único lenguaje

de consulta OLAP de alto nivel, que le permita a los usuarios finales manipular

cubos (agregar y desagregar métricas, seleccionar, proyectar y combinar datos)

independientemente de su contenido a nivel lógico o f́ısico. Para resolver este

problema proponemos un marco, en el cual, el usuario final percibe todo tipo de

datos (es decir, datos discretos tradicionales y datos continuos) como un cubo

OLAP tradicional. Además de definir formalmente el modelo conceptual multi-

dimensional y sus operadores, también definimos un lenguaje de consulta, que

denominamos GOLAP-QL , para manipular los cubos de datos con foco en las op-

eraciones tradicionales a nivel conceptual (agregación, desagregación , selección,

proyección y cruce de datos multidimensionales), sin tener en cuenta la imple-

mentación de dichos datos en los niveles lógico y f́ısico. De esta forma, nuestro

enfoque puede soportar otros tipos de datos, más allá de los tratados en esta tesis.

Por ejemplo, aunque en este trabajo nos centramos en los datos espaciales, también

pueden ser tratados de la misma forma datos de redes sociales. La aplicabilidad

del modelo se demuestra a través del tratamiento de datos continuos espaciales,

presentando un modelo discreto para los llamados campos cont́ınuos, permitiendo

verlos a nivel conceptual como cubos de datos tradicionales. Una colección de

operadores genéricos a nivel lógico sobre este modelo discreto, brinda el apoyo

necesario a la propuesta. También detallamos la implementación del modelo com-

pleto y desarrollamos un proceso de optimización de consultas basado en reglas.

Como aporte final, presentamos un estudio de caso con los tipos de datos que se

mencionaron anteriormente.
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Abstract

The analysis of historical data is crucial for strategic management and decision

making in most organizations, from commercial companies to governmental or civil

entities. Unlike in the early days of decision-making systems, the proliferation of

data nowadays exceeds the boundaries of the organizations themselves. Moreover,

the data to be incorporated into organizational analysis are very complex, involving

images, geographic features, satellite maps, web logs, social network information,

bioinformatics data and so on.

For decision making, data are traditionally consolidated and stored in usu-

ally large repositories denoted data warehouses, which are organized following the

multidimensional model, which allows data to be perceived as a cube where each

axis corresponds to a dimension of analysis (which provides context) and each ele-

ment, named cell, contains one or several values representing the measures for the

corresponding coordinates. Each dimension is organized as a hierarchy of levels al-

lowing to see data at different levels of aggregation. On Line Analytical Processing

(OLAP) tools allow efficiently querying and navigating data in these consolidated

databases, with the possibility of aggregating and deaggregating measures along

the dimensions. Although at present time, data access is facilitated by the ad-

vance of the Internet and of the collaborative networks, the amount, variety and

complexity of such data makes their manipulation very difficult for end users. Cur-

rent approaches require querying different kinds of data using tools and languages

appropriate for each kind, and integrating the information in an ad hoc manner

in order to obtain the desired result. It follows that the analyst must be able to

manipulate complex data and use the partial results to combine these data with

information stored in relational repositories. Taking into account that analysts are

very familiar with OLAP cubes, their task would be simplified if all kinds of data

they manipulate can be perceived as a data cube, regardless their actual nature.
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In light of the above, we propose a generic data model, together with a high-

level language that allows querying data at a conceptual level using just the typical

OLAP operators analyst know very well: roll-up, drill-down, slice, dice and drill-

across.

The problem we address in this thesis is the lack of a single high-level OLAP

query language that can allow end-users to manipulate cubes (aggregate, deaggre-

gate, combine, slice, dice) independently of their content at the logical or physical

level. To solve this problem we propose a framework where the end user perceives

all kinds of data (i.e., traditional discrete data and continuous data) as a data cube.

We formally define the multidimensional conceptual model and its operators. We

also define a query language denoted GOLAP-QL, to manipulate the data cubes,

with focus in the traditional cube operations at the conceptual level (aggregation,

disaggregation, selecting, projecting and crossing of multidimensional data), with-

out caring of how they are implemented at the logical and physical levels. Thus,

our approach can support also other kinds of data, beyond the ones addressed in

this thesis. For example, although in this work we focus on spatial data, social

network data can also be addressed. We show the applicability of the model for

addressing spatial continuous data, presenting a discrete model for so-called con-

tinuous fields, where at the conceptual level we see such data as standard data

cubes. A collection of generic operators at the logical level over this model gives

support to our proposal. We detail the implementation of the model and develop

a process of rule-based query optimization. As a final contribution, we present a

case study in the presence of the kinds of data previously mentioned.
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Chapter 1

Introduction

The analysis of historical data is crucial for strategic management and decision

making in different kinds of organizations, from commercial companies to govern-

mental or civil entities. Unlike in the early days of decision-making systems, the

proliferation of useful data nowadays exceeds the boundaries of the organizations.

Moreover, the data to be incorporated into organizational analysis are very com-

plex, involving images, geographic features, satellite maps, web logs, social network

information, and so on. Although at present time data access is facilitated by the

advance of the Internet and of the collaborative networks, the great amount and

high complexity of such data makes their manipulation very difficult for end users.

As an example, consider the management on the evolution of geographical

reserves of a country over time. This task requires the integration of alphanumeric

records containing data about each zone (e.g., date of creation of the reserve,

description of flora and fauna), geometric data (i.e., polygons that define each

zone), satellite images of environmental pollution, and so on.

As another example, the comprehensive management of airports requires in-

formation about the flight plan of the different airlines, which includes air routes

(represented as geometric elements), weather conditions (represented as maps con-

taining data about pressure, humidity, convective activity, visibility, among other

ones), records of estimated and actual departure and arrival times, etc.

As a last example, the study of the correlation between a certain disease and

environmental factors, such as air pollution and electromagnetic radiation emitted

by telecommunication antennas, requires working with data from hospital records,

1
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social networks, pollution data and maps reporting intensity distribution of radio-

frequency fields.

In the examples above, the sources of the data involved can be of very differ-

ent kinds, for which there exist very different possibilities of representation. The

typical sources of alphanumerical data are the well-known relational databases.

For decision making, data are consolidated and stored in usually large repositories

denoted data warehouses [26], which are organized according the multidimensional

model. Specific tools and algorithms allow efficiently querying these multidimen-

sional databases that contain historical data. These tools conform what is usually

known as On Line Analytical Processing (OLAP).

1.1 On Line Analytical Processing (OLAP)

The multidimensional model organizes data as a set of dimensions and mea-

sures. Dimensions are categories (aspects) of the analysis context according to the

business perspective, and the measures represent factual data. In this model, data

can be perceived as a cube where each axis corresponds to a dimension of analysis

and each element, named cell, contains one or several values representing measures

for the corresponding coordinates. Each dimension is organized as a hierarchy of

levels allowing to see data at different levels of aggregation.

For instance, the flora and fauna data in our first example above, can be mod-

eled as an OLAP cube with the dimensions Species, Geography, and Time, as

shown in Figure 1.1. Dimension instances are composed of members. For example,

‘squirrels’ is a member of the dimension Species. A cell of this cube, representing a

so-called fact, is of the form (‘squirrels’, ‘forest reserve D’, 2010,75), meaning that

there are 75 squirrels in the forest reserve denoted ‘D’. The first three elements

in the tuple represent the dimension members, while the last one is the measure

that quantifies the fact. This kind of representation allows the end user to analyze

data in a very simple way. Thus, we can see in Figure 1.1 that the population of

squirrels in the forest reserve ‘D’ has decreased from 75 to 52 during the period

2010-2013, meanwhile the ducks have decreased from 92 to 70 in the same zone and
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time interval. Aggregations can be performed along dimension hierarchies. For ex-

ample, species can be classified in categories, like ‘flora’ and ‘fauna’, such that, for

instance, ‘squirrels’ and ‘ducks’ are at a lower level than ‘fauna’. Finally, factual

data in Figure 1.1 corresponding to ‘squirrels’ and ‘ducks’ for 2010, aggregated over

categories, amount to 167.

Figure 1.1: Flora and Fauna cube from Example 1.

OLAP cubes allow easily aggregating and disaggregating data. For example,

if the analyst aggregates ‘squirrels’ and ‘ducks’ to the ‘animal’ category, as a result

she detects that the animals in the forest reserve ‘D’ have decreased from 167 to

122. Figure 1.2 shows the user’s visualization of the aggregated cube. To operate

with cubes, a collection of typical OLAP operations are defined. The usual ones

are:

• Roll-up: aggregates measures along a dimension hierarchy (using an aggre-

gate function) to obtain measures at a coarser granularity.

• Drill-down: performs the operation opposite to roll-up, that is, it moves from

a more general level to a more detailed level in a dimension hierarchy.
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• Slice: removes a dimension in a cube, that is, a cube of n− 1 dimensions is

obtained from a cube of n dimensions.

• Dice: keeps the cells in a cube that satisfy a Boolean condition Φ.

• Drill-across: is analogous to a full outer join in the relational algebra. If

the condition is not stated, it corresponds to an outer equijoin. Informally,

this operation allows to combine two or more cubes, in a way that measures

corresponding to the same coordinates are included in the same cell.

Figure 1.2: Flora and Fauna cube with aggregation of Species dimension.

The incorporation of geographical data to decision-support systems is increas-

ingly being needed, and also facilitated by, for example, Global Position Systems

(GPSs) present in any mobile device, the enormous amount of easily accessible

satellite images, maps, and so on. We discuss next how this information can

enhance the power of decision-support systems.

1.2 Spatial Data and Geographic Information Systems (GIS)

Geographic Information Systems (GIS) are systems designed to capture, store,

display and manipulate all kinds of geographical data.

Spatial information in a GIS is typically stored in different thematic layers. For

example, one layer can represent geographical accidents such as mountains, rivers,
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Figure 1.3: GIS layers (from http://www.oilandgasbmps.org/resources/gis.

php)

etc., and another one can model cities and streets (See Figure 1.3). Information

in themes can be stored in data structures according to different data models, the

most usual ones being the raster model and the vector model. In the vector model,

infinite sets of points in space are represented as finite geometric structures, or

geometries, like, for example, points, polylines and polygons. There are several

possible data structures to actually store these geometries. In a thematic layer,

spatial data are annotated with classical relational attribute information, of (in

general) numeric or string type. While spatial data are stored in data structures

suitable for these kinds of data, associated attributes are usually stored in conven-

tional relational databases. Spatial data in the different thematic layers of a GIS

system can be mapped univocally to each other using a common frame of reference,

like a coordinate system. These layers can be overlapped to obtain an integrated

spatial view. On the other hand, in the raster model, the space is sampled into

pixels or cells, each one having an associated attribute or set of attributes. In

other words, spatial elements that a GIS can represent as discrete objets follow

the vector model, for example, cities can be represented as points, and annotated

with classical information, such as strings or numbers, for example, the surface

http://www.oilandgasbmps.org/resources/gis.php
http://www.oilandgasbmps.org/resources/gis.php
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and population of a city. On the contrary, the raster model is used to represent

continuous data, like for example, continuous fields, which describe phenomena

that change continuously in time and/or space, like temperature, land elevation,

radio-frequency intensity emission, land use, frequently used in human geography.

Note that continuous fields are represented usually using the raster model, other

models can also be used, as we will study later. Layers of different kinds (discrete

and continuous) can be overlapped for analysis, as Figure 1.3 shows.

1.3 SOLAP: Putting Together Spatial and OLAP Data

The notion of OLAP can be extended to spatial data to allow exploring such

data by drilling on maps in the same way as OLAP operates over tables and charts.

In our first example example above, we could enhance the cube containing data

about species, geography, and time, with spatial data containing the polygons that

define each reserve zone. These polygons can also be organized into hierarchies, and

therefore measures can be aggregated also along spatial hierarchies. For example,

reserve areas can be aggregated into regions. Thus, we could be able to obtain the

number of species by region and year, or solve spatial geometric queries, such as

‘find the reserves that have decreased their areas in 10% during the period 2005-

2010’. All of these can be nicely shown in a map. Another example of discrete

spatial data is the ‘air route’ in the second example above. In this case, the route

is represented as a three-dimensional (3-D) polyline, as we can see in Figure 1.4.

Note however that in the former cases, the geographic (spatial) elements were

defined as dimensions in the cube, although in the latter case it would be more

natural to consider the route as a measure to be aggregated (although this is a

design decision: representing a geometry as a dimension or as a measure has, as

always, pros and cons that must be considered by the analyst). This combination

of discrete spatial data and OLAP tools is denoted SOLAP (standing for Spatial

OLAP), and we call the cubes containing (discrete) spatial and alphanumerical

data as SOLAP cubes. In the next chapter we will describe SOLAP briefly, and

provide references.



7

Figure 1.4: Air route polyline

SOLAP analysis can also be extended with continuous field data. For example,

“convective activity” can be recorded through a succession of satellite imagery, as

it is shown in Figure 1.5. Another example of continuous fields are the pollution

and electromagnetic radiation used in our third example above.

Figure 1.5: Convective activity satellite image from http://www.intechopen.

com/source/html/38768/media/image4.jpg

http://www.intechopen.com/source/html/38768/media/image4.jpg
http://www.intechopen.com/source/html/38768/media/image4.jpg
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Although GIS tools allow the user to manipulate spatial objects, manipulation

of both geometric polygons and satellite maps, demands certain specific skills from

the user. Consequently, analysts and managers should learn such complex opera-

tions, to be able to integrate spatial information in the decision-making process.

From the above, it follows clearly that in modern decision-making analysis

the user must manipulate different types of data, including traditional relational

databases, OLAP cubes containing alphanumerical information, discrete and con-

tinuous spatial data included in maps, data from social networks, and many more.

Solving this problem is the main goal of this thesis.

1.4 Running Example

We motivate our work with an example from the wine industry that we use

throughout the thesis. A vineyard producer in Belgium has developed a business

analytics system in order to be able to take well-informed decisions about grape

production. For example, she needs to define the more adequate times of the year

for each crop, analyze the lands that historically have delivered the best produc-

tion, and so on. Information is stored in SOLAP cubes, that means, geographic

zones are stored as spatial dimensions in these cubes. To enhance analysis our

producer wants to incorporate external information about precipitation, tempera-

ture, altitude and soil type (i.e., physical phenomena stored as continuous fields).

More specifically, she knows that climate changes impact directly on wine produc-

tion, and metrics such as average growing season temperatures can be used for

establishing optimum regions for wine production, for each wine variety [24, 25].

For example, Cabernet Sauvignon is produced in regions that span from interme-

diate to hot climates, with temperatures ranging from 16.50◦ C to 19.50◦ C in the

growing season.

As a concrete example, let us consider the following analysis scenario. The

producer knows that the quality of the wine for each type of grape depends on

the specific climatic conditions for periods such as bud break (February, March),

flowering (April), ripeness (May to August) and harvest (September, October),
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the conditions of altitude, and the soil type (acid, alkaline). Using this knowledge,

the producer first analyzes three years of production data by zone, for each kind of

grape, with respect to the altitude, temperature amplitude, average precipitation

during the ripeness period, and soil information.

To perform the analysis above, the following data are needed (see Figure 1.6):

• TemperatureMin: A collection of satellite images with monthly minimum

temperatures during 2010-2013

• TemperatureMax: A collection of satellite images with monthly maximum

temperatures during 2010-2013

• Precipitation: A collection of satellite images with monthly precipitation

(mm) during 2010-2013

• Altitude: A map with image altitudes (with respect to sea level) as of 2012

• PH: A collection of satellite images with quarterly pH value of soil during

2010-2013

• Vineyard: A SOLAP cube containing historical alphanumerical information

about vineyard harvest classified by grape type and by zones of Belgium

during 2010-2012

We can see that different kinds of data (alphanumerical, discrete spatial, and

spatio-temporal fields) are involved in this analysis. Current approaches require

querying these data using different tools and languages and integrating the infor-

mation in an ad hoc manner, in order to obtain the desired result. For example,

to compute the average monthly precipitation during 2012 classified by districts

of Belgium, the analyst has to apply map algebra operators [48] over the precipi-

tation images corresponding to 2012. We explain map algebra later in the thesis.

In this case the operator will compute the average temperature (from all the avail-

able maps) at each point in space. After this average is computed, the analyst

can compute the average temperature by district. This is performed using SOLAP

operators which compute the average temperature overlapping the previous result,
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Figure 1.6: Available data for harvest analysis

and the map of Belgium containing the polygons that represent the districts. The

process above must be repeated for each continuous data (e.g., precipitation).

It follows that the analyst must be able to manipulate complex data (i.e.,

satellite maps, geographic elements) and use the partial results to combine these

data with information stored in relational repositories. All of these imply complex

ad hoc manipulation for each analysis task, which turns out to be awkward and

inefficient.

On the other hand, analysts are very familiar with OLAP cubes. Therefore,

their task would be simplified if all kinds of data they manipulate can be perceived

as a data cube, regardless their nature. To achieve this, we need a generic data

model, together with a high-level language that allows querying data at a concep-

tual level, independently of their kinds, using just the typical OLAP operators she

knows very well: roll-up, drill-down, slice, dice and drill-across. These operators

can of course be enhanced with other functions that can extend their functionality.

A language like the one we propose would allow, for example, to compute the
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maximum temperature by district for the period March-August, 2012, as:

Tmin=Slice(

Rollup(

Rollup(

Dice(TemperatureMin, Month>=Mar-2012 and Month<=Aug-2012),

Time, Year),

Space, District),

Time)

Note that even though this appears to be a simple expression, many kinds of

data are involved. TemperatureMin is a continuous spatiotemporal field containing

the minimum temperatures in space across time. The Dice operation obtains,

from this field, the minimum temperatures for the desired period. Then, a Roll-

up operation aggregates these data along the Time dimension to the level Year, and

another Roll-up operation aggregates the result over the Space dimension and

its level District (a discrete spatial dimension level). Finally, the Time dimension is

dropped. Note that here we have mentioned three kinds of data: alphanumerical,

discrete spatial, and continuous spatiotemporal. However, the language is agnostic

of such kinds of data, and treats all of them in the same way: all of them are seen

as data cubes.

Analogously, we can aggregate Vineyard cube data for 2012, according a discrete

spatial dimension hierarchy, as follows:

V= Slice(

Rollup(

Dice(

Rollup(Vineyard, Time, Year),

Year=2012),

Space, District),

Time)
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Analogously we proceed with other kinds of data like precipitation, altitude,

and soil PH. The graphical schema of the problem is shown in Figure 1.7. Finally,

we put together in the same cube all these data using the Drill-across operation,

as shown next.

Q= Drillacross(

Drillacross(

Drillacross(

Drillacross(

Drillacross(Tmin, Tmax),

Precipitation),

Altitude),

PH),

Vineyard)

In summary, the vineyard producer only sees cubes and does not care about

the representation of the data contained in these cubes. The distinction of data

types and data representations is performed at the logical and physical levels (e.g.,

temperature can be a field type at the logical level, and stored as a rasterized

grid at the physical level). As far as we are aware of, this is a completely novel

approach in the OLAP field.

1.5 Thesis Contribution

The problem we address in this thesis is the lack of a single high-level OLAP

query language that can allow end-users to manipulate cubes (aggregate, disaggre-

gate, combine, slice, dice) independently of their content at the logical or physical

level.

The first contribution of this thesis is a framework where the end user (analyst,

manager) perceives all kinds of data (i.e., traditional discrete data and continuous

data) as a data cube. We formally define the multidimensional conceptual model,

along with its operators. In this model, the user only sees the typical OLAP
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Figure 1.7: The analyst view of data with our approach

cubes and its operators without caring about the kinds of data and how they are

represented.

As a second contribution, we define a procedural language, denoted GOLAP-

QL, to manipulate the cubes above. Our approach focuses in the traditional OLAP

cube operators at the conceptual level (aggregation, disaggregation, selecting, pro-

jecting and crossing of multidimensional data), defining polymorphic operators at

the logical level, and only caring about the data representation at the physical

level. In this sense, our approach can support also other kinds of data, beyond

the ones addressed in this thesis. For example, although in this work we focus

on spatial data, social network data can also be addressed. Since our approach is

strongly based on the integration of all kinds of cubes, the drill-across operator is
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a key component of the language, given that it is the only OLAP operator that

allows combining cubes, in a way analogous to what is done in relational databases

by the join operator. A typical problem with this operator is that the dimensions

of the cubes involved must be identical, at the schema and instance levels. Since

this is very difficult to accomplish, especially if we want to manipulate many kinds

of data, we build on the work of Abelló et al. [2] to define semantic mapping

mechanisms that allow overriding the limitations above. This mapping is a key

component of our second contribution.

As a third contribution of this thesis, we show the applicability of the model

for addressing spatial continuous data. We present a discrete model for continuous

fields, where at the conceptual level we see such data as standard cubes with one-

level dimensions. A collection of generic operators at the logical level over this

model gives support to our proposal.

As a fourth contribution we detail the implementation of the model and develop

a rule-based query optimization process.

Finally, we illustrate how this proposal can be used by means of a case study, in

which we present a comprehensive set of decision-support queries in the presence

of the three kinds of data previously mentioned.

As a final remark, this thesis consolidates and expands the work previously

published in [16, 17, 18].

1.6 Thesis Organization

This thesis is organized as follows: In Chapter 2 we review related work in

the field of OLAP modeling and operations, and Continuous Fields manipulation.

In Chapter 3 we introduce the multidimensional data model over which we will

build our proposal. In Chapter 4 we present an algebra whose operands are data

cubes, and explain the syntax and semantics of each operator. Chapter 5 studies

in detail the Drill-Across operator (which is key for our proposal) and presents

mapping technique that allows to apply the operation even when the dimensions

and instances of the cubes involved do not coincide. In Chapter 6 we illustrate with
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an example based on our running example, the concepts studied in the previous

chapters. Chapter 7 presents a discrete data model for representing continuous

fields. This data model is general enough to support any kind of underlying data

representation (e.g., Voronoi, Raster, TIN). In Chapter 8 we show that actually

fields can be considered as another kind of data cube, and detail how each typical

OLAP operation can be applied over field cubes. In Chapter 9 we propose a

procedural query language, named GOLAP, that operates on data cubes. We

describe query processing in GOLAP, and present a set of optimization rules.

Chapter 10 discusses the implementation and presents preliminary experimental

results. Finally, in Chapter 11 we summarize the main features of our contribution

and we analyze open research directions.



Chapter 2

Related Work

Online Analytical Processing (OLAP) techniques allow performing complex

analysis over the information stored in data warehouses. A review of the evolution

of data warehouse technology reveals that research and development has mainly

focused on aspects such as the construction of data warehouses, materialization,

indexing, and the implementation of OLAP functionality. This view has been

called system-centric [13], and led to well-established and commercialized tech-

nologies such as relational OLAP (ROLAP), multidimensional OLAP (MOLAP),

and hybrid OLAP (HOLAP), at the logical and the physical abstraction levels.

However, most of the time, non-expert, unskilled users, such as managers and

analysts find out that handling data warehouses and OLAP systems requires expert

knowledge due to complicated data warehouse structures and the complexity of

OLAP systems and query languages. This occurs for two main reassons: (a) a lack

of a generic, user-friendly, and comprehensible conceptual data model; (b) available

OLAP query and analysis languages such as MDX and SQL OLAP operate at

the logical level and require the user’s deep understanding of the data warehouse

structure in order to be able to formulate queries. In a ROLAP environment, for

example, the user is faced with the logical design of relational tables in terms of

star, snowflake, or fact constellation schemas.

As a consequence, a generic, conceptual, and user-centric data warehouse model

that focuses on user requirements is still needed, in spite of the more than twenty

years that data warehouse technology has been around. Such a model must: (a)

16
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be located above the logical level; (b) be independent of the models and tech-

nologies (ROLAP, MOLAP, HOLAP) at the logical level; (c) enable the user to

generically and abstractly represent and query hierarchical multidimensional data;

(d) have an associated query language based exclusively on the conceptual level,

thus providing high-level query operations for the user; (e) support any kind of

underlying data. The focus of this thesis is mainly on this last point. The cur-

rent data explosion (a phenomena generically called Big Data) requires systems

that can seamlessly incorporate different kinds of data: discrete, continuous, al-

phanumerical, geographic, textual, and so on. Typical OLAP systems support just

alphanumerical data, while all other kinds of data must be incorporated ad hoc.

This thesis proposes a conceptual and user-centric data warehouse model and

query language that satisfies these design criteria. In this model, the user just per-

ceives a data cube which she can create, manipulate, update, and query, although

we focus on the latter aspect. The cube is used as the user concept that completely

abstracts from any logical and physical implementation details. Technically, this

implies that cubes can be regarded as an abstract data type that provides cubes as

the only kind of values (objects), offers high-level operations on cubes or between

cubes such as slice, dice, drill-down, roll-up, and drill-across as the only available

access methods, and hides any data representation and algorithmic details from

the user, who can concentrate on her main interest, namely to analyze large vol-

umes of data. In Chapter 4 we define an algebra with cubes as the only sort and

a collection of unary and binary operations on cubes.

In what follows, we describe the efforts for achieving a consensus on a concep-

tual model for OLAP and data warehousing, as well as a standard and well defined

algebra for OLAP. Since we will present geographic data as a particular case for

an underlying data type, we also review research in this topic.

2.1 Cube-Based OLAP Models

Unlike the case of relational databases, where there is a difference between the

conceptual design and the logical and physical implementations, multidimensional
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models do not present this differentiation so clearly [13]. In fact, in many cases, the

modeling of cubes involves deciding about issues at the logical level (for example,

deciding star topology or snowflake for ROLAP design). This lack of identification

of a true conceptual level, in which the user should only define dimensions, hier-

archies, and measures, regardless of logic or implementation details, unnecessarily

complicates the task of the analyst. Data models and query languages should

remain simple, conceptual and at a very high level.

Vassiliadis and Sellis [54] classify models according to a collection of dimensions,

like implementation (relational-oriented, cube-oriented..), language type (procedu-

ral, declarative, visual) and physical representation. Another classification is found

in [34], where a complete description of the user’s actual needs is given, regarding

restructuring operations (handling and visualization the cube), granularity oper-

ations (aggregation and de-aggregation along an aggregation hierarchy), and data

manipulation (taking into account the standard relational database operations,

such as selection, projection or join).

The multidimensional model introduced by Agrawal et al. [4] is characterized by

its symmetric treatment of dimensions and measures, the support of multiple hier-

archies along each dimension and the possibility of performing ad hoc aggregations.

A set of minimal operators is also introduced with its corresponding mapping to

the SQL language. Despite the authors’ attempt to provide a conceptual model,

it is mainly oriented to an SQL implementation into a relational database. To

address symmetrical treatment of dimensions and measures, although the authors

propose the conversion from one to the other by using the operators Push and

Pull, this not always works properly, because of their different nature. That is,

measures are not associated with granularity levels, and aggregation functions are

not applicable to them.

Cabbibo and Torlone [11] propose a formal model for dimensions which are

constructed from hierarchies of dimension levels, where fact tables are functions

from particular combinations of levels to measures. In this model, data are charac-

terized from a set of so-called rollup functions, each of which maps the instances of

a dimension level to instances of another dimension level, according to the desired
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aggregation. The approach is completed with a multidimensional relational calcu-

lus, basically oriented to the formulation of aggregate queries. They extend their

approach in [12] by introducing a graphical query language based on an extension

to the relational algebra. It is worth noting that this model is closer to the logical

than to the conceptual level.

Gyssens and Lakshmanan [22] present a conceptual model for OLAP-based

applications by differentiating structural aspects from content. They define an

algebra and its equivalent calculus, with a set of operators including selection, pro-

jection, cartesian product, summarization and restructuring operators (folding and

unfolding). Similarly to [4], they present two kinds of attributes, parameters and

measures, with no distinction between them. Despite providing implementation-

independent algebra, the formulation is far from what a user analyst is ready to

use.

Vassiliadis et al. [53] present a formal model that defines the concepts of

dimensions, hierarchies and multidimensional cube. They introduce a set of cube

operators and provide a mapping of the proposed model to both the relational

model and the multidimensional arrays. This work includes for the first time a

reference to a Drill-down operator which de-aggregates cube data obtained through

previous aggregations. In spite of being basically a conceptual cube model, it

incorporates some logic aspects, needed to maintain a base-cube (that means, a

cube at the lowest granularity level) in order to ensure the correct aggregation

results.

Golfarelli et al. [14, 15] present a graphical conceptual model for data ware-

houses, called Dimensional Fact Model, and propose a methodology to build the

model from an Entity-Relationship schema. Their model represents the typical

data warehouse concepts (dimensions, measures, hierarchies) by using a graphical

notation, as an abstraction of the star schema, with a central fact entity and one

graph per dimension representing attribute hierarchies. However, the authors do

not identify OLAP operators, expressing queries through complex predicates that

either select a subset of the aggregated fact instances or affect the way the fact

instances are aggregated.
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Nguyen et al. [39] use UML to map their proposed conceptual multidimen-

sional data model to an object-oriented data model. The data model is based

on the concepts of dimensions, dimension members, dimension levels, dimension

schemas, dimension paths and hierarchies, dimension operators, measures, and

data cubes. The authors also define the following cube operators: groupBy, jump-

ing, rollingUp, and drilling down. However, again, this model is defined almost at

the logical level, and does not introduce a full set of high-level operations, missing

important operations, such as slićıng and drilling across.

Tsois et al. [50] propose a multidimensional aggregation cube based on an

end-user’s point of view. They describe a set of requirements for the conceptual

modeling of real-world OLAP scenarios. However, the authors do not develop a

formal model, nor a language supporting their model.

On of the few proposals including a query language at a conceptual level is the

one by Abelló et al. [1]. Here, the data cube is defined in terms of a set of well-

known concepts, such as measures and cells, dimensions and aggregation levels,

and facts. An algebra is defined as a set of multidimensional operations, such as

base changes, dice, slice, drill-across, roll-up and drill-down. However, this query

language is not intuitive for unskilled end users, and the operations defined over

the cube (change base, generalization, specialization, and derivation) are far from

the knowledge and interests of managers and analysts in an OLAP scenario. In

subsequent efforts, the authors present YAM2, a multidimensional object-oriented

model based on an extension of UML [3]. This model is very close to logical level,

since the authors refer to fact tables and star schemas, which assume a ROLAP

representation.

Malinowsky and Zimanyi [33] introduce MultiDim, a model based on the E/R

model, with an intuitive graphical notation that allows representing several kinds

of hierarchies (i.e., balanced, unbalanced, exclusive, alternativa, and parallel). The

approach also resembles the star and snowflake schema, thus close to a relational

representation.

Pardillo et al. [40, 41] specify an OLAP algebra at the conceptual level by using

the object-constraint language (OCL). They also propose an automatic tracing
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from the conceptual OLAP queries to a particular OLAP system by using a model-

driven architecture. Although the authors argue as an advantage that analysts can

use this algebra to query data warehouses without being aware of logical details,

being based on OCL, the syntax is quite complex for unskilled end users.

Recently, Ciferri et al. [13] proposed a cube-centric query language, denoted

Cube Algebra, which is defined at the conceptual level, and where the only sort

is the data cube. Cube Algebra defines a set of operators based on the needs for

cube manipulation: the well-known slice, dice, roll-up (and its inverse, drill-down)

and drill-across. Note however that in [13], Cube Algebra is just sketched at a

very high level of detail. This proposal, and the work of Gómez et al [16, 17,

18] are the only ones that actually consider the data cube as a first-class citizen

of an OLAP data model. Moreover, the work by Gómez et al. goes further,

since it addresses underlying data types other than alphanumerical, and includes

a prototype implementation over continuous spatial data. This thesis builds on

this work, as we will see later.

2.1.1 Query Languages for OLAP

From the study above we can conclude that none of the models discussed can

be considered to operate purely at a conceptual level, hiding all implementation

details. Moreover, only three of them, namely [4], [22], and [50], can be considered

as based on the cube metaphor, and the latter does not even include an associated

query language. The only exception is the Cube Algebra [13], which applies to the

conceptual level.

Unlike it occurs in relational databases and SQL, there is no consensus on

a standard query language for OLAP. Therefore, each model proposed its own

languages, leading to a proliferation of operators often performing almost the same

function with different names (for example, ‘Destroy’ in [4] and ‘Slice’ in [53]).

With respect to commercial tools, OLAP query and analysis languages such

as MDX and SQL OLAP operate at the logical level and require the user’s deep

understanding of the data warehouse structure in order to be able to formulate

queries. These languages are quite complex, overwhelm the unskilled user, and are
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therefore inappropriate as end-user languages. Compared with languages like Cube

Algebra, the MDX query looks cryptic and unintuitive, since the former operates

at the conceptual level. In addition, MDX has not a clearly defined semantics. On

the contrary, in this thesis we will define a very precise semantics and execution

mechanism for our generic algebra.

Abelló and Romero [44] provide a summary and a comparative table of the

OLAP operators available in different proposals. The authors take as a basis for

the comparison the functionalities provided by natural operations like selection,

roll-up, projection, drill-across, union, difference and intersection. The authors

use this analysis to advocate for a multidimensional algebra allowing satisfactory

navigation and querying of data contained in a warehouse.

An important issue for devising a query language for OLAP is how to combine

different data cubes. Most of the operators in the many proposals are unary, that

means, they receive a data cube and return a cube (roll-up. drill-down, slice,

etc.). The only operation allowing to combine data cubes (analogously to the join

operation in the relational model) is the drill-across. The original conception of

Kimball [26] restricts its applicability, since it requires the cubes involved in the

operation to have the same dimensions and identical instances of level members,

which is hardly the case in real life situations. Abelló et al. [2] address this problem

introducing a list of rules that allows crossing cubes, even if they do not share

dimensions or members at first sight. However, it is worth noticing that no solution

for mapping cube cells has been proposed. One of our contributions is, precisely,

the definition of such a mapping. We present an in-depth study of the drill-

across operation, because we do not only use this operation to combine typical

alpanumerical data cubes, but also data cubes containing data of different kinds

(e.g., cubes with spatial data and cubes with alphanumerical data).
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2.2 SOLAP: Spatial OLAP

We already introduced the notion of spatial information and Geographic In-

formation Systems (GIS). Geographic Information Systems (GIS) have been ex-

tensively used in various application domains, ranging from economical, ecological

and demographic analysis, to city and route planning [55]. Rigaux et al. [42] survey

various techniques, such as spatial data models, algorithms, and indexing meth-

ods, developed to address specific features of spatial data that are not adequately

handled by mainstream database technology.

Modern organizations need sophisticated GIS-based Decision Support System

(DSS) to analyze their data with respect to geographic information, represented

not only as attribute data, but also in maps. Thus, OLAP and GIS vendors are

increasingly integrating their products. In this scenario, classical aggregate queries

(like “total sales of cars in California”), and aggregation combined with complex

queries involving geometric components (“total sales in all villages crossed by the

Schelde river and within a radius of 100 km around Antwerp”) must be efficiently

supported. Navigation of the results using typical OLAP operations like roll-up

or drill-down is also required.

Rivest et al. [43] introduced the concept of SOLAP (standing for Spatial

OLAP), a paradigm aimed at being able to explore spatial data by drilling on

maps, in a way analogous to what is performed in OLAP with tables and charts.

Also, Shekhar et al. [46] proposed MapCube, a visualization tool for spatial data

cubes. MapCube is basically an operator that, given a so-called base map, car-

tographic preferences and an aggregation hierarchy, produces an album of maps

that can be navigated via roll-up and drill-down operations.

An important issue in spatial OLAP refers to the treatment of alphanumeric

attributes that represent spatial data. Although it is usual to consider only geo-

metric attributes to be spatial, Bédard et al. [8] define that any OLAP dimension

that refers to a geo-referenced object should be considered spatial. For instance,

the string “Buenos Aires” must be considered spatial data, although it is not rep-

resented as a geometry. Moreover, we can define a hierarchy with spatial data,

i.e., City → District → Region, but if the members of these levels do not have a
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geometric domain, we cannot express queries involving spatial operators, such as

area, intersects, includes, covered-by, etc. Instead, if we define geometries for one

or more attributes of a dimension, they become geometric spatial data which allow

powerful querying by using these operators.

Bédard et al. [9] present a review of the efforts for integrating OLAP and GIS,

and describe the required characteristics for SOLAP.

In a more recent work, Gomez et al. [19] propose a formal data model and

language for SOLAP, denoted, respectively, Piet and Piet-QL. Piet-QL allows

to mention in the same query, operations over cubes and spatial operators, like

intersection, union, and so on, allowing to integrate in the same query, alphanu-

merical cube data with spatial data, represented by geometries. In this proposal,

the cube contains non-geometric spatial dimensions but the queries may combine

spatial elements with external geometric elements of different GIS layers (rivers,

cities, districts, provinces and regions) through a binding mechanism. As a result,

queries like “products manufactured in cities crossed by at least two rivers” are

possible.

Zimanyi et al. [51] go a step further and allow geometric spatial data to be

represented as measures, providing greater flexibility in the modeling of complex

situations.

2.3 Continuous Fields

Continuous Fields (from now on, fields) describe physical phenomena that

change continuously in time and/or space, like temperature, pressure, and land

elevation. Fields can be of different dimensionality, e.g., elevation in a two-

dimensional (2D) spatial domain, pollution defined in a three-dimensional (3D)

spatial domain, or temperature in a 4D spatiotemporal domain. More generally,

the N-dimensional domain can be any continuous one. For example, we can even

model time series as a unidimensional field. In real-world practice, scientists and

practitioners register the value of a field taking samples at (generally) fixed loca-

tions, and inferring the values at other points in space using some interpolation
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method. Different discrete data models have been proposed to represent continuous

fields, based on sampling and interpolation. The most popular one is the already

mentioned raster model, where the 2D space is divided into regular squares. We

will study fields extensively in this thesis.

The joint contribution of the GIS and database communities to the problem of

analyzing fields using OLAP models has been limited. Among this limited work,

Shanmugasundaram et al. [45] propose a data cube representation that deals with

continuous dimensions not needing a predefined discrete hierarchy. They focus on

using the data density to calculate aggregate queries without accessing the data.

This representation reduces the storage requirements, but continuity is addressed

in a limited way.

In another effort, Ahmed and Miquel [6] discuss the importance of model-

ing multidimensional structures for field-based data and analyze how either cell

values or interpolation methods can be used for inferring values at non-sampled

points. Nevertheless, neither formal definitions are provided nor methods for cal-

culating aggregating functions in the continuous cube are described. Sequels of

this proposal introduce a SOLAP application supporting some form of continuous

data [5, 7].

Vaisman and Zimanyi [51] present a conceptual model for SOLAP that sup-

ports dimensions and measures representing continuous fields, and characterize

multidimensional queries over fields. They define a field data type, a set of as-

sociated operations, and a multidimensional calculus supporting this data type.

Gomez et al. [20] proposed physical data structures for implementing this set of

operators. Therefore, these proposals operate at the logical and physical levels,

respectively. In another contribution, Bimonte et al. [10] recently introduced a

multidimensional model that supports measures and dimension as continuous field

data.

Regarding algebras for field analysis, Tomlin [48] proposed Map Algebra, an

informal language for manipulating two-dimensional fields, represented as raster

data. This language basically consists in three operators denoted Local, Focal

and Zonal. For instance, given a collection of grids, and an aggregate function,
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the Local operator returns a grid such that the value in each cell is the result of

applying the aggregate function to values of the cell at the same location in the

input grids. For example, the aggregate function Max, applied as a local operator

takes several input grids and generates a new one where the value of each cell c is

calculated as the maximum value at the same cell position, among all the input

grids. Focal operators receive a field and a region (represented as a contiguous

group of cells), and generate a new grid where the value at each cell is calculated

by summarizing with some function the values of the neighbor cells in the input

grid. For example, the Max function applied as a focal operator takes an input

grid and generates a new one where the value at each cell c is the maximum

value among the neighboring cells of c in the input grid. The neighborhood can

take any form, such as a square, rectangle, circle, surrounding each cell. Finally,

Zonal operators receive two input raster data fields, such that one of them plays

a reference role, and produce a table where all the values of the cells in the non-

referential grid are summarized (taking into account the values in the referential

field) using some function. That means, those cells with the same value determine

a zone. Note that this operator causes the algebra to be not closed, since it receives

fields but produces a table.

For example, the Max function could be applied as a zonal operator summa-

rizing values in cells of the non-referential grid that are not necessary contiguous,

but which have the same characteristic (e.g., they belong to the same country).

Map Algebra operators have been implemented in different GIS (Geographic

Information Systems), like ArcGIS1.

Mennis and Viger [37] generalized the concept of Map Algebra, adding the

temporal dimension. More recently, Mennis [36] proposed the Multidimensional

Map Algebra, an extension of Map Algebra that allows working with raster data

of different dimensionality. The proposal also discusses the local, focal, and zonal

operators in this mixing of raster data and how to define neighborhoods and lags.

For example, a Grid and a 4-D HyperCube can participate of operations. However,

the proposal is restricted to raster data.

1http://www.esri.com/software/arcgis/index.html

http:// www.esri.com/software/arcgis/index.html
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Regarding continuous data representation, the main drawback of the raster

model is that the value assigned to a cell may represent many sampled points (i.e.,

the actual sampled values are lost). That means, the space is arbitrary partitioned

(technically, tessellated) without considering the sampled points. Therefore, alter-

natives to raster data have been discussed in the literature. For example, Ledoux

and Gold [30] argue that using Voronoi diagrams for representing fields has several

advantages, and they redefine the local, focal and zonal operations when space is

tessellated using Voronoi diagrams.

Later, Ledoux [52] proposed a solution for creating a three-dimensional discrete

Voronoi diagram and discussed its implementation. A Voronoi based Map Algebra

is defined only for this field representation, not allowing mixing fields of different

kind or dimensionality. Other discrete representation exist (like TIN, mentioned

in Section 1). We are not aware of any algebra supporting TIN.

2.4 Summary

In this section we have given a brief overview of the main topics addressed in

this thesis: Online Analytical Processing (OLAP) and the conceptual and logical

data models and query language for it. We also quickly reviewed spatial databases,

and spatial OLAP. Finally, we provided a quick overview of continuous fields and

the map algebra. In the next section, we introduce our conceptual model, which

views a data warehouse as a data cube, agnostic of any kind of data type.



Chapter 3

A Formal Model for Data Cubes

We have already explained that in the multidimensional model, data are per-

ceived as a data cube whose axes are dimensions along which facts are analyzed.

