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With the possibility of regenerative braking light rail trains can decelerate almost wearless.
By integrating energy storage devices into a rail system a reduction of unused braking
energy is obtained and a remarkable part of the braking energy can be further used. In
many applications an economical standalone operation of these energy storage devices is
not possible. Therefore, a higher degree of utilization is necessary. With the integration
of the energy storage devices into a microgrid it offers storage capacity within the grid for
further usage. The objective of this master thesis is the design of an operational strategy
for a microgrid-connected wayside energy storage device within a light rail application. The
operation should occur optimal to achieve high profit.
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Abstract

With the possibility of regenerative braking light rail trains can decelerate almost wearless.
By integrating energy storage devices into a rail system a reduction of unused braking
energy is obtained and a remarkable part of the braking energy can be further used. In
many applications an economical standalone operation of these energy storage devices
is not possible. Therefore, a higher degree of utilization is necessary. The integration of
the energy storage devices into a microgrid offers storage capacity within the microgrid for
further usage.

This master thesis presents an operational strategy for a microgrid-connected wayside
energy storage device within a light rail application. This strategy is based on a mixed-
integer linear program optimization formulated over a rolling horizon framework; the opti-
mization takes into account forecasted values for renewable energy generation and elec-
tricity usage within the microgrid, as well as the prices for energy exchange with the main
distribution grid. Robust optimization theory is used to create a robust counterpart formu-
lation of the optimization problem so that the uncertainties present in forecasted values are
handled.

The operation should occur optimal to achieve high profit. Power profile shaping oriented
goals provide the decision-maker with tools to meet performance sub-objectives related to
the peak demand and profile smoothing. Simulations are conducted to demonstrate the
effectiveness of various features of the proposed strategy in different scenarios.

The problem of how the short-term forecasts are created is also addressed. The lower
upper bound estimation method is used to train artificial neural networks with the simulated
annealing algorithm, so that this neural networks can be used to create prediction intervals
for the different parameters that need to be forecasted. To demonstrate the effectiveness
of the procedure, the prediction intervals forecasted for a electric load signal are compared
with the actual realizations.





Zusammenfassung

Mit der Möglichkeit der regenerativen Bremsung können Straßenbahnen nahezu ver-
schleißfrei abgebremst werden. Durch die Integration von Energiespeichern in Schienen-
systeme wird eine Reduzierung der ungenutzten Bremsenergie erzielt und ein beachtlicher
Teil der Bremsenergie kann weiter genutzt werden. In vielen Anwendungen ist ein
wirtschaftlicher Stand-alone-Betrieb dieser Energiespeicher nicht möglich. Daher ist ein
höherer Nutzungsgrad erforderlich. Die Integration der Energiespeicher in ein Microgrid
ermöglicht es, die Speicherkapazität besser auszunutzen.

In dieser Masterarbeit wird eine Betriebsstrategie für einen stationären Energiespeicher
in einer Straßenbahnanwendung vorgestellt, der in ein Microgrid eingebunden ist. Diese
Strategie basiert auf einer gemischt-ganzzahligen linearen Programmoptimierung, die über
ein Rolling Horizon Framework formuliert wird. Die Optimierung berücksichtigt die prognos-
tizierten Werte für die ungenutzte Bremsenergie, den Eigenbedarf an Energie im Microgrid,
sowie die Preise für den Energieaustausch mit dem Hauptverteilungsnetz. Die robuste
Optimierungstheorie wird verwendet, um die in den prognostizierten Werten vorhandenen
Unsicherheiten zu berücksichtigen.

Um einen hohen Gewinn zu erzielen, soll der Betrieb möglichst optimal erfolgen. An-
forderungen, die an die Anpassung der Leistungsprofile gestellt werden sind ein Werkzeug
für den Entscheider, mit dem verschiedene Unteroptimierungskriterien, wie Spitzennach-
frage und Profiglättung, erfüllt werden. Für die vorgeschlagene Strategie werden Simula-
tionen durchgeführt, die die Wirksamkeit der verschiedenen Merkmale in unterschiedlichen
Szenarien demonstrieren.

Die Problematiken bei der Erstellung von Kurzzeitprognosen werden ebenfalls disku-
tiert. Es werden künstliche neuronale Netze verwendet, um Prädiktionsintervalle für die
verschiedenen Parameter zu erzeugen. Ein Schätzverfahren wird verwendet, um die kün-
stlichen neuronale Netze mit dem Simulated-Annealing-Algorithmus zu trainieren. Um die
Effektivität des Verfahrens zu demonstrieren, werden die für ein elektrisches Lastsignal die
erstellten Vorhersageintervalle mit der tatsächlichen Realisierungen verglichen.





Resumen

La implementación de un sistema de frenado regenerativo permite que los trenes ligeros
puedan desacelerar casi sin desgaste. Además, la integración de dispositivos de almace-
namiento de energía en un sistema ferroviario permite reducir el porcentaje de la energía
de frenado no utilizada; en muchas aplicaciones, no es posible una operación autónoma y
rentable de estos dispositivos. Por lo tanto, es necesario que posean un mayor grado de
utilización; la integración de los dispositivos de almacenamiento de energía en una micro-
grid ofrece capacidad de almacenamiento de energía dentro de la microgrid para su uso
posterior.

Esta tesis de maestría presenta una estrategia operativa para un dispositivo de almace-
namiento de energía dentro de una microgrid ; el dispositivo opera dentro de un sistema de
trenes ligeros y se encuentra instalado a la orilla de las vías férreas. La estrategia se basa
en la optimización de un programa lineal de variables enteras y continuas formulado en un
marco de horizonte móvil; la optimización toma en cuenta los pronósticos para los valores
de regeneración de energía mediante el frenado de los trenes y uso de electricidad dentro
de la microgrid, así como los precios para el intercambio de energía con la red principal
de distribución. La teoría de optimización robusta es utilizada para crear una contraparte
robusta del problema de optimización, de modo que las incertidumbres presentes en los
valores pronosticados sean tenidas en cuenta.

La operación del sistema deberá ser óptima para obtener ganancias económicas. Obje-
tivos orientados a la configuración de los perfiles de potencia brindan al responsable de la
toma de decisiones herramientas para cumplir con sub-objetivos de rendimiento relaciona-
dos con la demanda máxima y el suavizado de los perfiles. Una serie de simulaciones
demuestra la efectividad de varias características de la estrategia propuesta en diferentes
escenarios.

El problema de cómo se crean los pronósticos a corto plazo es también abordado.
Redes neuronales artificiales son utilizadas para crear intervalos de predicción para los
diferentes parámetros que deben pronosticarse; estas redes son entrenadas mediante un
metodo de estimación que utiliza el algoritmo de recocido simulado. Para demostrar la
efectividad del procedimiento, los intervalos de predicción pronosticados para una señal
de carga eléctrica se comparan con las realizaciones reales.
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1 Introduction

The research of the present Master thesis consists in the methodological development
of modeling and optimization solutions for the energy management problem for grid-
connected microgrids with on-site energy storage systems (ESS) under the presence of
uncertainty in electricity prices, predicted load and predicted renewable power generation,
and in particular the deployment of these solutions for the control of a wayside ESS in a
light rail system.

The introduction to this research is presented below as follows. Section 1.1 introduces
the main motivations that drive this research; the problem statement and objectives for this
work are defined in section 1.2; and finally, the outline of the remainder of the thesis is
presented in section 1.3.

1.1 Motivations

1.1.1 Challenges in conventional power grids

The current global electricity generation remains highly dependent on fossil fuels, up to a
proportion of 60%1,2 [159], mainly due to the existence of an uninterrupted and inexpensive
flow of resources. This excessive consumption of fossil fuels is aggravating the effects of
climate change with 25% of the global GHG emissions3 [117]. Bearing in mind that an
increase of 58% in global power demand is foreseen for the year 20404 [36], the use of
non-renewable resources as the main energy suppliers is not sustainable over time.

The highly hierarchical architecture present in the current energy system achieves actors
with clearly defined purposes on the energy market, thus facilitating system monitoring,
fault detection and correction; however, one of the major vulnerabilities of this topology

1 Accounts for Oil (6%), Gas (24%) and Coal (30%) in 2016 (see figure 1.1).
2 On the other hand, the current global primary energy share of fossil fuels is 85% (32% Oil, 24% Gas and 29%
Coal in 2015) [40]. However, the use of primary energy as a metric (as done by BP’s World Energy Outlook
in [40]) is not right, because it ignores the conversion efficiency to electricity. Thus forms of energy with poor
conversion efficiency, particularly the thermal sources, coal, gas and nuclear are overstated, whereas the
impact of energy sources such as hydro, solar, wind, biomass and geothermal which are converted efficiently
is understated.
3 For electricity and heat generation, based on global emissions from 2010.
4 With respect to the year 2017.
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1 Introduction

Figure 1.1: Global cumulative installed capacity, 2016 (real) and 2040 (predicted). Flexible capac-
ity includes small-scale batteries, utility-scale batteries, demand response and other
flexible capacity. Source: [159].

is the cascading failure propagation that may occur in the absence of bypass transmis-
sion [146].