Each coordinate in this cube is associated with one or more measures, altogether

representing a fact. In addition, each dimension is organized as a hierarchy of

levels, which allows to visualize data at different levels of aggregation. In this

chapter we formalize the notion of a data cube, and give a precise semantics for

it. Like in database theory, and following the usual approach in data warehouse

literature, we define cubes as composed of a schema, which defines the structure,

and instances, which represent the actual data.

3.1 Dimension Schema and Instance

We start by defining the notion of dimensions.

Definition 1 (Dimension Schema). A dimension schema is a tuple 〈nameD,L,→〉

where:

(a) nameD is a literal that identifies the dimension

(b) L is a finite set of tuples 〈namel,Al〉, called levels, where namel identifies uni-

vocally a level in L, and Al = 〈a1, . . . , am〉 is a tuple of attribute names of

the level, called level descriptors, each one of them having domain Dom(aj),

1 ≤ j ≤ m

28
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(c) 〈L,→〉 denotes a bounded lattice (that is, a lattice with a unique bottom level

and a unique top level) where→ is a partial order that defines the aggregation

relation (from now, rollup relation) between pairs of levels of L

(d) The top level of L is 〈All, 〈all〉〉.

Remark 1. For simplicity, we refer to a level 〈namel,Al〉 using only its name

namel. For example, the level 〈Day,〈date, dayOfWeek〉〉 is named Day.

Remark 2. To avoid ambiguity, each attribute is prefixed with the name of its

corresponding dimension and its corresponding level. For example, if the descrip-

tor name is used for both District and Province levels in a BlockDim dimension,

when it appears in expressions its complete path must be expressed as, i.e., Block-

Dim.Province.name and BlockDim.District.name. Otherwise, if the descriptors for

Province and District are provName and distName, respectively, they are unique

and it is not necessary to add a prefix. In what follows, we will use the full path

format when needed.

For the rest of the document, the following sets apply: S is the set of Strings,

I is the set of Integers, R is the set of Reals, G is the set of Degrees, D is the set

of Dates, T is the set of Timestamps, P2D is the set of de 2D polygons, P3D is the

set of de 3D polygons.

Example 1 (TimeDim Dimension Schema). The schema of the TimeDim dimension

is defined next.

〈TimeDim, {〈Day, 〈date, dayOfWeek〉〉, 〈Month, 〈month〉〉, 〈Year, 〈year〉〉, 〈All, 〈all〉〉},

→〉, where:

• The order of the lattice is given by Day→Month, Month →Year, Year→All

• Dom(date) = S, Dom(dayOfWeek) = S, Dom(month) = S, Dom(year) = I

Figure 3.1 shows the lattice graphically.
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Figure 3.1: TimeDim dimension lattice.

Example 2 (BlockDim Dimension Schema). We next describe the design of the

BlockDim dimension.

〈BlockDim, {〈Block, 〈idBlock, bGeom〉〉, 〈District, 〈dName, dGeom〉〉,

〈Province, 〈pName, pGeom〉〉, 〈Region, 〈rName, rGeom〉〉,

〈Grape, 〈gName〉〉, 〈GrapeType, 〈gType〉〉, 〈All, 〈all〉〉},→〉, where

• The lattice is Block→District, District→Province, Province→Region, Region→All,

Block→Grape, Grape→GrapeType, GrapeType→All.

• Dom(idBlock) = I, Dom(dName)=S, Dom(pName)=S, Dom(rName)=S,

Dom(bGeom)=P2D, Dom(dGeom)=P2D, Dom(pGeom)=P2D, Dom(rGeom)=P2D,

Dom(gName)=S, Dom(gType)=S.

Figure 3.2 shows the lattice graphically.

In order to instantiate the dimension schema, each level descriptor is populated

with actual elements belonging to its domain. Besides, the relations among the

members must respect the partial order given by the lattice.

Definition 2 (Dimension Instance). A dimension instance of a dimension schema

〈nameDS,L,→〉 is a tuple of the form 〈〈nameDS,L,→〉, TL,R〉 such that:
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Figure 3.2: BlockDim dimension lattice.

(a) A finite set TL of tuples of the form 〈v1, v2, . . . , vnl
〉 ∀L = 〈L, 〈ai . . . an〉〉 ∈ L

such that ∀i, i = 1 . . . n, vi ∈ Dom(ai). The tuples of each level are called

members of this level. The level All has the unique member 〈all〉

(b) A set R of functions Rup
Lj

Li
: TLi → TLj, ∀Li, Lj ∈ L, such that Li → Lj in the

lattice 〈L,→〉, i.e. each Rup
Lj

Li
maps members of Li to members of Lj.

Each Rup
Lj
Li

must be a total function, in order to satisfy the summarizability

condition [32, 35]:

1. Many-to-many associations must not be used.

2. Existing many-to-one associations among levels must be total, i.e., all values

contributing to the coarser level must be assigned to some member at the

higher level. This condition can be enforced by including an additional value

‘dummy member’ which assigns a father to members lacking one at a coarser

level.

3. There must be no missing values.
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Remark 3. Although at the conceptual level a level member is identified with all

of its attributes, in an actual implementation a memberID can be used.

Example 3 (TimeDim Dimension Instance). A possible instance for the TimeDim

Dimension schema given in Example 1 is:

• TDay = {〈‘2007-01-01’, ‘Mon’〉, . . . , 〈‘2011-12-31’, ‘Sat’〉}

• TMonth = {〈‘Jan-2007’〉, 〈‘Feb-2007’〉, . . . , 〈‘Dec-2011’〉}

• TYear = {〈2007〉, 〈2008〉, 〈2009〉, 〈2010〉, 〈2011〉}

• TAll = {〈all〉}

• R = {RupMonth
Day ,RupYear

Month,RupAll
Year} , with

– RupMonth
Day = {(〈‘2007-01-01’, ‘Mon’〉, 〈‘Jan-2007’〉), . . .

. . . , (〈‘2011-12-31’, ‘Sat’〉, 〈‘Dec-2011’〉)}

– RupYear
Month = {(〈‘Jan-2007’〉, 〈2007〉), . . . , (〈‘Dec-2011’〉, 〈2011〉)}

– RupAll
Year = {(x, 〈all〉)|x ∈ TYear)}

Figure 3.3 shows part of the members and their rollup relation.

Example 4 (BlockDim Dimension Instance). At the time of the independence

of Belgium from the Netherlands in 1830, the Belgian territory was composed

of nine provinces: Hainaut, Namur, Luxenbourg, Liege, West-Vlaanderen, Oost-

Vlaanderen, Antwerpen, Limburg and Brabant. In 1920, Belgium was transformed

from a unitary state to a federal state with regions and finally, in 1955, Brabant was

split into two provinces (Vlaams Brabant and Wallon Brabant), and the Brussels-

Capital region, avoiding the inclusion of a province in more than one region (see

Figure 3.4). Thus, Hainaut, Namur, Luxenbourg, Liege and Vlaams Brabant be-

long to Region-Wallon, and West-Vlaanderen, Oost-Vlaanderen, Antwerpen, Lim-

burg and Wallon Brabant belong to region Vlaams-Gewest. Brussels-Capital re-

gion is not a province, it is a region without provinces and with exactly one district

that coincides with the region.
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Figure 3.3: Members of a TimeDim Dimension instance.

In the case of the Brussels-Capital region, which has no provinces, we guarantee

the summarizability conditions by introducing a dummy province ‘Virtual Brussels’

such that the Brussels district rolls-up to this ‘Virtual Brussels’ province and this

dummy province rolls-up to Brussels Capital region. This is to avoid having lagged

hierarchies.

Figure 3.4: Brabant province overlapping three regions.

In this context, a possible instance for the BlockDim Dimension given in Ex-

ample 2 may be:

• TBlock = {〈35001, g35001〉,. . . , 〈38543, g38543〉}
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• TDistrict = {〈‘Arlon’, g101〉, 〈‘Louvain’, g102〉,. . . , 〈‘Brussel’, g127〉}

• TProvince = {〈‘Antwerp’, g11〉, . . . , 〈‘Virtual Brussel’, g00〉}

• TRegion = {〈‘VlaamsGewest’, g1〉, 〈‘Brussel-Capital’, g2〉, 〈‘Wallone’, g3〉}

• TGrape = {〈‘cabernet sauvignon’〉, 〈‘chardonnay’〉, . . . , 〈‘riesling’〉}

• TGrapeType = {〈‘red’〉, 〈‘white’〉}

• TAll = {〈all〉}

• R = {RupDistrict
Block , RupProvince

District , RupAll
Province , RupGrape

Block , RupGrapeType
Grape ,

RupAll
GrapeType}, with

– RupDistrict
Block = {(〈35001, g1〉, 〈‘Arlon’, g101〉), . . .

. . . , (〈38543, g3543〉, 〈‘Mechelen’, g127〉)}

– RupProvince
District = {(〈‘Louvain’, g102〉, 〈‘Brabant’, g12〉), . . .

. . . , (〈‘Brussel’, g127〉, 〈‘Virtual Brussel’〉)}

– RupRegion
Province = {(〈‘Antwerp’, g11〉, 〈‘VlaamsGewest’, g1〉), . . .

. . . , (〈‘Wallon Brabant’, g12〉, 〈‘Wallone’, g1〉), . . .

. . . , (〈‘Virtual Brussel’, g00〉, 〈‘Brussel-Capital’, g2〉)}

– RupAll
Region = {(x, 〈all〉)|x ∈ TRegion)}

– RupGrape
Block = {(〈35001, g1〉, 〈‘cabernet sauvignon’〉), . . . , }

– RupGrapeType
Grape = {(〈‘riesling’〉, 〈‘white’〉), (〈‘malbec’〉, 〈‘red’〉), . . . , }

– RupAll
GrapeType = {(x, 〈all〉)|x ∈ TGrapeType)}

Figure 3.5 shows part of the members and their rollup relation graphically.

From now, A is a set of aggregation functions that includes the typical SQL

aggregation functions, i.e. Max, Min, Sum, Avg, Count, plus possible user-

defined functions.
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Figure 3.5: Members of a BlockDim Dimension instance.

3.2 Data Cube Schema and Instances

We are now ready to define the notion of data cube.

Definition 3 (Cube Schema). A cube schema is a tuple 〈nameC,D,M〉 such that:

(a) nameC is the name of the Cube

(b) D is a finite set of dimension schemas (see Definition 1)

(c) M is a finite set of attributes, where each element, called measure, m ∈ M

has domain Dom(m)

(d) A function F : M → A maps each measure in M to an aggregate function

in A, i.e., each measure has exactly one aggregate function associated to it.
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Remark 4. The aggregate function associated to a measure must be selected ac-

cording to the domain of the measure. For example, it makes no sense to associate

the Avg function to a measure with domain String. We explain this in Section

3.3.

Example 5 (Vineyard Cube schema). We define the cube schema 〈Vineyard,

{TimeDim, BlockDim}, {Harvest}〉, by considering the dimension in Examples 1

and 2, and the measure harvest with Dom(harvest)= I and Sum ∈ A as its associ-

ated aggregate function.

In order to define a cube instance, we need first to introduce some concepts. In-

tuitively, a cube instance contains measure values for all the possible combinations

of the members corresponding to the levels of the dimensions included in the cube

schema. That means, if we have a cube with dimensions D1 (with levels A and B),

and D2 (with levels C and D), and a measure M, for which an aggregate function

f applies, we can consider this cube as the union of smaller cubes, whose axes are

AC, AD, BC, BD, and so on. Each of these cubes are called cuboids. The following

definition spells out the above, and shows how the cuboids are populated.

Definition 4 (Cuboid Instance). Given a cube schema 〈C,D,M〉 where |D| = D

and |M| = M , and a dimension instance Ii for each Di ∈ D, ∀i, i = 1 . . . D, and

a set VCb={l1, l2, . . . , lD} where li is a level ∈ Li of Di, ∀i, i = 1 . . . D, such that

there are not two levels belonging to the same dimension, a cuboid instance Cb is a

partial function Cb:Tl1 × · · · × TlD → Dom(m1) × · · ·× Dom(mM) where mk ∈M,

∀k, k = 1 . . .M . The elements in the domain of Cb are named cells, and VCb is

called the set of levels of the cuboid.

Definition 4 allows to instantiate the cuboids with dimension members and

measure values. For example, if we consider a cuboid composed by the bottom

levels of all the dimensions in D, a valid instantiation would assign a value of each

measure to any combination of the members in the bottom level of the dimension,

as the next example shows.



37

Example 6 (Cuboid Instance). Consider the cube schema Vineyard defined in

Example 5. Using the dimension instances of Examples 3 and 4 and the fact values

of the grape harvest in Belgium from 2007 to 2011, we instantiate the cuboid Vy−r

with VVy−r={Year, Region}. Figure 3.6 shows the two most common visualization

of this cuboid, namely spatial and tabular.

For the rest of this work, we will use the tabular representation with the follow-

ing notation: the first row lists the schema dimensions, the second row indicates

each dimension level and the aggregation functions for measures, and the third

row gives the level descriptors and the measures. The rest of the rows lists the

cells of the cuboid.

(a) Spatial representation

TimeDim BlockDim Measures
Year Region (Sum)
year rName, rGeom harvest
〈2007〉 〈‘RegionWallone’, g3〉 22000
〈2007〉 〈‘VlaamsGewest’, g1〉 22600
〈2008〉 〈‘RegionWallone’, g3〉 23300
〈2008〉 〈‘VlaamsGewest’, g1〉 22700
〈2009〉 〈‘RegionWallone’, g3〉 23000
〈2009〉 〈‘VlaamsGewest’, g1〉 22800
〈2010〉 〈‘RegionWallone’, g3〉 22600
〈2010〉 〈‘VlaamsGewest’, g1〉 23800
〈2011〉 〈‘RegionWallone’, g3〉 22800
〈2011〉 〈‘VlaamsGewest’, g1〉 23800
〈2011〉 〈‘BrusselsCapital’, g2〉 19000

(b) Tabular representation

Figure 3.6: Two user visualizations of cuboid
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Definition 5 (Adjacent Cuboids). Two cuboids Cb1 and Cb2, responding to the

same cube schema, are adjacent if their set of levels VCb1 and VCb2 differ in exactly

one element, i.e. they differ in exactly one level.

Example 7 (Adjacent Cuboids). Consider the cube schema given in Example 5,

and the cuboids Cb1, Cb2 and Cb3 given by VCb1 ={Day, District}, VCb2 ={Day,

Region} and VCb3 ={Month , Region}, respectively. According to the definition

5, Cb1 is adjacent to Cb2 and Cb2 is adjacent to Cb3, but Cb1 is not adjacent to

Cb3.

Definition 6 (Order between Adjacent Cuboids). Given two adjacent cuboids Cb1

and Cb2 such that the difference between their set of levels is given by lp ∈ VCb1

and lq ∈ VCb2 where lp and lq are levels of the lattice 〈L,→〉 of the dimension Dk

such that lp → lq, then Cb1 � Cb2.

Moreover, for each pair of adjacent cuboids Cb1 � Cb2, a cell c in Cb2, c =

(c1, . . . , ck−1, ck, ck+1, . . . , cn,m1,m2, . . . ,ms), is obtained from all the cells in Cb1

as follows: (c1, . . . , ck−1, bk1, ck+1, . . . , cn,m1,1,m1,2 . . . ,m1,s), . . . , (c1, . . . , ck−1, bk2,

ck+1, . . . , cn,m2,1,m2,2, . . . ,m2,s), . . . , (c1, . . . , ck−1, bkp, ck+1, . . . , cn,mp,1, mp,2, . . . ,

mp,s); where Rup
lk2
lk1

(bki) = ck, i = 1..p, that means, all the elements bki in level lk1

in dimension k roll-up to ck in level lk2 in the same dimension, and the measures

in the cell c in Cb2 are obtained as mi = Faggi(mi,1, . . . ,mi,p), where Faggi is

the aggregate function associated to measure mi.

Example 8 (Order between Cuboids). Consider the cuboids in Example 7, Cb1 �

Cb2 because District → Region holds, and Cb2 � Cb3 because Day → Month holds.

Example 9 (Order between Cuboids: instances). Assume a two-dimensional data

cube with dimensions Geom and Time. Consider also a cuboid Cb1, with dimension

levels (axes) Region and Day, and cells representing production at region ri at day

di. The cells are as follows: (r1, d1, 10), (r1, d2, 10), (r1, d3, 10), (r1, d4, 10). The
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other cells are similar, that means, (r2, d1, 10), (r2, d2, 10), (r2, d3, 10), (r2, d4, 10),

and so on. Consider now a cuboid Cb2, with axes Region and Month, that means,

Cb1 and Cb2 are adjacent, and Cb1 � Cb2. Assume also that d1 and d2 roll-up to

m1 and d3 and d4 roll-up to m2, respectively. In the cuboid Cb2, the cells will be

(r1,m1, 20), (r1,m2, 20), (r2,m1, 20), (r2,m2, 20), and so on.

Definition 7 (Bottom Cuboid). We denote bottom cuboid the cuboid whose set

of levels is composed of the bottom levels of each participating dimension.

In general, when facts are defined at the finest granularity for all participating

dimensions, the bottom cuboid will contain the facts.

Definition 8 (Top Cuboid). We denote top cuboid the cuboid whose set of levels

is composed of the level All of each participating dimension. That means, the

instance of the top cuboid will contain the all element in all of its dimensions.

Example 10 (Bottom and Top Cuboids). Given the cube schema defined in Ex-

ample 5, its bottom cuboid is defined by the set {Day, Block} and its Top cuboid

is defined by the set {All, All}.

Given the former definitions, the semantics of a data cube is given as follows.

Definition 9 (Cube Instance). Given a cube schema 〈C,D,M〉 such that |D| = D

and |M| = M , and a dimension instance Ii for each Di ∈ D, i = 1 . . . D, a cube

instance CI is the lattice 〈CB,�〉 where CB is the set of all its possible cuboids

and � is the order between adjacent cuboids in CB.

Property 1 (Bounded Lattice). The lattice of cuboids 〈CB,�〉 of a cube instance

CI, is a bounded lattice (i.e., a lattice with an unique bottom level and a unique top

level) where the unique bottom element is the bottom cuboid of CI, and the unique

top element is the top cuboid of CI.

Given a cube instance CI responding to the schema 〈CI,D,M〉 such that |D| =
D, the total number of cuboids in CI is given by

∏
i=1...D(#Di) where #Di is the

number of levels of the dimension Di ∈ D.
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Example 11 (Cuboids of Vineyard). Consider the cube schema Vineyard defined

in Example 5. We instantiate its cuboids with the dimension instances of Ex-

amples 3 and 4, and the fact values of the grape harvest in Belgium from 2007

to 2011. Figure 3.7 shows part of the lattice of its twenty eight cuboids. Fig-

ures 3.8(a), 3.8(b) and 3.8(c) show a detailed tabular visualization of the cuboids

Vmonth−block,Vmonth−grape and Vyear−region of the cube instance Vineyard correspond-

ing to the sets of levels VVmonth−block
={Month,Block}, VVmonth−grape

={Month,Grape} and

VVyear−region
={Year,Region}, respectively.

(a)

Figure 3.7: Lattice of the cuboids in the Vineyard instance.
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TimeDim BlockDim Measures
Month Block (Sum)
month idBlock, bGeom harvest
〈Aug-07〉 〈35001, g35001〉 7200
〈Aug-07〉 〈35002, g35002〉 7500
〈Sep-07〉 〈35003, g35003〉 7300
〈Sep-07〉 〈35004, g35004〉 7200
〈Sep-07〉 〈35005, g35005〉 7400
〈Oct-07〉 〈35006, g35006〉 8000
〈Aug-08〉 〈35001, g35001〉 7800
〈Aug-08〉 〈35002, g35002〉 7600
〈Aug-08〉 〈35003, g35003〉 7900
〈Sep-08〉 〈35004, g35004〉 8100
〈Sep-08〉 〈35005, g35005〉 7500
〈Nov-08〉 〈35006, g35006〉 7100
〈Aug-09〉 〈35001, g35001〉 7200
〈Aug-09〉 〈35002, g35002〉 7800
〈Aug-09〉 〈35003, g35003〉 8000
〈Sep-09〉 〈35004, g35004〉 7800
〈Sep-09〉 〈35005, g35005〉 7400
〈Oct-09〉 〈35006, g35006〉 7600
〈Aug-10〉 〈35077, g35001〉 7500
〈Aug-10〉 〈35078, g35001〉 7400
〈Sep-10〉 〈35079, g35001〉 7700
〈Sep-10〉 〈35084, g35004〉 8100
〈Oct-10〉 〈35085, g35005〉 7900
〈Oct-10〉 〈35086, g35006〉 7800
〈Aug-11〉 〈35077, g35001〉 7500
〈Aug-11〉 〈35078, g35001〉 7500
〈Aug-11〉 〈35079, g35001〉 7800
〈Sep-11〉 〈35084, g35004〉 7900
〈Sep-11〉 〈35085, g35005〉 8000
〈Nov-11〉 〈35086, g35006〉 7900

(a) Cuboid Vmonth−block

TimeDim BlockDim Measures
Month Grape (Sum)
month gName harvest
〈Aug-07〉 〈kerner〉 14700
〈Sep-07〉 〈kerner 〉 7300
〈Sep-07〉 〈chardonnay〉 14600
〈Oct-07〉 〈chardonnay〉 8000
〈Aug-08〉 〈kerner〉 23300
〈Sep-08〉 〈chardonnay〉 15600
〈Nov-08〉 〈chardonnay〉 7100
〈Aug-09〉 〈kerner〉 23000
〈Sep-09〉 〈chardonnay〉 15200
〈Oct-09〉 〈chardonnay〉 7600
〈Aug-10〉 〈pinot blanc〉 14900
〈Sep-10〉 〈pinot blanc〉 7700
〈Sep-10〉 〈pinot noir〉 8100
〈Oct-10〉 〈pinot noir〉 15700
〈Aug-11〉 〈pinot blanc〉 22800
〈Sep-11〉 〈pinot noir〉 15900
〈Nov-11〉 〈pinot noir〉 7900

(b) Cuboid Vmonth−grape

TimeDim BlockDim Measures
Year Region (Sum)
year rName, rGeom harvest
〈2007〉 〈Region-Wall one, g3〉 22000
〈2007〉 〈VlaamsGewest, g1〉 22600
〈2008〉 〈Region-Wall one, g3〉 23300
〈2008〉 〈VlaamsGewest, g1〉 22700
〈2009〉 〈Region-Wall one, g3〉 23000
〈2009〉 〈VlaamsGewest, g1〉 22800
〈2010〉 〈Region-Wall one, g3〉 22600
〈2010〉 〈VlaamsGewest, g1〉 23800
〈2011〉 〈Region-Wall one, g3〉 22800
〈2011〉 〈VlaamsGewest, g1〉 23800

(c) Cuboid Vyear−region

Figure 3.8: Three cuboids of the Vineyard instance.

3.3 Data Types for Level Descriptors and Measures

The definition of the domain for measures and level descriptors is very impor-

tant because it restricts the operations that can be applied over the instances. In

our model, besides the typical well known data types (integer, float, string, date),

more complex data types may be used, like geometries, moving objects, etc., with

their corresponding functions. For example, if the domain of a measure or level de-

scriptor is float, all the operations over real numbers can be applied. Otherwise, if

the domain of a measure or level descriptor are the strings, the subtract operation
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is not allowed. Moreover, if a moving object1 type [21] is defined for the domain of a

measure or level descriptor M, queries like M.trajectory.projectionXY.length() ≤ 400

are possible.

It is very important to point out that if a function F with signature F : A→ B

is applied to a measure or a member of a descriptor level with domain A, the

possible operations over the element obtained are given by the data type of B. See

Example 12.

We considered above the data type of the domain. However, there exists an-

other point worth considering, namely the order of that data into the domain.

Domains can be classified into ordinal and nominal. This restricts the possible

operations on the data belonging to these kinds of domains. An ordinal domain

is composed of values with an inherent order among them, although the distance

between pairs of them may be unknown. For instance, the domain {Low, Medium,

High} represents the grading scale of a course. A nominal domain is composed of

arbitrary values and there is no specific order among them, i.e., only a distinctive

categorization is given. For example, the domain {male, female}. See Example 13.

Example 12 (Domains and Functions). We know the level descriptor ‘rGeom’

in the Region level of BlockDim of Example 4 is not ordinal, but if the function

Area, with signature Area : P2D → R is applied, we can ask relational queries over

the resulting data, as Real is an ordinal domain. Thus, although we cannot ask

rGeom ≥ Paris, the query Area(rGeom) ≥ Area(Paris) is possible.

Example 13 (Nominal and Ordinal Domains). The descriptor date in the Day

level of TimeDim in Example 3 is ordinal, we can ask for date ≥ 2011-07-18 and

date ≤ 2011-07-24. On the contrary, if p is a level descriptor with domain Point2D,

we can not ask for p ≥ Point(1, 5), since Point2D is not an ordinal domain, but we

can ask for p= Point(1, 5) or p IN {Point(3, 6),Point(1, 5),Point(8,12)}.

In the present model, we consider the ordinal domains Integer, Real, Date and

String, and the non ordinal domains Vector and Geometry. These data types can

1A moving object is an object that changes its position (in general, continuously) in time and
space (for example a car).
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be used for both, measure domains and level descriptor domains. In the case of

Vector, each component may be treated according to its domain. To denote the

component i of a vector V we write V[i].

3.4 Summary

In this chapter we have presented the data model we will use in the remainder,

following the usual approach of considering database objects as composed of a

schema and instances. Thus, we consider a data cube as composed by a schema

and instances. Further, each dimension has in turn a schema and instances. Im-

portantly, to define the semantics of the data cube we considered a data cube

instance as a collection of its subcubes, denoted cuboids. There is an order be-

tween cuboids, defined by the hierarchies of the dimensions that compose the cube.

This conforms a lattice of cuboids, which in the next chapter we will use to provide

a precise semantics of the operations that we will define over the cubes.



Chapter 4

The Cube Algebra

In this chapter, we formally define the algebra operations supporting the data

model introduced in Chapter 3. We identify two classes of operations: (a) op-

erations that preserve the cube instance of the cuboids where they are applied,

which we denote instance preserving operations ; (b) operations that generate a

new cube instance, which we denote instance generating operations. The Roll-up

and Drill-down operations belong to the first class, whereas Dice, Slice and

Drill-across belong to the second one. We detail each of them in this chap-

ter and provide a precise semantics using the theoretical concepts introduced in

the previous chapter, particularly the notion of cube lattice. In addition, we pro-

vide algorithms to produce the new instances induced by the instance generating

operations.

4.1 Instance Preserving Operations

The Instance Preserving Operations (IPO) preserve the cube instance of the

cuboid received as an input parameter. They act like ‘navigators’ within the lattice

of cuboids. Roll-Up and Drill-down are IPO. These operators receive a cuboid

belonging to an instance, and return another cuboid in the same instance.

In what follows we use the following sets: C is the set of all the cuboids, D is

the set of all the dimensions, M is the set of all the measures, L is the set of all the

dimension levels, B is the set of all the boolean expressions over level descriptors

and measures.

44
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4.1.1 Roll-up Operator

The Roll-up operator is a function with signature Roll-up : C×D×L→ C,

that aggregates measures up to a given level within a dimension hierarchy by using

the corresponding Rup function given in the instance of the input dimension.

Definition 10 (Roll-up Operator). Given a cube instance CI with schema 〈CS,Din,

Min〉, a cuboid Cin ∈ CI, a dimension D ∈ Din, two levels lin and L of D such that

lin ∈ VCin
and lin →∗ L in 〈L,→〉, Roll-up(Cin,D, L) returns a cuboid Cout ∈ CI

such that VCout=(VCin
− {lin}) ∪ {L}. Notice that Cin � Cout in the lattice CI.

Example 14 (Roll-up operator). Consider the cuboid Vmonth−grape of the Vine-

yard instance given in Example 11, which is depicted in Figure 4.1. If we apply

Roll-up(Vmonth−grape,TimeDim,Year) the resulting cuboid Vyear−grape is shown in

Figure 4.2. Notice that the value of harvest has been aggregated using the func-

tion Sum associated to the measure. Figure 4.3 depicts the cuboid that results

of applying Roll-up(Vyear−grape,BlockDim,GrapeType) (a roll-up to GrapeType).

Finally, in Figure 4.4 we can see the top cuboid resulting of rolling-up to level All

in every dimension.

TimeDim BlockDim Measures
Month Grape (Sum)
month gName harvest
〈Aug-07〉 〈kerner〉 14700
〈Sep-07〉 〈kerner 〉 7300
〈Sep-07〉 〈chardonnay〉 14600
〈Oct-07〉 〈chardonnay〉 8000
〈Aug-08〉 〈kerner〉 23300
〈Sep-08〉 〈chardonnay〉 15600
〈Nov-08〉 〈chardonnay〉 7100
〈Aug-09〉 〈kerner〉 23000
〈Sep-09〉 〈chardonnay〉 15200
〈Oct-09〉 〈chardonnay〉 7600
〈Aug-10〉 〈pinot blanc〉 14900
〈Sep-10〉 〈pinot blanc〉 7700
〈Sep-10〉 〈pinot noir〉 8100
〈Oct-10〉 〈pinot noir〉 15700
〈Aug-11〉 〈pinot blanc〉 22800
〈Sep-11〉 〈pinot noir〉 15900
〈Nov-11〉 〈pinot noir〉 7900

Figure 4.1: Cuboid Vmonth−grape of Vineyard.
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TimeDim BlockDim Measures
Year Grape (Sum)
year gName harvest
〈2007〉 〈kerner〉 22000
〈2007〉 〈chardonnay〉 22600
〈2008〉 〈kerner〉 23300
〈2008〉 〈chardonnay〉 22700
〈2009〉 〈kerner〉 23000
〈2009〉 〈chardonnay〉 22800
〈2010〉 〈pinot blanc〉 22600
〈2010〉 〈pinot noir〉 23800
〈2011〉 〈pinot blanc〉 22800
〈2011〉 〈pinot noir〉 23800

Figure 4.2: Roll-up(Vmonth−grape,TimeDim,Year)

TimeDim BlockDim Measures
Year GrapeType (Sum)
year gType harvest
〈2007〉 〈white〉 44600
〈2008〉 〈white〉 46000
〈2009〉 〈white〉 45800
〈2010〉 〈white〉 22600
〈2010〉 〈red〉 23800
〈2011〉 〈white〉 22800
〈2011〉 〈red〉 23800

Figure 4.3: Roll-up(Vyear−grape,BlockDim,GrapeType),

TimeDim BlockDim Measures
All All (Sum)
all all harvest
〈all 〉 〈all 〉 229400

Figure 4.4: Vtop after rolling-up to All in every dimension.

4.1.2 Drill-down Operator

The Drill-down operator is a function with signature Drill-down : C ×
D×L→ C, that disaggregates measures down to a given level within a dimension

hierarchy by using the corresponding Rup function given in the instance of the

input dimension.

Definition 11 (Drill-down). Given a cube instance CI with schema 〈CS,Din,Min〉,

a cuboid Cin ∈ CI, a dimension D ∈ Din, two levels lin, L ∈ D such that lin ∈ VCin

and L →∗ lin in 〈L,→〉, Drill-down(Cin,D, L) returns a cuboid Cout ∈ CI such

that VCout=(VCin
− {lin}) ∪ {L}. Notice that Cout � Cin in the lattice CI.
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Example 15 (Drill-down operator). Given the cuboid Vyear−grape of Figure 4.2,

the result of Drill-down(Vaux,TimeDim,Month) is the cuboid in Figure 4.1.

It is important to point out that, unlike the approach of Agrawal et al. [4], the

Drill-down operation of Definition 11 is not a single undo from a previous Roll-up,

since our Algebra allows nested operators. We explain this in detail in Chapter 9.

4.2 Instance Generating Operators

The Instance Generating Operators (IGO) build a new cube instance to which

the resulting cuboid belongs to. Dice, Slice and Drill-across are IGO. In

other words, the result of an IGO is a cuboid which induces a new cube instance.

In what follows we be also using in our examples a cube denoted Drinks, rep-

resenting the consumption of drinks in bars and the sales of drinks in markets

between 2008 and 2011, both in litres per person.

The schema of the Drinks cube is 〈Drinks, {TimeDim,ZoneDim,ProductDim},
{consumption, sales}〉. Both measures, consumption and sales have associated the

aggregate function Avg ∈ A. The dimension lattices are shown in Figure 4.5.

(a) TimeDim lattice (b) ZoneDim lattice (c) ProductDim lattice

Figure 4.5: Dimension lattices of Drinks cube schema.

4.2.1 Dice Operator

The Dice operator is a function with signature Dice : C×B→ C that selects

the values in dimensions or measures that satisfy a boolean condition.
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Definition 12 (Dice). Given a cube instance CI with schema 〈CS,Din,Min〉, a

cuboid Cin ∈ CI, and a boolean condition φ over the measures ofMin, and/or the

level descriptors of the levels in VCin
, Dice(Cin, φ) returns a new cuboid Cout ∈ C,

as follows:

(a) ci = (ci1 , . . . , cin ,mi1 , . . . ,mis) ∈ Cout if ∃cj = (cj1 , . . . , cjn ,mj1 , . . . ,mjs) ∈ Cin

and cip = cjp∀p = 1 . . . n, and miq = mjq∀q = 1 . . . s, and cj satisfies φ

(b) VCout=VCin

The boolean condition φ must satisfy certain syntax rules (according to Ex-

tended Backus-Naur Form) and it must also be checked semantically in order to

detect domain consistency. That is, φ must be coherent with the data type do-

mains of the measures and descriptors. These syntax and semantic aspects will be

explained in Chapter 9. Example 16 shows some possible boolean conditions.

Since Dice is an IGO, Cout induces a new cube instance CIout such that Cout ∈

CIout. Algorithm 1 computes this instance. It starts cloning the lattice of cuboids

CIin, i.e., creating a lattice of cuboids with the same schema and instance. Since

the algorithm needs to remember the collection of recalculated nodes, it marks

all the cuboids of Cout as ‘not visited’, and during the process each recalculated

node is marked as ‘visited’. First, the bottom cuboid of CIout is recalculated by

eliminating all the cells which aggregate to the removed cells in Cin. Then, all the

cuboids are recalculated by propagating the aggregation of the cells of each cuboid.

This aggregation is computed based on the Rup function between the members of

levels for each pair of adjacent cuboids (see Definition 2), such that the preceding

cuboid has been calculated previously (‘visited’). The algorithm stops when all

the cuboids are marked as ‘visited’.

Remark 5. When Dice is applied to a cuboid, it is very important that all the

cuboids of the lattice CIout change globally, in order to ensure consistency in future

operations. Since both, the bottom cuboid and the top cuboid are reachable from
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any cuboid and they ensure navigability towards any other cuboid, dicing a cuboid

induces a changes in many cuboids in the lattice. For example, if Dice eliminates

the province of ‘Antwerpen’ in the level Province of the dimension BlockDim in a

cuboid, then the districts of ‘Antwerpen’ cannot appear when performing Drill-

down to the District level in the same dimension; analogously, ‘Antwerpen’ cannot

appear when applying a Roll-up to Region. Example 17 illustrates this concept.

Algorithm 1 New cube instance for Dice(Cbin, φ), with Cbin ∈ CI instance

CIout schema← CI schema

CIout instance← CI instance (i.e., clone CI as Cout)

for all cuboid Cbi ∈ Cout do

Set Cbi as Not Visited

In Cbbottom ∈ Cout eliminate all cells ck = (ck1, . . . , ckn,mk1, . . . ,mks) such that

∃cj = (cj1, . . . , cjn,mj1, . . . ,mjs) ∈ Cbin and Roll-up*(ckv) = (cjv) ∀v, v =

1 . . . n

Set Cbbottom as Visited

repeat

if ∃Cbj Not Visited ∈ CIout then

if ∃Cbi Visited ∈ CIout, adjacent to Cbj and Cbi � Cbj then

Recalculate the cells of Cbj as follows:

∀cj = (cj1 , . . . , cjn ,mj1 , . . . ,mjs) ∈ Cbj, mjv = faggv(mi1v , . . . ,mipv),

∀v, v = 1 . . . s, where faggv is the aggregate function associated to mea-

sure mjv, and ∃ ci1 = (ci11 , . . . , ci1n , mi11 , . . . ,mi1s), ci2 = (ci21 , . . . , ci2n ,

mi21 , . . . ,mi2s), . . . , cip = (cip1 , . . . , cipn , mip1 , . . . , mips) ∈ Cbi such that

Roll-up(cikr) = cjr ∀k, k = 1 . . . p, ∀r, r = 1 . . . n

if cj ∈ Cbj aggregates only eliminated tuples of Cbi then

cj must be eliminated too from Cbj

Set Cbj as Visited

until all cuboids of Cout are set as Visited
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Example 16 (Dice conditions). Consider the cube instance Vineyard of Exam-

ple 11. The following Dice conditions are possible:

• φ = harvest ≥ 7000 AND harvest ≤ 8000

• φ = harvest ≤ 7500 OR gType = ‘red’

• φ = TimeDim.Year.year = 2007

• φ = TimeDim.Year.year > 2006 AND TimeDim.Year.year < 2010

• φ = BlockDim.District.distName = ‘Mechelen’ OR BlockDim.District.distName =

‘Leuven’

• φ = SubString(GrapeDim.Variety.gVariety, 1, 1) = ‘p’

• φ = Area(BlockDim.Block.bGeom) ≥ 15000

• φ = MyFun(BlockDim.Block.bGeom, harvest) < 1.8, where MyFun is the

user-defined function MyFun(a, b) = 0.2 ∗ b/Area(a).

Example 17 (Dice Operator). In this example we consider the cube instance

Vineyard-short, a simplified version of the cube Vineyard, in order to reduce the

number of cuboids and make the example more readable. In this simplified cube,

the TimeDim dimension only has the levels Month, Year and All, and its BlockDim

dimension only contains the levels Block, Grape and All. Figure 4.6 shows the new

lattices and Figure 4.7 shows the nine cuboids of Vineyard-short instance.

Consider the cuboid Vmonth−grape in Figure 4.1. Dice(Vmonth−grape, harvest ≥

7.500) returns the cuboid shown in Figure 4.8. Note that cells (〈‘Sep-07’〉,〈‘kerner’〉)

and (〈‘Nov-08’〉,〈‘chardonnay’〉) disappear because their harvests are less than 7.500

(7.300 and 7.100, respectively).

Additionally, a new cube instance Vineyard− shortnew is built following Algo-

rithm 1. Figure 4.9 shows the new cube instance.
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(a) Short TimeDim Dimension (b) Short BlockDim dimension

Figure 4.6: Dimensions lattices of Vineyard-short.

We can see that the new bottom cuboid does not contain the cells (〈‘Sep-

07’〉,〈35003, g35003〉) and (〈‘Nov-08’〉,〈35006, g35006〉), because they agregate to

the eliminated cells in Vmonth−grape.

As a consequence, in the new Vyear−block the cells (〈2007〉,〈35003, g35003〉) and

(〈2008〉,〈35006, g35006〉) have been removed.

On the other hand, in the new Vyear−grape the cells (〈2007〉,〈‘kerner’〉) and

(〈2008〉,〈‘chardonnay’〉) have changed their measures to 14.700 and 15.600 because

the values 7300 and 7300 (corresponding to the deleted cells) are no more aggre-

gated, respectively.

In particular, in the new Vmonth−all the cell (〈‘Nov-08’〉,〈all〉) is deleted because

the eliminated cell (〈‘Nov-08’〉,〈‘chardonnay’〉) in Vmonth−grape was the only one ag-

gregating to it.

Finally, the total measure of the new cuboid Vtop changes its value from 229.400

to 215.000, because the eliminated cells in Vbottom aggregate transitively to it.

In Figure 4.9 the measures with changes respect to the original values are

highlighted in rose.

Notice that it is impossible to apply Dice(Vmonth−grape, year = 2007) because

the descriptor year does not belong to VVmonth−grape
. In order to apply this condition,

a Roll-up to Year level in TimeDim dimension must be applied previously.
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Figure 4.7: The cuboids of Vineyard-short instance.
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TimeDim BlockDim Measures
Month Grape (Sum)
month gName harvest
〈 Aug-07 〉 〈 kerner 〉 14700
〈 Sep-07 〉 〈 chardonnay 〉 14600
〈 Oct-07 〉 〈 chardonnay 〉 8000
〈 Aug-08 〉 〈 kerner 〉 23300
〈 Sep-08 〉 〈 chardonnay 〉 15600
〈 Aug-09 〉 〈 kerner 〉 23000
〈 Sep-09 〉 〈 chardonnay 〉 15200
〈 Oct-09 〉 〈 chardonnay 〉 7600
〈 Aug-10 〉 〈 pinot blanc 〉 14900
〈 Sep-10 〉 〈 pinot blanc 〉 7700
〈 Sep-10 〉 〈 pinot noir 〉 8100
〈 Oct-10 〉 〈 pinot noir 〉 15700
〈 Aug-11 〉 〈 pinot blanc 〉 22800
〈 Sep-11 〉 〈 pinot noir 〉 15900
〈 Nov-11 〉 〈 pinot noir 〉 7900

Figure 4.8: Dice(Vmonth−grape, harvest ≥ 7.500)

4.2.2 Slice Operator

The Slice operator is a function with signature Slice : C × (D ∪M) → C,

that reduces the dimensionality of a cube by removing one of its dimensions or

measures. Following Agrawal et al. [4], the dimensions and the measures of a cube

are interchangeable. Thus, the Slice operator is applicable for eliminating a

dimension when |Din| > 1 or a measure when |Min| > 1.

In the case of eliminating a dimension, the input dimension must contain just

one value in its domain. Therefore, this operator applies a Roll-up to All in

the input dimension prior to slicing it. Notice that if in the dimension to be

eliminated there is just a single value, the application of the Roll-up operator

would introduce no change.

Definition 13 (Slice). Given a cube instance CI with schema 〈CI,Din,Min〉, a

cuboid Cin ∈ CI, and a dimension D ∈ Din such that |Din| > 1 or a measure M

∈Min such that |Min| > 1, according to the input parameters:

(1) Slice(Cin,D) returns a new cuboid Cout ∈ C obtained by removing the di-

mension D in Cin as follows:

(a) ci = (ci1, . . . , cik−1, cik+1 . . . , cin,mi1, . . . ,mis) ∈ Cout if ∃cj = (cj1, . . . ,

cik−1, all, cik+1 . . . , cjn,mj1, . . . ,mjs) ∈ Roll-up(Cin,D,All) and cip =
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Figure 4.9: The cuboids of Vineyard-short after dicing.
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cjp∀p = 1 . . . n, p 6= k and miq = mjq∀q = 1 . . . s

(b) VCout = VCin
− {ld}, where ld is the level in the cuboid corresponding to

the removed dimension D.