1.1.2 Diversification and integration of distributed energy sources

The energetic and environmental challenges of the 21st century drive the development
and adoption of new energy sources that offer sensible and sustainable alternatives to
fossil fuels5, while helping overcome resource scarcity and meet the increasing demand;
these new fostered renewable energy supplies must ideally be low carbon, environmentally
sound, reliable, and affordable.

This search can be appreciated in the raw numbers of the new investments in clean en-
ergy6 and capacity installations depicted in figure 1.2. For the last seven years, the annual
investment has remained constant around a third of a trillion dollars as the installed capac-
ity has continued to grow steadily over the years7. This antagonism is mainly explained

5 Global coal-fired power generation is set to peak in 2026; growth in coal demand is centered on Asia, but is
offset by sharp declines in Europe and the U.S. [36].
6 This broad term accounts for renewable energies, energy efficiency, power storage, smart grids and so on.
7 Nevertheless, it is estimated that 86% of the total world new investment in power generation capacity be-
tween 2017 and 2040 will be for zero-carbon technologies, while the remaining 14% will be directed to fossil
fuel technologies [159].
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1.1 Motivations

by the drop in the technology costs8, due to the trends of the technological learning9,10

caused by innovation.

Figure 1.2: Global new clean energy investments and capacity installations. Total values include
estimates for undisclosed deals. Includes corporate and government R&D, and spend-
ing for digital energy and energy storage projects (not reported in quarterly statistics).
Excludes large hydro. Source: [159].

The most widely used renewable energies today can be divided into two major groups [146]:
hydropower systems and other renewable energies, e.g. solar, wind, geothermal, biomass
and ocean (in majority wave and tidal power) energy production systems. Figure 1.3 de-
picts the evolution over time of the penetration of these renewable energy sources into the
electricity system, with the highest recorded peaks shown in figure 1.4.

The total renewable share of world electricity generation represented 35% in the year
201611 with a increase share prospect of 94% by the year 204012. As shown in figure 1.5,
a prediction of 50% renewables penetration is made for Europe by 2040 [159].

Since 2010, Germany has passed legislation to support the energy transition13 to a
system that heavily relies on renewable energy sources, energy efficiency and demand
side management; this transition contemplates the phase-out of all nuclear reactors of the

8 There exist two important tipping points in comparing costs of installed capacity within a certain country or
region; the first one is when the cost of a new capacity installation of renewable (e.g. solar, wind) is lower than
the cost of a new installation of a non-renewable (e.g. coal, combined cycle gas turbine); the second one is
when the cost of a new capacity installation of renewable is lower than the operational cost of a pre-existent
non-renewable capacity installed. Countries like U.S. and Germany have already passed the first point; China
and Germany are predicted to reach the second point sometime around 2030. For more information refer
to [159].
9 Technological learning, learning curve, progress curve, experience curve, or learning by doing refers to the
cost reductions as technology manufacturers double their accumulated experience, or installed capacity in
this context, over time [168].

10 Estimated learning rates according to [159]: wind (19%), solar (24-28%), Lithium-ion batteries (19%).
11 Accounts for hydropower (17%) and other renewables (18%).
12 Accounts for a 30% decrease of the hydropower share and a 211% increase of other renewable energies.
13 Energiewende in German.

3



1 Introduction

Figure 1.3: Growth of renewable energy proportion of power generation between 2006 and 2016
(excludes large hydro). Source: [159].

Figure 1.4: Recorded peak renewable penetration by country. Source: [159].
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1.1 Motivations

Figure 1.5: Energy Outlook for Europe. A prediction of 50% renewables penetration is made for
Europe by 2040. Source: [159].

country by 2022 and the retirement of most (if not all) of the coal-fired generation facilities.
Moreover, the legislation includes GHG reductions of 80-95% by 205014 and a renewable
energy target of 60% by 205015 [217]. As exposed in [9]:

"Further market opportunities also come though innovation and cost reduction
such as through big data, blockchain technologies and with the coupling of the
heat and mobility sectors."

This national effort over the years has made Germany a global leading market in the area
of electricity generation through renewable sources.