(2) Slice(Cin,M) returns a new cuboid Cout ∈ C obtained by removing the mea-

sure M in Cin as follows:

(a) ci = (ci1, . . . , cin,mi1, . . . ,mik−1,mik+1, . . . ,mis) ∈ Cout if ∃cj = (cj1, . . . ,

cjn, mj1, . . . ,mjk−1,mjk,mjk+1, . . . ,mjs) ∈ Cin and mjk corresponds to

M and cip = cjp∀p = 1 . . . n and miq = mjq∀q = 1 . . . s, q 6= k

(b) VCout=VCin

Since Slice is an IGO, Cout induces a new cube instance CIout such that Cout ∈

CIout. Algorithm 2 computes the instance CIout. It first clones the lattice of cuboids

CI, i.e., it creates a lattice of cuboids with the same schema and instance. Then,

the deleted dimension in D or the deleted measure in M are removed from the

schema, and the Slice operator is applied to all the cuboids of CIout.

Algorithm 2 New cube instance for Slice(Cbin, S), with Cbin ∈ CI instance

CIout schema← CI schema

if S is a dimension then

Dout ← Din − {S}

else

Mout ←Min − {S}

CIout instance← CI instance (i.e., clone CI as Cout)

for all cuboid Cbj ∈ Cout do

Slice(Cbj, S)

Remark 6. After a applying the Slice operation to a dimension, the number of

cuboids in CIout is N times lower than the number of cuboids in CIin, where N is
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the number of levels in the lattice L of the dimension D. On the contrary, there is

no change in the number of cuboids after applying Slice to a measure.

Example 18 (Slicing a Dimension). Consider the simplified version of Vineyard-

short given in Example 17. Slice(Vyear−grape, BlockDim), returns the cuboid shown

in Figure 4.10. First, a Roll-up to All over the BlockDim dimension is applied

(obtaining a unique value for the cuboid instance) and then the dimension is elim-

inated. This operation yields a new cube instance, built applying the Algorithm

2. Figure 4.11 shows this new cube instance.

TimeDim Measures
Year (Sum)
year harvest
〈2007〉 44600
〈2008〉 46000
〈2009〉 45800
〈2010〉 46400
〈2011〉 46600

Figure 4.10: Slice(Vyear−grape, BlockDim)

Example 19 (Slicing a Measure). Consider the cuboid Dyear−country−product ∈ Drinks,

shown in Figure 4.12. If we perform Slice(Dyear−country−product, sales), the resulting

cuboid is shown in Figure 4.13.

According to Algorithm 2, Slice induces a new cube instance where the sliced

measure has been removed from all its cuboids.

4.2.3 Drill-across Operator

The traditional Drill-across operator (based on the work of Kimball and

Ross [27]) is a function with signature Drill-across: C×C→ C that basically

performs a join of two cubes in order to give a unified view of their measures. In

simple terms, given two cuboids that are defined over the same dimensions and

contain the same instances (but with different measures), the Drill-across operation

returns a single cuboid with the same dimensions and instances, containing the

union of the measures of both cuboids. As a result, measures coming from different

cuboids can be easily compared because they are displayed together.
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Figure 4.11: The cuboids of Vineyard-short instance after slicing.

Definition 14 (Drill-across). Given two cubes instances CI1 and CI2 with schemas

〈CI1,D,M1〉 and 〈CI2,D,M2〉, respectively, a cuboid C1in ∈ CI1 and a cuboid

C2in ∈ CI2 such that VC1in
=VC2in

, Drill-across(C1in ,C2in) returns a new cuboid

Cout with the dimensions of D and all the measures of C1in and C2in , as follows:

(a) ci = (ci1, . . . , cin, . . . ,mi1, . . . ,mir,mir+1, . . . ,mir+s) ∈ Cout where cp = (cp1,

. . . , cpn, . . . ,mp1, . . . ,mpr) ∈ C1in and cq = (cq1, . . . , cqn, . . . ,mq1, . . . , mqs)

∈ C2in and miu = mpu∀u, u = 1 . . . r and mir+v = mqv∀v, v = 1 . . . s

(b) VCout = VC1in

Since Drill-across is and IGO, Cout induces a new cube instance CIout such

that Cout ∈ CIout. Algortihm 3 builds CIout. It first clones the lattice of cuboids

CI1, i.e., creates a lattice of cuboids with the same schema and instance. Then,
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TimeDim ZoneDim ProductDim Measures
Yearh Country Product (Avg) (Avg)
year cyName pDetail consumption sales
〈2008〉 〈Italy〉 〈lager beer〉 0.6 0.5
〈2008〉 〈Italy〉 〈stout beer〉 0.4 0.6
〈2008〉 〈Italy〉 〈pale beer〉 0.1 0.8
〈2008〉 〈Italy〉 〈chardonnay wine〉 2.1 1.6
〈2008〉 〈Italy〉 . . . . . . . . .
〈2008〉 〈Italy〉 〈ron〉 1.9 1.6
〈2008〉 〈Belgium〉 〈lager beer〉 1.2 0.9
〈2008〉 〈Belgium〉 〈stout beer〉 1.0 0.9
〈2008〉 〈Belgium〉 〈pale beer〉 0.6 0.7
〈2008〉 〈Belgium〉 〈chardonnay wine〉 0.7 0.6
〈2008〉 〈Belgium〉 〈malbec wine〉 0.1 0.2
〈2008〉 〈Belgium〉 〈kerner wine〉 0.6 0.7
〈2008〉 〈Belgium〉 〈whiskey〉 0.2 0.4
〈2008〉 〈Belgium〉 〈vodska〉 1.9 1.6
〈2008〉 〈Belgium〉 〈ron〉 0.6 0.5
〈2008〉 〈Greece〉 〈lager beer〉 1.5 1.6
〈2008〉 〈Greece〉 〈stout beer〉 1.2 1.4
〈2008〉 〈Greece〉 . . . . . . . . .
〈2008〉 〈Greece〉 〈ron〉 1.0 0.9
. . . . . . . . . . . . . . .
〈2011〉 〈Italy〉 〈lager beer〉 0.7 0.6
〈2011〉 〈Italy〉 〈stout beer〉 0.4 0.5
〈2011〉 〈Italy〉 〈pale beer〉 0.2 0.3
〈2011〉 〈Italy〉 〈chardonnay wine〉 1.9 1.6
〈2011〉 〈Italy〉 . . . . . . . . .
〈2011〉 〈Belgium〉 〈lager beer〉 1.1 0.9
〈2011〉 〈Belgium〉 〈stout beer〉 1.1 1.0
〈2011〉 〈Belgium〉 〈pale beer〉 0.6 0.6
〈2011〉 〈Belgium〉 〈chardonnay wine〉 0.9 0.9
〈2011〉 〈Belgium〉 〈malbec wine〉 0.3 0.6
〈2011〉 〈Belgium〉 〈pinot noir wine〉 0.5 0.6
〈2011〉 〈Belgium〉 〈whiskey〉 0.2 0.1
〈2011〉 〈Belgium〉 〈cognac〉 0.5 0.6
〈2011〉 〈Belgium〉 〈vodska〉 1.6 1.7
〈2011〉 〈Belgium〉 〈ron〉 1.0 0.9
〈2011〉 〈Greece〉 〈lager beer〉 1.3 1.2
. . . . . . . . . . . . . . .
〈2011〉 〈Greece〉 〈stout beer〉 1.2 0.9

Figure 4.12: Cuboid Dyear−country−product of Drinks

the algorithm modifies the set M in the cube schema, with the union of the sets

of measures of both cuboids, and the Drill-across operation is applied to each

cuboid of CIout and the cuboid of CI2 with the same set levels (i.e., all the cuboids

in CIout are crossed with the corresponding cuboid in CI2).

Example 20 (Drill-across operator). Consider the cube instances Vineyard-short

and Drinks of Examples 17 and 19, respectively.

We would like to put together information about wine sales and grape pro-

duction bt year. To implement this, we need to peform a Drill-across operation
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TimeDim ZoneDim ProductDim Measures
Yearh Country Product (Avg)
year cyName pDetail consumption
〈2008〉 〈Italy〉 〈lager beer〉 0.6
〈2008〉 〈Italy〉 〈stout beer〉 0.4
〈2008〉 〈Italy〉 〈pale beer〉 0.1
〈2008〉 〈Italy〉 〈chardonnay wine〉 2.1
〈2008〉 〈Italy〉 . . . . . .
〈2008〉 〈Italy〉 〈ron〉 1.9
〈2008〉 〈Belgium〉 〈lager beer〉 1.2
〈2008〉 〈Belgium〉 〈stout beer〉 1.0
〈2008〉 〈Belgium〉 〈pale beer〉 0.6
〈2008〉 〈Belgium〉 〈chardonnay wine〉 0.7
〈2008〉 〈Belgium〉 〈malbec wine〉 0.1
〈2008〉 〈Belgium〉 〈kerner wine〉 0.6
〈2008〉 〈Belgium〉 〈whiskey〉 0.2
〈2008〉 〈Belgium〉 〈vodska〉 1.9
〈2008〉 〈Belgium〉 〈ron〉 0.6
〈2008〉 〈Greece〉 〈lager beer〉 1.5
〈2008〉 〈Greece〉 〈stout beer〉 1.2
〈2008〉 〈Greece〉 . . . . . .
〈2008〉 〈Greece〉 〈ron〉 1.0
〈2008〉 〈Greece〉 . . . . . .
. . . . . . . . . . . .
〈2011〉 〈Italy〉 〈lager beer〉 0.7
〈2011〉 〈Italy〉 〈stout beer〉 0.4
〈2011〉 〈Italy〉 〈pale beer〉 0.2
〈2011〉 〈Italy〉 〈chardonnay wine〉 1.9
〈2011〉 〈Italy〉 . . . . . .
〈2011〉 〈Belgium〉 〈lager beer〉 1.1
〈2011〉 〈Belgium〉 〈stout beer〉 1.1
〈2011〉 〈Belgium〉 〈pale beer〉 0.6
〈2011〉 〈Belgium〉 〈chardonnay wine〉 0.9
〈2011〉 〈Belgium〉 〈malbec wine〉 0.3
〈2011〉 〈Belgium〉 〈pinot noir〉 0.5
〈2011〉 〈Belgium〉 〈whiskey〉 0.2
〈2011〉 〈Belgium〉 〈cognac〉 0.5
〈2011〉 〈Belgium〉 〈vodska〉 1.6
〈2011〉 〈Belgium〉 〈ron〉 1.0
〈2011〉 〈Greece〉 〈lager beer〉 1.3
. . . . . . . . . . . .
〈2011〉 〈Greece〉 〈stout beer〉 1.2

Figure 4.13: Slice(Dyear−country−product, sales)

between Vyear−grape ∈ Vineyard-short and Dyear−country−product ∈ Drinks. However, the

traditional definition of Drill-across does not allow this. Since the cube in-

stances do not have the same schema, slicing and dicing must be applied before

that. Only the TimeDim dimension is shared by both schemas. Thus, we must

eliminate the dimensions ProductDim and ZoneDim in Drinks and the dimension

BlockDim in Vineyard-short.

On the one hand, since the facts in Vineyard-short only correspond to data from
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Algorithm 3 New cube instance for Drill-across(Cb1in,Cb2in), with Cb1in ∈

CI1 and Cb2in ∈ CI2 instance
CIout schema← CI1schema

Mout ←M1in

⋃
M2in

CIout instance← CI1 instance (i.e., clone CI1 as Cout)

for all cuboid Cbj ∈ Cout do

Drill-across(Cbj,Cbi) where Cbi ∈ Cb2in and VCbi
= VCbj

‘Belgium’, we must only keep this country in Drinks, otherwise the aggregate mea-

sures will present non-coherent values. On the other hand, only the products in

Drinks representing names of wines must be kept. Thus, previous to the slicing, we

must select the particular shared values (by applying a dicing over the cuboids)

to ensure the consistence of the resulting cuboid. The following steps prepare the

two cuboids for the Drill-across operator:

Sliced Vyear−grape = Slice(Vyear−grape,BlockDim)

Aux1 = Dice(Dyear−country−product, cyName = ‘Belgium’ ∧ (pDetail = ‘malbec wine’ ∨

· · · ∨ pDetail = ‘pinot noir wine’)

Aux2 = Slice(Aux1,ZoneDim)

Sliced Dyear−country−product = Slice(Aux2,ProductDim)

Finally, Sliced Vyear−grape and Sliced Dyear−country−product have the values related

to grapes in Belgium per year, and we can apply Drill-across( Sliced Vyear−grape,

Sliced Dyear−country−product), whose result is shown in Figure 4.14. The complete

output instance is depicted in Figure 4.15. Notice that the total aggregation in

harvest is 184800 (instead of 229400) because the harvest value corresponding to

year 2007 has no match in the Drill-across operation.

Intuitively one might think in crossing detailed information for grapes. How-

ever, because of the restriction of strict equality in the instances, we could only
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combine the summarized information at the year level since the dimensions Block-

Dim and ProductDim need to be sliced. The solution we present in the next chapter

overcomes this limitation.

TimeDim Measures
Year (Sum) (Avg) (Avg)
year harvest consumption sales
〈2008〉 46000 0.46 0.5
〈2009〉 45800 0.91 0.9
〈2010〉 46400 0.7 0.63
〈2011〉 46600 0.57 0.7

Figure 4.14: Drill-across(Sliced Vyear−grape, Sliced Dyear−country−product)

Figure 4.15: The cuboids of Vineyard-short after drillind-across.
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4.3 Summary

In this chapter we presented an OLAP algebra supporting our conceptual data

model. This algebra ignores implementation aspects and only manipulates data

cubes, regardless the kinds of data contained in such cubes. We will use this

feature of the algebra in the remainder of this thesis. We classified the algebra

operations into two groups: instance preserving and instance generating opera-

tions. Operators in the first group (e.g., Roll-up and Drill-down) preserve

the cube instance of the cuboids over which they are applied, while operations

in the second group (e.g., Dice, Slice and Drill-across) generate a new cube

instance. Finally, we introduced an example to show the limitations of the tradi-

tional Drill-across operator, which we will study in the next chapter, where we

will also propose a solution to overcome those limitations.



Chapter 5

Extending the Drill-across

Operator

As we mentioned in Chapter 4, the traditional Drill-across operator based

on the definition given by Kimball and Ross [27] has strong limitations due to the

restriction about the input cuboids, namely that both cuboids must have the same

schema dimensions and instances. This prevents the application of the operator

in many real-world scenarios. For example, if the dimensions are identical but the

instance members have different representations, the drill-across operation could

not be applied, although the different representations are conceptually equivalent.

In order to relax the above requirements, Abelló et al. [2] introduced a set

of rules based on semantic relationships. Building on this idea, we extend the

drill-across operation to allow identifying equivalent dimensions in both input

data cubes, through two kinds of semantic relationships: dimension-dimension

derivation and dimension-dimension association as follows:

• Dimension-dimension derivation: If two dimensions come from a common

concept although their structures differ, they can be mapped to each other.

For example, if two dimensions contain the same instances but different

names, these names can be matched through a mapping function. Another

case occurs when two dimensions that represent the same concept are defined

at different levels of granularity or detail. This would be the case of two

spatial dimensions with granularities ‘point’, and ‘polygon’, respectively. A

solution consists in rolling the former up to the closest common level. For

63
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example, ‘point’ could be rolled-up to ‘polygon’. If necessary, even a new

level could be introduced.

• Dimension-dimension association: Corresponds to the case in which two

cubes have different dimension lattices, but a set of dimension levels from

one of them could be considered equivalent to a set of dimension levels from

the other. For example, in one cube we define the dimensions LatDim and

LongDim, containing the levels Latitude and Longitude, respectively, and in

another cube the dimension GeomDim containing the level Point. A mapping

function can deal with the problem of different representation by identify-

ing the set {LatDim.Latitude, LongDim.Longitude} as equivalent to the set

{GeomDim.Point}, together with the mapping of the corresponding mem-

bers. For example the member 〈〈30o〉, 〈20o〉〉 in the first set with the member

〈(1030, 5020)〉 in the second one.

In this chapter, we show how to apply the Drill-across operation between

cuboids belonging to cubes that do not share identical dimensions and instances,

introducing the concept of semantic mapping between cubes.

5.1 Semantic Mapping between Cubes

In order to perform a Drill-across operation between two cubes that do

not share dimensions or instances, we need to define a semantic mapping between

them. This mapping aims at solving the differences between dimension names,

level names, member representations or even structure of dimension lattices.

The first step to semantically relate two cubes consists in choosing each set of

dimension levels from one cube that are semantically equivalent to a set of levels

from the other one, applying the notions of dimension-dimension derivation and

dimension-dimension association. For this, we must identify all possible equivalent

sets of levels, with the restriction of that two levels from the same dimension must

not coexist in the same set. In the second step, we define a mapping of level

members for each pair of semantically equivalent sets of levels.
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For example, the set {LatDim.Latitude, LongDim.Longitude} in a cube C1 may

be identified as equivalent to the set {GeoDim.Point} in another cube C2. Then, a

correspondence among the members from the levels of the two sets must be built,

based on the level descriptors. In this case, the composed member 〈〈55o〉, 〈43o〉〉
of {LatDim.Latitude, LongDim.Longitude} semantically indicates the same that the

member 〈(6105, 4773)〉 of {GeoDim.Point}, and viceversa.

When a set s of dimension levels is identified as candidate for a semantic map-

ping, the elements of the cartesian product between the level members of the levels

of s are consider the members in s. Formally:

Definition 15 (Members of a Set of Levels). Given s = {l1, . . . , lk} a set of k

dimension levels, we denote Ts the members of s, which are given by the cartesian

product between the members of each level, i.e., Ts = Tl1× Tl2 . . . ×Tlk , with

members Tli , ∀i = 1 . . . k

Example 21 (Members of a Set of Levels). Consider the set of dimension levels

s={LatDim.Latitude, LongDim.Longitude}. If 〈55o〉 ∈ TLatDim.Latitude and 〈43o〉 ∈

TLongDim.Longitude, then the tuple 〈〈55o〉, 〈43o〉〉 ∈ Ts.

Before we define the extended version of the Drill-across operator, we need

to formalize the notion of semantic mapping.

Definition 16 (Semantic Mapping of Cubes). Given two cube instances C1 and

C2 with schemas 〈C1,D1,M1〉 and 〈C2,D2,M2〉, respectively, with N1 = |D1| and

N2 = |D2|, a semantic mapping between them, denoted SM(C1,C2) is the tuple

〈P ,S〉, such that:

(a) P is a set of pairs of sets of levels, P = {(s1, s2)|s1 ∈ 2L11∪L12∪···∪L1N1 ∧ s2 ∈

2L21∪L22∪···∪L2N2}, where L1i is the set of levels of dimension Di ∈ D1, ∀i, i =

1 . . . N1 and L2j is the set of levels of dimension Dj ∈ D2, ∀j, j = 1 . . . N2,

with the conditions that s1 6= φ, s2 6= φ and ∀a ∈ si, ∀b ∈ si, a ∈ Lip ∧ b ∈

Liq ⇒ p 6= q,∀i, i = 1 . . . 2 (i.e., s1 and s2 are sets of dimension levels of C1
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and C2, respectively, but neither of them can contain more than one level

from the same dimension).

(b) S is the set containing all the relations Smap defined as follows. There is

one relation Smaps2
s1

for each pair (s1, s2) ∈ P such that: Smaps2
s1
⊆ Ts1 × Ts2

and ∀a, b ∈ Ts1 , ∀c, d ∈ Ts2 : ((a, c) ∈ Smaps2
s1
∧ (b, c) ∈ Smaps2

s1
⇒ a =

b) ∧ ((a, c) ∈ Smaps2
s1
∧ (a, d) ∈ Smaps2

s1
⇒ c = d).

Remark 7. Definition 16 indicates that if a semantic equivalence between two

members exists, this must be one-to-one. However, members without correspon-

dence may exist.

Remark 8. The mapping relation between sets of levels is defined based on their

level descriptors, and it can be done by intension (with an expression through the

level descriptors) or by extension (exhaustively element by element).

We also remark that the concept of semantic equivalence between dimension

levels and the correspondence between level members must be based on the point

of view of the user. Examples 22 and 23 illustrate the above.

Example 22 (Dimension-Dimension Derivation). Consider the cube instances

Vineyard and Drinks given in Sections 3.2 and 4.2, abbreviated in the sequel as

V and D, respectively. The analyst has identified the following semantic mapping

between these two cubes, by applying dimension-dimension derivation relation-

ships:

SM(V,D) = 〈P ,S〉, where

P = { ( {V.TimeDim.Month}, {D.TimeDim.Month} ), ({V.TimeDim.Year},

{D.TimeDim.Year}), ({V.BlockDim.Grape}, {D.ProdDim.Product}) }

S = { Smap{D.TimeDim.Month}
{V.TimeDim.Month}, Smap

{D.TimeDim.Year}
{V.TimeDim.Year}, Smap

{D.ProdDim.Product}
{V.BlockDim.Grape} }

The member mappings are given by intension as:

Smap
{D.TimeDim.Month}
{V.TimeDim.Month}{(〈month1〉, 〈month2〉)|month1=month2}
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Smap
{D.TimeDim.Year}
{V.TimeDim.Year} = {(〈year1〉, 〈year2〉)|year1=year2}

Smap
{D.ProdDim.Product}
{V.BlockDim.Grape} = {(〈gName〉, 〈pDetail〉) |Contains(pDetail, gName) = true}

Another alternative for the last mapping may be the extension form, as follows:

Smap
{D.ProdDim.Product}
{V.BlockDim.Grape} = {(〈‘malbec’〉, 〈‘malbec wine’〉), . . . , (〈‘pinot blanc’〉,

〈‘pinot blanc wine’〉)}

No level of dimension ZoneDim of Drinks is present in the mapping, because they

have no conceptual equivalence with any level of Vineyard. Also note that, although

the levels Grape and Product have been identified as conceptually equivalent, the

levels GrapeType and Class (the levels to which the former roll-up, respectively) are

not considered as equivalent and therefore they are not present in P . This aspect

will be treated in detail in Section 5.3. Thus, the member 〈‘malbec’〉 of Grape

is considered equivalent to the member 〈‘malbec wine’〉 of Product. However, the

member 〈‘stout beer’〉 of Product has no equivalence in Grape (see Definition 18

below).

Example 23 (Dimension-Dimension Association). Consider the cubes C1 and C2,

with schemas 〈C1, {TemporalDim,GeoDim}, {sales}〉 and 〈C2, {DateDim,HourDim,

SpaceDim}, {cost}〉, respectively, whose lattices are shown in Figures 5.1 and 5.2.

In this case we identify that the dimensions GeoDim and SpaceDim represent

the same concept with different name and different granularity in the lattice levels.

Then, a dimension-dimension derivation relationship between the levels District

and State, and between the two levels Country may be defined.

With respect to the temporal aspect, although C1 has only one temporal di-

mension and C2 has two, the combination of Date and Hour has the same mean-

ing as Timestamp. According to this, and applying dimension-dimension associ-

ation, the set of levels {DateDim.Date, TimeDim.Hour} is equivalent to the set

{TemporalDim.Timestamp}.

We can thus define the semantic mapping:
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(a) TemporalDim lattice (b) GeoDim lattice

Figure 5.1: Dimension lattices of C1 (Example 23).

(a) DateDim lattice (b) HourDim lattice (c) SpaceDim Dimension

Figure 5.2: Dimension lattices of C2 (Example 23).

SM(C1,C2) = 〈P ,S〉, where

P = {({TemporalDim.Timestamp}, {DateDim.Date,HourDim.Hour}),

({TemporalDim.Year}, {DateDim.Year}), ({GeoDim.District}, {SpaceDim.Sate}),

({GeoDim.Country}, {SpaceDim.Country})}

and

S = {Smap{DateDim.Date,HourDim.Hour}
TemporalDim.Timestamp} ,Smap

{DateDim.Year}
{TemporalDim.Year},Smap

{SpaceDim.Sate}
{GeoDim.District},

Smap
{SpaceDim.Country}
{GeoDim.Country} }
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To map the members, suppose that all the domains are S, and the format for

the members of Date is ‘mmm,dd-yyyy’, for the members of Hour is ‘hh:mm’ and

for the members of Timestamp is ‘dd-mmm-yyyy,hh:mm’. Then, the four member

mappings of S may be expressed by intension as follows:

Smap
{SpaceDim.Sate}
{GeoDim.District} = {(〈district〉, 〈state〉) | district=state}

Smap
{SpaceDim.Country}
{GeoDim.Country} = {(〈country1〉, 〈country2〉) | country1=country2}

Smap
{DateDim.Year}
{TemporalDim.Year} = {(〈year1〉, 〈year2〉) | year1=year2}

Smap
{DateDim.Date,HourDim.Hour}
{TemporalDim.Timestamp} = {(〈〈d〉, 〈h〉〉, 〈t〉) | Sub(d,1,3) = Sub(t,4,3) ∧

Sub(d,5,2) = Sub(t,1,2) ∧ Sub(d,8,4) = Sub(t,8,4) ∧ Sub(h,1,5) = Sub(t,13,5)}

where Sub(str,i,s) returns the substring of the string str composed by the s char-

acters following the position i in the string.

Thus, the member 〈‘05-Feb-2010,15:30’〉 of {TemporalDim.Timestamp} is equiv-

alent to the composed member 〈〈‘Feb,05-2010’〉, 〈‘15:30’〉〉 of {DateDim.Date, Hour-

Dim.Hour}.

5.2 Semantic Compatibility of Cuboids

The semantic mapping between two cubes allows us to introduce the concept of

semantically compatible cuboids. Intuitively two cuboids Cb1 ∈ C1 and Cb2 ∈ C2

are semantically compatible if every combination of their levels is included in

P ∈ SM(C1,C2). Formally,

Definition 17 (Semantic Compatibility of Cuboids). Two cuboids Cb1 and Cb2,

belonging to the cube instances C1 and C2, respectively, are semantically compat-

ible, denoted Cb1 ' Cb2, if ∀li ∈ VCb1 ∧ ∀lj ∈ VCb2 ,∃(s1, s2) | li ∈ s1 ∧ lj ∈ s2 ⇒

s1 ⊆ VCb1 ∧ s2 ⊆ VCb2 That is, there is a semantic mapping for all levels in the

two cubouids.

Example 24 (Semantic Compatibility of Cuboids). Consider the semantic map-

ping SM(Vineyard,Drinks) given in Example 22. No semantic mapping can be

defined between any pair of cuboids in the cube instances of Vineyard and Drinks,
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because of the Country and Continent levels in the ZoneDim dimension in Drinks,

which have no equivalent in the other cube. In order to find semantically compati-

ble cuboids between the two cube instances, we must drop the dimension ZoneDim,

which can be done through a Slice operation, as follows.

Drinksmonth−product = Slice(Drinksmonth−country−product,ZoneDim)

Drinksyear−product = Slice(Drinksyear−country−product,ZoneDim).

Thus the following cuboids are semantically compatible:

Vineyardmonth−grape ' Drinksmonth−product

Vineyardyear−grape ' Drinksyear−product

When two cuboids are semantically compatible, we must check if their coordi-

nates can be considered equivalent, and if so, perform the mapping.

Definition 18 (Semantic Equivalence of Coordinates). Let be (s11, s12), . . . , (sk1, sk2)

the pairs of SM(C1,C2) that make Cb1 ' Cb2, with Cb1 ∈ C1,Cb2 ∈ C2. The coor-

dinate c1 = (c11, c12, . . . , c1N) ∈ Cb1, is semantically equivalent to c2 = (c21, c22, . . . ,

c2N) ∈ Cb2, denoted c1 ∼= c2, iff ∀ i = 1 . . . k ∃ Smapsi2
si1

and (πsi1
(c1), πsi2

(c2)) ∈

Smapsi2
si1

.

We denote πsj
(ci1, ci2, . . . , ciN) the sub-tuple (cip, . . . , ciq) such that its compo-

nents are members of the levels in the set sj.

Example 25 (Semantic Equivalence of Coordinates). Consider now the cubes C1

and C2 of Example 23, and the associated cuboids Cdistrict-timestamp ' Cstate-date-hour.

Figure 5.3 shows one of the possible equivalence between cells. Other seman-

tic equivalent cuboids are Ccountry-timestamp ' Ccountry-date-hour, and Call-timestamp '

Call-date-hour.

Note that the cuboids Cb1province-timestamp and Cb2state-date-hour are not equivalent

and thus can not be used in a Drill-across. In fact, Province and State have

different granularity, and a member from Province may be related to more than

one member from State. Therefore, a Roll-up must be applied before performing

a Drill-across.
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Figure 5.3: Two equivalent cuboids and their matching cells.

Example 26 (Semantic Equivalence of Coordinates). We show now a mapping of

the coordinates of the cuboids of Example 24, Vineyardyear−grape ' Drinksyear−product.

In SmapYear
Year and SmapProduct

Grape it holds: 〈πYear(〈2008, ‘malbec’〉), πYear (〈2008, ‘malbec

wine’〉)〉 = 〈2008, 2008〉 ∈ SmapYear
Year; and 〈πGrape(〈2008, ‘malbec’〉), πProduct(〈2008,

‘malbec wine’〉)〉 = 〈‘malbec’, ‘malbec wine’〉 ∈ SmapProduct
Grape . Thus, 〈2008, ‘malbec’〉

∼= 〈2008, ‘malbec wine’〉.

On the contrary, 〈2008, ‘malbec′〉 and 〈2008, ‘stout beer’〉 are not semantically

equivalent, because although 〈πYear(〈2008, ‘malbec’〉), πYear(〈2008, ‘malbec wine’〉)〉

∈ SmapYear
Year, there is no (s1, s2) ∈ S such that 〈πs1(〈2008, ‘malbec’〉), πs2(〈2008,

‘stout beer’〉)〉 = 〈‘malbec’, ‘stout beer’〉 ∈ Smaps2
s1 in SM(Vineyard,Drinks).

In many scenarios, two dimensions of different cubes can represent the same

concept but with different lattice structure, thus only a few levels can be mapped.

In these cases we can modify the dimension lattices by inserting a new level. For

instance, the cube schema and its instance must be modified using the dimension

update operators defined in Hurtado et al. [23]. For example, given two cubes

C1 and C2 that contain two Time dimensions with lattices Month → Quarter →
Year → All and Bimester → Year → All, respectively, instead of mapping only the

levels Year and All, we may want to insert the Bimester level between Month and

Quarter in the Time dimension lattice of C1, and then define the semantic mapping

by including this finest commnon level.
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The insertion of a new level B between two levels A and C of a dimension, not

only involves modifying the dimension lattice, but also the definition of the roll-up

functions between members, i.e., RupB
A and RupC

B functions. Example 27 shows

in detail this process.

Example 27 (Level Insertion). Consider the cube Vineyard from Example 11. In

order to insert the level Quarter between Month and Year in DateDim, we modify the

schema with 〈TimeDim,Lnew,→〉 where Lnew = LDateDim ∪ {〈Quarter, 〈quarter〉〉}

and define the new following Rup functions:

RupQuarter
Month = {(〈m〉, 〈q〉)|((Pre(m) = ‘Jan’ ∨ Pre(m) = ‘Feb’ ∨ Pre(m) =

‘Mar’ ∨ Pre(m) = ‘Apr’) ∧ Pre(q) = ‘Q1’) ∨ . . . ∨ ((Pre(m) = ‘Sep’, . . . ,

Pre(m) = ‘Dec’) ∧Pre(q) = ‘Q4’)}

where Pre is a function that returns the substring previous to the ‘-’ in the

input string.

RupYear
Quarter = {(〈q〉, 〈y〉) | Post(q) = y} where Post is a function that returns the

substring posterior to the ‘-’ in the input string.

5.3 Extended Drill-Across Operation

Based on Definitions 17 and 18, we extend the Drill-across operation, where

the input of the operation are two semantically equivalent cuboids. The output

is a cuboid whose dimension set is, by convention, the dimension set of the first

cuboid. After performing the Drill-across, the output cuboid becomes the

bottom cuboid of the induced cube instance, and thus each current level in the

first input cuboid becomes the new bottom level of its corresponding dimension

lattice.

Definition 19 (Extended Drill-across). Let CI1 and CI2 be two cube instances with

schemas 〈CI1,D1,M1〉 and 〈CI2,D2,M2〉, respectively; there are also two cuboids

C1in ∈ CI1 and C2in ∈ CI2 such that C1in ' C2in. Finally, |D1| = D1, |D2| =

D2, |M1| = M1, |M2| = M2 hold. Then, Drill-across(C1in,C2in) returns a new

cuboid Cout as follows:
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(a) VCout = VC1in
where each level in VCout becomes the new bottom level of its

corresponding dimension lattice; M = M1 ∪M2, that is, the union of the

measures of both cuboids.

(b) c = (c1, c2, . . . , cD1 ,m1, . . . ,mM1,mM1+1, . . . ,mM1+M2) ∈ Cout such that ∃cp =

(cp1 , . . . , cpD1
, m1, . . . ,mM1) ∈ C1in

and ∃cq = (cq1, . . . , cqD2
, mM1+1, . . . ,

mM1+M2) ∈ C2in
and (cp1 , . . . , cpD1

) ∼= (cq1 , . . . , cqD2
), and cpi = ci, ∀i = 1..N .

Aggregate functions associated with each measure in the input cuboids are

kept.

Since Drill-across is an IGO, Cout induces a new cube instance CIout such

that Cout ∈ CIout. Algortihm 4 builds CIout. It first clones the lattice of cuboids

CI1, i.e., it creates a lattice of cuboids with the same schema and instance. Then,

the algorithm modifies the set M in the cube schema, with the union of the sets

of measures of both cuboids, and the set D, by eliminating the levels that are not

reachable from the current levels. Then, the Drill-across operation is applied

to each cuboid of CIout with the cuboid of CI2 which is semantically compatible

with it (i.e., all the semantically compatible cuboids are crossed).

The extended Drill-across operator requires either input cuboids with ex-

actly the same schemas and instances or a defined semantic mapping between

them. In the later case, all the dimensions of each cuboid must be involved in the

mapping. Thus, the dimensions not included in any semantic mapping must be

dropped before performing the Drill-Across, using a Slice operation.

Example 28 (Drill-across operator). Consider the SM(Vineyard, Drinks) given

in Example 22 and the cuboids Vyear−grape and Dyear−country−product, belonging to

Vineyard and Drinks, respectively. In order to perform a Drill-across between

these cuboids we must drop the ZoneDim dimension in the Drinks cuboid, since

there is no semantic mapping for it. Before performing the Slice, we select the

country of interest in Drinks, in this case ‘Belgium’, by applying a Dice operation.

All of the above is performed as follows:
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Algorithm 4 New cube instance for Drill-across(Cb1in,Cb2in), with Cb1in ∈

CI1, Cb2in ∈ CI2 instance, where D1 = {〈D11 ,L11 ,→11〉, . . . , 〈D1N
, L1N ,→1N 〉}

CIout schema← CI1schema

Mout ←M1in

⋃
M2in

Dout ← {〈Dout1 ,Lout1 ,→out1〉, . . . , 〈DoutN
,LoutN ,→outN 〉} such that level l ∈ Louti

if l ∈ L1i and 〈Louti ,→outi〉 is a sublattice of 〈L1i ,→1i〉 and cl →∗outi l, with

cl ∈ Louti ∩ VC1in
,∀i = 1..N

CIout instance← CI1 instance (i.e., clone CI1 as Cout)

for all cuboid Cbj ∈ CIout do

if Cb1in � Cbj then

Drill-across(Cbj,Cbi) where Cbi ∈ CI2 and Cbj ' Cbi

else

Eliminate Cbj from CIout

Aux1 = Dice(Dyear−country−product, cyName = ‘Belgium’)

Aux2 = Slice(Aux1,ZoneDim)

Vout = Drill-across(Vyear−grape,Aux2)

Figure 5.4 depicts the partial and final resulting cuboids. Notice that the grapes

which are not indicated as wines in Drinks (for example, ‘pinot blanc’), are not

present in the resulting cuboid. Also notice that, opposite to the resulting cuboid

in Example 20, the extended Drill-across allows us to obtain the measures

discriminated by year, and also by grape name.

According to Definition 19, when a cuboid Cout is obtained from an extended

Drill-across, a new cube instance is induced. The dimension lattices of the cube

scheme are modified and the current levels of Cout become the new bottom levels of

each corresponding dimension lattice. In consequence, after performing a Drill-

across, the current levels become the bottom levels of the resulting cuboid, and

therefore a Roll-up operation can be applied to levels above the current levels,

but no Drill-down can be applied to levels below them. We explain this in

Example 29 below.
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TimeDim ZoneDim ProductDim Measures
Yearh Country Product (Avg) (Avg)
year cyName pDetail consumption sales
〈2008〉 〈Belgium〉 〈lager beer〉 1.2 0.9
〈2008〉 〈Belgium〉 〈stout beer〉 1.0 0.9
〈2008〉 〈Belgium〉 〈pale beer〉 0.6 0.7
〈2008〉 〈Belgium〉 〈chardonnay wine〉 0.7 0.6
〈2008〉 〈Belgium〉 〈malbec wine〉 0.1 0.2
〈2008〉 〈Belgium〉 〈kerner wine〉 0.6 0.7
〈2008〉 〈Belgium〉 〈whiskey〉 0.2 0.4
〈2008〉 〈Belgium〉 〈vodska〉 1.9 1.6
〈2008〉 〈Belgium〉 〈ron〉 0.6 0.5
. . . . . . . . . . . . . . .
〈2011〉 〈Belgium〉 〈lager beer〉 1.1 0.9
〈2011〉 〈Belgium〉 〈stout beer〉 1.1 1.0
〈2011〉 〈Belgium〉 〈pale beer〉 0.6 0.6
〈2011〉 〈Belgium〉 〈chardonnay wine〉 0.9 0.9
〈2011〉 〈Belgium〉 〈malbec wine〉 0.3 0.6
〈2011〉 〈Belgium〉 〈pinot noir wine〉 0.5 0.6
〈2011〉 〈Belgium〉 〈whiskey〉 0.2 0.1
〈2011〉 〈Belgium〉 〈cognac〉 0.5 0.6
〈2011〉 〈Belgium〉 〈vodska〉 1.6 1.7
〈2011〉 〈Belgium〉 〈ron〉 1.0 0.9

(a) Aux1 = Dice(Dyear−country−product, cyName = ‘Belgium′)

TimeDim ProductDim Measures
Year Product (Avg) (Avg)
year pDetail consumption sales
〈2008〉 〈lager beer〉 1.2 0.9
〈2008〉 〈stout beer〉 1.0 0.9
〈2008〉 〈pale beer〉 0.6 0.7
〈2008〉 〈chardonnay wine〉 0.7 0.6
〈2008〉 〈malbec wine〉 0.1 0.2
〈2008〉 〈kerner wine〉 0.6 0.7
〈2008〉 〈whiskey〉 0.2 0.4
〈2008〉 〈vodska〉 1.9 1.6
〈2008〉 〈ron〉 0.6 0.5
. . . . . . . . . . . .
〈2011〉 〈lager beer〉 1.1 0.9
〈2011〉 〈stout beer〉 1.1 1.0
〈2011〉 〈pale beer〉 0.6 0.6
〈2011〉 〈chardonnay wine〉 0.9 0.9
〈2011〉 〈malbec wine〉 0.3 0.6
〈2011〉 〈pinot noir wine〉 0.5 0.6
〈2011〉 〈whiskey〉 0.2 0.1
〈2011〉 〈cognac〉 0.5 0.6
〈2011〉 〈vodska〉 1.6 1.7
〈2011〉 〈ron〉 1.0 0.9

(b) Aux2 = Slice(Aux1,ZoneDim)

TimeDim BlockDim Measures
Year Grape (Sum) (Avg) (Avg)
year gName harvest consumption sales
〈2008〉 〈malbec〉 25000 0.1 0.2
〈2008〉 〈kerner〉 22900 0.6 0.7
. . . . . . . . . . . . . . .
〈2011〉 〈chardonnay〉 22100 0.9 0.9
〈2011〉 〈malbec〉 24000 0.3 0.6
〈2011〉 〈pinot noir〉 23800 0.5 0.6

(c) Vout = Drill-across(Vyear−grape,Aux2)

Figure 5.4: Applying the extended Drill-across operator.
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Example 29 (Drill-across and Drill-down). Consider the cuboid Vout obtained in

Example 28 (Figure 5.4(c)).

We cannot apply Drill-down(Vout,BlockDim,Block), because the values of

the measure consumption have been imported from another cuboid and they are

not defined for the members of the level Block; thus, there is no way to precisely

compute how to disaggregate this measure into members that had never stored

their values. This can be seen for example in the first tuple of Vout in Figure

5.4(c): the value 0.1 for the measure consumption was computed as a result of a

slice operation, and is not actually associated to a mamber in Block.

On the contrary, it is possible to apply Roll-up(Vout,BlockDim,GrapeType) or

Roll-up(Vout,BlockDim,All), using the same aggregate function Avg associated

to the measure consumption in the original cuboid. The resulting cuboids of these

two possible Roll-up operations are shown in Figure 5.5.

TimeDim BlockDim Measures
Year GrapeType (Sum) (Avg) (Avg)
year gType harvest consumption sales
〈2008〉 〈red〉 25000 0.5 0.48
〈2008〉 〈white〉 22900 0.42 0.52
〈2009〉 〈red〉 25600 0.9 0.87
〈2009〉 〈white〉 20200 0.92 0.93
〈2010〉 〈red〉 33800 0.66 0.69
〈2010〉 〈white〉 22600 0.74 0.57
〈2011〉 〈red〉 23800 0.5 0.68
〈2011〉 〈white〉 47800 0.64 0.72

(a) Roll-up(Vyear−grape,BlockDim),GrapeType

TimeDim BlockDim Measures
Year All (Sum) (Avg) (Avg)
year all harvest consumption sales
〈2008〉 〈all〉 47900 0.46 0.5
〈2009〉 〈all〉 45800 0.91 0.9
〈2010〉 〈all〉 56400 0.7 0.63
〈2011〉 〈all〉 71600 0.57 0.7

(b) Roll-up(Vyear−grape,BlockDim),All

Figure 5.5: Possible Roll-up operations after drilling-across.

In many cases, the goal of crossing two cubes is not only to easily com-

pare the measures from different cuboids (because they can take together), but

also to operate with such measures. For example, suppose that, in addition
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to drilling-across Vineyard and Drinks, we want to obtain a new measure, like

0.01 ? harvest/consumption. That is, we want to allow to add new measures to

the resulting cube, through functions over input measures and literals. In this

way, Definition 19 must be modified to add as an arguments the expressions that

compute the new measures, together with the corresponding aggregation function.

Then, the operator would be invoked as: Drill-across(C1in,C2in,NewMeasures),

where NewMeasures = {〈fn1, name1, agg1〉, . . . , 〈fnK, nameK, aggK〉},K ≥ 0, where

each fni is a function over elements m ∈ M1 ∪M2 ∪ Literals, namei is the name

of a new measure, and aggi ∈ A is the aggregate function associate to the new

measure namei,∀i = 1 . . . K. Each coordinate of the cuboid will be as in Defini-

tion 19, with the addition of the new calculated measures, as follows: c ∈ Cout =

(c1, c2, . . . , cN ,m1, . . . ,mM1,mM1+1, . . . ,mM1+M2 ,mM1+M2+1, . . . ,mM1+M2+K).

Since Drill-across is an IGO, Cout induces a new cube instance CIout such

that Cout ∈ CIout. Algorithm 5 shows how the new cube instance CIout is built when

new measures are defined in Drill-across.

Example 30 (Drill-across operator and New Measures). Consider the same cubes

and cuboids Vyear−grape and Aux2 of Example 28, and the set NewMeasures =

{〈Fm, relation,Avg〉}, where Fm : R × R → R, with Fm(harvest, consumption) =

0.01 ∗ harvest/(consumption ∗ 100). Figure 5.6 depicts the resulting cuboid of

Drill-across(Vyear−grape,Aux2,NewMeasures).

TimeDim BlockDim Measures
Year Grape (Sum) (Avg) (Avg) (Avg)
year gName harvest consumption sales relation
〈2008〉 〈malbec〉 25000 0.1 0.2 25.0
〈2008〉 〈kerner〉 22900 0.6 0.7 3.8
. . . . . . . . . . . . . . . . . .
〈2011〉 〈chardonnay〉 22100 0.9 0.9 2.5
〈2011〉 〈malbec〉 24000 0.3 0.6 8.0
〈2011〉 〈pinot noir〉 23800 0.5 0.6 4.8

Figure 5.6: Extended Drill-across with new Measures.
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Algorithm 5 New cube instance for Drill-across(Cb1in,Cb2in,NewMeasures),

with Cb1in ∈ CI1, Cb2in ∈ CI2 instance, where D1 = {〈D11 ,L11 ,→11〉, . . . , 〈D1N
,

L1N ,→1N 〉}
CIout schema← CI1schema

Mout ←M1

⋃
M2

⋃
Mnew〉 where Mnew = {name1, . . . , nameK}

Dout ← {〈Dout1 ,Lout1 ,→out1〉, . . . , 〈DoutN
,LoutN ,→outN 〉} such that level l ∈ Louti

if l ∈ L1i and 〈Louti ,→outi〉 is a sublattice of 〈L1i ,→1i〉 and cl →∗outi l, with

cl ∈ Louti ∩ VC1in
,∀i = 1..N

CIout instance← CI1 instance (i.e., clone CI1 as Cout)

for all cuboid Cbj ∈ CIout do

if Cb1in � Cbj then

Drill-across(Cbj,Cbi) where Cbi ∈ CI2 and Cbj ' Cbi

else

Eliminate Cbj from CIout

5.4 Discussion

Consider two cubes C1 and C2, both of them with a dimension GeomDim, and

hierarchy District → Province → All, where the measure of C1 is radiation, and the

measure of C2 is pollution (with the function Sum associated to both of them).

Now, suppose an instance of C1 containing two districts, Arlon and Bastogne,

with radiation values 20 and 18, respectively, such that both of them roll-up to

the Luxembourg province. Also, and instance of C2 contains districts Neufchateau

and Virton, with pollution values 6 and 11, also rolling-up to Luxembourg.

Although a semantic mapping SM(C1,C2) may identify as equivalent both Dis-

trict levels, and both Province levels, it is clear that if District is the current level

of GeomDim in both cubes, then Drill-across(C1, C2) is empty, because there

is not match between the District levels.

In spite of the above, if we apply D1 = Roll-up(C1,GeomDim,Province), and

D2 = Roll-up(C2,GeomDim,Province), then Drill-across(D1,D2) results in a

cube containing the Luxembourg province, and values 38 and 17 for measures
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radiation and pollution, respectively. As a drawback of this, once Drill-across is

applied we will not be able to navigate the hierarchy downwards (that is, we will

not be able to drill-down).

This raises the question: would this be correct? Let us imagine that temper-

ature and humidity are measured in regions, but represented as single values for

a whole region, although measured using different numbers of sensors located in

different geographical points, registering values at different instants. In fact, we

could find many few matches at the point and timestamp granularity, but it would

make sense to cross such information at a region level by summarizing the behavior

of regions as a whole.

Note that this problem is also present when drilling across traditional cubes

although they share dimensions. For example, if we have two cubes with data

about sales and factories. Both of them record the information in the operational

systems at the timestamp granularity, but in the data warehouses this information

is probably summarized at weekly granularity. Although no match may occur at

the timestamp granularity, we could drill-across both cubes at a coarser level, say

week, i.e., a comparison can be done when analyzing what happened during weeks.

We remark that only the user can decide which levels are really semantically

equivalent, and define the correct semantic mapping according to this decision.

5.5 Semantic Mapping and OLAP operations

When a semantic mapping is defined between two cubes, the cuboid resulting

from the OLAP operations applied to cuboids belonging to those cubes, induces a

new semantic mapping over the output cube produced by such operator.

For example, consider cuboids Cb1 and Cb2 belonging to cubes C1 and C2,

respectively, a semantic mapping SM(C1,C2), and a Dice operation of the form

Dice(Cb1, φ) which produces cuboid Cb3. This cuboid induces a cube C3 such that

there is an induced semantic mapping SM(C3,C2) whose sets P and S are subsets

of the ones in SM(C1,C2). We next study how the mappings induced by the OLAP

operations are defined by means of a set of rules. For simplicity, we describe the
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rules by using the operation over the first cube of the semantic mapping, but the

same applies for the second one. We use these rules later in Section 6.3.

5.5.1 Semantic Mapping and Roll-Up

Given two cubes C1 and C2 with SM(C1,C2)=〈P ,S〉, a cuboid Cb1 ∈ C1 and a

cuboid Cb2 ∈ C2, since the Roll-up operator is an IPO, the cube corresponding

to the cuboid Cb3 = Roll-up(Cb1,D, L) is C1 itself. Thus, the semantic mapping

is preserved for further operations (e.g., a drill-across).

5.5.2 Semantic Mapping and Drill-down

Given two cubes C1 and C2 with SM(C1,C2)=〈P ,S〉, a cuboid Cb1 ∈ C1 and

a cuboid Cb2 ∈ C2, since the Drill-down operator is an IPO, the cube corre-

sponding to the cuboid Cb3 = Drill-down(Cb1,D, L) is, like above, C1 itself, and

the mapping is preserved.

5.5.3 Semantic Mapping and Dice

Consider two cubes C1 and C2, a semantic mapping SM(C1,C2)=〈P ,S〉, a

cuboid Cb1 ∈ C1 and a cuboid Cb2 ∈ C2. The operation Dice(Cb1, φ) produces

a cuboid Cb3. In addition, the operation induces a new cube C3 , and a new

mapping SM(C3,C2) = 〈P ,S ′〉 such that ∀Smaps2
s1
∈ S, Smap’s2s1 ∈ S

′ is given by

Smap’s2s1 = Smaps2
s1
− {(m1,m2)|m1 is a member deleted from the C3 instance}.

Notice that the pairs of P are the same of the original semantic mapping,

because the Dice operator only introduces changes in the cube instance, without

changing the cube schema.

5.5.4 Semantic Mapping and Slice

Given two cubes C1 and C2 with SM(C1,C2)=〈P ,S〉, a cuboid Cb1 ∈ C1 and

a cuboid Cb2 ∈ C2, the operation Slice(Cb1,D) produces a cuboid Cb3 which

induces the cube C3 and a mapping SM(C3,C2) = 〈P ′,S ′〉 such that P ′ = P −



81

{(s1, s2)|∃li ∈ s1 where li is a level of D,∀i = 1..|D|} and S ′ = S−{(Smaps2
s1
|∃li ∈ s1

such that li is a level of D,∀i = 1..|D|}
In simple words, all the pairs containing levels of the eliminated dimension, are

eliminated from P . The member mappings of S are modified accordingly.

5.5.5 Semantic Mapping and Drill-across

Given two cubes C1 and C2 with SM(C1,C2)=〈P ,S〉, a cuboid Cb1 ∈ C1 and

a cuboid Cb2 ∈ C2, the operation Cb3 = Drill-across(Cb1,Cb2) induces a new

cube C3 and a mapping SM(C3,C2) = 〈P ′,S ′〉 such that P ′ = P − {(s1, s2)|∃li ∈
s1 where l1 ∈ Di in Cb1, and l1 cannot reach a level in VCb3} and S ′ = S −
{(Smaps2

s1
|∃li ∈ s1 such that l1 ∈ Di dimension of Cb1 and l1 is not reachable from

VCb3}. Since the drill-across operation introduces a cut in the dimension lattice,

all the pairs containing deleted levels, are removed from P . Thus, the member

mappings of S are modified accordingly.

5.6 Summary

In this chapter we have extended the Drill-across operation introducing the

concept of semantic mapping between cubes, allowing us to solve the differences

between dimension names, level names, member representations or even the struc-

ture of dimension lattices. The Semantic Mapping between cubes is based on the

semantic relationships dimension-dimension derivation and dimension-dimension

association, and consists in two steps: choosing each set of dimension levels from

in cube that are semantically equivalent to a set of levels in the other cube, and

then defining a mapping of level members for each pair of semantically equivalent

sets of levels. In addition, we introduced the concepts of semantically compat-

ible cuboids and semantically equivalent coordinates. We further extended the

Drill-across operator with the possibility of adding new measures to the re-

sulting cuboid applying functions over the measures of the input ones. Finally, we

showed that when a semantic mapping is defined between two cubes, the result of

each OLAP operation (i.e., a cuboid) also induces a new semantic mapping.



Chapter 6

A Case Study

In this chapter we integrate the concepts studied in the previous chapters, and

show how they can be applied to a complex real-world case study. This case study

is based on the running example introduced in Chapter 1, that is, the system for the

analysis of wine production in Belgium. In order to be even more comprehensive,

we also include a cube containing data about the trajectories of field fumigation

flight trajectories. All in all, we consider five non-homogeneous cubes, i.e., cubes

that do not have the same dimensions and instances. We show how queries over

these cubes can be addressed using the OLAP operators we have introduced in

Chapters 4 and 5, regardless the data actually contained in these cubes. We first

show sample queries over individual cubes, and then we integrate them in global

queries, that is, queries that combine different kinds of cubes.

6.1 Cubes of the Case Study

Since our case study is based on vineyard production and how climate changes

impact directly on it, information about the environment is relevant for analysis.

Thus, besides the Vineyard cube given in Example 11, we will introduce three

cubes with the following environmental information: Temperature, Precipitation,

and Altitude. A fourth cube, named Fumigation, with information about pesticide

spraying, is also included for analysis.

We remark that we model the BlockDim dimension using the GS1 numbering

82
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system for the wine supply chain traceability,1 as we explain next. The key data

required for traceability purposes is the identification of the Block from which the

grape comes. Each block is identified with a Global Location Number (GLN). If

the grape grower changes the type of its grape planting, the GLN is not further

used. Thus, a GLN or idBlock can be associated with only one type of grape.

Our design of the BlockDim dimension responds to this restriction and guarantees

traceability, at the expense of some complexity in query formulation, as we will

see in Section 6.2.

The Temperature and Precipitation cubes register, respectively, temperature

and precipitation data at predefined points of Belgium during years 2006 through

2010. The Altitude cube stores terrain altitude with respect to the sea level. No

temporal information is recorded in this cube, since we consider that altitude does

not change over time. Finally, the cube Fumigation contains information about the

flight trajectory reported by each pilot after the fumigation over a plantation. In

this sense, the measure of this cube is not a traditional discrete one, but a 3-D

geometry whose aggregate function is the geometric union. Each reported 3-D

trajectory is partitioned into the sub-trajectories that correspond to teh geometry

of each plantation. For this, we take into account the first and last point whose

XY-projections fall into the geometry area. Figure 6.1 shows a 3-D trajectory

partitioned into three 2-D sub-trajectories over zones A, B and C.

(a) A spatial view (b) A projection over the plane

Figure 6.1: Two views of a fumigation trajectory. The points p1, p2, p3 and p4 are
the limits of each sub-trajectory over zones A, B and C.

1http://www.gs1.org

http://www.gs1.org
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The Temperature and Precipitation cube schemas share the dimensions Tempo-

ralDim and SpatialDim. The latter is also shared by the Altitude cube. Figures 6.2

and 6.3 depict the TemporalDim and SpatialDim dimensions, respectively.

(a) Dimension lat-
tice

(b) Dimension instance

Figure 6.2: TemporalDim Dimension.

(a) Dimension lattice (b) Dimension instance

Figure 6.3: SpatialDim Dimension.

The Fumigation cube schema contains the dimensions DateDim, GeoDim and

PestDim, whose schemas and instances can be seen in Figures 6.4, 6.5 and 6.6,

respectively.

Figures 6.7 through 6.11 show the bottom cuboids of the five cube instances.
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(a) Dimension lat-
tice

(b) Dimension instance

Figure 6.4: DateDim Dimension.

(a) Dimension lattice (b) Dimension instance

Figure 6.5: GeoDim Dimension.

(a) Dimension lattice (b) Dimension instance

Figure 6.6: PestDim Dimension.

Remark 9. For the sake of space, the geometric elements in dimensions and mea-

sures are shown through identifier names instead of their real geometry. For exam-

ple, in Figure 6.11 we simply show the trajectory given by the geometry Linestring(

4.48141 51.37759 11.55681, 4.65486 51.30325 11.58643, 4.81180 51.35281 11.9762,
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4.93982 51.27848 12.00780, 4.86136 51.19174 12.15689, 4.47728 51.26195 12.34782 )

as ‘t12’.

TimeDim BlockDim Measures
Day Block (Sum)

date, dayOfWeek idBlock, bGeom harvest
〈‘2007-08-06’,‘Mon’〉 〈35001, g35001〉 7200
〈‘2007-08-06’,‘Mon’〉 〈35002, g35002〉 7500
〈‘2007-09-13’,‘Thu’〉 〈35003, g35003〉 7300
〈‘2007-09-14’,‘Fri’〉 〈35004, g35004〉 7200
〈‘2007-09-14’,‘Fri’〉 〈35005, g35005〉 7400
〈‘2007-10-10’,‘Wed’〉 〈35006, g35006〉 8000
〈‘2008-08-08’,‘Fri’〉 〈35001, g35001〉 7800
〈‘2008-08-11’,‘Mon’〉 〈35002, g35002〉 7600
〈‘2008-08-12’,‘Tue’〉 〈35003, g35003〉 7900
〈‘2008-09-16’,‘Tue’〉 〈35004, g35004〉 8100
〈‘2008-09-17’,‘Wed’〉 〈35005, g35005〉 7500
〈‘2008-11-12’,‘Wed’〉 〈35006, g35006〉 7100
〈‘2009-08-04’,‘Tue’〉 〈35001, g35001〉 7200
〈‘2009-08-04’,‘Tue’〉 〈35002, g35002〉 7800
〈‘2009-08-06’,‘Thu’〉 〈35003, g35003〉 8000
〈‘2009-09-08’,‘Tue’〉 〈35004, g35004〉 7800
〈‘2009-09-09’,‘Wed’〉 〈35005, g35005〉 7400
〈‘2009-10-15’,‘Thu’〉 〈35006, g35006〉 7600
〈‘2010-08-12’,‘Thu’〉 〈35077, g35001〉 7500
〈‘2010-08-13’,‘Fri’〉 〈35078, g35001〉 7400
〈‘2010-09-16’,‘Thu’〉 〈35079, g35001〉 7700
〈‘2010-09-16’,‘Thu’〉 〈35084, g35004〉 8100
〈‘2010-10-11’,‘Tue’〉 〈35085, g35005〉 7900

. . . . . . . . .
〈‘2010-10-12’,‘Wed’〉 〈35086, g35006〉 7800
〈‘2011-08-11’,‘Thu’〉 〈35077, g35001〉 7500
〈‘2011-08-12’,‘Fri’〉 〈35078, g35001〉 7500
〈‘2011-08-12’,‘Fri’〉 〈35079, g35001〉 7800
〈‘2011-09-06’,‘Tue’〉 〈35084, g35004〉 7900
〈‘2011-09-07’,‘Wed’〉 〈35085, g35005〉 8000

. . . . . . . . .
〈‘2011-11-10’,‘Thu’〉 〈35086, g35006〉 7900

Figure 6.7: Vineyard bottom cuboid

TemporalDim SpaceDim Measures
Timestamp Point (Avg)

t point, x, y temperature
〈‘2007-08-06:01:07:54’〉 〈(2.58,49.42), 2.58, 49.42〉 17.8

. . . . . . . . .
〈‘2009-09-11:10:52:02’〉 〈(4.75,51.08), 4.75, 51.08〉 15.2
〈‘2009-09-11:12:05:46’〉 〈(4.99,51.30), 4.99,51.30〉 14.6
〈‘2009-09-11:36:10:32’〉 〈(5.88,49.63), 5.88, 49.63〉 13.9

. . . . . . . . .
〈‘2010-12-26:00:12:48’〉 〈(6.42,51.58), 6.42, 51.58〉 3.1

Figure 6.8: Temperature bottom cuboid



87

TemporalDim SpaceDim Measures
Timestamp Point (Avg)

t point, x, y precipitation
〈‘2007-08-06:01:07:54’〉 〈(2.58,50.75), 2.58, 50.75〉 56

. . . . . . . . .
〈‘2009-09-11:10:52:02’〉 〈(4.75,51.08), 4.75,51.08〉 66
〈‘2009-09-11:12:05:46’〉 〈(4.92,51.42), 4.92, 51.42〉 69
〈‘2009-09-11:36:10:32’〉 〈(5.92,50.25), 5.92, 50.25〉 78

. . . . . . . . .
〈‘2010-12-26:00:12:48’〉 〈(6.42,50.42), 6.42, 50.42〉 122

Figure 6.9: Precipitation bottom cuboid

SpaceDim Measures
Point (Max)

point, x, y altitude
〈(2.55,49.47), 2.55, 49.47〉 114

. . . . . .
〈(3.79,50.55), 3.79, 50.55〉 65
〈(4.19,50.64), 4.19, 50.64〉 96
〈(4.28,50.63), 4.28, 50.63〉 121

. . . . . .
〈(6.37,51.57), 6.37, 51.57〉 25

Figure 6.10: Altitude bottom cuboid

DateDim GeoDim PestDim Measures
Month Area Pesticide (Union)
month aID, gArea pName trajectory
〈Jan-2007〉 〈105, geom105〉 〈‘aldicarb’〉 t12
〈Feb-2007〉 〈208, geom208〉 〈‘parathion’〉 t22

. . . . . . . . . . . .
〈Jan-2010〉 〈105, geom105〉 〈‘aldicarb’〉 t104
〈Jan-2010〉 〈304, geom304〉 〈‘aldicarb’〉 t107
〈Jan-2010〉 〈105, geom105〉 〈‘parathion’〉 t118
〈Jan-2010〉 〈304, geom304〉 〈‘aldicarb’〉 t132
〈Jan-2010〉 〈667 ,geom667〉 〈‘aldicarb’〉 t162
〈Jul-2010〉 〈667 ,geom667〉 〈‘azadirachtin’〉 t162

. . . . . . . . . . . .
〈Sep-2010〉 〈208, geom208 〉 〈‘pyrethrin’〉 t205

Figure 6.11: Fumigation bottom cuboid

We next address a collection a collection of queries to the cubes described

above, using the cube algebra operations defined in the previous chapters.

6.2 Queries over Individual Cubes

We start with some example queries posed over individual cubes (that is,

queries using unary OLAP operators).
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Query 1

“Average temperature at the center of Brussels (Long 4 .37 ◦, Lat 50 .84 ◦) dur-

ing June of 2010 ”. This query is applied over the Temperature cube. The following

expressions answer the query:

Q1-Aux1 = Roll-Up(Temperature,TemporalDim,Month)

Q1 = Dice(Q1-Aux1, point = (4.37,50.84) and m = ‘Jun-2010’)

We first aggregate the measures applying a Roll-up to the Month level in

order to be able to select a particular month and coordinate point. Figure 6.12

shows the resulting cuboid.

Notice that, according to the modeled dimension level, another option for the

second operation (i.e., Dice) would be to ask for the two coordinates separately,

as follows:

Q1 = Dice(Q1-Aux1, x = 4.37 and y = 50.84 and m = ‘Jn-2010’)

It is important to point out that if we applied a Drill-down operation over

Q1 to the Timestamp level in the dimension TemporalDim, the resulting cuboid

would only contain timestamps corresponding to June 2010.

TemporalDim SpaceDim Measures
Month Point (Avg)

m point, x, y temperature
〈‘Jun-2010’〉 〈(4.37,50.84), 4.37, 50.84〉 18.0

Figure 6.12: Resulting cuboid of Query 1.

Remark 10. According to the TemporalDim schema in Figure 5.1(a), if the values

of the members in the Month instance did not have the year concatenated, a Roll-

up to Year level would be needed to select the year 2010. Then a Drill-down to

the Month level would be required to choose June. In this case, although the result

is the same that with Q1, the query becomes more complex.
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Query 2

“Districts where cabernet sauvignon was produced during 2010, with a harvest

greater than 34000 ”. This query operates over the Vineyard cube.

We cannot ask simultaneously for grapes and districts because both of them

have been modeled as different levels of the same spatial dimension (see Figure 3.2).

Thus, we need to perform Roll-up and Drill-down operations as follows:

Q2-Aux1 = Roll-up(Vineyard,TimeDim,Year)

Q2-Aux2 = Dice(Q2-Aux1, year = 2010)

Q2-Aux3 = Roll-up(Q2-Aux2,BlockDim,Grape)

Q2-Aux4 = Dice(Q2-Aux3, gName = ‘cavernet sauvignon’)

Q2-Aux5 = Drill-down(Q2-Aux4,BlockDim,Block)

Q2-Aux6 = Roll-up(Q2-Aux5,BlockDim,District)

Q2 = Dice(Q2-Aux6, harvest >= 34000)

In Q2-Aux1 we aggregate time values up to Year level, in order to select the

elements corresponding to the year 2010 in Q2-Aux2. Since we need to select an

specific grape, in Q2-Aux3 we aggregate to the Grape level and then select ‘cabernet

sauvignon’ in Q2-Aux4. Thus, since the dice operation induced a new cube instance

according to the Drill-down semantics already explained, Q2-Aux5 will only

contain blocks whose planting during 2010 is ‘cabernet sauvignon’. Thus, in Q2-

Aux6 we aggregate these blocks to the District level and finally obtain the desired

cuboid Q2 by dicing the correct harvest value. Figure 6.13 shows the resulting

cuboid.

TimeDim BlockDim Measures
Year District (Sum)
year dName, dGeom harvest
〈2010〉 〈Antwerp, g55〉 36600
〈2010〉 〈Brabant, g80〉 34800
〈2010〉 〈Leuven, g18〉 46800

Figure 6.13: Resulting cuboid for Query 2.

It is important to point out that, although the current levels of Q2 are Year
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and District, if we now roll-up to Province level, only values corresponding to the

selected grape ‘cabernet sauvignon’ will be aggregated.

Query 3

The next query operates over the Fumigation cube. “Zones where the length

of fumigation trajectories with ‘chemical’ pesticide during January 2010 is larger

than 100 km”. The following expressions solve the query:

Q3-Aux1 = Roll-Up(Fumigation,GeoDim,Zone)

Q3-Aux2 = Roll-up(Q3-Aux1,PestDim,Type)

Q3 = Dice(Q3-Aux2,month = ‘Jan-2010’′ and pType = ‘chemical’ and Length(

trajectory) > 100)

For this query, we used the dimension instances depicted in Figures 6.4(b),

6.5(b) and 6.6(b). The measure is a 3-D trajectory over which geometric functions

can be applied, e.g., Length, Union, Contains, etc. The two Roll-up opera-

tions compute the union (the aggregation function associated to the measure) of

all the 3-D trajectories by month, zone and pesticide type. The length of the union

is the sum of the lengths of all of the trajectories that compose it. Thus, a dice

condition over such length be applied. Figure 6.14 shows the resulting cuboid.

DateDim GeoDim PestDim Measures
Month Zone Type (Union)
month zID, gZone pType trajectory
〈Jan-2010〉 〈01, geom01〉 〈chemical〉 t104 ∪ t118
〈Jan-2010〉 〈07, geom07〉 〈chemical〉 t107 ∪ t132
〈Jan-2010〉 〈11 ,geom11〉 〈chemical〉 t162

Figure 6.14: Resulting cuboid of Query 3.

6.3 Integrated Queries

We will now show queries that combine information in the Vineyard cube with

the rest of the cubes (Precipitation, Temperature, etc.). For this, we must define a
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semantic mapping between the corresponding cubes, since, although the temporal

and spatial dimensions conceptually express the same concepts, there are some

differences between them that must be addressed prior to apply a drill-across op-

eration. Figures 6.15 and 6.16 graphically show the corresponding pairs of semanti-

cally equivalent levels of P for SM(Vineyard,Temperature), SM(Vineyard,Precipitation),

SM(Vineyard,Altitude) and SM(Vineyard,Fumigation).

Figure 6.15: Semantic mapping between temporal levels.

Figure 6.16: Semantic mapping between spatial levels.

It is important to point out that the equality of names of two level descriptors
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is not enough to define the equivalence between their members. That is the case of

the descriptor pName in level Province of the BlockDim dimension, and pName in

level Pesticide of the PestDim dimension. The semantic mapping must be identified

by a curator with a full knowledge of the user domain.

The member mappings between TimeDim.Month and DateDim.Month is given

by the homonymous level descriptors, i.e., month of TimeDim.Month with month of

DateDim.Month. The same occurs with TimeDim.Year and DateDim.Year. Below,

the rest of the member mappings are defined by intension:

Smap
{TemporalDim.Month}
{TimeDim.Month} = {(〈month〉, 〈m〉)|month=m}

Smap
{TemporalDim.Year}
{TimeDim.Year} = {(〈year〉, 〈y〉)|year=y}

Smap
{SpatialDim.District}
{BlockDim.District} = {(〈dName, dGeom〉, 〈district,distGeom〉)|dName=district}

Smap
{SpatialDim.Province}
{BlockDim.Province} = {(〈pName, pGeom〉, 〈province,provGeom〉)|

pName=province}
Smap

{GeoDim.Zone}
{BlockDim.District} = {(〈dName, dGeom〉, 〈zID,gZone〉)|dGeom=gZone}.

Notice that the member mapping may not involve all level descriptors, since

some of them can be irrelevant to define the equivalence, e.g., for Smap
{SpatialDim.Province}
{BlockDim.Province} ,

the level descriptors pGeom and provGeom are not taken into account for the mem-

ber equivalence.

Once the semantic mapping is defined, we can formulate queries involving sev-

eral cubes.

Query 4

“Districts sprayed with chemical substances at a height lower than 12 meters,

and where the temperatures during January 2010 were greater than 2.0 Celsius

degrees”. This can be solved as follows.

Q4-Vin1 = Roll-up(Vineyard,BlockDim,District)

Q4-Vin2 = Roll-up(Q4-Vin1,TimeDim,Month)

Q4-Vin3 = Dice(Q4-Vin2,month = ‘Jan-2010’)



93

The cuboid Q4-Vin3 selects the month and year after rolling-up to the corre-

sponding levels in Vineyard. The resulting cuboid with the harvest per district

during January 2010 is shown in Figure 6.17. Let us call VineyardQ4−Vin3 the cube

induced by cuboid Q4-Vin3. According to the rules of Section 5.5, the follow-

ing mappings are induced: SM(VineyardQ4−Vin3, Temperature), SM(VineyardQ4−Vin3,

Precipitation), SM(VineyardQ4−Vin3, Altitude), SM(VineyardQ4−Vin3, Fumigation).

Q4-Tem1 = Roll-up(Temperature, SpatialDim,District)

Q4-Tem2 = Roll-up(Q4-Tem1,TemporalDim,Month)

Q4-Tem3 = Dice(Q4-Tem2, temperature > 2.0 and m = ‘Jan-2010’

The cuboid Q4-Tem3 selects the month January 2010 in Temperature after

rolling-up to the Month and District levels. The resulting cuboid with tempera-

tures higher than 2.0◦C by district during January 2010 is depicted in Figure6.18.

Let us call TemperatureQ4−Tem3 the cube induced by Q4-Tem3. New semantic map-

pings are induced, like SM(VineyardQ4−Vin3,TemperatureQ4−Tem3) among other ones.

Q4-Fug1 = Roll-up(Fumigation,PestDim,Type)

Q4-Fug2 = Roll-up(Q4-Fug1,GeoDim,Zone)

Q4-Fug3 = Dice(Q4-Fug2,month = ‘Jan-2010’ and pType = ‘chemical’ and

Zmin(trajectory) <= 12) (Zmin returns the minimum height of a 3D geometry)

Q4-Fug4 = Slice(Q4-Fug3,PestDim)

The cuboid Q4-Fug4 contains the aggregated trajectories during January 2010

only for the chemical pesticide category, after rolling-up to Month, Type, and Zone

levels. The resulting cuboid is shown in Figure 6.19.

The output cuboid Q4-Fug3 induces the cube FumigationQ4−Fug3. According to

the rules of Section 5.5, a semantic mapping SM(VineyardQ4−Vin3,FumigationQ4−Fug3)

is also induced. However, no cuboid of VineyardQ4−Vin3 is semantically compatible

with any cuboid of FumigationQ4−Fug3, because of the PestDim dimension. Thus,
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TimeDim BlockDim Measures
Month District (Sum)
month dName, dGeom harvest

〈‘Jan-2010’〉 〈‘Nijvel’, g118〉 29200
〈‘Jan-2010’〉 〈‘Hasselt’, g127〉 39400
〈‘Jan-2010’〉 〈‘Antwerp’, g100〉 25400
〈‘Jan-2010’〉 〈‘Louvain’, g132〉 31400
〈‘Jan-2010’〉 〈‘Arlon’, g101〉 32100
〈‘Jan-2010’〉 〈‘Oostende’, g135〉 22600

. . . . . . . . .
〈‘Jan-2010’〉 〈‘Mechelen’, g120〉 35400

Figure 6.17: Intermediate cuboid Q4-Vin3.

TemporalDim SpaceDim Measures
Month District (Avg)

m district, distGeom temperature
〈‘Jan-2010’〉 〈‘Antwerp’, poly200〉 2.3
〈‘Jan-2010’〉 〈‘Hasselt’, poly123〉 2.1
〈‘Jan-2010’〉 〈‘Louvain’, poly132〉 2.2
〈‘Jan-2010’〉 〈‘Mechelen’, poly207〉 2.3

. . . . . . . . .
〈‘Jan-2010’〉 〈‘Oostende’, poly315〉 2.9

Figure 6.18: Intermediate cuboid Q4-Temp3.

the last Slice operation induces a new cube FumigationQ4−Fug4 and the semantic

mapping SM(VineyardQ4−Vin3,FumigationQ4−Fug4), with six semantically compatible

cuboids, like Q4-Vin3 and Q4-Fug4.

DateDim GeoDim PestDim Measures
Month Zone Type (Union)
month zID, gZone pType trajectory
〈Jan-2010〉 〈01, geom01〉 〈chemical〉 t104 ∪ t118
〈Jan-2010〉 〈07, geom07〉 〈chemical〉 t107 ∪ t132
〈Jan-2010〉 〈11, geom11〉 〈chemical〉 t162
〈Jan-2010〉 〈14, geom280〉 〈‘pyrethrin’〉 t205 ∪ t262 ∪ t301

Figure 6.19: Intermediate cuboid Q4-Fug4.

We can now compute the Drill-across between the semantically compatible

cuboids Q4-Vin3 and Q4-Tem3:

Q4-Aux1 = Drill-across(Q4-Vin3,Q4-Tem3)

Q4 = Drill-across(Q4-Aux1,Q4-Fug4)

The result is the cuboid Q4-Aux1, containing measures harvest and temperature,
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and it is shown in Figure 6.20. Notice that the districts of ‘Nijvel’ and ‘Arlon’ are

not present in Q4-Aux1, since they have no semantically equivalent members in the

cuboid Q4-Tem3. The schema of the output cube VineyardQ4−Aux1 neither contains

the levels Block, Grape and GrapeType in the BlockDim dimension, nor the level

Day in the dimension TimeDim because they are below the Month and District

levels, which are the current levels of the input cuboids.

Q4-Aux1 induces new semantic mappings, in particular SM(VineyardQ4−Aux1,

FumigationQ4−Fug4). Because of this mapping, the cuboids Q4-Aux1 and Q4-Fug4

are semantically compatible and can be drilled-across, so the desired result can be

computed. This result contains three measures, namely harvest, temperature and

trajectory. Figure 6.21 depicts the final cuboid.

TimeDim BlockDim Measures
Month District (Sum) (Avg)
month dName, dGeom harvest temperature

〈‘Jan-2010’〉 〈‘Hasselt’, g127〉 39400 2.1
〈‘Jan-2010’〉 〈‘Antwerp’, g100〉 25400 2.3
〈‘Jan-2010’〉 〈‘Louvain’, g132〉 31400 2.2
〈‘Jan-2010’〉 〈‘Oostende’, g135〉 22600 2.9

. . . . . . . . . . . .
〈‘Jan-2010’〉 〈‘Mechelen’, g120〉 35400 2.3

Figure 6.20: Intermediate cuboid Q4-Aux1.

TimeDim BlockDim Measures
Day Block (Sum) (Avg) (Union)

date,dayofWeek idBlock, bGeom harvest temperature trajectory
〈‘Jan-2010’〉 〈‘Hasselt’, g127〉 39400 2.1 t205 ∪ t262 ∪ t301
〈‘Jan-2010’〉 〈‘Mechelen’, g120〉 35400 2.3 t107 ∪ t132

Figure 6.21: Resulting cuboid for Query 4.

Query 5

“Ratio between harvest and total area of provinces during 2010 for ‘pinot noir’

in provinces where the maximum altitude is greater than 200 meters and the average

precipitation is greater than 95 mm”. The following groups of OLAP expressions

solve the query.
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Q5-Vin1 = Roll-up(Vineyard,BlockDim,Grape)

Q5-Vin2 = Roll-up(Q5-Vin1,TimeDim,Year)

Q5-Vin3 = Dice(Q5-Vin2, year = 2010 and gName = ‘pinot noir′)

Q5-Vin4 = Drill-down(Q5-Vin3,BlockDim,Block)

Q5-Vin5 = Roll-up(Q5-Vin4,BlockDim,Province)

The cuboid Q5-Vin3 selects the desired grape and year, after rolling-up to the

corresponding levels. Then, a Drill-down and a new Roll-up result in a cuboid

with the provinces that correspond to the previously selected members, shown in

Figure 6.22.

Q5-Alt1 = Roll-up(Altitude, SpatialDim,Province)

Q5-Alt2 = Dice(Q5-Alt1, altitude >= 200)

The cuboid Q5-Alt2 contains the desired altitude per province, after rolling-up

to the corresponding level. This cuboid is shown in Figure 6.23.

Q5-Pre1 = Roll-up(Precipitation, SpatialDim,Province)

Q5-Pre2 = Roll-up(Q5-Pre1,TemporalDim,Year)

Q5-Pre3 = Dice(Q5-Pre2, y = 2010 and precipitation >= 95)

Q5-Pre3 contains the desired precipitation per province during year 2010, af-

ter rolling-up to the corresponding levels. Figure 6.24 depicts this intermediate

cuboid.

Q5-Aux1 = Drill-across(Q5-Vin5,Q5-Alt2)

Q5 = Drill-across(Q5-Aux1,Q5-Pre3, {Fr, harvest-per-area,Sum})
where Fr : R× P2D → R, with Fr(harvest, pGeom) = harvest/Area(pGeom).

In order to cross the information between the three intermediate cuboids above,

two Drill-across operations are applied. The first one between Q5-Vin5 and

Q5-Alt2, and the second one between this partial result and Q5-Pre3. The latter

includes the creation of a new measure named ‘harvest-per-area’ (see Example 30
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TimeDim BlockDim Measures
Year Province (Sum)
year pName, pGeom harvest
〈2010〉 〈‘East Flanders’, g10〉 89200
〈2010〉 〈‘Flemish Brabant’, g12〉 79400
〈2010〉 〈‘Hainaut’, g11〉 85400
〈2010〉 〈‘Liege’, g14〉 78400
〈2010〉 〈‘Limburg’, g15〉 82100
〈2010〉 〈‘Luxembourg’, g13〉 92600
〈2010〉 〈‘Namur’, g17〉 81400
〈2010〉 〈‘West Flanders’, g19〉 92600

Figure 6.22: Intermediate cuboid Q5-Vin5.

SpatialDim Measures
Province (Max)

province, provGeom, population altitude
〈‘Liege’, poly34, 1067685〉 385

〈‘Luxembourg’, poly43, 269023〉 630
〈‘Namur’, poly27, 472281〉 280

Figure 6.23: Intermediate cuboid Q5-Alt2.

TemporalDim SpatialDim Measures
Year Province (Avg)
y province, provGeom, population precipitation

〈2010〉 〈‘Liege’, poly34, 1067685〉 107
〈2010〉 〈‘Luxembourg’, poly43, 269023〉 99

Figure 6.24: Intermediate cuboid Q5-Pre3.

about including new measures in a Drill.across operation). Figures 6.25 and

6.26 shown these last resulting cuboids. The cuboid Q5 contains the result.

TimeDim BlockDim Measures
Year Province (Sum) (Max)
year pName, pGeom harvest altitude
〈2010〉 〈‘Liege’, g14〉 78400 385
〈2010〉 〈‘Luxembourg’, g13〉 92600 630
〈2010〉 〈‘Namur’, g17〉 81400 280

Figure 6.25: Intermediate cuboid Q5-Aux1.

To display only the new metric introduced, we must apply three Slice opera-

tions over the measures harvest, altitude and precipitation as follows, and the final

resulting cuboid is shown in Figure 6.27:
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TimeDim BlockDim Measures
Year Province (Sum) (Max) (Avg) (Sum)
year pName, pGeom harvest altitude precipitation harvest-per-area
〈2010〉 〈‘Liege’, g14〉 78400 385 107 20.4
〈2010〉 〈‘Luxembourg’, g13〉 92600 630 99 20.8

Figure 6.26: Resulting cuboid for Query 5.

Q5-Aux2 = Slice(Q5, harvest)

Q5-Aux3 = Slice(Q5-Aux2, altitude)

Q5short = Slice(Q5-Aux3, precipitation)

TimeDim BlockDim Measures
Year Province (Sum)
year pName, pGeom harvest-per-area
〈2010〉 〈‘Liege’, g14〉 20.4
〈2010〉 〈‘Luxembourg’, g13〉 20.8

Figure 6.27: Resulting cuboid for Query 5 with only the new measure.

6.4 Continuous Data and Cubes

At first sight, the reader may think that the five cubes presented in this section

are typical OLAP cubes containing alphanumerical information, or SOLAP cubes

because of the geographic dimensions or measures. However, actually Tempera-

ture, Precipitation and Altitude had been obtained by discretizing information from

continuous sources. The difference between these discretized cubes and the typical

SOLAP cubes lies in the possibility of asking for values that are not present in the

stored data but which can be inferred for example, using interpolation methods.

That is the case of Query 1. In a traditional SOLAP cube, if the value correspond-

ing to the coordinate (Long 4.37◦, Lat 50.84◦) is not exactly stored in the cube

instance, it will never appear in any resulting cuboid. On the contrary, if the cube

represents a discretized continuous function, although the data are not stored in

the cube, it can be calculated based on the interpolation of other values actually

stored in the cube.
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In summary, the five queries above have given a comprehensive idea of the

power of our proposal: we have shown that these complex queries have been ad-

dressed being unaware of the kinds of data represented in the five cubes, which

are actually of completely different kinds: Temperature and Precipitation actually

come from spatiotemporal continuous data, Altitude comes from spatial continuous

data, Fumigation represents moving object data, and Vineyard is a standard SO-

LAP cube. However, we were able to express the five queries without caring about

these details: we have just manipulated cubes. We provide an in-depth discussion

in Chapters 7 and 8.

6.5 Summary

In this chapter we have shown how the concepts studied in the previous ones

can be applied to solve complex queries over heterogeneous data cubes. We also

illustrated the power provided by the extension of the Drill-across operator.

Without such a mapping, these queries could not have been solved. Through these

examples we have shown that the algebra proposed over our conceptual model

can solve complex queries just using the basic operators, hiding from the user

implementation details such as whether the underlying nature of a cube is discrete

or continuous. In the next chapter we apply these concepts to the particular case of

continuous field data, showing how the operations are defined at lower abstraction

levels.



Chapter 7

Continuous Fields: Algebra and

Data Model

In Chapter 6 we have suggested that in some cases it is possible to treat con-

tinuous information as an OLAP cube, in order to seamlessly combine this infor-

mation with other discrete OLAP cubes, applying the typical OLAP operations

at a conceptual level. In particular, in this thesis we will study how we can repre-

sent continuous field data as OLAP cubes, although we remark that the procedure

could be applied to any kind of data, provided these data fulfill some conditions.

In this chapter we present a model that allows transforming continuous fields

into discrete spatial and spatiotemporal data structures that can then be repre-

sented as OLAP cubes (this representation will be explained in detail in Chapter

8). Continuous fields are typically queried using a language denoted Map Algebra,

which is only applicable to raster data. Therefore we also extend Map Algebra to

support any kind of field representation (raster, Voronoi, TIN, etc.). In this way

we will be able to show that not only we can treat continuous fields as cubes, but

also to support different and even mixed kinds of representations of such fields.

7.1 Continuous Fields

A Continuous Field (from now, Field) can be expressed as a function that

describes the variation of the values of a phenomena/feature (for example, real

numbers for precipitation or temperature, strings for countries) at every point of

100
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a continuous field domain. Thus, this function has a continuous N-dimensional

domain (spatial and/or temporal) and its range is included in the values of the

represented phenomena/feature [49]. The formal definition of Field is given below.

Definition 20 (Continuous Field). A Continuous Field is composed of:

(a) A domain D which is a continuous set

(b) A range of values R

(c) A mapping function Fn: D→ R

Example 31. The Gravitational field around a mass M located at (x0, y0, z0) has

its domain in R3, its range of values in R3 (it is a vectorial field), and its function is

defined point by point by the following expression (G is the universal gravitational

constant): Fn(x, y, z)= (a1, a2, a3) where

a1 = −x ∗ G ∗M√
((x− x0)2 + (y− y0)

2 + (z− z0)2)3

a2 = −y ∗ G ∗M√
((x− x0)2 + (y− y0)

2 + (z− z0)2)3

a3 = −z ∗ G ∗M√
((x− x0)2 + (y− y0)

2 + (z− z0)2)3

Notice that this field contains a vector in each point of its domain.

In practice, operations are performed over discrete representations that must

satisfy certain constraints, and over a bounded domain. Moreover, the values of

the function are restricted to some specific area of interest, and outside this area

the function may be unknown. This leads to the notion of Bounded Field.

Definition 21 (Bounded Continuous Field). An N-dimensional Bounded Contin-

uous Field (BField) F is defined by:

(a) A domain Dom(F) = Dom1(F)×· · ·×DomN(F), where Domi is a closed interval

in R, ∀i, i = 1..n
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(b) A list of N labels Labels(F) = 〈l1, . . . , lN〉, to describe semantically each di-

mension in the domain, where li 6= lj, ∀i, i = 1 . . .N, ∀j, j = 1 . . .N. (We

denote Li(F) the ith component of Labels(F))

(c) A set of values R ∪ {⊥}, denoted Range(F), where ⊥ is a distinguished value

that does not belong to R

(d) A mapping function Fn : Dom(F)→ Range(F)

Remark 11. Notice that ‘⊥’ can be represented in different ways. For an appli-

cation that uses databases we can use the null value. For an application that uses

a file this value can be NaN in the case of numbers. The range of values for a field

can be constants (such as numbers, categorical names) or vectors (for defining its

magnitude and direction).

Example 32 (Bounded Continuous Field). We define the BField Elevation as a

2-D domain limited by a square of 6 km × 6 km, Labels(Elevation)=<X,Y> and

Range(Elevation)={1, 2, 3, 4, ⊥}.

The mapping function is defined point by point in the spatial domain as it is

graphically depicted in Figure 7.1. It is important to point out that the continuous

nature of Fields guarantees that we can obtain a value of Range(Elevation) for every

point in the domain.

When a BField corresponds to a phenomenon, it is usually measured only at

some finite number of points of its N-dimensional domain. Thus, in practice, the

values of the function are restricted to some specific area of interest, and only a

finite set of sample points are known (also, we actually do not know the value of

a phenomenon, but only an approximation with its respective error range). To

estimate the values at non-sampled points, different interpolation functions can be

used. Based on this, we model a continuous field as a discrete field that contains

only sampled values that have been measured in a finite set of points. Thus, we

define a Discretized Field as follows.
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Figure 7.1: Graphical Representation of the BField Elevation

Definition 22 (Discretized Field). An N-dimensional Discretized Field (DField)

F is a BField (see Definition 21) with:

(a) A non-empty set of K tuples of N+1 dimensionality, Samples(F) = {(x11, . . . ,

x1N, v1),. . . , (xK1, . . . , xKN, vK)}, where ∀i, ∀j, i = 1..K, j = 1..N, xij ∈ Domj(F),

and vi ∈ Range(F)

(b) An interpolation function Fs over Samples(F), used for defining Fn (Defini-

tion 21)

Definition 23 (Sampled Tuple, Sampled Point, Sampled Value). Given an N-

dimensional DField F, we denote:

• Sampled tuple each element in Samples(F).

• Sampled point the first n components of a sampled tuple. We denote sp(s)

the sampled point of the sample tuple s ∈ Samples(F).

• Sampled value the last component of a sampled tuple. We denote sv(s) the

sampled point of the sample tuple s ∈ Samples(F).
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7.2 Tesselations

Since DFields only contain a finite set of sampled values, we need to be able

to infer the value of the function at each point in space. To do this, the space is

normally partitioned using several possible methods we discuss next.

Computationally, an N-dimensional continuous spatial domain can be parti-

tioned or discretized by grouping points into N-dimensional polytopes (e.g., poly-

gons in 2D, polyhedra in 3D, polytopes in high order dimensions). The partition of

the spatial domain is denoted a tessellation. This concept is used for representing

infinite points in the continuous domain in a finite way. Formally:

Definition 24 (Tessellation). A Tessellation of a finite N-dimensional Euclidean

space S, denoted T s(S), is a non-empty set T s(S)={g1, g2, . . . , gn}, such that the

following conditions hold:

1. gi is a N-dimensional polytope, ∀i, i = 1..n

2. S =
⋃

i=1..n gi

3. ∀i, i = 1..n ∀j, j = 1..n gi

⋂
gj = φ.

There are regular and irregular tessellations. A regular tessellation can be

defined with the Schläfli symbol, which consists of the form {p,q,r,...}. In two

dimensions, {p} is used to describe a regular tessellation. For example, {3} for

an equilateral triangle, {4} for a square. In three dimensions, {p, q} is used to

describe a regular tessellation with q regular p faces around each vertex. For

example, {4, 3} for a cube (i.e., three squares around each vertex). Analogously,

in four dimensions, {p, q, r} is used.

In practice, different tessellations are used to represent fields. For example,

raster data, TIN (Triangulated Irregular Network) and Voronoi among other ones.

Moreover, different interpolation functions are used to define Fn over non-sampled

points. In the following subsections we discuss some of them.
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7.2.1 Voronoi Tessellation

This section introduces the use of Voronoi diagram to define a domain tessel-

lation. For an in-depth discussion on how to build Voronoi diagrams, we refer the

reader to the work by Ledoux and Gold [29].

Given a finite set of sampled points Ps, each sp ∈ Ps has an associated Voronoi

cell consisting of all the points of the space closer to sp than to any other sample. As

a consequence, the segments in a Voronoi diagram are composed by all the points

equidistant to the two nearest samples and the nodes are the points equidistant

to three or more samples (see Figure 7.2(a)).

The use of a Voronoi tessellation guarantees that the actual samples (which

represent measured values) are preserved in the discrete representation, i.e., no

sample is lost or modified, and only non-sampled points are inferred. To estimate

the values of the function at non-sampled points, different interpolation functions

can be used. For example the simplest one is the Constant function which assigns

each point inside a Voronoi cell the value of the sampled value contained in it.

The algorithm to find out the value of a query point p, can be summarized as

follows: if p is a sample, the algorithm returns its measured value. Otherwise. it

computes the Voronoi cell corresponding to p, and returns the value of the sample

of this cell. The constant function method is based on the idea that all points in

a Voronoi cell are closer to the sample inside it than any other sample. Thus, the

closer sample is enough for approximate its value, i.e. its nearest neighbor sample.

Other interpolation methods have been proposed. For example, the Natural

Neighbor Interpolation ([47]) uses several samples. The value of these samples

are weighted by a formula that estimates the unknown value of the query point.

Algorithm 6 details how values are inferred with this method.

Example 33 (Voronoi tesselation). Figure 7.2(a) shows a Voronoi tesselation built

using sampled points. We need to estimate the value of a non-sampled point p.

According to Algorithm 6, p is inserted and a new cell is induced, as shown in

Figure 7.2(b). The estimated value of p is calculated by considering the weighted

contribution of the parts of the old cells that build the new cell. A zoomed view of
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the local cells that have been split when adding p is shown in Figure 7.2(c). The

estimated value for p is calculated as:

value(p) =

∑
i=3..7Area(cp ∩ csi) ∗ sv(si)

Area(cp)

where csi is the cell corresponding to sample si and cp is the new cell induced by

the insertion of p.

(a) Original Voronoi Tesselation (b) New cell after inserting p

(c) Zoom of the new cell

Figure 7.2: Inferring the value for a point p using a Voronoi Tesselation.

7.2.2 Raster Tesselation

In GIS, raster data (gridded data) have been extensively used. A raster tesse-

lation is a regular partition of a 2-D or 3-D domain. In practice, samples are used

to assign each cell a single value, for example all sampled values corresponding to
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Algorithm 6 Natural Neighbor Interpolation

CellsV← {c|c is a cell of the original Voronoi Tesselation}

newCell← new cell resulting when p point is inserted

S←0

for all cellsi ∈ CellsV do

if cellsi
⋂

newCell 6= φ then

S← S + Area(cellsi ∩ newCell) ∗ sv(si)

val(p)←S/Area(newCell)

sampled points inside each cell are summarized into a single one. Thus, the dis-

cretized field uses a function that assigns a constant value to each point belonging

to the same cell. It can be perceived as a matrix with cells of some extent, such

that the tessellated domain is stored in metadata (cell size and extent) and the

matrix stores inferred values.

Example 34 (Raster tesselation). Figure 7.3 depicts a raster tessellation. Each

cell contains a sampled value, representing the value of all the points within it.

Figure 7.3: Example of Raster Tessellation
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7.2.3 TIN (Triangulated Irregular Networks)

A Triangulated Irregular Network (TIN) is a data structure for the represen-

tation of 2-D surfaces. TINs are used in GIS to represent altitude, and they are

derived from the digital elevation model (DEM). The TIN Model comprises a tri-

angular network whose vertices (corresponding to sampled points), connected by

edges, form a triangular irregular tessellation typically based on a Delaunay trian-

gulation. In TIN, in regions where there is little variation in the surface height, the

points may be widely spaced whereas in areas of more intense variation in height,

the point density is increased [28]. Algorithms to build the Delaunay triangulation

can be found in the work of Lee and Schachter [31].

The value z at each point of the plane XY may be calculated in different ways.

Linear interpolation is the simplest method, and it may be achieved by using the

plane equation of the surface given by the three vertices of the triangle containing

the point to be interpolated. Given three points (x1, y1, z1), (x2, y2, z2) and (x3,

y3, z3) a plane surface has a formula:


x y z 1

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1


Thus, the plane equation is:

z =
(x3y2z1 + x2y1z3 + x1y3z2 − x1y2z3 − x2y3z1 − x3y1z2)

x3y2 + x1y3 + x2y1 − x1y2 − x2y3 − y1x3
+

+
(y1z2 + z1y2 + y3z3 − y3z2 − y2z1 − y1z3)x

x3y2 + x1y3 + x2y1 − x1y2 − x2y3 − y1x3
+

+
(x3z2 + x1y3 + x2z1 − x1z2 − x2z3 − x3z1)y

x3y2 + x1y3 + x2y1 − x1y2 − x2y3 − y1x3
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Example 35 (TIN tesselation). Consider a fragment of a TIN diagram, given in

Figure 7.4, and the samples s1 = (20, 60, 10), s2 = (10, 20, 0) and s3 = (40, 25, 5).

The z value (altitude) of each point inside the triangle (s1, s2, s3) using linear

interpolation is given by:

z =
3x + 5y− 130

23

Thus, the z value inferred for the point p=(20,40) is 130/23.

Figure 7.4: Example of TIN diagram

Remark 12. Notice that, like Voronoi tesselations, a TIN tesselation preserves

the sampled values. This is not necessary the case in a raster tesselation.

7.3 Spatial and Spatio-Temporal DFields

Independently of how they are implemented, DFields can be classified into

spatial discretized (SDField) and spatio-temporal discretized (STDField) ones. We

next formalize the concepts of SDField and STDField, providing a conceptual

model for fields.

Spatial DFields have just a spatial domain which is tessellated in a way such

that each partition contains at least one sample.

Definition 25 (Spatial Discretized Field). A Spatial Discretized Field (SDField)

F is a DField (see Definition 22) such that:
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(a) Its domain Dom(F) is spatial

(b) T s(Dom(F)) = {g1, . . . , gP}, and ∀i, i = 1..P ∃ s ∈ Samples(F) such that

sp(s) ∈ gi where P is the number of cells of the tessellation T s(Dom(F)).

Borrowing ideas from Cubic Map Algebra [38], we model a spatio-temporal

DField as a list of snapshots of SDFields across time, such that each snapshot

is valid during a certain time interval. These time intervals induce a temporal

partition of the time dimension. Snapshots can be of different kinds, meaning

that the first one could be represented using a raster tessellation, and the next

one could be a Voronoi partition. For all these snapshots only one interpolation

function fs can be used.

Definition 26 (Spatio-Temporal DFields). A Spatio-temporal Discretized Field

(SDTField) F is a time-ordered sequence of N-dimensional SDFields, Seq(F)={F1,

F2, . . .FK}, such that:

(a) Dom(Fi) is the same ∀i, i = 1..K, denoted Doms(F)

(b) Each Fi is a snapshot of the field taken at time tFi, and has an associated time

interval IFi ⊂ R representing its interval of validity, such that:

1. Domt(F) =
⋃

i=1..K IFi

2. IFi
= [sFi

, eFi
) where sFi

= tFi
−(tFi+1

−tFi
)/2 and eFi

= tFi
+(tFi+1

−tFi
)/2,

except IFK
which is closed (i.e., [sFk

, eFk
]). In consequence, ∀i, i = 1..K

∀j, j = 1..K IFi

⋂
IFj

=φ),

(c) Dom(F)= Doms(F)× Domt(F)

(d) Labels(Fi) = 〈l1, . . . , lk〉 is the same ∀i, i = 1 . . .K. Then, Labels(F) = 〈l1,

. . . ln,Time〉

(e) Range(Fi) is the same ∀i, i = 1..K, denoted Range(F)
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(f) Samples(F) = {(sp(s), sv(s), tFi
)| ∃Fi ∈ Seq(F) ∃s ∈ Samples(Fi)} where tFi

=

sFi
+ (eFi

− sFi
)/2 (i.e., each sample in Fi contains the middle point of the

time interval IFi
as its time value).

(g) Fs is the same ∀i, i = 1..K

(h) Fn(x1, . . . xn, t) = Fni(x1, . . . xn) where Fni is the Fn corresponding to the

snapshot Fi such that t ∈ IFi

Example 36 (STDField). Figure 7.5 shows a STDField with two snapshots. The

intervals of validity of these snapshots, according with Definition 26, are such

that the snapshot falls in the middle of the intervals. Then, IF1 = [2,10) and

IF2 = [10,14], as can be seen in the figure. Also, Fs is the constant function.

Fn(2.5, 3.5, 9) has the same value of Fn(2.5, 3.5) corresponding to the SDField

of IF1 , since time instant 9 belongs to the interval IF1 . That means, during the

whole interval we assume that the value of the function is the same for the same

point.

Example 37 (SDFields and STDFields). The soil pH measures the acidity or

basicity in soils. The Normalized Difference Vegetation Index (NDVI) is used

to analyze the quality and development of vegetation based on remote sensing

measurements of the radiation intensity emitted by plants. Figure 7.6 shows a

Voronoi SDField pH, a raster SDField NDVI and an STDField Temperature, where

the first two snapshots correspond to a Voronoi representation, and the other ones,

to rasterized partitions.

7.4 A Closed Generic Map Algebra for DFields

For manipulating Fields, several algebras have been proposed, like the map

algebras presented in Chapter 2. However, these approaches cannot handle fields

with different kinds of tessellations. That means, for instance, that for the Local

function, all fields (input and output) must have the same kind of tessellation.
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Figure 7.5: A Spatio-Temporal Discretized Field

(a) pH SDField

(b) NDVI SDField (c) Temperature STDField

Figure 7.6: Examples of DFields.



113

In this section we propose an algebra that overcomes this limitation. Therefore,

this algebra operates at a conceptual level through a set of meta-operators that

are agnostic of the tesselations of the involved fields. In addition, we show that,

opposite to map algebra, our algebra is closed (all of them receive fields and return

fields), and therefore they can be nested in combined expressions. In short, we

are providing an additional abstraction level. At a lower level, our definitions will

allow to implement each operation according with the corresponding tesselation.

DFields may come from different sources, and their dimensions can be labeled

differently from each other, even if they refer to the same semantic concept and

even if they are represented in a same way (i.e., raster, Voronoi, etc.). In or-

der to operate with them, they must be domain compatible, i.e., they have the

same dimensionality (2D, 3D) and there must exist a semantic mapping (anal-

ogous to the one presented in Chapter 5) between the labels belonging to same

domain. For example, let us consider two DFields F1 and F2 with Labels(F1) =

〈X,Y〉, Dom(X)=[10, 30], Dom(Y)=[50, 120] and Labels(F2) = 〈coordY, coordX〉,
Dom(coordY)= [50, 120], Dom(coorX)=[10, 30]. F1 and F2 are domain compatible

because we can define a semantic mapping of labels by matching X with coordX

and Y with coordY.

Definition 27 (Semantic Mapping of Labels). Consider a set of k DFields {F1, ..,Fk}

such that each Fi belongs to an Ni dimensional domain. Let p = Min(Ni), ∀ i, i =

1..k; A semantic mapping of Labels between the Fi’s is a set of tuples of dimen-

sion k: SML(F1, . . . ,Fk) = {t|t = (l1, l2, . . . , lk), li ∈ Labels(Fi) ∀i, i = 1..k,

and li represents the same concept}. Moreover, (a) 1 ≤ |SML(F1, . . . ,Fk)| ≤ p;

(b) ∀t1, t2 ∈ SML(F1, . . . ,Fk), t1 = (l11, l12, . . . , l1k) and t2 = (l21, l22, . . . , l2k)

l1j 6= l2j∀j, j = 1..k.

Definition 28 (Semantic Compatibility). A set of DFields is semantically com-

patible iff there exists a Semantic Mapping of Labels between the fields in it,

containing N tuples.

Semantic compatibility does not imply that fields are defined over compatible
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domains. In consequence, we introduce a stronger condition in order to guarantee

a correct DField manipulation.

Definition 29 (Domain Compatibility). Let F = {F1,F2, ...,Fk} a set of k N-

dimensional semantically compatible DFields. The DFields in F are domain com-

patible iff: ∀(li1, li2, ...lik) ∈ SML(F1,F2, ...,Fk), i = 1..N, Domli1(F1) = Domli2(F2) =

... = Domlik(Fk), where Domlij(Fj) is the domain corresponding to the label lij, with

j = 1..k.

That means that the domains are the same for all the involved fields.

Remark 13. Note that if two N-dimensional DFields F1 and F2 are semantically

compatible, they are domain-compatible in the intersection of their domains.

When two domain-compatible DFields F1 and F2 participate in some operation,

it may be necessary to swap the coordinates of a point p belonging to Dom(F1)

according with the semantic mapping of labels, when referring to an analogous

point in Dom(F2). For this, we define the ‘*’ notation, such that p* is the point p

∈ F2 with its coordinates swapped according to the order of the levels of F1 (see

Example 38) .

Example 38 (Star Notation). F1 and F2 are DFields such that, Labels(F1) = 〈x, y〉

and Dom(F1) = [1, 10] × [3, 6]; and Labels(F2) = 〈Y, X〉 and Dom(F2) = [3, 6] ×

[1, 10]. Also, there exists SML(F1,F2) = {(x, X), (y, Y)}. Thus, for p = (3,5) ∈

Dom(F1), the corresponding point in Dom(F2) is p*=(5,3). Figure 7.7 illustrates

this.

As we already said, the traditional map algebra operators assume that the

tessellations of all the fields are the same (i.e., all raster, all Voronoi, etc.). Since

we want to allow different tessellations, we need to generalize map algebra, and

redefine the traditional operators (i.e., local, focal and zonal). For this, we will

make use of the notion of Discretized Field introduced above. For each operator

we next provide the informal intuition, followed by the formal definition.
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Figure 7.7: Star notation for swapped coordinates

7.4.1 Generic Local Operator

The Generic Local Operator receives a collection of domain-compatible DFields,

and produces a new one whose values at each location p are computed applying an

input function Fl to the values at the same location in all the input fields. In fact,

this operator performs this computation for the samples of the first input DField

and searches in each one of the rest of the input DFields the position of these

points to infer their values before applying the Fl function. The choice of the

first input field is arbitrary, it could have been any other one. In consequence, the

output DField contains the same sampled points of the first input DField but with

the new calculated values, and keeps the same interpolation function for future

inferred calculus.

Definition 30 (Generic Local Operator). Given a set of k domain-compatible

DFields F1, F2, ..., Fk, and a function Fl : Range(F1) × .. × Range(Fk) →

R ∪ {⊥}, Local(Fl,F1, . . . ,Fk) builds a new DField Fout such that:

(a) Dom(Fout) = Dom(F1) (by convention, actually, it could be any other one)

(b) Labels(Fout) = Labels(F1)
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(c) T s(Dom(Fout)) =T s(Dom(F1))

(d) Samples (Fout) = {s’|s’ = 〈sp(s), v’〉 ∧ s ∈ Samples(F1) ∧ v’ = Fl(Fn1(sp(s)),

Fn2(sp(s)∗), . . . ,Fnk(sp(s)∗)) where Fni is the function of Fi ∀i, i = 1..k }

(e) Range(Fout) = Range(Fl)

(f) Fs of Fout is Fs of F1

Example 39 (Generic Local operator). Consider the domain compatible SDFields

NDVI (raster) and pH (Voronoi) of Example 37. We want to relate these two aspects

by applying a function Fl : R× R→ R such that Fl(ndvi,ph)=ndvi/ph.

Thus, we apply Local(Fl,NDVI,pH) and obtain the resulting SDField shown

in Figure 7.8(c). Notice that, for example, the value 0.025 of the left upper sampled

point is the quotient between the NDVI value 0.18 and the pH value 7.1. We chose

the raster field as output, following the operator’s definition. Also note that the

definition of the operator does not mention the kind of tessellation, which is left

to the implementation stage.

(a) NDVI SDField (b) pH SDField (c) Local(Fl,NDVI,pH)

Figure 7.8: Generic Local operator.

7.4.2 Generic Focal Operator

The Focal operator aggregates values over a region. When an aggregate func-

tion (like Sum, Avg) is applied over a field, we must define the region of the
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domain where the values will be aggregated. Given an N-dimensional DField F,

an aggregation region, denoted AggReg, is an M-dimensional region with M≤N

such that AggReg ⊆ Dom(F). To approximate aggregates in this region, we need

the following definition.

Definition 31 (Representative Points). Given a DField F where T s(Dom(F)) =

{g1, g2, ...gn}, we associate a unique point to each geometry, and denote it a repre-

sentative point, rep(gi), ∀i, i = 1..n. The value of the function at rep(gi) is called

a representative value vrep(gi)

Remark 14. In a Voronoi Tessellation there is exactly one sample for each geome-

try, defined as the representative point of such geometry. Analogously in the raster

model (although the representative point is not necessarily the original sample). In

TIN, the centroid of the geometry could be used.

Definition 32 (Neighborhood). Given a DField F, a point p ∈ Dom(F), and a

formula defining a criterion, denoted γ, we define the neighborhood of a point

p according to γ, denoted NbReg(p, γ), the region around p that results from

applying the criterion γ to p.

The criterion γ can be simply the well-known 5-cells neighbors or 9-cells neigh-

bors, an expression (e.g., (x− px)
2 + (y− py)

2 = r2), or it can be defined algorith-

mically.

Example 40 (Neighborhood). Figures 7.9(a), 7.9(b) and 7.9(c), depict three

options of Neighborhood for p, based on γ = 5-cells, γ = 9-cells, and γ =

(x− px)
2 + (y− py)

2 = r2, respectively.

The Generic Focal Operator receives a DField F and produces a new one such

that at each location p its value is calculated aggregating the values of F in the

neighborhood of p (according to a criterion γ) using an aggregate function. The

new DField keeps the representation and labels of the input parameter.

Let us call AggRegSet a set of aggregation regions and DFieldSet a set of

Discretized Fields.
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(a) 5-cell (b) 9-cell (c) Circle with radius 2)

Figure 7.9: Example of Neighborhoods.

Definition 33 (Generic Focal Operator). Given an N-dimensional DField F, a

neighborhood criterion γ, and an aggregation function Fag : AggRegionSet ×

DFieldSet→ Rn ∪ {⊥}, Focal(F, γ,Fag) returns a DField Fout where:

(a) Dom(Fout) = Dom(F)

(b) Labels(Fout) = Labels(F)

(c) T s(Dom(Fout)) =T s(Dom(F))

(d) Samples(out) = {s’|s’ = 〈sp(s), v’〉 ∧ s ∈ Samples(F) ∧ v’ = Fag(NbReg(sp(s),

γ),F)}

(e) Range(Fout) = Rn ∪ {⊥}

(f) Fs of Fout is Fs of F

Example 41 (Generic Focal Operator). Consider the SDField NDVI of Example

37. We smooth the sample values by applying a Focal operation over each sampled

point with the 9-cell criterion and the Avg function. The resulting SDField is

shown in 7.10(b). For example, the value 0.19 of the left upper sampled point

is computed as the rounded average between its value 0.18 and the values 0.18,

0.18 and 0.2 because it has only three neighbors instead of 9 (because it is in a

corner).
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(a) NDVI SDField (b) Focal(NDVI,9-cell,Avg)

Figure 7.10: Generic Focal operator.

7.4.3 Generic Zonal Operator

Before giving a formal definition of this operator, we need the notion of isopar-

tition, intuitively, the partition of the domain into sets of cells such that all the

cells into a set have the same representative value.

Definition 34 (Isopartition of a DField). Given a DField F, and the set of existing

representative values V = {r|r = vrep(gi)∧ gi ∈ T s(Dom(F))}, an isopartition of F

with respect to V, denoted as IP(F, V) is the set {t | t = 〈v, {g1, g2, . . . gk}〉 ∧ v ∈ V ∧

∀i, i = 1..k, vrep(gi) = v ∧ (@ g with vrep(g) = v ∧ g /∈ {g1, g2, . . . gk})}.

Example 42 (Isopartition). Given the SDField pH of Example 37, the isopartition

respect to its sample values is shown in Figure 7.11. Notice that the result contains

as many sets as different representative values exist. Besides, notice that the set

corresponding to 6.8 is a convex polygon, but the set corresponding to 7.1 is

composed of two no contiguous cells, which is composed of all the partitions with

the same value.

The Generic Zonal Operator receives two domain-compatible DFields, F and

Ref (a reference field), and an aggregate function Fag. First, it generates an

isopartition of Ref. Then, it builds an output DField with the sampled points of
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(a) pH SDField (b) IP(pH, ValuespH)

Figure 7.11: Example of Isopartition.

Ref and for each zone (set) of this isopartiton, it computes the sample values by

aggregating the values of F that correspond to this zone. Formally:

Definition 35 (Generic Zonal Operator). Let Ref and F two domain compatible

N-dimensional DFields, and an aggregate function Fag : AggRegSet×DFieldSet→

Rn ∪ {⊥}, Zonal(Ref, F,Fag) builds a new DField Fout such that:

(a) Dom(Fout) = Dom(Ref)

(b) Labels(Fout) = Labels(Ref)

(c) T s(Dom(Fout)) =T s(Dom(Ref))

(d) Samples(Fout) = {s’|s’ = 〈sp(s), v’〉 ∧ s ∈ Samples(Ref) ∧ v’ = Fag(Reg, F) ∧

∃ 〈 sv(s), {g1, . . . gk}〉 ∈ IP(Ref, V) ∧ V = {vrep(gi) | gi ∈ T s(Dom(Ref))}

∧ Reg = ∪i=1..k gi}

(e) Range(Fout) = Rn ∪ {⊥}

(f) Fs of Fout is Fs of Ref

Remark 15. Note that, opposite to the case of traditional Map Algebra c[38], in

our generic field algebra, the Zonal operator returns a field, thus, the algebra is

closed.
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Example 43 (Generic Zonal Operator). Consider the SDfields pH and NDVI of

Example 37. We apply the Zonal operator using pH as Ref field, and NDVI as

the F field in the definition above, and the aggregate Max function. The resulting

SDField of Zonal(pH, NDVI, Max) is depicted in Figure 7.12(c).

(a) pH SDField (b) NDVI SDField (c) Zonal(pH, NDVI, Max)

Figure 7.12: Generic Zonal Operator.

We conclude the chapter with an integrated example that illustrates the ad-

vantage of defining a closed algebra, since each resulting DField can be used as

input to the next operator.

Example 44 (Integrated Example). The Natural Resources Conservation Service

(NRCS) classifies a pH level of a soil as ‘acidic’ for pH < 6.6, ‘neutral’ for pH

between 6.6 and 7.3, and ‘alkaline’ for pH > 7.3. We want to generate a new DField

with the average NDVI index for each zone defined by this pH classification, using

the Voronoi SDField pH in Figure 7.6(a), and the raster SDField NDVI of Figure

7.6(b).

To compare a DField against a constant value we need to generate a constant

DField (i.e., one such that all of its samples have the same value), and then apply a

Local operator. In our example, we first build the SDField Const (Figure 7.13(c)),

with the lower and upper values of the pH limit classification, and then we apply

Local(fnRange, pH, Cte) where the function fnRange : R×R2 → S is defined

as follows:



122

fnRange(v1,v2)={if v1 < v2[0] return ‘acidic’ else if v1 < v2[1] return ‘neutral’

else return ‘alkaline’}. In the expression above, v2[0] and v2[1] are the boundaries

of the pH intervals.

Figure 7.13(d) depicts this intermediate result. Finally, to obtain the average

by zone we apply a Zonal operator between this partial resulting DField and

NDVI SDField. Figure 7.13(e) shows the overlapping between this intermediate

result and NDVI SDField previous to the final step. The final resulting SDField

can be shown in Figure 7.13(f)

Since the Generic Map Algebra is closed, the query can be expressed as:

Zonal(Local(fnRange, pH, cte),NDVI,Avg).

7.5 Summary

In this chapter we showed that continuous fields can be represented in a dis-

crete form, and that this discretization can be performed in many ways. Based on

this discrete model we generalized the traditional map algebra operations redefin-

ing them to support different kinds of representations (the original map algebra

operations only work over a raster tesselation). In summary, our generalized map

algebra operators receive a field, and return a field, although these fields can be

represented in different ways. We will use this model in the next chapter, to show

that the generic cubes introduced in the previous chapters can be instantiated

with continuous data, and that we can perform OLAP operations over continuous

fields as if they were just standard data cubes, provided that the former can be

represented in a discrete way. Therefore, the algebra introduced in this chapter

can somehow be considered the link between continuous fields and OLAP.
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(a) pH SDField (b) NDVI SDField

(c) Const SDField (d) Local(fnRange, pH, Const)

(e) pHRange and NDVI overlapped (f) Final Result

Figure 7.13: Integrated Example: Zonal(Local(fnRange, pH,cte), NDVI, Avg).



Chapter 8

Modeling Continuous Fields as

Data Cubes

Nowadays, a large number of data sources need to be integrated to operate with

traditional OLAP and SOLAP cubes, ideally in a way such that end users do not

care about the logical and/or representation of the underlying data. Further, it

would be desirable that the end user can manipulate all the available information

for decision making through a generic high-level language. In this chapter we make

use of the machinery developed in previous chapters in order to solve this problem.

In simple words, we integrate cubes of different types and provide the end user with

a language that only manipulates data cubes, using the OLAP operators formally

defined in Chapter 4. Thus, the language operates at the conceptual level. At the

logical level, a layer with the actual data types is defined. Yet below this layer

there can be many ways of implementing these logical operations, depending on

how data are actually represented. For example, we have seen that continuous field

data can be represented in a discrete way in many forms, namely raster, Voronoi,

and TIN, among other ones. At the physical level, the OLAP operations can also

be implemented in several ways.

In Chapter 7 we have studied how continuous fields can be represented in a

discrete way yet allowing the user to perceive these data as continuous, by means

of interpolation functions. In this chapter we use these concepts to represent

continuous data as a data cube, and therefore seamlessly combine continuous data

perceived in this way, with other OLAP and SOLAP (that is, discrete) cubes

124
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applying the typical OLAP operations. For this, we must:

1. Identify the source (continuous) data. In the case of continuous fields, for

example, they can be represented as satellite images.

2. Transform these continuous data into discrete data structures (in our case,

SDFields, and STDFields)

3. Detect if it is possible to map the cube data structure of Definition 3 in the

source data

4. Represent the discretized data as a data cube

5. Define the OLAP operations at the logical level over the discretized data.

Simply stated, once the cube is identified and defined in a discrete way, the user

can address queries to a collection of cubes of different kinds, as shown in Chap-

ter 6. At a lower abstraction level, these operations are translated to the underlying

data model, for example, using the map algebra operations. The implementation

of the operations varies according to the discrete data representation. Specifically,

for continuous fields, a Roll-up operation at the conceptual level can be defined

as a Zonal map algebra operation which is finally implemented according with

the actual discretized representation (raster, Voronoi, etc.).

Note that although in this chapter we address the problem of continuous fields,

this procedure can be applied to any kind of data that can be represented in a

discrete multidimensional way.

8.1 Conceptual Representation of Fields as OLAP Cubes

The usual OLAP concepts of measures and dimensions apply straightforwardly

to the notion of field: the measure is precisely what the field represents (e.g.,

temperature values, NDVI index, etc.) and the cube dimensions can be the spatial

and/or the temporal dimension. Thus, we can define a middleware structure that

represents a field as a cube, which we denote a FOLAP cube. However, since cubes
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are discrete structures, prior to define the field as a cube we need to discretize such

field, using the notion of DField explained before in this thesis.

For example, we can model temperature facts in three dimensions based on

the STDField Temperature in Figure 7.6(c). In this case, the dimension lattice

has exactly two levels, the bottom one representing the DField data, and the

distinguished level All. Figures 8.1 and 8.2 graphically show both dimensions:

the time dimension lattice (TemporalDim), and two possible options for modeling

the bottom level in the spatial dimension lattice. The first one models space

coordinates as two different dimensions X and Y; the second one models the space

as a unique Point level.

(a) TemporalDim (b) XDim (c) YDim

Figure 8.1: FOLAP Dimension Lattices - Option 1

(a) TemporalDim (b) SpatialDim

Figure 8.2: FOLAP Dimension Lattices - Option 2

From now on, we will use the second option. Notice that we model the level

descriptors of Point as 〈point, x, y〉 so we can apply conditions over the geometry

point(x, y), or over its coordinates x and y, indistinctly.

Starting from the intuition that our data model allows us to perceive a DField as

an OLAP Cube and apply the traditional OLAP operators on it, in what follows we
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formally define a FOLAP cube associated to spatial and spatio-temporal DFields.

To be concise, we give the definition for a spatio-temporal field. The definition for

a spatial field is obtained just omitting the temporal part.

Definition 36 (FOLAP Cube Schema associated to a STDField). Given a spa-

tiotemporal DField F with N spatial dimensions and one temporal dimension, its

associated FOLAP cube schema is defined as the tuple 〈nameF,D,M〉, such that:

(a) nameF is the name of the STDField;

(b) D = {SpatialDim,TemporalDim} where the dimensions are given by 〈SpatialDim,

{〈Point, 〈point, x1, . . . , xN〉〉, 〈All, 〈all〉〉,→s〉}, with lattice {Point→s All}, and

〈TemporalDim, {〈Time, 〈t〉〉, 〈All, 〈all〉〉},→t〉 with lattice {Time→t All}, with

Dom(xi) = Domi(F) ∀i, i = 1..(N), Dom(point) = Doms(F), and and Dom(t) =

Domt(F);

(c) M = {valueF} with Dom(valueF) = Range(F), where valueF is the value of F

which is associated with an aggregate function in A.

Note that the level descriptors for the level Point include an N-dimensional

point and also their isolated coordinates, in order to allow a more versatile analysis.

Also note that although at the conceptual level we propose the dimension names

TemporalDim and SpatialDim, at the implementation level any name may be given

to such dimensions.

Example 45 (FOLAP Cube Schema associated to the pH SDField). Given the

pH SDField in Example 37, its corresponding FOLAP cube schema is defined

as: 〈pHF, {SpatialDim}, {valuepH}〉 where SpatialDim is given by the lattice shown

in Figure 8.2(b), with the following level descriptor domains: Dom(point)=[0,

100]×[0, 100] and Dom(x)=Dom(y)=[0, 100]. The measure has Dom(valuepH)=[3,

9] and its aggregate function is Avg ∈ A.
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Example 46 (FOLAP Cube Schema associated to Temperature STDField). Given

the STDField Temperature in Example 37, its corresponding FOLAP cube schema

is defined by 〈TempF, {TemporalDim, SpatialDim}, {valuetemp}〉, where the dimen-

sion lattices are shown in Figure 8.2. The level descriptor domains are Dom(point) =

[0, 100] × [0, 100],Dom(x) = Dom(y) = [0, 100], Dom(t) = [2009-01-01:00:00:00,

2009-12-31:59:59:59]. The domain of the measure is Dom(valuetemp) = [−10, 35];

the associated aggregate function in this case is Avg.

In order to define a FOLAP cube instance we need to identify the dimension

instance for each dimension schema. Actually, the members of the FOLAP cube

bottom level are the infinite elements of the continuous domain of the associated

DField. However, given that we must work with a finite number of members (Defi-

nition 2), we take advantage of the discretized field model, and define the members

of the bottom levels as the sampled points of the DField. Since the spatial and tem-

poral lattices have only two levels (i.e., the bottom one and the All level), there will

be a single Rup function for each dimension, i.e., RupAll
Time for TemporalDim, and

RupAll
Point for SpatialDim. Finally, each FOLAP instance has either two cuboids (for

a spatial FOLAP cube), or four cuboids (for a spatiotemporal FOLAP cube). The

following definition formalizes this concept (we define spatial and spatio-temporal

instances separately):

Definition 37 (FOLAP Cube Instance associated to an SDField). Given a FO-

LAP cube schema 〈F,D,M〉 corresponding to an N-dimensional SDField F, its

dimension instance is built (according to Definition 2) as follows:

The SpatialDim instance Is, is composed of TPoint = {〈point, x1, . . . , xN〉|(x1,

. . . , xN, v) ∈ Samples(F) ∧ point = (x1, . . . , xN)} and TAll = {〈all〉}, and R =

{RupAll
Point} such that RupAll

Point = {(〈m〉, 〈all〉)|m ∈ TPoint)}

Then the FOLAP cube instance is composed of the following two cuboids:

CPoint : TPoint → Dom(valueF);

CAll : TAll → Dom(valueF),

where if (c, v) belongs to the cuboid CPoint, then c = 〈point, x1, . . . , xN〉 ∈ TPoint and
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(sp(point), v) ∈ Samples(F). The cuboid CAll is computed applying the RupAll
Point

function.

The key difference between the FOLAP cube instance and a regular OLAP cube

instance is that, although an element is not present in the dimension instance of

a FOLAP cube (since the domain has infinite values), it can always be inferred.

However, the end-user only works with the finite set of tuples that she sees in the

FOLAP cube, although all values can be computed if necessary, as explained in

Section 8.2.

Example 47 (FOLAP Cube Instance associated to the pH SDField). Consider

the FOLAP cube schema pHF of Example 45. Figure 8.3 shows the pH SDField

with the corresponding bottom cuboid of its associated pHF FOLAP cube, and

Figure 8.4 depicts its full two-cuboids lattice. Notice that the FOLAP bottom

cuboid has exactly ten cells, since the associated SDField has ten samples whose

values are not ⊥.

(a) pH SDField

SpatialDim Measures
Point (Avg)

point, x, y valuepH
〈(11, 59), 11, 59〉 6.8
〈(21, 30), 21, 30〉 5.1
〈(21, 88), 21, 88〉 7.1
〈(30, 48), 30, 48〉 6.6
〈(40, 69), 40, 69〉 6.8
〈(50, 10), 50, 10〉 4.5
〈(60, 88), 60, 88〉 7.5
〈(70, 30), 70, 30〉 7.1
〈(79, 69), 79, 69〉 8.1
〈(89, 11), 89, 11〉 5.6

(b) pHF bottom cuboid

Figure 8.3: FOLAP bottom cuboid associated to the pH SDField

Definition 38 (FOLAP Cube Instance associated to an STDField). Given a FO-

LAP cube schema 〈F,D,M〉 corresponding to a SDTField F with an N-dimensional

spatial dimension, its dimension instances are built according to Definition 2 as

follows:
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Figure 8.4: FOLAP cube instance associated to the pH SDField

The SpatialDim instance Is, is composed of TPoint = {〈point, x1, . . . , xN〉|(x1,

. . . , xn, v) ∈ Samples(F) ∧ point = (x1, . . . , xN)} and TAll = {〈all〉}, and R =

{RupAll
Point} such that RupAll

Point = {(〈m〉, 〈all〉)|m ∈ TPoint)}; the TemporalDim in-

stance It, is composed of TTime = {〈xt〉|(x1, . . . , xi, . . . , xN, xt, v) ∈ Samples(F)}, and

TAll = {〈all〉}, and R = {RupAll
Time} such that RupAll

Time = {(〈m〉, 〈all〉)|m ∈ TTime}.

Then the FOLAP cube instance is composed of the following four cuboids:

CTime−Point : TTime × TPoint → Dom(valueF),

CTime−All : TTime × TAll → Dom(valueF),

CAll−Point : TAll × TPoint → Dom(valueF),

CAll−All : TAll × TAll → Dom(valueF)

where if (c1, c2, v) belongs to the cuboid CTime−Point, then c1 = 〈point, x1, . . . , xN〉 ∈

TPoint, c2 = 〈xt〉 ∈ TTime, and (sp(point), c2, v) ∈ Samples(F). The rest of the cuboids

are computed by applying the corresponding Rup function.

Example 48 (FOLAP Cube Instance associated to the Temperature STDField).
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Consider the FOLAP cube schema TempF given in Example 46. Figure 8.5 depicts

the Temperature STDField with the corresponding bottom cuboid of its associated

FOLAP cube, and Figure 8.6 depicts its full four-cuboids lattice. Notice that in

the FOLAP bottom cuboid the number of cells is less than the number of samples

in Temperature, since there are ⊥ values in the samples in Temp3 and Temp4 of

Seq(Temperature). For example, the cell (〈2009-06-30:12:05:46〉, 〈(10.0,10.0),10.0,

10.0〉,⊥) is present in the STDField but not in the FOLAP bottom cuboid.

Remark 16. In what follows, when we refer to a FOLAP cuboid, for brevity we

will say, in general, “DField associated to the FOLAP cuboid F” instead of “DField

associated to the FOLAP cube containing the FOLAP cuboid F”.

When OLAP operators are applied to a FOLAP cuboid, the user can treat

them as typical OLAP cuboids. However, we will see that the operations induce

changes into the corresponding FOLAP Cube and its associated DField, to keep

the underlying field consistent with the chained operations. In consequence, at a

conceptual level, the OLAP operators on FOLAP cuboids have the same syntax

and semantics defined in Chapters 4 and 5. We discuss next how these operators

can be implemented for FOLAP cuboids at the Logical Level.

8.2 Operations over FOLAP Cuboids at the Logical Level

Several well-known implementations exist for typical OLAP cubes: MOLAP

(Multidimensional OLAP), where data are stored in a multidimensional structure;

ROLAP (Relational OLAP), that manipulates the data stored in the relational

database to give the appearance of traditional OLAP cube functionality but per-

forming SQL statements internally; HOLAP (Hybrid OnlineAnalytical), that com-

bines MOLAP and ROLAP. We will use a ROLAP implementation where only the

tables corresponding to the bottom cuboids are materialized.

In this section we will explain how the OLAP operations over FOLAP cuboids

are implemented individually, applying the operations of the generic algebra for

fields explained in Chapter 7. In the next chapter we will explain how they can
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(a) Temperature STDField

(b) Temp1 detail

(c) Temp6 detail

TemporalDim SpaceDim Measures
Timestamp Point (Avg)

t point, x, y valuetemp

〈2009-02-09:01:07:54〉 〈(50.0,10.0), 50.0, 10.0〉 25.0
〈2009-02-09:01:07:54〉 〈(70.0,30.0), 70.0, 30.0〉 19.0

. . . . . . . . .
〈2009-04-30:10:52:02〉 〈(90.0,10.0), 90.0, 10.0〉 26.0

. . . . . . . . .
〈2009-06-30:12:05:46〉 〈(30.0,10.0), 30.0,10.0〉 20.0
〈2009-06-30:12:05:46〉 〈(50.0,10.0), 50.0,10.0〉 22.0

. . . . . . . . .
〈2009-09-15:36:10:32〉 〈(90.0,10.0), 90.0,10.0〉 26

. . . . . . . . .
〈2009-11-15:12:05:46〉 〈(10.0,10.0), 10.0,10.0〉 22.0
〈2009-11-15:12:05:46〉 〈(30.0,10.0), 30.0,10.0〉 22.0
〈2009-11-15:12:05:46〉 〈(50.0,10.0), 50.0,10.0〉 26.0

. . . . . . . . .
〈2009-12-15:12:05:36〉 〈(10.0,10.0), 10.0,10.0〉 23.0
〈2009-12-15:12:05:36〉 〈(30.0,10.0), 30.0,10.0〉 23.0
〈2009-12-15:12:05:36〉 〈(90.0,90.0), 90.0,90.0〉 26.0

(d) TempF bottom cuboid

Figure 8.5: FOLAP bottom cuboid associated to Temperature STDField

be put together in a generic algebra expression. This distinction is relevant, since

the some operators may have different requirements depending on where they are
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Figure 8.6: FOLAP cube associated to Temperature STDField

located in a query evaluation tree. For example, according to the semantics given

in Section 4.1, the IPO operators do not introduce changes in the cuboids (i.e., in

the tables representing the cuboids) that compose a cube instance. However, the

IGO operators can eliminate tuples or columns in the cuboids of such instance (see

Chapter 9). For example, we have seen that if in a Dice operation (an IGO one)

some of the values in a non-bottom cuboid C do not satisfy the dicing conditions,

all the cuboids in the path from the bottom to C must be modified to keep the



134

instance consistent during navigation. In addition, we associate just one DField to

each FOLAP cube, namely the DField corresponding to the bottom cuboid. Since

a Dice operation may change this DField, to keep this bottom cuboid for future

queries we need to perform some additional operations at the physical level, for

example, we may need to take a copy of the cuboid. All of these, however, will

occur behind the scenes, and will not be seen by the end-user.

8.2.1 Roll-up over FOLAP Cuboids

Although at first sight we can only define a Roll-up from the bottom level to

the All level in a FOLAP cuboid (since all its dimensions have only two levels), it

is also possible to aggregate field data over other spatial and temporal levels. For

example, we can take the average altitude over a region or country in the spatial

dimension, or the average temperature at different points, by month, quarter,

or year, in the temporal dimension. For this, we need to insert new levels into

the FOLAP cube dimensions. For instance, a level L can be inserted between two

existing levels L1 and L2 of the D dimension in a FOLAP cube; not only the schema

must be modified with this new level, but also the instance. The latter is performed

populating the new level L with its new members, and adding the corresponding

functions RupL
L1

and RupL2
L (see Example 27). For the spatial dimension, the new

level must have exactly one level descriptor with geometric domain. Furthermore,

when the new level L is introduced between the bottom level Lb and another level

Lu, the Rup function is applied to the continuous data in the DField domain.

For example, if we insert the City level between Point and All in a FOLAP cube

C associated to an SDfield F, each cell ci representing a city at the City level in

C aggregates all the points of the continuous domain of F whose locations are

contained into the geometry of ci.

Since a FOLAP cube may have spatial and temporal dimensions, there are

basically three possibilities for applying a roll-up operation:

• Spatial Roll-up on a FOLAP cuboid associated to an SDField

• Spatial Roll-up on a FOLAP cuboid associated to an STDField
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• Temporal Roll-up on a FOLAP cuboid associated to an STDField

Spatial Roll-up on a FOLAP Cuboid Associated to an SDField

In this case, the roll-up is performed along the spatial dimension D with schema

〈D,L,→〉, up to a level L ∈ L containing exactly one level descriptor whose do-

main type is an N-dimensional geometry. For example, we may have a geometry

defining regions and compute the average altitude, aggregating elevation measures

from points to regions. This aggregation can be performed through the Zonal

operator (see Section 7.4.3). The input is a FOLAP cuboid Cin associated to an

N-dimensional SDField Fin, and the values of Fin are aggregated over the zones

defined by the geometries of TL. In other words, the spatial dimension acts like

the reference field. This is achieved transforming the spatial discrete geometries

of TL, into equivalent spatial fields, because the Zonal operation requires two fields

as input. This transformation from geometries to fields is performed by the Ge-

omToField operator, which creates a temporary DField tessellated using the

geometries of TL, and such that the domain and labels are the ones of the input

DField. In this tesselation, the sampled point of the sampled tuple corresponding

to each geometry is any point belonging to the geometry; its sampled value is the

label of the geometry in TL. In order to complete the tessellation, the geometry

of the DField domain that is not covered by any geometry of TL, has a sampled

value ‘⊥’.

Definition 39 (GeomToField operator). Given an N-dimensional SDField Fin,

a set G of disjoint labeled geometries over an N-dimensional space, the operation

GeomToField(Fin,G) returns a new N-dimensional DField Fo as follows:

(a) Dom(Fo) = Dom(Fin)

(b) Labels(Fo) = Labels(Fin)

(c) T s(Dom(Fo)) = ((G ∩ GDom) ∪ (GDom − UG)) where GDom is the geometry

of Dom(Fin), and UG is the union of all the geometries of G
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(d) Samples(Fo) = {(p, v)|(∃g ∈ (G ∩ GDom) ∧ p ∈ g ∧ v = label(g)) ∨ (∃g ∈

(GDom− UG) ∧ p ∈ (GDom− UG) ∧ v = ⊥)}

(e) Range(Fo) = Labels(G) ∪ {⊥}

(f) Fs is the constant function.

Example 49 (GeomToField operator). Consider the pH SDField given in Example

37, and a set G of geometries corresponding to the rGeom level descriptor of the

Region level in Example 4. Figure 8.7 shows the set of geometries and the SDField

that results of applying GeomToField(pH,G).

(a) Input pH SDField (b) Geometries of G)

(c) SDField with geometries as
cells

Figure 8.7: GeomToField(pH,G).

It is important to point out that the representative sampled point of each cell

may be any point in its geometry. In the case of concave geometries its centroid

could be chosen.
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Then, Roll-up(Cin,D, L), where Cin is a FOLAP cuboid associated to an N-

dimensional SDField Fin, D is a spatial dimension, and L is a level in the spatial

dimension hierarchy, returns a cuboid Cout corresponding to an N-dimensional

SDField Fout, created by applying the Zonal operator as follows:

Fout = Zonal(Zones,Fin,Fag), where Zones = GeomToField(Fin,G) and G
is the set of geometries in TL.

In particular, if a Roll-up is invoked with target level All, then Zones will be

a single rectangular zone embedded in the spatial domain of the Fin SDField. This

temporary SDField is then represented as a FOLAP output cuboid.

Example 50 (Spatial Roll-up to All on the pHF FOLAP cuboid). Consider the

FOLAP cuboid pHFbottom given in Example 47. Figure 8.8 shows the output FO-

LAP cuboid pHFAll and its associated SDField after applying Roll-up(pHFbottom,

SpatialDim,All). In this case, as the associated aggregate function for the measure

is Avg, our approach computes a weighted average, taking into account the size

of the area of each geometry. Since in this case, All represents the complete spatial

domain, the final value is 6.6, which is the weighted average of the sampled values

in the geometries of Figure 8.7(a).

SpatialDim Measures
All (Avg)
all valuepH
〈all〉 6.6

(a) pHFAll FOLAP
cuboid (b) pHAll SDField

Figure 8.8: pHFAll = Roll-up(pHFbottom, SpatialDim, All).

Example 51 (Spatial Roll-up to Region on the pHF FOLAP cuboid). Consider

the pHFbottom SDField given in Example 47. We insert a new level Region, between



138

the levels Point and All, where the new level is given by 〈Region, 〈rName, rGeom〉〉,

with Dom(rName) = S, Dom(rGeom) = P2D, and TRegion = {〈‘Region-A’, geom506〉,

〈‘Region-B’, geom701〉, 〈‘Region-C’, geom703〉}.

Figure 8.9 shows the output FOLAP cuboid pHFRegion and its associated SD-

Field after applying Roll-up(pHFbottom,SpatialDim,Region). Note that actually

not only the sampled points are contributing values, but also all the infinite points

that fall inside each geometry G over which the aggregation is performed (due to

the continuous nature of the domain). Thus, outside the intersection with the

geometries, the field takes the value ‘⊥’. Inside each intersection, the value asso-

ciated with G is given by the weighted average of the values of all the areas in the

tesselation of the field pHF that intersect G. For example, in Region-C the value we

would obtain if we compute the simple average of the values associated to the ar-

eas intersected by Region-C would be 8.1+7.1+5.6
3

= 6.9. Instead, we apply the Avg

function weighted with the percentage of each tessellated cell area with respect

to the area of the geometry, i.e., the value associated to Region-C is obtained as

0.06× 8.1 + 0.65× 5.6 + 0.29× 7.1 = 6.7.

Spatial Roll-up on a FOLAP Cuboid Associated to an STDField

Roll-up(Cin,D, L), where Cin is a FOLAP cuboid associated to an STDField

Fin (with N spatial dimensions), D is a spatial dimension, and L is a level in

the spatial dimension hierarchy, returns a cuboid Cout corresponding to an N-

dimensional SDField Fout, created by applying the Zonal operator to aggregate

the values of each SDField of Seq(Fin) over the zones defined by the geometries

in TL. That means, given a temporal sequence of K spatial discretized fields, a

zonal operation is applied to each field in the sequence using as reference field the

geometries in L converted into a field by means of a GeomToField operation.

Fout is built as follows:

(a) Dom(Fout) = Dom(Fin),∀i = 1..K

(b) Labels(Fout) = Labels(Fin)∀i = 1..K
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(a) pH SDField (b) Zones SDField

(c) pHRegion SDField

SpatialDim Measures
Region (Avg)

rName, rGeom valuepH
〈‘Region−A′, geom506〉 7.4
〈‘Region−B′, geom701〉 5.4
〈‘Region− C′, geom703〉 6.7

(d) pHFRegion FOLAP cuboid

Figure 8.9: pHFRegion = Roll-up(pHFbottom, SpatialDim,Region).

(c) Fouti = {Zonal(GeomToField(Fini,G),Fini,Fag) ∧ Fini ∈ Seq(Fin)} ∀i =

1..K, where G is the set of geometries of TL. That is, the same set G of

geometries of TL is used for rolling-up all the SDFields in the Sequence.

(d) Range(Fout) = Range(Fag) ∪ {⊥} where Fag is the aggregate function asso-

ciated to the measure in Cin, and is the same ∀i = 1..K

(e) Fs of Fout is Fs of Fin, and is the same ∀i = 1..K

Note that Dom(Fout), Labels(Fout) and Range(Fout) are the same for all the

snapshots, following the STDField definition (Definition 26).

Example 52 (Spatial Roll-up to All on the TempF FOLAP cuboid). Consider the
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TempFbottom FOLAP cuboid given in Example 48. Figure 8.10 shows the output

FOLAP cuboid TempFTime−All and its associated SDfield after applying Roll-

up(TempFbottom,SpatialDim,All). Notice that a spatial Roll-up is applied to each

SDField of Seq(TempFbottom).

TemporalDim SpaceDim Measures
Timestamp All (Avg)

t all valuetemp

〈2009-02-09:01:07:54〉 〈all〉 20.9
〈2009-04-30:10:52:02〉 〈all〉 22.1
〈2009-06-30:12:05:46〉 〈all〉 21.6
〈2009-09-15:36:10:32〉 〈all〉 22.3
〈2009-11-15:12:05:46〉 〈all〉 24.4
〈2009-12-15:12:05:36〉 〈all〉 25.2

(a) TempFTime−All FOLAP cuboid

(b) Temp6 detail (c) TemperatureTime−All STDField

Figure 8.10: TempFTime−All = Roll-up(TempFbottom, SpatialDim,All).

Example 53 (Spatial Roll-up to Region on the TempF FOLAP cuboid). Con-

sider now the TempFbottom STDField given in Example 48. To aggregate temper-

atures by region, we need to insert the level Region given in Example 51. Figure

8.11 shows the output FOLAP cuboid TempFTime−Region which is the result of the

Roll-up(TempFbottom,SpatialDim,Region) operation, obtained from the STDField

TempFout.

Temporal Roll-up on a FOLAP Cuboid Associated to an STDField

In this case, Roll-up(Cin,D, L) receives a FOLAP cuboid Cin associated to an

N-dimensional STDField Fin, a temporal dimension D with schema 〈D,L,→〉, and
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(a) Zones SDField

TemporalDim SpaceDim Measures
Timestamp Region (Avg)

t rName, rGeom valuetemp

〈2009-02-09:01:07:54〉 〈‘Region−A′, geom506〉 19.9
〈2009-02-09:01:07:54〉 〈‘Region−B′, geom701〉 20.1
〈2009-02-09:01:07:54〉 〈‘Region− C′, geom703〉 21.0
〈2009-04-30:10:52:02〉 〈‘Region−A′, geom506〉 21.0
〈2009-04-30:10:52:02〉 〈‘Region−B′, geom701〉 21.5
〈2009-04-30:10:52:02〉 〈‘Region− C′, geom703〉 22.1
〈2009-06-30:12:05:46〉 〈‘Region−A′, geom506〉 21.1
〈2009-06-30:12:05:46〉 〈‘Region−B′, geom701〉 21.4
〈2009-06-30:12:05:46〉 〈‘Region− C′, geom703〉 22.0
〈2009-09-15:36:10:32〉 〈‘Region−A′, geom506〉 22.2
〈2009-09-15:36:10:32〉 〈‘Region−B′, geom701〉 22.4
〈2009-09-15:36:10:32〉 〈‘Region− C′, geom703〉 23.2
〈2009-11-15:12:05:46〉 〈‘Region−A′, geom506〉 23.2
〈2009-11-15:12:05:46〉 〈‘Region−B′, geom701〉 23.2
〈2009-11-15:12:05:46〉 〈‘Region− C′, geom703〉 24.5
〈2009-12-15:12:05:36〉 〈‘Region−A′, geom506〉 25.4
〈2009-12-15:12:05:36〉 〈‘Region−B′, geom701〉 24.5
〈2009-12-15:12:05:36〉 〈‘Region− C′, geom703〉 27.0

(b) TempFTime−Region FOLAP cuboid

(c) TemperatureTime−Region STDField

(d) Temp1 detail

(e) Temp6 detail

Figure 8.11: TempFTime−Region = Roll-up(TempFbottom, SpatialDim,Region).
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a level L ∈ L. The result is a cuboid Cout associated to an STDField Fout built by

applying the Zonal operator which aggregates the values of Fin over the temporal

intervals of TL.

Since Zonal operates with two DFields, we must produce an STDField by

means of the TimeToField operation, which is analogous to the GeomToField

operation previously introduced. This operation creates an STDField as follows.

For each temporal interval of TL the operation takes the most recent snapshot (an

SDField) in the interval and defines an SDField with the same tesselation and

domain. For example, in Figure 8.12, we have three SDFields spanning the fourth

quarter: temp4, temp5 and temp6. The tesselation of the latter will be selected

since it is the most recent one in the interval. This will be the reference DField

for the Zonal operation that will compute the average between all the SDFields in

the fourth quarter.

Definition 40 (TimeToField operator). Given an SDTField Fin, a set I of con-

tiguous temporal intervals, TimeToField(Fin, I) returns a new N-dimensional

STDField Fo as follows:

(a) Doms(Fo) = Doms(Fin)

(b) Domt(Fo) = ((I∩Domt(Fin))∪(Domt(Fin)− [tfinal, tinit])) where tinit and tfinal are

the start of the first interval and the final of the last interval of I, respectively.

(c) ∀i, i = 1..|I|,Fi is the most recent snapshot of Fin among the snapshots that

have non-empty temporal intersection with Ii ∈ I.

(d) Labels(Fo) = Labels(Fin)

(e) Range(Fo) = Range(Fin) ∪ {⊥}

(f) Fs is the constant function.

Simply stated, TimeToField prepares the reference field with the temporal

granularity corresponding to the temporal level to which we want to roll-up. Note
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that (c) and (e) address the cases where the intervals in the output field do not

cover the temporal interval of the input field (for example, there can be an input

snapshot taken after the last quarter that we are considering for the aggregation).

In this case, initial and final intervals with sampled values ⊥ are added.

(a)

Figure 8.12: TimeToField(Temperature, IQuarter).

Finally, the STDField Fout is obtained with Fout = Zonal(Times,Fin,Fag),

where Times = TimeToField(Fin, I) and I is the set of temporal intervals of TL.

In particular, if Roll-up is invoked with target level All, Times will be a single

temporal interval embedded in the temporal domain of the Fin DField.

Example 54 (Temporal Roll-up to All on the Temperature STDField). Consider

the FOLAP cuboid TempFbottom given in Example 48. Figure 8.13 shows the output

FOLAP cuboid TempFAll−Point and its associated STDField after applying Roll-

up(TempFbottom,TemporalDim,All). Note that the figure shows a representative field

located in the middle of the temporal domain (in this case 2009-06-30:12:05:46).

This field has the tesselation of the most recent SDField snapshot in the input (the

rasterized tesselation corresponding to temp6) in Example 48, and the sampled
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values in each cell are computed as usual in the Zonal operator.

TemporalDim SpaceDim Measures
All Point (Avg)
all point, x,y valuetemp

〈all〉 〈(10, 90), 10, 90〉 19.2
〈all〉 〈(30, 90), 30, 90〉 18.0
〈all〉 〈(50, 90), 50, 90〉 20.9
〈all〉 〈(70, 90), 70, 90〉 22.7
〈all〉 〈(90, 90), 90, 90〉 23.9
〈all〉 〈(10, 70), 10, 70〉 19.7
〈all〉 〈(30, 70), 30, 70〉 18.0
〈all〉 〈(50, 70), 50, 70〉 20.2
〈all〉 〈(70, 70), 70, 70〉 22.9
〈all〉 〈(90, 70), 90, 70〉 24.4
〈all〉 〈(10, 50), 10, 50〉 19.2
〈all〉 〈(30, 50), 30, 50〉 19.4
〈all〉 〈(50, 50), 50, 50〉 20.3
〈all〉 〈(70, 50), 70, 50〉 22.4
〈all〉 〈(90, 50), 90, 50〉 24.7
〈all〉 〈(10, 30), 10, 30〉 24.0
〈all〉 〈(30, 30), 30, 30〉 22.4
〈all〉 〈(50, 30), 50, 30〉 21.9
〈all〉 〈(70, 30), 70, 30〉 22.9
〈all〉 〈(90, 30), 90, 30〉 26.2
〈all〉 〈(10, 10), 10, 10〉 24.1
〈all〉 〈(30, 10), 30, 10〉 22.7
〈all〉 〈(50, 10), 50, 10〉 24.1
〈all〉 〈(70, 10), 70, 10〉 25.0
〈all〉 〈(90, 10), 90, 10〉 26.2

(a) TempFAll−Point FOLAP cuboid (b) TemperatureAll−Point SDTField

Figure 8.13: TempFAll−Point = Roll-up(TempFbottom,TemporalDim,All).

Example 55 (Temporal Roll-up to Quarter on the Temperature STDField). Con-

sider the FOLAP cuboid TempFbottom given in Example 48. To aggregate tem-

peratures by quarter, we need to insert the Quarter level between Time and All

levels in the TemporalDim dimension. The aggregation is performed by the opera-

tion Roll-up(TempFbottom,TemporalDim,Quarter). Figure 8.14 shows the resulting

output FOLAP cuboid and the associated STDField. We can see that for each

quarter, the TimeToField operation selected the tesselation of the most recent

field (e.g., temp6 for the last quarter). The average between all the SDFields in

each quarter is computed as usual. Note that there are four representative samples,
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one for each quarter, whose time instant is set to the middle point of the inter-

val. Also, note that in the first quarter, the most recent snapshot has a Voronoi

tesselation, and this was chosen as tesselation for the aggregated field in the such

quarter.

8.2.2 Dice over FOLAP Cuboids

Recall that Dice is an IGO operator (Section 4.2), therefore, a new FOLAP

cube instance can be induced by the operation, and in this case, a new associated

DField must be built. According to Definition 4.2.1, the Dice condition can only

involve literals, measures and descriptors belonging to the input cuboid levels. In

consequence, only t, point, x, y descriptors can be used to express conditions over

the bottom cuboid. Dicing a bottom cuboid may have two kinds of consequences:

first, the tuples in the FOLAP cube that do not satisfy the condition are removed;

second, the corresponding samples in the associated DField must be set to ⊥.

We have also seen that if we want to enhance analysis, levels must be inserted

into the cube dimensions. In order to obtain a cuboid containing one of these

inserted levels, a Roll-up operation must be performed. If we apply a Dice

condition over this new cuboid C, the removed cells in C (i.e., the ones that do

not satisfy the condition) must be, again, propagated to the bottom cuboid (and

its associated DField) in the cube instance in order to guarantee consistency, for

example, in future Drill-down operations. Also, since we do not generate a

DField associated to non-bottom cuboids resulting from a roll-up, dicing on such

non-bottom cuboid requires computing the intersection between the geometric

and/or temporal properties of the cuboid (i.e., the tuples that are not removed)

and the cells of the DField associated to the bottom cuboid, in order to induce a

new tessellation, if necessary. The cells in the new tessellated DField that do not

have spatio and/or temporal intersection with the upper cuboid are set to ⊥, while

the other ones keep their values. This new tessellation is necessary when at least

one cell in the associated DField is not totally spatially or temporally contained

in the spatio and/or temporal part of a tuple of the upper cuboid that does not

satisfy the dicing condition. We illustrate this in Example 58.
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(a) Temperature STDField (b) TemperatureQuarter−Point STDField

TemporalDim SpaceDim Measures
Quarter Point (Avg)
quarter point, x, y valuetemp

〈Q1-2009〉 〈(21, 88), 21, 88〉 18.0
〈Q1-2009〉 〈(60, 88), 60, 88〉 21.0

. . . . . . . . .
〈Q1-2009〉 〈(89, 11), 89, 11〉 25.0
〈Q2-2009〉 〈(10, 90), 10, 90〉 18.0
〈Q2-2009〉 〈(20, 70), 20, 70〉 18.5

. . . . . . . . .
〈Q2-2009〉 〈(90, 10), 90, 10〉 25.2

. . . . . . . . .
〈Q3-2009〉 〈(20, 90), 20, 90〉 15.7
〈Q3-2009〉 〈(30, 90), 30, 90〉 19.6

. . . . . . . . .
〈Q3-2009〉 〈(90, 10), 90, 10〉 25.3
〈Q4-2009〉 〈(10, 90), 10, 90〉 20.0
〈Q4-2009〉 〈(20, 90), 20, 90〉 20.0

. . . . . . . . .
〈Q4-2009〉 〈(90, 10), 90, 10〉 29.0

(c) TempFQuarter−Point FOLAP cuboid

(d) TempOut1 detail

(e) TempOut4 detail

Figure 8.14: TempFQuarter−Point = Roll-up(TempFbottom,TemporalDim,Quarter).

In consequence, when Dice(Cin, φ) receives a FOLAP cuboid Cin associated to

a DField Fin, besides returning the new cuboid Cout and its new cube instance (see

Definition 12), the associated DField becomes a new DField Fout built as follows
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(for clarity we assume that a cell ci is divided into ci1, ci2 although more complex

tesselations can occur for irregular regions):

(a) Dom(Fout) = Dom(Fin)

(b) Labels(Fout) = Labels(Fin)

(c) if Cin is the bottom cuboid then T s(Dom(Fout)) =T s(Dom(Fin))

otherwise T s(Dom(Fout)) = {ci | (ci ∈ T s(Dom(Fin)) ∧ (∀e ∈ Cout(ci ⊆
e ∨ ci ∩ e = φ))) ∨ (∃ci1, ci2 ∧ ci = ci1 ∪ ci2 ∧ ∀e ∈ Cout ci1 ∩ e = φ ∧ ∃e ∈
Cout ci2 ⊆ e)}

(d) Samples(Fout) = {〈sp(s), v′〉 | s ∈ Samples(Fin), v′ = sv(s) if φ is satisfied, or ⊥
otherwise}

(e) Range(Fout) = Range(Fin) ∪ {⊥}

(f) Fs of Fout is Fs of Fin

SpatialDim Measures
Point (Avg)

point, x, y valuepH
〈(21, 88), 21, 88〉 7.1
〈(40, 69), 40, 69〉 6.8
〈(11, 59), 11, 59〉 6.8

(a) pHF2 FOLAP cuboid (b) pH2 SDField

Figure 8.15: pHF2 = Dice(pHFbottom, x < 50 and value > 6.7).

Example 56 (Dice on a bottom FOLAP cuboid). Consider the cuboid pHFbottom of

Example 47. Figure 8.15 shows the output FOLAP cuboid pHF2 and its associated

SDfield after applying Dice(pHFbottom, x < 50 and valuepH > 6.7).

Notice that all the samples that do not satisfy the condition set the value to

⊥ in the DField but their corresponding cells are not present in the associated
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FOLAP cuboid. Since the input cuboid is the bottom cuboid of pHF FOLAP

cube, the new output DField keeps its tessellation and only sets with ‘⊥’ the seven

cells corresponding to the seven sampled points that do not satisfy the condition.

We emphasize that modeling the level descriptors of Point level with both point

and also the x and y coordinates allows to easily express Dice condition without

applying functions to retrieve the coordinates of a sampled point.

Example 57 (Dice with geometric conditions over a bottom cuboid). Now we

show how geometric functions in the Dice condition can be used. In this case we

use the distance function. Consider the FOLAP cuboid pHFbottom given in Exam-

ple 47 and the operation Dice(pHFbottom,Distance(point,Point2D(10,10)) < 30).

Figure 8.16 shows the resulting FOLAP cuboid pHF3 and its associated DField.

Notice that the only sampled tuple in the pH SDField with a sampled point at less

than 30 km from the point (10,10) is 〈(21, 30), 5.1〉 (see Figure 8.16(b)).

Since the input cuboid is the bottom cuboid of pHF FOLAP cube, the new

output DField keeps its tessellation and sets with ⊥ the nine cells corresponding

to the nine sampled points that do not satisfy the condition.

SpatialDim Measures
Point (Avg)

point, x, y valuepH
〈(21, 30), 21, 30〉 5.1

(a) pHF3 FOLAP cuboid (b) pH3 SDField

Figure 8.16: pHF3 = Dice(pHFbottom,Distance(point,Point2D(10, 10)) < 30).

Example 58 (Dice on a non-bottom FOLAP cuboid). Consider the FOLAP

cuboid pHFRegion obtained in Example 51 through a Roll-up to the Region level,
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and the operation Dice(pHFRegion, Area(rGeom < 100)). Figure 8.17 shows the

output FOLAP cuboid pHF4 and its new associated DField. Since pHFRegion is not

a bottom cuboid of pHF FOLAP cube, a new DField with a new Tessellation is

induced by the operation. Notice that the three cells on the right have non-empty

intersection with the only member that satisfies the condition, namely ‘Region-

C’. Thus, the new Tessellation will contain 14 cells instead of 10, because of the

splitting of these three cells. In consequence, if after this Dice a Drill-down is

invoked with target level Point, no cell in the bottom cuboid that has not fulfilled

the condition in the previous Dice appears in the resulting cube.

(a) pH SDField (b) pH4 SDField

SpatialDim Measures
Region (Avg)

rName, rGeom valuepH
〈‘Region− C′, geom703〉 6.2

(c) pHF4 FOLAP cuboid

Figure 8.17: pHF4 = Dice(pHFRegion,Area(rGeom) < 100).

8.2.3 Slice over FOLAP Cuboids

To define a slice operation, we have two possibilities:

• Spatial or temporal slicing on a FOLAP cuboid associated to an STDField

• Slicing measures on a FOLAP cuboid associated to a SDField or a STDField
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This follows from the constraints we defined for the Slice operator: it is not

possible to slice a dimension on a FOLAP cuboid associated to an SDField, since

|D| = 1. Also, to slice a measure, the FOLAP cuboid must have at least two

measures, i.e., no slice on measures is allowed when |M| = 1.

Spatial or Temporal Slice on a FOLAP Cuboid Associated to an STD-

Field

Since Slice is an IGO operator, a new FOLAP cube instance is induced, and

thus, a new associated STDField is built. Basically, when slicing dimensions, the

new STDField is obtained through a previous Roll-up to All in the dimension

to be removed, after which the dimension is eliminated.

When slicing a spatial dimension in a FOLAP cuboid associated to an STD-

Field, the latter loses its SpatialDim dimension, becoming a time series (composed

of temporal intervals). Since time series satisfy neither our definition of SDField,

nor the STDField one, we do not address this case of the Slice operation in this

use case, although time series (or unidimensional fields) can be supported by the

model.

In the case of temporal slicing, the TemporalDim dimension is dropped, and

the field becomes an SDField, where each sampled tuple aggregates the sampled

values at the same location for all the SDFields of the Sequence.

Example 59 (Slice of TemporalDim on a FOLAP cuboid). Consider the FOLAP

cuboid TempFbottom given in Example 48. Figure 8.18 shows the output FOLAP

cuboid and its associated DField after applying Slice(TempFbottom,TemporalDim).

Notice that, the sampled points in the resulting DField are those that belong

to Temp6 SDField (the most recent SDField in the sequence), and the Tempo-

ralDim dimension is eliminated. In consequence, the input spatio-temporal DField

becomes a spatial DField.

Example 60 (Dice and Slice over a FOLAP cuboid). Given the FOLAP cuboid

TempFbottom of Example 48, we need to compute its values independently of the
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SpatialDim Measures
Point (Avg)

point, x, y valuetemp

〈(10, 90), 10, 90〉 19.2
〈(30, 90), 30, 90〉 18.0
〈(50, 90), 50, 90〉 20.9
〈(70, 90), 70, 90〉 22.7
〈(90, 90), 90, 90〉 23.9
〈(10, 70), 10, 70〉 19.7
〈(30, 70), 30, 70〉 18.0
〈(50, 70), 50, 70〉 20.2
〈(70, 70), 70, 70〉 22.9
〈(90, 70), 90, 70〉 24.4
〈(10, 50), 10, 50〉 19.2
〈(30, 50), 30, 50〉 19.4
〈(50, 50), 50, 50〉 20.3
〈(70, 50), 70, 50〉 22.4
〈(90, 50), 90, 50〉 24.7
〈(10, 30), 10, 30〉 24.0
〈(30, 30), 30, 30〉 22.4
〈(50, 30), 50, 30〉 21.9
〈(70, 30), 70, 30〉 22.9
〈(90, 30), 90, 30〉 26.2
〈(10, 10), 10, 10〉 24.1
〈(30, 10), 30, 10〉 22.7
〈(50, 10), 50, 10〉 24.1
〈(70, 10), 70, 10〉 25.0
〈(90, 10), 90, 10〉 26.2

(a) TempF2 FOLAP cuboid (b) Temperature2 SDField

Figure 8.18: TempF2 = Slice(TempFbottom,TemporalDim).

time dimension such that we want only to keep those samples located at an x

coordinate greater than or equal to 20 km and with temperature less than 24oC.

To remove the temporal dimension we apply the Slice operator and to select the

samples that satisfy the required condition, we apply the Dice operator. The

query reads:

TempF4 = Slice(TempFbottom,TemporalDim)

TempF5 = Dice(TempF4, x ≥ 20 and v < 24).

Figure 8.19 depicts the partial and final results.
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SpatialDim Measures
Point (Avg)

point, x, y valuetemp

〈(50.0,10.0), 50.0, 10.0〉 25.0
〈(70.0,30.0), 70.0, 30.0〉 19.0

. . . . . .
〈(90.0,10.0), 90.0, 10.0〉 26.0

. . . . . .
〈(30.0,10.0), 30.0,10.0〉 20.0
〈(50.0,10.0), 50.0,10.0〉 22.0

. . . . . .
〈(90.0,10.0), 90.0,10.0〉 26.0

. . . . . .
〈(10.0,10.0), 10.0,10.0〉 22.0
〈(30.0,10.0), 30.0,10.0〉 22.0
〈(50.0,10.0), 50.0,10.0〉 26.0

. . . . . .
〈(10.0,10.0), 10.0,10.0〉 23.0
〈(30.0,10.0), 30.0,10.0〉 23.0
〈(90.0,90.0), 90.0,90.0〉 26.0

(a) TempF4 FOLAP cuboid
(b) Temperature4 SDField af-
ter slicing

SpatialDim Measures
Point (Avg)

point, x, y valuetemp

〈(70.0,30.0), 70.0, 30.0〉 19.0
. . . . . .

〈(30.0,10.0), 30.0,10.0〉 20.0
〈(50.0,10.0), 50.0,10.0〉 22.0

. . . . . .
〈(30.0,10.0), 30.0,10.0〉 22.0

. . . . . .
〈(30.0,10.0), 30.0,10.0〉 23.0

(c) TempF5 FOLAP cuboid
(d) Temperature5 SDField af-
ter dicing

Figure 8.19: Dice and Slice over TempFbottom (Example 60).

Slicing Measures

When a measure is sliced, besides removing it from each cuboid of the FOLAP

cube of the input cuboid, a new output associated DField is built by simply elim-

inating the sampled value corresponding to this measure in each sampled tuple.

8.2.4 Drill-down over FOLAP Cuboids

As explained in previous sections, when an IGO operation is applied over a

FOLAP cuboid, the DField associated to the bottom cuboid of the cube needs to

be updated. This requirement is needed to keep consistency in the cube navigation
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when a drill-down operation is called. For example, if a dice operation only keeps

temperatures in Belgium, when the user drills down to find out temperatures in

cities she must only see the temperatures in cities in Belgium.

Drill-down(Cin,D, L), where Cin is a FOLAP cuboid associated to a DField

Fin, returns a cuboid Cout by means of computing Roll-up(Cbottom,D, L), where

Cbottom is the bottom cuboid of the cube instance corresponding to Cin.

Example 61 (Drill-down on pH FOLAP Cuboid). Consider the FOLAP cuboid

pHF4 obtained in Example 58, after rolling-up to Region and then dicing areas less

than 100 km2 on pHFbottom.

Figure 8.20 shows the output FOLAP cuboid pHF5 and its associated DField

after applying Drill-down(pHF4,SpatialDim,Point).

The cube semantics we defined (that is, to perceive the cube as a collection of

cuboids), allows a Drill-down to be computed as a Roll-up from the bottom

cuboid to the operation’s input level. In this case the target level is Point and it

coincides with the bottom level, thus, in this case there is nothing else to do.

Notice that the cells in the output FOLAP cuboid correspond to the new

tessellation induced by the Dice on pHFRegion, each preserving its original value

from pH DField. Thus, if we roll-up to Region again, the value of ‘Region-C’

computed based on the DField associated to the diced pHF5 FOLAP cube is 6.7

(the same value obtained for this region in pHF4).

8.2.5 Drill-Across over FOLAP Cuboids

We have two main possibilities for the Drill-across operations, each one having

in turn, other variants:

1. Both input cuboids are FOLAP cuboids

(a) Both of them are bottom cuboids

(b) Both of them are non-bottom cuboids, i.e., they come from a previous

roll-up operation
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SpatialDim Measures
Region (Avg)

rName, rGeom valuepH
〈‘Region− C′, geom703〉 6.7

(a) pHFRegion FOLAP cuboid

SpatialDim Measures
Point (Avg)

point, x, y valuepH
〈(70, 30), 70, 30〉 7.1
〈(80, 50), 80, 50〉 8.1
〈(90, 25), 90, 25〉 5.6

(b) pHF5 FOLAP cuboid

(c) pH4Region SDField

Figure 8.20: pHF5 = Drill-down(pHFRegion, SpatialDim,Point).

2. One input cuboid is a typical OLAP cuboid, and the other one is a FOLAP

cuboid

(a) The first parameter is an OLAP cuboid and the second parameter is a

bottom FOLAP cuboid

(b) The first parameter is an OLAP cuboid and the second parameter is a

non-bottom FOLAP cuboid

(c) The first parameter is a FOLAP cuboid and the second parameter is

an OLAP cuboid

Since Drill-across is an IGO operator, a new OLAP cube or FOLAP cube

instance is induced, and a new associated DField may be produced. We next detail

the implementation of the operator at the logical level for each situation.

Drill-Across between two Bottom FOLAP Cuboids

This is the simplest case. The result is computed as a generic Local op-

eration (Section 7.4.1) as follows. Drill-across(C1,C2), where C1 and C2 are
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two (bottom) FOLAP cuboids such that their associated DFields F1 and F2 are

domain compatible, returns a FOLAP cuboid Cout which induces a new cube in-

stance according to the semantics of Definition 19. Cout is computed from a DField

obtained as Fout = Local(Fl,F1,F2), where Fl : Range(F1) × Range(F2) →
Range(F1)× Range(F2) such that Fl(a,b) = (a,b) (i.e., a vector composed of both

values). According to the definition of the generic operation, the tesselation of the

result is, by convention, the tesselation of C1. The same occurs with the measures:

the first component of the DField vector value is the one of C1, and second measure

is the one of C2.

Example 62 (Drill-across between two bottom FOLAP cuboids). Given the SD-

Fields of Example 37, NDVI and pH, and their corresponding FOLAP cubes, Figure

8.21 depicts the result of Drill-across(NDVIFbottom, pHFbottom), and its associ-

ated DField.

Drill-Across between Two Non-bottom FOLAP Cuboids

In this case, both input FOLAP cuboids come from a previous Roll-up.

Drill-across(C1,C2), where C1 and C2 are two non-bottom FOLAP cuboids

such that C1 ' C2, returns a cuboid Cout according to Definition 19. Note that

this is an OLAP cuboid without an associated DField.

Example 63 (Drill-across between two non-bottom FOLAP cuboids). Consider

the NDVI and pH SDFields of the Example 37 and their corresponding FOLAP

cubes, such that the level Region of Example 51 has been inserted in both FOLAP

cuboids. Assume that we first roll-up to the Region level on the bottom cuboids

of those cubes, namely, NDVIFbottom and pHFbottom. Then, we can drill-across the

resulting cuboids as follows:

NDVIFRegion = Roll-up(NDVIFbottom, SpatialDim,Region)

pHFRegion = Roll-up(pHFbottom, SpatialDim,Region)

Drill-across(NDVIFRegion, pHFRegion).
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(a) NDVI SDField (b) pH SDField

SpaceDim Measures
Point (Avg) (Avg)

point, x, y valuendvi valuepH
〈(10.0,90.0), 10.0, 90.0〉 0.18 7.1
〈(30.0,90.0), 30.0, 90.0〉 0.18 7.1
〈(50.0,90.0), 50.0, 90.0〉 0.21 7.5

. . . . . . . . .
〈(10.0,70.0), 10.0, 70.0〉 0.18 6.8
〈(30.0,70.0), 30.0, 70.0〉 0.20 6.8
〈(50.0,70.0), 50.0, 70.0〉 0.22 6.8

. . . . . . . . .
〈(10.0,30.0), 10.0, 30.0〉 0.20 5.1
〈(30.0,30.0), 30.0, 30.0〉 0.21 5.1
〈(50.0,30.0), 50.0, 30.0〉 0.24 4.5

. . . . . . . . .
〈(50.0,10.0), 50.0, 10.0〉 0.24 4.5
〈(70.0,10.0), 70.0, 10.0〉 0.26 5.6
〈(90.0,10.0), 90.0, 10.0〉 0.27 5.6

(c) NDVIF2 FOLAP cuboid (d) NDVI2 SDField

Figure 8.21: NDVIF2 = Drill-Across(NDVIFbottom, pHFbottom).

After drilling-across, the SpatialDim dimension lattice in the output cuboid

is Region→All. Figure 8.22 shows the output FOLAP cuboids of the rolling-up

operations and the resulting cuboid of the final Drill-across.

Drill-Across between an OLAP Cuboid and a Bottom FOLAP Cuboid

When Drill-across(C1,C2) receives a typical OLAP as first parameter and

a bottom FOLAP cuboid as second parameter, and there is a semantic mapping

between their associated cubes, such that C1 ' C2, the output cuboid is an OLAP

cuboid with the union of the measures of the FOLAP cuboid, according to Defi-

nition 19.
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SpatialDim Measures
Region (Avg)

rName, rGeom valuendvi

〈‘Region−A′, geom506〉 0.22
〈‘Region−B′, geom701〉 0.21
〈‘Region− C′, geom703〉 0.26

(a) NDVIFRegion FOLAP cuboid

SpatialDim Measures
Region (Avg)

rName, rGeom valuepH
〈‘Region−A′, geom506〉 7.4
〈‘Region−B′, geom701〉 5.4
〈‘Region− C′, geom703〉 6.7

(b) pHFRegion FOLAP cuboid

SpatialDim Measures
Region (Avg) (Avg)

rName, rGeom valuendvi valuepH
〈‘Region−A′, geom506〉 0.22 7.4
〈‘Region−B′, geom701〉 0.21 5.4
〈‘Region− C′, geom703〉 0.26 6.7

(c) NDVIF3 OLAP cuboid
(d) Output OLAP cube
instance

Figure 8.22: NDVIF3 = Drill-Across(NDVIFRegion, pHFRegion).

Since the bottom FOLAP cuboid has levels Point and Time, if C1 ' C2 then the

OLAP cubes must have data representing isolated spatial points or timestamps

(call them pi and ti, respectively. In consequence, to drill-across the two cuboids,

the values of the points in the OLAP cuboid C1 (e.g., pi) are matched against the

sampled points of the associated DField in the FOLAP cuboid C2. If they do not

match, they can be inferred by taking advantage of the continuous nature of its

domain.

Example 64 (Drill-across between an OLAP and a bottom FOLAP cuboid).

A cube with schema 〈BaseStation, {TimeDim,AntennaDim}, {radiatedPower}〉 regis-

ters the radiated power of base stations’ mobile antennas in a city. Assume that the

TimeDim dimension is the one in Example 1, and the AntennaDim dimension has

the following schema: 〈AntennaDim, {〈AM-Antenna, 〈x, y, h, azimut, tilt,model〉〉, 〈All,

〈all〉〉},→〉, where the lattice is AM-Antenna→All, with Dom(x) = Dom(y) =

Dom(h) = R, Dom(azimut) = Dom(tilt) = G and Dom(model) = S. The mea-

sure radiatedPower is given in dBm units and its associated aggregate function is

Sum. Also consider the TempF FOLAP cuboid given in Example 48. Besides,
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there exists a semantic mapping based on the matching of cells at the AM-Antenna

and Point levels (given by the equivalence of coordinates x and y in both cubes).

We want to detect a possible correlation between temperatures and the ac-

cumulation of radiated power. For this, we aggregate the data of both cubes by

month, slice the temporal dimension and then cross the cubes, as follows:

BaseStationaux1 = Roll-up(BaseStationbottom,TimeDim,Month)

BaseStationaux2 = Slice(BaseStationaux1,TimeDim)

TempFaux1 = Roll-up(TempFbottom,TemporalDim,Month)

TempFaux2 = Slice(TempFaux1,TemporalDim)

Since we have rolled-up and sliced along the temporal dimension, the resulting

cuboids remain being bottom cuboids with respect to the spatial dimension, but

now there is an SDField associated to TempFaux2.

Finally, we apply the Drill-across operation:

BaseStationmix = Drill-across(BaseStationaux2,TempFaux2).

Figure 8.23 shows the final output OLAP cuboid. Notice that when an an-

tenna location (x,y) does not match any sampled point in TempFaux2, we infer its

temperature value by using the Fn function of the associated SDField, e.g., the

location (25.8, 35.3) matches the cell (30, 30), so we can put together the pair of

measures (44, 22.4), in the first tuple of the BaseStationmix cuboid.

Drill-Across between an OLAP Cuboid and a Non-Bottom FOLAP

Cuboid

When Drill-across(C1,C2) receives a typical OLAP cuboid as its first pa-

rameter, and a non-bottom FOLAP cuboid as its second parameter, with C1 ' C2,

when there is a Semantic Mapping between their cubes, the output cuboid is an

OLAP cuboid that puts together the measures of both cuboids according to the

semantics of Definition 19.

Example 65 (Mixed Drill-across). Consider the Vineyardbottom OLAP cuboid given

in Example 11 and the pHFbottom FOLAP cuboid of Example 62.
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AntennaDim Measures
AM-Antenna (Sum)

x, y, h, azimut, tilt, model radPower
〈25.8, 35.3, 45, 35, 15, ‘multiband′〉 44
〈30.0, 70.0, 45, 35, 15, ‘multiband′〉 45
〈45.8, 73.0, 45, 35, 15, ‘monoband′〉 43

. . . . . .
〈95.8, 41.3, 45, 35, 15, ‘multiband′〉 46

(a) BaseStationaux2 OLAP cuboid

SpatialDim Measures
Point (Avg)

point, x, y valuetemp

〈(30, 90), 30, 90〉 18.0
. . . . . .

〈(30, 70), 30, 70〉 18.0
〈(50, 70), 50, 70〉 20.2

. . . . . .
〈(30, 30), 30, 30〉 22.4
〈(50, 30), 50, 30〉 21.9
〈(70, 30), 70, 30〉 22.9
〈(30, 10), 30, 10〉 22.7

(b) TempFaux2 FOLAP
cuboid

(c) Temperatureaux2

SDField

AntennaDim Measures
AM-Antenna (Sum) (Avg)

x, y, h, azimut, tilt, model radPower valuetemp

〈25.8, 35.3, 45, 35, 15, ‘multiband′〉 44 22.4
〈30.0, 70.0, 45, 35, 15, ‘multiband′〉 45 18.0
〈45.8, 73.0, 45, 35, 15, ‘monoband′〉 43 20.2

. . . . . . . . .
〈95.8, 41.3, 45, 35, 15, ‘multiband′〉 46 24.7

(d) BaseStationmix OLAP cuboid

Figure 8.23: BaseStationmix = Drill-across(BaseStationaux2,TempFaux2).

Suppose an SM(Vineyardbottom,pHFbottom) is defined, where ({BlockDim.Region},

{SpatialDim.region}) ∈ P and Smap
{SpatialDim.region}
{BlockDim.Region} = {(〈‘Flanders’〉, 〈‘Region-A’〉),

(〈‘Wallonia’〉, 〈‘Region-B’〉), (〈‘Brussels Capital’〉, 〈‘Region-C’〉)}.

That means, we have a mapping at the level of regions. We can then look

for a correlation between the production and the pH of the regions. We first

slice temporal dimension in Vineyard because this dimension is not present in the

Semantic Mapping. Then we roll-up both cuboids to the level Region, and finally

we drill-across the resulting cuboids, as follows:

Vineyardaux = Slice(Vineyardbottom,TimeDim)

VineyardRegion = Roll-up(Vineyardaux,BlockDim,Region)

pHFRegion = Roll-up(pHFbottom, SpatialDim,Region)

Vineyardmix = Drill-across(VineyardRegion, pHFRegion).
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Figure 8.24 shows the output cuboids of the Roll-up operations and the re-

sulting cuboid of the final Drill-across. Note for example, that the matching

regions ‘Flanders’ and ‘A’ have their measures (37,200,7.4) together in the same

cell of the output cuboid.

BlockDim Measures
Block (Sum)

idBlock, bGeom harvest
〈35001, g35001〉 7200
〈35002, g35002〉 7500
〈35003, g35003〉 7300
〈35004, g35004〉 7200
〈35005, g35005〉 7400

. . . . . .
〈35086, g35006〉 7900

(a) Vineyardaux OLAP
cuboid

BlockDim Measures
Region (Sum)

rName, rGeom harvest
〈‘Flanders’〉 372000
〈‘Wallonia’〉 275000

〈‘Brussels Capital’〉 138000

(b) VineyardRegion OLAP
cuboid

SpatialDim Measures
Region (Avg)

rName, rGeom valuepH
〈‘Region−A′, geom506〉 7.4
〈‘Region−B′, geom701〉 5.4
〈‘Region− C′, geom703〉 6.7

(c) pHFRegion FOLAP cuboid

BlockDim Measures
Region (Sum) (Avg)

rName, rGeom harvest valuepH
〈‘Flanders’〉 372000 7.4
〈‘Wallonia’〉 275000 5.4

〈‘Brussels Capital’〉 138000 6.7

(d) Vineyardmix OLAP cuboid

Figure 8.24: Vineyardmix = Drill-Across(VineyardRegion, pHFRegion).

Drill-Across between a FOLAP Cuboid and a OLAP Cuboid

We consider that when Drill-across(C1,C2) receives a FOLAP cuboid as its

first parameter and an OLAP cuboid as its second parameter, it is not possible to

cross the cuboids because, since Drill-across is an IGO operator, if a measure

is added to a FOLAP cube, the associated DField should incorporate this measure

into the corresponding sampled tuples. Although this appears to be simple, the

problem is that as a DField has the ability to infer values that are not present

among the sampled tuples, interpolate values that do not come from a continuous

domain will induce errors.
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8.3 Summary

We have described how the concepts studied in previous chapters are applied

to continuous fields, allowing us to manipulate such fields in the same way as we

do with OLAP cuboids. For this, we made use of the notion of discretized field,

which allowed us to implement at the logical level, the OLAP operators defined at

a higher abstraction level. We called the data structure we used for this, a FOLAP

cube, which we defined as a lattice of cuboids such that the bottom cuboid in the

lattice contains the sampled tuples of an associated DField. At the conceptual

level, the FOLAP cube behaves like a traditional OLAP cube and supports all

the OLAP operations. Finally, we have detailed the computation of each OLAP

operator over FOLAP cuboids at the logical level. The basic idea on which we

built our solution is that continuous data can be discretized and represented as a

cube in a seamless fashion.



Chapter 9

GOLAP-QL: A Generic OLAP

Query Language

In this chapter we present a query language based on the algebra presented

in Chapter 4, which allows us to manipulate cubes regardless their underlying

representation. We call this language GOLAP-QL. GOLAP-QL is a procedural

scripting language equipped with the necessary data types that the user needs

to define the domains of the level descriptors and measures. That means, the

language can be easily extended with the necessary data types. We describe the

query processing of a GOLAP-QL query, including syntactic and semantic analysis,

as well as the query optimization process, which includes a set of rules that the

optimizer can apply to make query execution more efficient.

9.1 GOLAP-QL Syntax

The syntax of GOLAP-QL query language is depicted in Listing 9.1, using

Backus-Naur Form with regular expressions. The non-terminal start symbol is

<Pgm>. The language includes the following terminal symbols :

• QUOTEDLITERAL$: Text enclosed in single quotes. For Geometric Data

we use the Well-Known Text (WKT) notation of the OpenGIS specifica-

tion. For example, ‘POINT(50 0)’, ‘LINESTRING(30 0,10 1)’ and ‘POLY-

GON((20 10,4 0,4 4,0 4,20 10),(12 1, 2 1, 2 2, 1 2,12 1))’ are WKT valid

162
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expressions. Similarly, MULTIPOINT, MULTILINESTRING and MULTI-

POLYGON can be expressed as quoted literals.

• INTEGERLITERAL$: Integer numbers.

• DECIMALLITERAL$: Real numbers expressed in decimal notation.

• OPENBRACKET$ and CLOSEBRACKET$: Tokens for brackets.

• COMMA$, SEMICOLON$: Token for comma and semicolon separator.

• SINGLEQUOTE$: The ‘’’ token.

• Tokens for GOLAP Operators: DRILLACROSS, ROLLUP, DRILLDOWN,

SLICE and DICE.

• Tokens for boolean operators: AND, OR, NOT.

• Tokens for relational operators: <, <=, >, >=, =, ! =.

• ASSIGNMENT$: The ‘:=’ token.

• IDENTIFIER$: Non-quoted text that must be different from any of the

previous tokens. For example, SpatialDim is an identifier used for referring

to the name of a dimension.

The system was implemented over the Mondrian1 engine. The implementation

is described in Chapter 10. We extended the Mondrian specification to declare the

extra features required by SOLAP and field data cubes which are not supported

in Mondrian:

1. The Geometry data type for members and/or measures (for SOLAP cubes);

2. The underlying DField (for field cubes).

1MondrianOLAP,http://community.pentaho.com/projects/mondrian

Mondrian OLAP, http://community.pentaho.com/projects/mondrian
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The syntax of the cube schemas (including dimension schemas) is the one of

MultiDimensional eXpressions (MDX)2. There is an initial XML document con-

taining the cube schemas and the semantic mappings between cubes. The syntax

of Semantic Mappings between cubes, expressed as a DTD, is shown in Listing

9.2.

Listing 9.1: GOLAP QL Syntax

1 <Pgm> := <AssignStm> ( SEMICOLON <AssignStm> ) ∗

2 <AssignStm> := IDENTIFIER ASSIGNMENT$ <OLAPExpression>

3 <OLAPExpression> := <DRILLACROSSExpression> | <ROLLUPExpression> |

4 <DRILLDOWNExpression> | <SLICEExpression> | <DICEExpression>

5 <L i t e r a l> := QUOTEDLITERAL | INTEGERLITERAL | DECIMALLITERAL

6 <Parameter> := <IDExp> | QUOTEDLITERAL | <OLAPExpression>

7 <IDExp> := IDENTIFIER

8 <DRILLACROSSExpression> := DRILLACROSS OPENBRACKET$

9 <Parameter> COMMA$ <Parameter> ( COMMA$ SINGLEQUOTE$ ExtraParam

SINGLEQUOTE$ ) ? CLOSEBRACKET$

10 <ROLLUPExpression> := ROLLUP OPENBRACKET$ <Parameter> COMMA$

IDENTIFIER COMMA$ IDENTIFIER CLOSEBRACKET$

11 <DRILLDOWNExpression> := DRILLDOWN OPENBRACKET$ <Parameter> COMMA$

IDENTIFIER COMMA$ IDENTIFIER CLOSEBRACKET$

12 <SLICEExpression> := SLICE OPENBRACKET$ <Parameter> COMMA$ IDENTIFIER

CLOSEBRACKET$

13 <DICEExpression> := DICE OPENBRACKET$ <Parameter> COMMA$ <

BooleanExpress ion> CLOSEBRACKET$

14 <BooleanExpress ion> := <BooleanTerm> ( <BinaryOp> <BooleanTerm>)∗

15 <BinaryOp> := AND | OR

16 <BooleanTerm> := NOT ? ( IDENTIFIER <RelOperator> <L i t e r a l>

17 | NOT ? OPENBRACKET$ <BooleanExpress ion> CLOSEBRACKET$

18 | NOT ? ( IDENTIFIER OPENBRACKET$ IDENTIFIER CLOSEBRACKET$ <

RelOperator> <L i t e r a l>

19 <ExtraParam> := <Firs tPart> | <SecondPart> | <Firs tPart><SecondPart>

20 <Firs tPart> := <RenamingRule> ( COMMA$ <RenamingRule> ) ∗

21 <RenamingRule> := ( 1 . | 2 . ) IDENTIFIER$ AS IDENTIFIER$

22 <SecondPart> := <AddingMeasure> ( COMMA$ <AddingMeasure> ) ∗

23 <AddingMeasure> := fn : IDENTIFIER$ OPENBRACKET$ IDENTIFIER ( COMMA$

IDENTIFIER ) ∗ CLOSEBRACKET$ AS IDENTIFIER$ WITH IDENTIFIER$

2http://mondrian.pentaho.com/documentation/mdx.php

http://mondrian.pentaho.com/documentation/mdx.php
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Listing 9.2: Semantic Mapping Syntax

1 <!ELEMENT SemanticMapping EMPTY>

2 <!ELEMENT LevelMapping (#PCDATA)>

3 <!ATTLIST SemanticMapping cube1 #REQUIRED cube2 #REQUIRED>

4 <!ATTLIST LevelMapping <BooleanExpress ion> #REQUIRED>

5 <BooleanExpress ion> i s the same as in Lines 14 trough 18 o f L i s t i n g 9 .1

9.2 GOLAP-QL Semantics

A GOLAP-QL query (or program, which we denote a sequence of GOLAP-

QL expressions) may be composed of one or more expressions, separated by a

semicolon. Identifiers are used to represent cuboids, which can be obtained from

a previous operation, while quoted literals are used to indicate stored cuboids (see

Section 9.1). An assignment “A:=B” allows binding the cuboid B to an identifier A

in order to be reused. Each operation returns a cuboid, allowing nested expressions.

When several operators are nested, the invocation is applied inside out, that means,

starting from the most internal operator. Each resulting cuboid is the input cuboid

for the next operator. For example, the nested expression:

cuboidout := Operatorn(Operatorn−1(. . .Operator1(cuboid, args1) . . . , argsn−1), argsn);

is equivalent to the GOLAP-QL program:

aux1 := Operator1(cuboid, args1);

aux2 := Operator2(aux1, args2);

. . .

auxn−1 := Operatorn−1(auxn−2, argsn−1);

cuboidout := Operatorn(auxn−1, argsn);

where argsi are the arguments corresponding to Operatori.

When evaluating nesting operations, each intermediate resulting cuboid is

stored in a temporary cuboid auxi, which is automatically assigned to internal

variables to be used as input parameter in further invocations. These auxiliary

cuboids auxi are temporary and they are eliminated by the garbage collector once
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the expression is fully evaluated. Further, if the user needs to keep some interme-

diate result for future operations, she must store the operation result in a variable

by assigning the resulting cuboid to an identifier.

We next describe how each basic operator is evaluated by the GOLAP engine.

The Dice operator selects values in dimensions or measures that satisfy a

boolean condition (see Definition 12). When invoking Dice(Cb,φ), the first pa-

rameter may be an identifier representing a cuboid (possibly obtained from a pre-

vious operation), a quoted literal indicating an stored cuboid, or another nested

expression. The second parameter is a boolean expression that may include rela-

tional operations between a level descriptor of the current levels and a constant,

between two level descriptors of the current levels, between a measure descriptor

and a constant, an user-function over level descriptors and/or measures. If the

condition of the Dice operator contains level descriptors not present in the set

VCb, it produces an error that must be treated accordingly.

The Slice operator reduces the dimensionality of a cube by removing one of its

dimensions or measures (see Definition 13). When invoking Slice(Cb,D), the first

parameter may be an identifier representing a cuboid (possibly obtained from a

previous operation), a quoted literal indicating an stored cuboid, or another nested

expression. The second parameter must be an identifier indicating the dimension

or measure to be eliminated. If the dimension or measure does not belong to

the first parameter schema, it produces an error. The language does not allow

eliminating all the dimensions. Thus, if a Slice is applied to a cube with one

dimension, it throws an exception. Finally, note that after slicing a cuboid, it is

not possible to use the eliminated dimension or measure in further operations on

the resulting cuboid.

The Roll-up operator aggregates measures up to a given level into a dimen-

sion hierarchy by using the corresponding Rup function given in the instance of

the input dimension (see Definition 10). When invoking Rollup(Cb, D, L), the

first parameter may be an identifier representing a cuboid (perhaps obtained from

a previous operation), a quoted literal indicating an stored cuboid, or another
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nested expression. The second parameter must be an identifier indicating a se-

lected dimension and the third parameter must be an identifier indicating the

target level for the aggregation. This operator checks both, that the input level L

belongs to the input dimension D, and the condition Lc � L, where Lc is the level

corresponding to D in the set of levels VCb of the input cuboid.

The Drill-down operator disaggregates measures down to a given level within

a dimension hierarchy by using the corresponding Rup function given in the in-

stance of the input dimension (see Definition 11). When invoking Drilldown(Cb,

D, L, the first parameter may be an identifier representing a cuboid (maybe ob-

tained from a previous operation), a quoted literal indicating an stored cuboid, or

another nested expression. The second parameter must be an identifier indicating

a selected dimension and the third parameter must be an identifier indicating the

target level for the disaggregation. This operator checks both that input level L

belongs to the input dimension D, and the condition L � Lc, where Lc is the level

corresponding to D in the set of levels VCb of the input cuboid.

As discussed in Chapter 4, Drill-down does not just undo a previous Roll-

up (as considered in many proposals reviewed in Chapter 2), due the possibility

of nesting operators that may eliminate members or dimensions from the input

cuboid during a Roll-up from level L1 up to L2 and its corresponding Drill-

down from level L2 down to L1. If we just undo this roll-up without considering

the intermediate changes that may have occurred, after the Drill-down the user

will see members that have been eliminated in previous steps. For example, if the

user applies a Roll-up to the Region level, then eliminates the Central region, and

finally applies a Drill-down to the Province level, the semantics that we consider

is that she no longer wants to see the provinces belonging to the Central region.

Example 66 illustrates this in detail.

The Drill-across operator performs a join between two cuboids in order

to give a unified view of their measures (see Definition 19). When invoking

Drillacross(Cb1, Cb2, [NewMeasures]), the first two parameters may be an iden-

tifier representing a cuboid (perhaps obtained from a previous operation), a quoted
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literal indicating an stored cuboid, or another nested expression. The last parame-

ter is optional but if present, it must be an special quoted literal (see the syntax of

ExtraParam in Listing 9.1) representing the operations to be performed to rename

measures or to obtain new ones (with their names and aggregate functions). We

need this optional parameter because it may occur that some measures in both

cubes have the same denomination. To avoid ambiguity, the user must express

how the original measures are named in the resulting cube. This strategy can be

used just for changing the names of measures. These measures that do not appear

in this expression keep their original names. Finally, this expression can be also

used to add new measures to the output cuboid. In fact, the complete expression

is composed of two (implicit) parts: the first part is used to rename variables, and

the second part is used to add new measures. The definition of a new measure

is expressed by a function (prefixed by the symbol fn:) whose parameter can be

the name of any measure in the resulting cube. The name of the measure being

defined and the aggregate function associated to it need also to be expressed. To

refer to a measure in order to use it as parameter in the function expression, it

must be prefixed with number 1 or number 2, to indicate if it belongs to the first

cuboid or to the second cuboid, respectively. If the same measure is renamed mul-

tiple times, only the last denomination is considered. The expression can contain

as many renaming rules as the user wants. If duplicating measures appear in the

resulting cube, the Drillacross throws an exception. Example 67 shows possible

expressions for the third optional parameter of the Drill-across operation.

The Drillacross operation requires that a semantic mapping exists between

both input cuboids involved. This semantic mapping must be defined in the initial

XML document, after the creation of the cube schemas. If there is not a previously-

defined semantic mapping between the cubes corresponding to the input cuboids,

the operation produces an error. In the case of an existing semantic mapping,

the operator checks that all the dimensions of each cuboid are involved in the

mapping, and if this condition is not satisfied, it produces an error. To enforce

the input conditions, the user may previously navigate on one or both cuboids, in

order to obtain the semantically compatible cuboids (see Definition 18). Moreover,
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the dimensions not included in the mapping must be dropped applying a Slice

operation before performing a Drillacross (see Example 28). The Drillacross

operator works like a natural join, i.e., if a cell in the first cuboid does not have a

semantic equivalent one in the second cuboid, it will not be included in the output

cuboid. Thus, if the input cuboids do not share instances members, the resulting

cuboid would be empty, as explained in Section 5.4.

It is important to remark that, after applying Drillacross, it will not be

possible to perform a Drilldown operation along the levels that precede the

ones in the resulting cuboid (i.e., that precede levels in LCout), because these levels

are not present in the dimensions of the output cube. That is, Drill-across

induces a new bottom cuboid, as showed in Example 29.

Example 66 (DrillDown and Dice). Consider the cuboid C1 in Figure 9.1 and

the query Drilldown(Dice(Rollup(C1,BlockDim,GrapeType),gType = ‘white’),

BlockDim,Grape). The inner Rollup returns the cuboid C2 given in Figure 9.2;

then, the Dice operation keeps the tuples with grape type white (see Figure 9.3);

finally, Drilldown disaggregates the level GrapeType, but since the grape type

‘red’ has been eliminated, it only returns the corresponding members in Grape. As

we can see in Figure 9.4, the resulting cuboid has removed the cells containing

white grapes, for example (〈2011〉,〈‘pinot noir’〉) is not present any more. Thus,

the Drilldown operation is not a just an undo of the previous Rollup, since

the final result is differs from C1.

Example 67 (Drill-across operation). The expression C5 := Drillacross(Slice(

‘mytempcube’,TemporalDim), ‘altitudecube’, ‘2.value AS altvalue’) indicates that in

the resulting cube the measures are value and altvalue. The former belongs to

mytempcube, and altvalue belongs to altitudecube.

Also, C6 := Drillacross(Slice(‘mytempcube’,TemporalDim), ‘altitudecube’,

‘2.value AS altvalue, 1.value AS valuetemp; 2.value AS valuealt’) indicates that in the

resulting cube the measures are valuetemp and valuealt. The former is the measure

that belongs to mytempcube and valuealt is the one that belongs to altitudecube.
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TimeDim BlockDim Measures
Year Grape (Sum)
year gName harvest
〈2007〉 〈kerner〉 22000
〈2007〉 〈chardonnay〉 22600
〈2008〉 〈kerner〉 23300
〈2008〉 〈chardonnay〉 22700
〈2009〉 〈kerner〉 23000
〈2009〉 〈chardonnay〉 22800
〈2010〉 〈pinot blanc〉 22600
〈2010〉 〈pinot noir〉 23800
〈2011〉 〈pinot blanc〉 22800
〈2011〉 〈pinot noir〉 23800

Figure 9.1: Cuboid C1.

TimeDim BlockDim Measures
Year GrapeType (Sum)
year gType harvest
〈2007〉 〈white〉 44600
〈2008〉 〈white〉 46000
〈2009〉 〈white〉 45800
〈2010〉 〈white〉 22600
〈2010〉 〈red〉 23800
〈2011〉 〈white〉 22800
〈2011〉 〈red〉 23800

Figure 9.2: C2=Rollup(C1,BlockDim,GrapeType).

Finally, consider C7 := Drillacross(Rollup(Rollup(‘Vineyard′,BlockDim,

Grape), TimeDim,Month), Slice(‘Drinks′, ZoneDim), ‘1.harvest AS myharvest,

2.consumption AS sales, fn : percent(myharvest, sales) AS mypercent WITH Sum′).

Here we use a third (optional) parameter to add a new measure. We define

the percent function, taking as parameters the measures of the input cuboids. The

above expression indicates that in the resulting cube the measures are myharvest,

consumption and mypercent. The last one is a new measure calculated by the

function percent, which is applied over the measures myharvest and sales of the

resulting cube, and that will be aggregated with the Sum function.

9.3 GOLAP Engine Architecture

We now discuss the strategies used by the GOLAP engine to optimize and

execute queries expressed in GOLAP-QL.
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TimeDim BlockDim Measures
Year GrapeType (Sum)
year gType harvest
〈2007〉 〈white〉 44600
〈2008〉 〈white〉 46000
〈2009〉 〈white〉 45800
〈2010〉 〈white〉 22600
〈2011〉 〈white〉 22800

Figure 9.3: C3=Dice(Rollup(C1,BlockDim,GrapeType),gType=‘white’).

TimeDim BlockDim Measures
Year Grape (Sum)
year gName harvest
〈2007〉 〈kerner〉 22000
〈2007〉 〈chardonnay〉 22600
〈2008〉 〈kerner〉 23300
〈2008〉 〈chardonnay〉 22700
〈2009〉 〈kerner〉 23000
〈2009〉 〈chardonnay〉 22800
〈2010〉 〈pinot blanc〉 22600
〈2011〉 〈pinot blanc〉 22800

Figure 9.4: C4 = Drilldown( Dice( Rollup( C1 , BlockDim , GrapeType) ,
gType=‘white’) , BlockDim , Grape).

Proposals for OLAP query processing are based on the assumption that data

cubes are implemented in relational databases (ROLAP). Typically, OLAP queries

are defined at the logical level (i.e., SQL or MDX expressions), rather than at a

conceptual level. On the contrary, GOLAP-QL is a high-level language. The

engine includes an optimization module that works at the conceptual level. The

optimizer can change the canonical GOLAP-QL expression that the user poses.

Once this expression is translated from the conceptual to the logical level, the usual

optimization strategies are applied by the underlying relational engine. Note that

in Examples 66 and 67 the query evaluation process ignored the kinds of underlying

data present in the cubes. This is handled at lower levels of abstraction.

The GOLAP architecture is composed of the following modules, shown in Fig-

ure 9.5: the Lexical Analyzer, the Syntactic Analyzer, the Semantic Analyzer, the

Query Optimizer and the GOLAP Engine.
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Figure 9.5: GOLAP Engine Architecture.

9.3.1 Lexical and Syntactic Analyzers

The Lexical Analyzer is responsible of identifying the language tokens, while

the Syntactic Analyzer checks the syntax according to the grammar described in

Section 9.1. If no syntactic errors are detected, a tree data structure (a parse tree)

representing the query is built. The implementation details of both analyzers are

described in Chapter 10.

Example 68 (Q1-Valid Syntactic GOLAP-QL query). The lexical and syntactic

analyzers, applied to the following query, generate the parse tree shown in Fig-

ure 9.6.

Result:= Slice( Rollup( Dice( Rollup(‘Vineyard’, TimeDim, Quarter), TimeDim.

Quarter.quarter = ’Q1-2008’), TimeDim, Year), TimeDim)

Example 69 (Q2-Valid Syntactic GOLAP-QL query). Given that we can define

variables to store cubes that can be used latter in the same script expression, query
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Figure 9.6: Q1 Parse Tree.

Q1 could also be expressed as:

Cube1 :=Rollup(Vineyard, TimeDim, Quarter);

Result := Slice( Rollup( Dice( Cube1, TimeDim.Quarter.quarter = ’Q1-2008’),

TimeDim, Year), TimeDim)

The lexical and syntactic analyzers generate the parse tree shown in Figure 9.7.

Example 70 (Q3-Valid Syntactic GOLAP-QL Query). The lexical and syntactic

analyzers detect that the following query is a valid syntactic query and builds the

Tree shown in Figure 9.8.

Result:= Dice(Slice(’Vineyard’,TimeDim),TimeDim.Day.date =’22/12/2008’)

Example 71 (Q4-Invalid Syntactic GOLAP Query). The syntactic analyzer de-

tects that the following query is invalid, since the Dice operator requires two
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Figure 9.8: Q3 Parse Tree.

parameters: the first one could be a literal or an expression, the second one should

be a boolean expression.

Result:=Dice(Slice(’Vineyard’,TimeDim),TimeDim.Quarter.quarter)

In this case the second expression is not well-formed, thus, no parse tree is

generated and the process finishes throwing an exception.
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9.3.2 Semantic Analyzer

The GOLAP semantic analyzer detects if the query is semantically correct

according to the semantics described in Section 9.2. It navigates the parse tree

generated in the previous step and determines if the query can be executed. For

instance, for each query of Examples 68 through 70, a parse tree was generated,

although only the queries of Examples 68 and 69 can be executed, because for

the query of Example 70 the semantic analyzer will detect that Dice refers to a

dimension (TimeDim) that was dropped by a Slice operation. To perform this

analysis, the schema of the data cubes is used and the parse tree is navigated in

a read-only fashion, to detect the order of the operations used in the query. We

next explain how the schemas of the data cubes are managed.

Each data cube has a schema that describes its structure, i.e., dimensions,

levels, and measures. Some data cubes declare their schema explicitly, and oth-

ers do not. The former are those cubes that are declared in the XML data file

mentioned at the beginning of the chapter. The latter are the cubes that are inter-

mediate expressions generated by the GOLAP operations, i.e., Rollup, Drill-

down, Slice, Dice, and Drillacross. For instance, in Example 68, four

intermediate data cubes are generated. Three are anonymous, and one is assigned

to a variable called Result. In Example 69, also four intermediate data cubes are

generated, but only two of them are anonymous (the other two are assigned to

variables Cube1 and Result). For the cubes obtained by applying the GOLAP

operations, the analyzer needs to infer their structures prior to execute the query.

This step is done by navigating the (read-only) parse tree in a bottom-up fashion.

Example 72 explains a tree navigation in order to check the semantics of a GOLAP

query.

Example 72 (Q2-Semantic Analysis). We next show how the tree generated in

Example 69 is Navigated by the semantic analyzer. For clarity, we labeled the

nodes with numbers (see Figure 9.9)

First, the Rollup node labeled with number 1 is visited, and its structure is

inferred using the structure of its parameter (Vineyard), which is defined in the
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XML document. Since this operator does not change the structure, the interme-

diate data cube has the same schema of Vineyard. At this point, it is important

to remark that the set of levels VVineyard has been recorded and semantically vali-

dated, i.e., it is valid to roll-up from Day (current level of Vineyard) to Year, since

a hierarchy Day → Month → Quarter → Year was defined in the schema of the

Vineyard data cube. This intermediate data cube is assigned to a variable named

Cube1.

Then, the Dice node, labeled with number 2, is visited and its structure is

inferred using the schema of Cube1. The Dice operator does not change the

schema. The semantic analyzer checks if the Dice expression is semantically

correct, i.e., if it uses the levels in VCube1.

The third intermediate data cube schema is generated by visiting the Rollup

node labeled with number 3, and its structure is inferred using the structure of

the data cube obtained in node 2. The analyzer checks if the new current level is

valid, i.e., if it is possible to roll-up from Quarter to Year.

Finally, the Slice node labeled with number 4 is visited. The schema of the

output data cube to be produced here does no longer contain the sliced dimension.

Example 73 (Q3-Semantic Analysis). The query in Example 70 is syntactically

correct but semantically incorrect. Figure 9.10 shows the order in which the parse

tree is navigated.

First, the Slice node labeled with number 1 is visited and its structure is in-

ferred by using the structure of its parameter (Vineyard). Since this operator drops

the TimeDim dimension, the intermediate resulting data cube does not contain this

dimension.

Then, the Dice node labeled with number 2 is visited and its structure is

inferred by using the previous schema. The Dice operator does not change the
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Figure 9.9: Q2 Parse Tree Navigation.

schema. The semantic analyzer checks if the dice expression is semantically cor-

rect, i.e., if it uses expression uses current levels. In this case the expression is

not semantically correct since the expression refers to a level of a non-existent

dimension. The analyzer thus throws an exception with the details of the detected

problem, and the process ends.

Pgm
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Exp
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Figure 9.10: Q3 Parse Tree Navigation.

If a query is correct, two phases can follow the semantic analysis, as shown in

Figure 9.5: the OLAP Engine or the Query Optimizer can be invoked. The latter

transforms the canonical parse tree into another one, that is likely to be more
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efficient when the query is executed. We discuss query optimization in the next

section.

9.3.3 GOLAP Optimizer

Once the semantic analyzer navigates and accepts the parse tree, the query

optimizer can be ran. The GOLAP optimizer takes the parse tree, and, if neces-

sary, modifies it. The canonical tree represents several GOLAP expressions that

were submitted by the user in a single script. The optimizer works at the con-

ceptual level, i.e., it modifies the tree which contains internal nodes with GOLAP

operators. Since we have implemented the operators over a relational database,

traditional strategies can be used by the relational database engine for optimiz-

ing the SQL queries that will be eventually executed. The optimizer follows a

rule-based approach, consisting of the following rules.

Optimization Rule 1: Commutativity of IPO Operations

Nesting two consecutive IPO operators based on a cuboid Cb over different

dimensions is commutative.

Proof. Let us denote as Nav, generically the Roll-up and Drill-down opera-

tions:

(1) A:=Nav2(Nav1(Cb,Dp,Lpnew), Dq,Lqnew)

(1) B:=Nav1(Nav2(Cb,Dq,Lqnew), Dp,Lpnew)

Consider that VCb={L1,. . . ,Lp,. . . ,Lq,. . . , Ln}, where Lp and Lq are the levels

corresponding to the dimensions Dp and Dq, respectively. Also, consider C the

cube containing the cuboid Cb.

The IPO operators only change in the set VCb the level corresponding to the

input dimension. Thus, in expression (1), the Nav1 operation sets the level Lpnew as

the current level, and then Nav2 sets the level Lqnew . Accordingly, A is the cuboid

in C with VA={L1,. . . ,Lpnew ,. . . ,Lqnew , . . . , Ln}.
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On the other hand, in expression (2), the Nav2 operation sets the level Lqnew

as the current level, and then Nav1 sets the level Lpnew . In consequence, B is the

cuboid in C with VB={L1,. . . ,Lpnew ,. . . ,Lqnew , . . . , Ln}.

Since it is not possible to have two cuboids A and B in C cube with the same

set of levels, then A=B must hold.

Optimization Rule 2: Nested IPO Operations

Nesting a series of consecutive IPO operators based on a cuboid Cb over the

same dimension D is equivalent to apply a single Roll-up(Cb,D, L) if Cb � Cbout,

or a single Drill-down(Cb,D, L) if Cbout � Cb, where L is the level parameter of

the last IPO operation.

Proof. Let us denote as Nav, generically the Roll-up and Drill-down opera-

tions:

(1) A:=Nav(. . . ,Nav(Nav(Cb,D,L1),D,L2), . . . ,D,Llast)

(2) B:=Roll-up(Cb,D,Llast) if Cb�A or B:=Drill-down(Cb,D,Llast) if A�Cb

Consider that VCb={L1,. . . ,Lk,. . . , Ln}, where Lk is the level corresponding to

the dimension D, and C is the cube containing the cuboid Cb.

The IPO operators only change the level in VCb corresponding to the input

dimension. Thus, in the ith Nav operation, the level Li is set as the current level.

Since the evaluation in nested operations is done from the innermost operator,

after successive changes the last change in expression (1) sets the Llast level in VA.

In consequence, A is the cuboid of C with VA={L1, . . . , Llast, . . . , Ln}.

Taking into account if in the lattice of dimension D Lk →∗ Llast or Llast →∗ Lk

hold, a Roll-up or a Drill-down over Cb to Llast, respectively, sets the Llast level

in VB. Thus, B is also the cuboid of C with VB={L1, . . . , Llast, . . . , Ln}.

Since it is not possible to have two cuboids A and B in C cube with the same

set of levels, then A=B holds.
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Optimization Rule 3: Slicing of Nested IPO Operations

Performing a Slice operation over a nesting sequence of only IPO operations

based on a cuboid Cb over the dimension to be removed, is equivalent to apply only

the Slice operation over that dimension.

Proof. We denote generically Nav the Roll-up and Drill-down operations:

(1) A:=Slice(Nav(. . . ,Nav(Cb,D,L1),. . . ,D,L2),D)

(2) B:=Slice(Cb,D)

Since Slice applies an internal Roll-up to All in the dimension to be elimi-

nated, we rewrite the expression by making this operation explicit, as follows:

(1) A:=Slice(Roll-up(Nav(. . . ,Nav(Cb,D,L1), . . . ,D,L2), D, All), D)

(2) B:=Slice(Roll-up(Cb,D,All), D)

According to Rule 2, we replace the nesting IPO operations in (1) with a single

Roll-up, and we obtain: B:=Slice(Roll-up(Cb, D, All), D).

In consequence, the expression B is identical to A.

Optimization Rule 4: Nesting Dice Operations

Nesting several consecutive Dice operators based on a cuboid is equivalent to

apply a single Dice whose condition is the conjunction of all the separate condi-

tions on the same cuboid.

Proof. We prove the rule for a sequence of two Dice operations; the same can be

applied associatively for the rest.

(1) A:=Dice(Dice(Cb, φ1), φ2)

(2) B:=Dice(Cb, φ1 AND φ2)

Let us call Aux the intermediate cuboid of Dice(Cb, φ1) in expression (1).

If ci = (ci1, ci2, . . . , cin,mi1, . . . ,mik) ∈ A, then ci satisfies φ2 in the last Dice

operation. This implies that ci was present in Aux, and thus ci satisfies φ1. There-

fore, ci satisfies both φ1 and φ2, and then ci satisfies (φ1 AND φ2). In consequence,

ci ∈ B.
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Conversely, if ci = (ci1, ci2, . . . , cin,mi1, . . . ,mik) ∈ B, ci satisfies both conditions

φ1 and φ2. Accordingly, ci ∈ Aux because it satisfies φ1, and then ci ∈ A because

it satisfies φ2.

Finally, ∀ci, ci ∈ A⇔ ci ∈ B, implies A=B.

9.3.4 GOLAP Engine

The Query Engine receives the parse tree (optimized or not) for evaluation.

The tree is navigated, and for each visited node the corresponding operation is

performed. More specifically, for ROLLUPExpression, DRILLSOWNExpression,

SLICEExpression, DICEExpression and DRILLACROSSExpression nodes, a poly-

morphic function is applied, depending of the type of the input parameter, i.e.,

OLAP or FOLAP cuboids.

The Query Engine strategy consists in:

• For OLAP cubes, only the bottom cuboid of each cube instance is materi-

alized, and each resulting cuboid is computed by applying SQL queries, as

the cubes are implemented in ROLAP databases.

• For FOLAP cubes, the Generic Map Algebra operations are applied over the

associated DField (corresponding to the bottom cuboid) and the FOLAP

cuboid is populated with that result.

When a ROLLUPExpression or a DRILLDOWNExpression node is visited, the

new level given by the second parameter (the right child) is added to the set of

current levels. If the first parameter (left child) is an OLAP cuboid, no changes are

made to the corresponding fact table. In consequence, since these IPO operations

are not materialized, when IGO operations are applied the corresponding Group

By must be performed to summarize the measures in the fact table. If the first

parameter (left child) is a FOLAP cuboid, operations based on the Zonal operator

are temporarily performed on the associated DField, and the output cuboid is

updated with the values obtained. If the DField is an STDField and none of the

current levels is a bottom level, two Zonal operations are performed. However, the

transactions are not materialized in the bottom DField, which remains unchanged.
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When a SLICEExpression node is visited, a new cuboid without the dimension

or measure given by the second parameter (right child) is returned. If the first

parameter (left child) is an OLAP cuboid, the dimension or measure is actually

removed from the fact table. If the first parameter is a FOLAP cuboid, the fact

table and the associated bottom DFiled are updated.

When a DICEExpression node is visited, a new cuboid without the cells that do

not satisfy the condition given by the second parameter (right child) is returned.

If the first parameter (left child) is an OLAP cube, the tuples that do not satisfy

the condition are actually eliminated from the fact table. If the first parameter is a

FOLAP cuboid, besides updating the fact table, the cells of the associated DField

that do not satisfy the condition are set to ‘⊥’, and the tessellation is changed, if

necessary (see Example 58).

When a DRILLACROSSExpression node is visited, a new cuboid with the

measures of the first and second parameters (left and middle childs), and optionally

the new measures given by the third parameter (right child) are returned. The

matching between cells is given by the semantic mapping between the cubes. If

the first parameter is an OLAP cube, the measures of the second parameter are

actually added to the fact table and, if the right child exists, the renamed measures

and/or the new measures are also added. In the case the second parameter is a

bottom FOLAP cuboid, the measures are inferred from the associated DField. If

the first and second parameters are non-bottom FOLAP cuboids, the fact table is

actually updated, and the output cuboid becomes an OLAP cuboid. If the first

and second parameters are bottom FOLAP cuboids, a generic Local operation is

performed between them, and the ouput FOLAP cuboid is built with the resulting

DField.

Remark 17. Note that the semantic mappings that are modified by the operations

as explained in Section 5.5, are performed automatically in our implementation.

The user only needs to indicate the semantic mappings for the input cubes, in the

XML document. The mappings induced by the OLAP operations are computed by

the engine.
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9.4 Example GOLAP-QL Queries

So far we have assumed that all the queries we have shown have been written

by experts, and in a concise way. However, since our model, and its associated

language GOLAP-QL were designed to work at the conceptual level, non-expert,

naive users may be able to express queries over cubes, and these queries may not

always be written in the best way. For instance, a Rollup can be followed by

a Drilldown operator, while, as we have seen, this sequence can be replaced

by just the latter operation, and the result would be the same. Next, we show

some queries assuming that are not written in the most concise way, and show

how the GOLAP optimizer deals with them. Note that non-optimal sequences of

operations can also be obtained when a graphic OLAP-style navigation using a

graphic tool gets translated into GOLAP-QL commands, which is also a possible

scenario for our proposal.

As we explained in Section 1.4 and Chapter 6, in our running example, a

wine producer in Belgium has developed a business analytics system in order to

be able to take well-informed decisions about grape production in her vineyard.

Two SOLAP cubes were produced: a Vineyard cube, which contains data about

grape harvest involving time periods, geographic zones and grape variety, and a

Fumigation cube containing fumigation information that includes fumigated zones,

time periods and factual 3D trajectories of the spraying planes (see Chapter 6).

To enhance analysis possibilities, our producer has incorporated external informa-

tion about precipitation, temperature and altitude, represented as continuous field

data.

The FOLAP cubes TempF and PrecipF, associated to the STDFields Tempera-

ture and Precipitation, were built with the Avg function ssocited to their measures.

Also, the FOLAP cube AltitudeF has been created, associated to the SDField Al-

titude, with the Max function as its measure. Finally, the necessary semantic

mappings between these cubes have been defined (see Section 6.3).

Using the scenario above, we illustrate the capabilities of the language and the

use of the optimizer module, by means of three comprehensive example queries.
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Example 74 (Q4: Using a SOLAP and a FOLAP cuboid). The user wants to

study the relationship between grape production, average temperature and alti-

tude, regardless the time periods, for those provinces with temperatures between

11 and 15 Celsius degrees. To answer this query, the user needs the Vineyard SO-

LAP cube, containing grape production information, and the TempF and AltitudeF

FOLAP cubes for the rest of the data.

First, we roll-up the Vineyard cube to the levels Province and Month resulting

in a cuboid Aux1. Then, we do the same with the bottom cuboid of TempF

(associated to the STDField Temperature), and select the cells with the desired

temperature range in TempF, resulting in a cuboid Aux2. Note that in this case,

the user has first rolled-up TempF to the District level, and then to Province, which

is not the best way to write this query. She has also performed two consecutive

dicing operations, while they may have been written as a single one. We show

next how the optimizer module handles this.

Aux1 := Rollup(Rollup(‘Vineyard’,TimeDim,Month),BlockDim,Province);

Aux2 := Dice(Dice(Rollup(Rollup(Rollup(‘TempF’, SpatialDim, District),

TemporalDim, Month), SpatialDim, Province), value > 11), value < 15);

A drill-across operation is then performed between Aux1 and Aux2, to be able

to put together all the information, and data are aggregated over time, that means,

the TemporalDim dimension is removed, to be able to further combine the result

with the Altitude cuboid, which is spatial. This results in the cuboid Aux3

Aux3 := Slice(Rollup(DrillAcross(Aux1,Aux2, ‘2.value AS temperature’),

TimeDim,All),TimeDim);

So, basically, Aux3 contains the combination between an alphanumerical dis-

crete cube, and the temperature cube aggregated over time. Finally, we perform a

drill-across between Aux3 and Altitude, which is previously rolled-up to the Province

level.

Result := DrillAcross(Aux3,Rollup(‘AltitudeF’, SpatialDim,Province), ‘2.value

AS altitude’)
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Figure 9.11 depicts the corresponding parse tree. The optimized query is shown

in Figure 9.12. We can observe that the two Dice operations have been simplified

into a single one, and the Rollup to All previous to slicing the TimeDim dimension

is eliminated, and the double Roll-up to District and to Province has been replaced

for a single Roll-up to Province.

The GOLAP Engine executes the optimized parse tree as follows. First, the

cube resulting from the two Rollup operations over Vineyard is stored in cuboid

Aux1. Previous to the Dice operation, the GOLAP Engine applies two Rollup

operations up to Month and Province levels. Then, the Temperature STDField as-

sociated to the TempF FOLAP cube is modified by the Dice operation, so samples

that do not satisfy the condition are set to ‘⊥’, and the corresponding tuples in

TempF are eliminated. In summary, Aux2 is a cuboid with an associated STDField,

namely Temperatureout. Notice that, if an SDField of the Seq(Temperatureout) has

a tessellation that contains some cells straddling two provinces such that one of

them satisfies the dicing condition and the other not, its tessellation is changed (see

Example 58). For instance, the SDField corresponding to the October snapshot

in Seq(Temperatureout) is shown in Figure 9.13.

Taking advantage of the automatically inferred semantic mapping between

Aux1 and Aux 2 (derived from SM(Vineyard, TempF), the Drill-across between

these partial resulting cuboids is stored in the Aux3 cuboid, also adding the altitude

measure to the original harvest measure.

Finally, the Result cuboid has the two measures of Aux3 plus the altitude mea-

sure summarized by province. This cuboid, as displayed in the output console, is

shown in Figure 9.14.

Example 75 (Q5: Using two SOLAP cuboids). Now, our user wants to find out

the production of the districts that have been fumigated with chemical products

at a height less than 12 meters during 2009.

The user first computes a cuboid over Vineyard at the District level, selecting
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the cells corresponding to the year 2009. However, she first rolls-up to the Province

level, and from there she drills-down one level to reach the districts. The optimizer

will take care of fixing this flaw in the query formulation.

Aux1 := Dice(Drilldown(Rollup(Rollup(‘Vineyard’,BlockDim,

Province),TimeDim,Year),BlockDim,District), year = 2009);

Then, the query prepares the second cuboid, the one containing fumigation

data. The measure of the Fumigation cube is a 3D geometry (a trajectory), which

allows applying the spatial function Zmin, which returns the minimum height of

the trajectory.

Aux2 := Slice(Rollup(Drilldown(Dice(Dice(Dice(Rollup(

Rollup(‘Fumigation’,PestDim,Type),DateDim,Year), PestDim.Type.ptype =

‘chemical’),Zmin(trajectory) < 12), year = 2009),PestDim,Pesticide),GeoDim,Zone),

PestDim);

Notice that the members of the Month level in the Vineyard and Fumigation

cubes will never match, because fumigation always precedes picking (that is, we

consider that those will be concurrent facts at the month granularity). On the

contrary, after positioning both cuboids at the Year level and after applying the

dicing operation, the join in the final Drillacross operation will give a nonempty

result.

Result := Rollup(Slice(Drillacross(Aux1,Aux2, ‘fn : Zmin(trajectory) AS

heightFumig WITH Min’), trajectory),BlockDim,Province)
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Pgm

assignStm

Aux1 Rollup

Exp

Rollup

Vineyard TimeDim Month

BlockDim Province

assignStm

Aux2 Dice

Exp

Dice

Exp

Rollup

Exp

Rollup

Exp

Rollup

TempF SpatialDim District

TemporalDim Month

SpatialDim Province

value >11

value <15

assignStm

Aux3 Slice

Exp

Rollup

Exp

Drillacross

Aux1 Aux2
2.value AS
temperature

TimeDim All

TimeDim

assignStm

Result Drillacross

Aux3 Exp

Rollup

AltitudeF SpatialDim Province

2.value AS
altitude

Figure 9.11: Parse tree for Q4.
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assignStm

Aux1 Rollup

Exp

Rollup

Vineyard TimeDim Month

BlockDim Province

assignStm

Aux2 Dice

Exp

Rollup

Exp

Rollup

TempF TemporalDim Month

SpatialDim Province

value >11 and
value <15

assignStm

Aux3 Slice

Exp

Drillacross

Aux1 Aux2
2.value AS
temperature

TimeDim

assignStm

Result Drillacross

Aux3 Exp

Rollup

AltitudeF SpatialDim Province

2.value AS
altitude

Figure 9.12: Optimized parse tree for Q4.
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Figure 9.13: SDField corresponding to October in Seq(Temperatureout) for Q4

Figure 9.14: Result cuboid for Q4 in the output console

Figure 9.15 depicts the parse tree that corresponds to the original query, that

means, without optimization. The parse tree of the optimized query is shown in

Figure 9.16. We can observe that the optimizer has eliminated the first Rollup to

Province in Vineyard, has replaced the three Dice operations in Fumigation by only

one operation, and has eliminated the Drilldown to Pesticide level in PestDim,

before slicing this dimension.

The GOLAP Engine executes the optimized parse tree as follows. First, the
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cube resulting from the Rollup and Dice operations over Vineyard is stored in

Aux1. Then, in Aux2 we keep the zones with their trajectories summarized using

Union function, such that these trajectories satisfy the dicing condition. Notice

that Aux2 does not contain PestDim dimension. Taking advantage of the seman-

tic mapping between Vineyard and Fumigation (studied in Chapter 6), which is

propagated to Aux1 and Aux2, a Drill-across operation can be applied between

the previous partial resulting cuboids. Finally, the Slice of the measures allows

keeping only the desired ones in the Result cuboid, i.e., harvest, and fumigation

minimum height. The final Result cuboid in the output console is shown in Figure

9.17.

Example 76 (Q6: Using two FOLAP cuboids). Our final example looks for all the

districts in Belgium that present the ideal conditions for the Malbec crop, which

are related to the range of temperature and average precipitation during specific

periods. For example, the best conditions for the picking period are temperatures

between 18 and 22 Celsius degrees, with average precipitations less than 40 mm.

In consequence, the user needs to put together cubes representing fields containing

minimum and maximum temperatures, and fields containing average precipitation

summarized by district for the following periods: bud break (February-March),

flowering (first part of April), ripeness (from the second half of April to the end of

August) and picking (September).

In the XML cube schema file we declare two new FOLAP cubes associated to

the Temperature STDField: TempMax and TempMin, with Max and Min functions

for the measure valuetemp, respectively. We also build the PrecipF FOLAP cube,

associated with Precipitation STDField. Finally, the necessary semantic mappings

are defined between them.

Furthermore, we insert the new Period level in the TemporalDim dimension

between Timestamp and Year with the ad-hoc members: budbreak (February and

March), flowering (April 1st to 15th), ripeness (April 16th to August 31th), picking
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(September), nothing1 (January) and nothing (October, November and Decem-

ber). The members nothing and nothing1 are defined in order to complete the year

interval and guarantee summarizability.

Finally, the query reads:

Aux1 := RollUp(RollUp(‘TempMin’,TemporalDim,Period), SpatialDim,District);

Aux2 := RollUp(RollUp(‘TempMax’,TemporalDim,Period), SpatialDim,District);

Aux3 := RollUp(RollUp(‘PrecipF’,TemporalDim,Period), SpatialDim,District);

Result := Drillacross(Drillacross(Aux1,Aux2, ‘1.value AS minTemp

2.value AS maxTemp’),Aux3, ‘2.value AS avgPrecip’)

Figure 9.18 depicts the parse tree that corresponds to the original query. In

this case, the optimizer module does not change the parse tree. The GOLAP

engine executes the parse tree as follows. First, it applies two Rollup operations

on the TempMin FOLAP cuboid, up to the Period and District levels, and stores

the resulting cuboid into Aux1. Then, it repeats the same two operations over the

TempMax and PrecipF FOLAP cuboids, and stores the partial result into cuboids

Aux2 and Aux3, respectively.

Notice that all these operations do not introduce changes into the STDFields as-

sociated to the three FOLAP cubes, because they only take the cubes at the desired

levels. Finally, to apply the Drill-across operation between Aux1 and Aux2, the

engine detects that these FOLAP cuboids are non-bottom cuboids on their re-

spective cubes, and so it applies the corresponding Zonal operations over the

Temperature and Precipitation associated STDFields prior to crossing the cuboids.

The final cuboid, Result, as seen on the output console, is shown in Figure 9.19.

Figure 9.20 depicts the associated SDFields corresponding to the four desired pe-

riods for analysis.
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Pgm

assignStm

Aux1 Dice

Exp

Drilldown

Exp

Rollup

Exp

Rollup

Vineyard BlockDim Province

TimeDim Year

BlockDim District

year=2009

assignStm

Aux2 Slice

Exp

Rollup

Exp

Drilldown

Exp

Dice

Exp

Dice

Exp

Dice

Exp

Rollup

Exp

Rollup

Fumigation PestDim Type

DateDim Year

ptype=’chemical’

Zmin(trajectory) < 12

year=2009

PestDim Pesticide

GeoDim Zone

PestDim

assignStm

Result Rollup

Exp

Slice

Exp

Drillacross

Aux1 Aux2
fn:Zmin(trajectory)
AS height WITH Min

trajectory

BlockDim Province

Figure 9.15: Parse tree for Q5.
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Pgm

assignStm

Aux1 Dice

Exp

Rollup

Exp

Rollup

Vineyard BlockDim District

TimeDim Year

year=2009

assignStm

Aux2 Slice

Exp

Rollup

Exp

Dice

Exp

Rollup

Exp

Rollup

Fumigation PestDim Type

DateDim Year

ptype=’chemical’ and
Zmin(trajectory) < 12
and year=2009

GeoDim Zone

PestDim

assignStm

Result Rollup

Exp

Slice

Exp

Drillacross

Aux1 Aux2
fn:Zmin(trajectory)
AS height WITH Min

trajectory

BlockDim Province

Figure 9.16: Optimized parse tree for Q5.
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Figure 9.17: Result cuboid for Q5 in the output console

9.5 Summary

In this chapter we have introduced a scripting query language, denoted GO-

LAP QL, that allows manipulating cubes based on the OLAP algebra defined in

previous chapters. The GOLAP architecture is composed of five modules, namely

Lexical Analyzer, Syntactic Analyzer, Semantic Analyzer, Query Optimizer and the

GOLAP Engine, allowing lexical, syntactic, and semantics analysis. The query op-

timizer is based on a set of transformation rules that allow rewriting a GOLAP-QL

expression in a way such that the GOLAP engine can apply those rules to produce

a more efficient execution tree.

The design of the GOLAP Language is prepared to incorporate new data types

that may be perceived as OLAP cubes. The first step is to generate a correct

definition of a discrete cube associated to the data type to be added. Then, we

could extend the GOLAP engine with a new algorithm for each node representing

an OLAP expression (i.e., one new polymorphic function for each operator over

the new added type).
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assignStm

Aux1 Rollup

Exp

Rollup

TempMin TemporalDim Period

SpatialDim District

assignStm

Aux2 Rollup

Exp

Rollup

TempMax TemporalDim Period

SpatialDim District

assignStm

Aux3 Rollup

Exp

Rollup

PrecipF TemporalDim Period

SpatialDim District

assignStm

Result Drillacross

Exp

Drillacross

Aux1 Aux2
1.value AS minTemp,
2.value AS maxTemp

Aux3 2.value AS avgPrecip

Figure 9.18: Parse tree for Q6
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Figure 9.19: Result cuboid for Q6 in the output console.

(a) Bud Break Period (b) Flowering Period

(c) Ripeness Period (d) Picking Period

Figure 9.20: Associated SDFields for the periods requested in Q6.



Chapter 10

Model Implementation

In this chapter we describe the prototype we have implemented as a proof-of-

concept of the plausibility of our proposal. The queries of Section 9.4 have been

executed using this implementation. We also report preliminary experimental

results over real and synthetic data.

10.1 Schema Implementation

Mondrian is an open source OLAP engine written in Java.1 It can execute

MultiDimensional eXpressions (MDX), a query language introduced by Microsoft2

for querying OLAP cubes. Although it is not an open standard, several OLAP

vendors adopted it for their products. GeoMondrian is an open source SOLAP

server that extends Mondrian to work with geometries, i.e., it provides spatial

extensions to MDX expressions.

Mondrian describes cube schemas in an XML file which is read by the OLAP

engine. Its basic XML elements are cubes, dimensions, hierarchies, levels, prop-

erties, measures and annotations. The structure of this XML is very simple and

contains all the information necessary for parsing MDX expressions. GeoMondrian

extends this cube schema in order to support geometry data types in properties

and measures.

The main reason for not using the MDX query language is that MDX expresses

OLAP queries at the logical level, and we focused in defining basic but powerful

1Java Standard Edition, http://www.oracle.com/technetwork/java/javase
2Microsoft, http://www.microsoft.com
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operators to be used at the conceptual level. We also decided not to use MDX in-

side our Algebra operators because in fact MDX is not executed directly in OLAP

engines, it is translated into SQL in order to be executed in a RDBMS. Neverthe-

less, we decided to use the existing GeoMondrian cube schema for declaring cube

elements instead of creating our own schema syntax, given its simplicity and to

allow Mondrian/GeoMondrian users to reuse their existing files.

An “annotation element” can be used inside any element in GeoMondrian cube

schema for adding comments that are ignored by the server. Taking advantage of

this feature we used this element for declaring ‘field extensions’. Thus, any cube

schema could be used indistinctly in our engine (which interprets same kind of

annotations as we explain later) or in the GeoMondrian OLAP server. More

precisely, we use this kind of element inside a FOLAP cube for declaring the name

of the DField that is associated to it. The attribute called ‘name’ indicates the

name of this DField. Other kinds of annotations are ignored, as usual.

For example, the AltitudeF FOLAP cube has associated the DField named

‘altitudefield’ and it is declared as follows:

<Cube name="AltitudeF">

<Annotations >

<Annotation name="field" >altitudefield</Annotation>

</Annotations>

<Table name="altitudecube" schema="public" />

<DimensionUsage source="newspatialdim"

name="SpatialDim" visible="true" foreignKey="sample"/>

<Measure name="value" column="value_1" datatype="Numeric"

formatString="string" aggregator="max" formatter="string"

caption="string" description="string" visible="true"/>

</Cube>
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10.1.1 DField Metadata

As discussed previously, the GOLAP Engine actually performs OLAP opera-

tions over DFields. For example, evaluation of the expression Dice(Slice(TempF,

TemporalDim), valuetemp > 20) first eliminates the TemporalDim dimension of the

TempF FOLAP cube which has associated the temperature STDField. Thus, this

STDField must exist in the system. Moreover, the temporary resulting cube ob-

tained after slicing the dimension has also an associated SDField. Finally, the

Dice operator is applied over this spatial cube (and its associated SDField).

In our implementation, all DFields, temporary or not, persist in ROLAP tables.

Given a DField, its samples are stored in a separate table whose name coincides

with the name of the DField. For example, the samples of the Altitude SDField

are stored in the following table:

CREATE TABLE altitudefield

(

id integer NOT NULL DEFAULT nextval(’fieldseq’::regclass),

sample geometry,

cell geometry,

x double precision,

y double precision,

value_1 double precision,

PRIMARY KEY (id)

)

Each row in this table describes a sampled tuple. Attributes x and y store the

2-D spatial information. For efficiency reasons, instead of calculating on-the-fly

the spatial sample point through the expression Point(x, y), we precalculate and

store it in the attribute sample. Besides, the attribute cell stores the geometry

of the tessellated cell where the sample belongs. The sampled value can be a

single value or an N-dimensional vector. For simplicity, we treat a single value

as a one-dimensional vector. Thus, we use as many attributes of the form value i
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as dimensionality this vector has. Finally, the attribute id is used to univocally

identify a tuple in this table.

In the case where an SDField is one of the components of an STDField, we add

the extra attribute t as its temporal component. For instance, the samples of the

ninth SDField component of the Temperature STDField (i.e., the ninth snapshot)

are stored in the following table:

CREATE TABLE temp_9

(

id integer NOT NULL DEFAULT nextval(’fieldseq’::regclass),

sample geometry,

cell geometry,

x double precision,

y double precision,

t timestamp without time zone,

value_1 double precision,

PRIMARY KEY (id)

)

The rest of the information of each DField is stored in a common table called

DFieldMetadata. In the case of a SDField it is enough to store: 1) The name of

the DField (which coincides with the name of the table that stores its samples);

2) Its domain represented by close intervals (l1min, l1max, l2min, l2max); 3) Its

labels (label1, label2); 4) The name of tessellation type (tesstype); 5) The name of

the interpolation function (fninterfn); 6) The dimensionality of the vector for its

sampled value (numbervalues).

In the case of an STFDield, all of its SDField components are stored as ex-

plained before. For example, the Temperature STDField spanning one year is com-

posed of twelve SDFields, one for each month. Thus, there are twelve tables for

the samples exist, and twelve rows in the Dfieldmetadata table. Besides, an extra

row in the DFieldmetadata table describes its overall structure. More precisely, we
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must add attributes l3min, l3max, label3, fieldcomponents and seq. The attribute

fieldcomponents stores an array with the name of its SDFields components. The

attribute seq stores an array with the intervals of validity of each snapshot.

Finally, the DFieldmetadata table used for storing all kinds of DFields is:

CREATE TABLE dfieldmetadata

(

name character varying(100) NOT NULL,

l1min double precision,

l1max double precision,

l2min double precision,

l2max double precision,

l3min double precision,

l3max double precision,

label1 character varying(100),

label2 character varying(100),

label3 character varying(100),

tesstype character varying(10),

fninterfn character varying(10) NOT NULL,

numbervalues integer,

fieldcomponents character varying[],

seq bigint[],

PRIMARY KEY (name)

)

Some attributes may contain null values. For instance, fieldcomponents and seq

for an SDField. Moreover, the tesstype attribute for an STDField contains null

since each of its components can be tessellated in a different way. Figure 10.1

depicts an actual snapshot of this table.
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Figure 10.1: DFieldMetadata table

10.2 Data Preparation

We next describe the process of preparing the data for our experiments. We

focused on data variety rather that in data volume, and prioritized the fact of

dealing with real-world data.

10.2.1 DFields

Data for building Altitude, Temperature and Precipitation DFields were obtained

from WorldClim3, which provides a set of global climate layers freely available for

academic purposes. Each layer is stored in grid format (generic raster data) and

consists of two files: a sequential binary file where each cell is a signed 2-byte

integer value (.bil) and a header with text description (.hdr).

Altitude data represent elevation above sea level, expressed in meters and cor-

responds to a non-temporal layer. Temperature and Precipitation data represent

monthly mean temperature and average precipitation from 1950 to 2000, i.e., the

files contain 12 layers representing different months (since we wanted to cross in-

formation with other cubes that contain information during the year 2009, we

assumed that these data represented values sampled during year 2009).

3WorldClim dataset, http://www.worldclim.org

http://www.worldclim.org
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The spatial components are in the latitude/longitude coordinate reference sys-

tem datum World Geodetic System 84 (WGS84). Altitude and climate data have

a 5 arc-minutes and 10 arc-minutes of spatial resolution, respectively.

The Temperature values were expressed in Celsius degrees and values were mul-

tiplied by 10 in order to be stored as signed 2 byte integers. We converted those

values to real numbers (divided by 10) when importing them into our database.

The unit used for the Precipitation data is millimeter, and for Altitude data, meter.

Raster data was downloaded in a generic grid format and imported into a

PostgreSQL database equipped with the PostGIS plugin for handling spatial data

types. This generates polygons with their associated values.

At the moment of implementing the algorithms proposed in this work we used

PostgreSQL V9.04 object-relational database with the PostGIS V1.55 plug-in for

enabling spatial capabilities. PostGIS had an ongoing project aiming at developing

raster support which was not part of the plug-in. Moreover, nowadays PostGIS

does not provide any capability to perform map algebra operations. Since our

FOLAP operators are based on map algebra operators, and we do not focus on

visualization, we used DIVA-GIS V7.56 for cropping world maps to the boundaries

of our country of interest, i.e., Belgium, and then exporting the map to a vector

format which can be imported into the spatial-enabled PostgreSQL database.

Once this transformation was made and data were stored in the database,

the Altitude SField was stored in a table with 655 tuples. The information of

each climate STField was stored in 4032 tuples, i.e. 336 tuples in a separate

table for each month. Note however that to perform the actual OLAP operations,

interpolation functions must be applied, since these fields represent continuous

data.

10.2.2 OLAP Cubes

For the Vineyard cube, we used a map of Belgium containing geographic, de-

mographic and economic information about provinces and districts (represented

4PostgreSQL ORDBMS, http://www.postgresql.org
5PostGIS spatial database extender for PostgreSQL, http://www.postgis.org
6http://www.diva-gis.org/

http://www.postgresql.org
http://www.postgis.org
http://www.diva-gis.org/
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as polygons). The maps were obtained from the spatial library of the GIS Cen-

ter3. With this geographic information we built the spatial hierarchy dimension

described in Chapter 2. The fact table was populated with synthetic data consist-

ing of 5136 tuples. These data reflects the real distribution of vine harvest over

provinces and the real proportion of blocks according to wine production in dis-

tricts of Belgium, according to Vinogusto SPRL7 information. On the other hand,

dates were generated randomly, although keeping unchanged the actual harvest

time of each kind of grape, since each type has an annual grape harvest period,

and a block can not be harvested more than once a year.

A Fumigation cube instance was populated with random dates and synthetic

3-D trajectories based on the geometries of the Belgian districts. According to

its GeoDim dimension (Figure 6.5, the Area descriptor polygons were generated

arbitrarily but they are completely contained in the Zone descriptor geometries

(which correspond to the districts of Belgium as indicated in the semantic mapping

described in Chapter 6) to satisfy summarizability.

The FOLAP cubes corresponding to each DField were built with all the above

information.

10.3 GOLAP Implementation

Once a user poses a GOLAP query, the Lexical Analyzer and the Syntactic

Analyzer check the syntax according to the rules of grammar of GOLAP query

language described in Chapter 9. The parser is equipped with a tree-building

preprocessor.

The implementation of both analyzers was developed with JavaCC8 which is

a top-down (recursive descent) parser. If no syntactic errors are detected, a tree

data structure representing the query is built. Thus, a JJTree which represents the

expression is built, and it can be navigated through Java language.

The JJTree (a data type) provides some basic support for the Visitor design

pattern. In our case, this strategy allows us to separate the JJTree (the data type)

7http://www.vinogusto.com/es/bodegas/belgica
8https://javacc.java.net/

http://www.vinogusto.com/es/bodegas/belgica
https://javacc.java.net/
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from the algorithms which visit its nodes. We implemented as many algorithms

as different ways of visiting the nodes we needed, i.e. we provide different kinds

of visitors to interact with the nodes, depending on the goal.

More precisely, JavaCC generates (using the grammar rules already introduced)

the FCQLVisitor java interface, which contains one visit function for each kind of

node in the JJTree:

public interface FCQLVisitor

{

...

public Object visit(AssignStm node, Object data);

public Object visit(DrillAcrossExpression node, Object data);

public Object visit(RollupExpression node, Object data);

public Object visit(DrillDownExpression node, Object data);

public Object visit(SliceExpression node, Object data);

public Object visit(DiceExpression node, Object data);

public Object visit(QuotedLiteral node, Object data);

public Object visit(BooleanExpression node, Object data);

...

}

JavaCC also generates an Accept() method for each node. Then, an algorithm

that needs to solve a specific problem through navigating the tree, might belong

to a class Adapter, which implements this FCQLVisitor interface.

The first visitor algorithm is implemented in the semantic analyzer. The goal

consists in navigating the JJTree parsing generated in the previous step and de-

termine if the query can be executed. For this purpose we created the FCQLVis-

itorAdapterEvaluator SemanticChecking class, which contains a hash structure for

storing pairs of objects: the first component is the name of a GOLAP variable

used in assignments, and the second component is the schema of the cube. Each

time an assignment appears, the semantic evaluator infers the cube schema on the

right-hand side of the expression without evaluating the expression. This phase
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only needs to detect semantic errors, not to evaluate the query. For example, if

a Dice condition appears on the right-hand side of an assignment, the algorithm

needs to analyze if the condition refers to existing measures and/or current levels

of existing dimensions. If not, an exception is thrown. Otherwise, the left-hand

side (variable) of the assignment is stored in the hash table with the inferred cube

schema. If later, in another expression, a variable is used as parameter then the

hash structure is looked-up. If this variable has been stored, its associated value

(cube schema) is recovered and used to detect semantic correctness. If not, an

exception is thrown due to the attempt to use a variable not previously defined.

Notice that for storing the cube schema in the hash structure it is necessary

to infer it, and this process is solved recursively since the operators can be nested

as many times as we want. Moreover, each time a Drill-across operator is

used where new measures are added or renamed, the algorithm needs to take this

features into consideration to infer the correct cube schema. We show a piece of

the algorithm in Appendix A.

Once the Semantic Analyzer accepts the JJTree, the following step (optional)

is to run the query optimizer. The same strategy was used, i.e., a new visi-

tor algorithm was designed inside the query optimizer with a different goal: to

apply the optimizing rules explained in Section 9.3.3. We created the FCQLVisi-

torAdapter RulesRewriting class and when a node that corresponds to a ROLLU-

PExpression, DRILLDOWNExpression, DICEExpression or SLICEExpression is

reached, the algorithm modifies the tree according to those rules.

The final step takes place when the query engine receive a parsing tree (op-

timized or not) for evaluating. Again, a new visitor algorithm was implemented

inside the query engine with the aim of applying the operators over cubes. This

algorithm differs from the one in the semantic analyzer because it works with

cubes. Nevertheless it also needs to use a hash structure, but in this case instead

of storing the cube schema it stores the cubes that are obtained after applying the

GOLAP operators visited.
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10.4 Experimental Results

We now describe some preliminary experimental results, performed with two

goals in mind: first, we wanted to evaluate the impact of the optimization rules

presented in Section 9.3.3; second, we wanted to have an idea of the overall per-

formance of the implemented prototype.

Our experiments showed that the time overhead introduced by the optimization

step (the time consumed for navigating and rewriting canonical trees) ranges from

4 ms to 9 ms, i.e., it is negligible. Consequently, the total execution time is not

affected by the introduction of this module, even when it finds no rule to apply.

On the other hand, when at least one of the rules can be applied, we will show that

overall query execution time decreases substantially. Furthermore, as we will see,

this performance improvement is specially important in FOLAP cuboids due to

the overhead introduced by the Generic Map Algebra operators on their associated

DFields.

We next describe the experiments, and report the results. Our tests run on a

non-dedicated Pentium Dual Core CPU 2.3 GHz notebook with total free RAM

of 4.0 GB, and a 300 GB hard disk.

Tests for Rule 2

In order to measure the impact of applying Rule 2 (Nested IPO Operations)

alone, we designed nested queries of variable length that range from two to ten

operations which involving sequences of Rollup and Drilldown operations over

the same dimension. Queries were executed over both kinds of FOLAP cuboids,

that is, cuboids associated to SDFields and to STDFields.

The queries executed over the spatial field AltitudeF were:

Rollup(AltitudeF, SpatialDim, District);

Drilldown(Rollup(AltitudeF, SpatialDim, Province), SpatialDim, Point);

. . .

Rollup(Drilldown(Rollup(... Rollup(AltitudeF, SpatialDim, District)))...))).
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Analogous queries were executed over the spatiotemporal field TempF. We re-

peated each execution three times and registered the average execution time. Fig-

ure 10.2 shows the experimental results over the TempF and AltitudeF bottom

FOLAP cuboids. We can see that while execution times increases linearly with

the number of nested operations, the optimized queries run in an almost constant

time of about 200 seconds in the case o a spatiotemporal field, and 50 seconds in

the case of a spatial field.

(a) Over an STDField

(b) Over an SDField

Figure 10.2: Rule 2 optimization over FOLAP cuboids

Tests for Rule 3

To measure the impact of Rule 3 over query execution, we use a nested query

consisting in a a Slice operation over the result of a previous Rollup operation

on the temporal dimension over a FOLAP cube associated to an STDField. The
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queries executed over TempF were:

Slice(Rollup(’TempF’, TemporalDim, Month),TemporalDim);

Slice(Rollup(’TempF’, TemporalDim, Quarter),TemporalDim);

Slice(Rollup(’TempF’, TemporalDim, Year), TemporalDim);

Slice(Rollup(’TempF’, TemporalDim, All),TemporalDim).

We repeated each query evaluation three times and report the average time.

Figure 10.3 shows the experimental results for the TempF bottom FOLAP cuboid.

Notice that expressions containing a rollup to All take less time to run because

they do not need to perform the TimeToField operation.

(a) Associated to an STDField

Figure 10.3: Rule 3 Optimization on FOLAP cuboids

Tests for Rule 4

To measure the impact of applying Rule 4 (Nested Dice Operations) alone, we

designed nested queries of variable length that range from two to ten operations

which only involve Dice operations. The dicing condition was chosen so that a

non empty result set were obtained. Queries were executed over both kinds of

FOLAP cuboids, that is, cuboids associated to SDFields and to STDFields. The

queries executed over AltitudeF were:

Dice(AltitudeF, value > 10);

Dice(Dice(AltitudeF, value>30), value>30);

. . .
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Dice(Dice(... Dice(AltitudeF, value>30)))))))))))).

The same queries were executed over TempF.

We repeated each query evaluation three times and registered the average ex-

ecution time. Figure 10.4 shows the experimental results for TempF and AltitudeF

bottom FOLAP cuboids. We can see that the results follow the same pattern than

in the case of the Rule 2 testing, but obviously with better execution times, since

the query complexity is lower than in that case.

(a) Associated to an STDField

(b) Associated to an SDField

Figure 10.4: Rule 4 Optimization on FOLAP cuboids

In summary, we can observe that the overall performance of the query execu-

tions decrease substantially when the parse trees are optimized.
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10.5 Summary

In this chapter we described the details of our implementation, as well as the

technology we used. The development involved the following technologies: the

Java Language, the GeoMondrian spatial OLAP engine, the PostgreSQL database,

PostGIS plug-in, and the OpenJump technology. The extension of the GeoMon-

drian cube schema definition was designed to keep compatibility, i.e., OLAP servers

can read the schema definition files, and skip specific DField annotations. Besides

taking advantage of the Visitor/Adapter design patterns, a decoupled implemen-

tation was used to enable three kinds of visitors that can process the parse tree

generated by the syntactic analyzer, depending on their specific goals. Finally,

preliminary experimental results over the implemented prototype showed the plau-

sibility of our proposal.



Chapter 11

Conclusions and Open Research

Directions

Modern decision-making systems do not only use data internal to an orga-

nization, consolidated in a data warehouse, but also require complex data, i.e.,

images, geographic features, satellite maps, web logs, social networks informa-

tion, normally external to the organization. More than often, analysts cannot

manipulate all these kinds of data, since they are trained in the use of traditional

OLAP systems that only handle alphanumerical data. In this thesis we addressed

this problem, providing a high-level OLAP query language that allows end-users

to manipulate cubes (aggregate, disaggregate, combine, slice, dice) independently

of their content at the logical or physical levels. As a particular case, we show

how discrete and continuous spatial data can be treated seamlessly, and combined

with traditional OLAP cubes to enhance data analysis. We next summarize our

contributions and suggest future research directions.

11.1 Conclusions

In this thesis we have first defined a formal framework which supports the

cube metaphor, that is, allows different kinds of data to be perceived as data

cubes. Therefore, the data cube is the only data structure the user manipulates in

this framework. For this, we proposed both a generic conceptual definition of the

multidimensional conceptual model and a conceptual algebra for cubes. In this
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model, the data cube is composed of a schema and instances, and a data cube

instance is defined as a collection of all its subcubes, denoted cuboids. There is an

order between cuboids, defined by the hierarchies of the dimensions that compose

the cube. This order induces a lattice of cuboids, a formalism which allows us to

define a precise semantics for the operations over data cubes.

Further, the OLAP algebra we proposed is defined at the conceptual level, so it

ignores implementation aspects, allowing to conceptually define any kind of data

cube. We classified the operation into two groups, Instance Preserving Operators

(IPOs) and Instance Generating Operations (IGOs). The former include the oper-

ations that preserve the cube instance, that means, the cuboids are not modified

by the operations, and the semantics is defined by the input and output cuboids.

Examples of IPOs are the Roll-up and Drill-down operations. The latter con-

tains the operations that generate a new cube instance as a consequence of their

application, i.e., Dice, Slice and Drill-across. Finally, we proposed an ex-

tension to the Drill-across operation based on the notion of semantic mapping

between cubes, which allows us to solve the differences between dimension names,

level names, members representations or even structure of dimension lattices. The

semantic mapping between cubes is based on the semantic relationships dimension-

dimension derivation and dimension-dimension association introduced by Abelló

et al. [2]. We further extended the operator with the possibility of building new

measures in the resulting cuboid by applying functions over the measures of the

two input cuboids.

We also defined GOLAP-QL, a query language to manipulate the cubes, based

on the OLAP algebra we proposed. The GOLAP architecture also includes a query

optimization module, based on a set of rules that allows to automatically rewrite

queries, merging and dropping operators to provide an efficient implementation.

Importantly, the GOLAP engine is prepared to incorporate new data types that

may be perceived as OLAP cubes. The first step is to generate a correct definition

of the cube associated to the new data type, and then incorporate into the GOLAP

engine a new polymorphic function for each operator over this new added type.

Our approach can thus support several kinds of data representations. As a
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case study we showed the applicability of the model addressing spatial continuous

data, namely continuous fields. In order to deal with continuous fields, we pre-

sented a discrete model for them at the logical level and a generalization of the

well-known map algebra operations defined by Tomlin, redefining them in order

to define a closed algebra, and to support different kinds of representations, since

traditional map algebra operations only support raster representations. We mod-

eled continuous fields as standard cubes with single-level dimensions which allows

to manipulate such fields in the same way as we do with OLAP cuboids. We called

these cubes FOLAP cubes. At the conceptual level, FOLAP cubes behave like a

traditional OLAP cube and support all OLAP operations, which we also detailed

in this thesis. In summary, a continuous field has an associated equivalent FOLAP

cube, that can be seamlessly manipulated as any other traditional cube.

As a final contribution, we implemented a prototype which we used to run

several queries over non homogeneous cubes, in the framework of a case study.

Our proposal (as far as we are aware of, the first one of its kind) provides a

very general framework for spatiotemporal data analysis and it can solve complex

queries implementation by only manipulating discrete data cubes, regardless their

underlying implementation, which remains hidden from the user.

11.2 Open Research Directions

In addition to the obvious direction which would be to solve typical implemen-

tation issues that can lead to an efficient system running the proposed solution,

we believe that our proposal opens interesting possibilities in the emerging field

of big data. In effect, we have used continuous field data as an example of the

data types to be supported by our model. Many other kinds of complex data

can be incorporated incrementally, each one having many issues to be solved. For

example, semantic web data is an immediate candidate for this, but also image,

video and music data warehouses can be developed based on our proposal. If all

of these kinds of data could be combined in the same framework, and treated just

as standard data cubes, we will be providing user a very powerful tool for data
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analysis.

With respect to the GOLAP engine, the optimizer module can be extended

to include not only rule-based optimization, but also cost-based optimization, in

order to improve the time execution of queries and trend to a real time processing.

Along a different research line, we believe that the proposal also opens in-

teresting possibilities for developing new extensible OLAP visualization tools, for

example, to design visual interactive frameworks with usability design patterns.

In this way, new visualization techniques appropriate for new data types that our

framework allows to add, can be incorporated incrementally.
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Appendix A

Adapter Evaluator Algorithm for

Semantic Checking

class FCQLVisitorAdapterEvaluator_SemanticChecking

extends FCQLVisitorAdapter_SemanticChecking

{

HashMap(Object, OLAPSchema> table= HashMap<Object, OLAPSchema > ();

Object eval(Node node)

{

if (node is of type AssignStm)

{

// two childs: the name of the vble and the cube

Object cubeSchema= lookForSchema(node.getRightChild()) ;

table.put( node.getIzqChild(), cubeSchema );

return cubeSchema;

}

// Pgm (root)

Node[] ch = node.children;

Object result= null;

for (Node aChild : ch)

result= eval( aChild ); // an AssignStm

return result; // returns the last result

}
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Object lookForSchema( Node aNode)

{

if (node is of type DICEExpression)

{

Node cubeSchema= getSchemaFromParameter(aNode.getLeftChild());

Node diceExpression= aNode.getRightChild();

// validDice checks if the dice expression use only measures,

// valid functions, and current levels of dimensions of cubeSchema.

// If not throws an exception.

Node newCubeSchema= validDice (cubeSchema, diceExpression);

return newCubeSchema;

}

if (node is of type SLICEExpression)

{

Node cubeSchema= getSchemaFromParameter(aNode.getLeftChild());

String dimension= aNode.getRightChild();

// validSlice checks if slicing a valid dimension or measure.

// Checks also if the number of dimension is at least 1 and

// the number of measures is at least 1.

// If not throws an exception.

Node newCubeSchema= validSlice( cubeSchema, dimension);

return newCubeSchema;

}

if (node is of type ROLLUPExpression)

{

Node cubeSchema= getSchemaFromParameter(aNode.getLeftChild());

String dimension= aNode.getMiddleChild();

String level= aNode.getRightChild();
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// validRollup checks if the dimension exists and if it is

// possible to rollup from current level to the target.

// If not throws an exception.

Node newCubeSchema= validRollup( cubeSchema, dimension, level);

return newCubeSchema;

}

if (node is of type DRILLDOWNExpression)

{

// similarly to ROLLUPExpression

}

if (node is of type DRILLACROSSExpression)

{

Node cubeSchema1= getSchemaFromParameter(aNode.getLeftChild());

Node cubeSchema2= getSchemaFromParameter(aNode.getMiddleChild());

// optional parameter

Node newCubeSchema= null;

// Checks is both cube Schema corresponds to bottom DFileds...

// If not throws an exception.

if ( aNode.getRightChild() != null )

newCubeSchema= validDA( cubeSchema1, cubeSchema2,

aNode.getRightChild() );

else

newCubeSchema= validDA( cubeSchema1, cubeSchema2);

return newCubeSchema;

}

}

// Analyzes the rule :

// <Parameter> := <IDExp> | QUOTEDLITERAL | <OLAPExpression>

Node getSchemaFromParamter( Node paramater )
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{

if (paramater is of type IDExp) // name of a vble ?

{

// Given the vble, get the corresponding cubeschema

// previously stored from the hash table

Object cubeSchema= table.get(paramater);

if (cubeSchema == null)

throw Exception: trying to use a vble not previously initialized.

return cubeSchema;

}

if (parameter is of type QUOTEDLITERAL)

{

//reads its schema from the XML cube schema.

// If it does not exists, an exception is thrown

Object cubeSchema= ReadXMLCubeSchema( parameter );

return cubeSchema;

}

if (parameter is of type OLAPExpression)

{

// find out its schema by discovering

// the schema of the nested expressions.

return lookForSchema( parameter );

}

}

}
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