Nonetheless, the exploitation of renewable energy sources poses its own new technolog-
ical challenges with respect to conventional transmission and distribution grids. Constraints
on generation are imposed due to the geographical availability of these resources, while
their intermittent nature (mainly due to local weather conditions and seasonal changes)
also creates concerns regarding reliability, in contrast to the ’always-on’ fossil or nuclear
generation [146]. This intermittent characteristic will hinder the efficient and reliable man-
agement of the power grid in scenarios where large-scale integration of renewable energy
sources is achieved.

Some of the challenges to consider for the efficient and reliable management of a grid
with a high level of renewable energies penetration include, but are not limited to, the
impossibility of meeting the base-load and peak demand without high-capacity energy
storage systems due to the time lag between the peaks of consumption and generation
present in energy sources such as solar and wind; errors present in the energy generation

14 Relative to 1990.
15 By October 2017, the country has already surpassed the 44% mark [9].
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forecasts created by the current forecasting models; and decentralization of the genera-
tion and appearance of actors that are both producers and consumers16, creating a high
number of nodes with bidirectional power flow, in contrast to the hierarchical system previ-
ously described. These challenges call for a large margin of backup electricity generation
capacity (usually obtained with fossil fuels or nuclear reactors) in order to ensure power
demand [145], which in turn increases the cost of electricity.

Acoording to [145], the current paradigm to address these challenges is

"[. . .] the implementation of new emerging intelligent infrastructures, i.e., Smart
grids, which are expected to improve coordination of energy generation by
diverse energy sources17, transmission and distribution efficiency to meet in-
creasing demand, protection and resilience against vulnerabilities of aging and
failing components, natural disasters and human attacks."

In this regard, microgrids with energy management systems (EMS) are considered as an
effective framework for the penetration of distributed energy generation into the main grid
network [127].

1.1.3 Microgrids

Figure 1.6 depicts the main components of a grid-connected microgrid with EMS; Khod-
abakhsh provides a concise definition of a grid-connected microgrid:

"A microgrid is a small electric grid system which could include a mixture of
distributed energy sources (e.g., wind turbines, solar panels, fuel cells, and
microturbines), loads (including controllable loads as HVAC unit) and storage
devices (e.g., batteries, ultra-capacitors and flywheels) as well as a control unit.
The control unit is responsible for operating the microgrid in an efficient way with
the aim of reducing the cost of electricity for the consumer(s). It essentially de-
termines charge/discharge activities of the storage devices, controls the HVAC
unit, and may also help the grid with peak reduction, load shifting etc." [127].

The EMS usually makes optimal decisions with respect to the charge/discharge profiles
over time of the energy storage devices and the amount of power dispatched to every load
in the system over time; these actions are taken considering factors such as predicted
energy demand, predicted energy generation from renewable sources, weather forecast,

16 Usually referred to as prosumers.
17 Of which many were not taken into account in the original power infrastructure design and whose wide
penetration could affect in unforeseen ways the operation of the power system [145].
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Figure 1.6: Architecture of a grid-connected microgrid showing its main components. Source: [48]

and electricity pricing. These optimal decisions can be achieved by formulating and solving
relevant constrained multi-objective optimization problems, either off-line or on-line. Fig-
ure 1.7 depicts a EMS with its input parameters and output decisions.

All the predictions and forecasts used as input parameters for the optimization carried
out by the EMS (i.e., values of demand, generation, and prices) can present a considerable
amount of uncertainty. In consequence, the solution obtained through the optimization
must be robust against all possible realizations of these prediction errors; if unaccounted,
these uncertainties may produce suboptimal solutions for the optimization problem.

Thus, the goal of the present work is to use modern optimization and modeling tools to
design a controller that can efficiently operate a microgrid and account for the uncertainties
in the system.

The proposed controller performs as a high-level power optimizer in a hierarchical control
structure by providing power profiles to the power converters of all the devices integrating
the microgrid at a time scale in the order of minutes [127]. A low-level power control system
is additionally needed operating at a much faster time scale to enforce these power com-
mands, and also handle voltage and frequency regulations, as required. A block diagram
of the proposed controller is presented in a model predictive control (MPC) framework in
figure 1.7.
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Figure 1.7: Energy Management System (EMS) Controller.

1.1.4 Dynamic braking as a renewable energy source (RES)

Pollution levels and traffic congestion related to ever-growing population levels of major
cities are becoming delicate issues that could be eased by more efficient public transporta-
tion systems. Many cities have begun to incorporate electric vehicles into their transport
networks to reduce their emission levels; according to the available infrastructure and the
number of commuters several option can be realized (e.g., battery electric buses, trolley
buses, trams, metro, light rail) [22]. Even though these mass transit vehicles allow large
reductions in terms of emissions, their energy efficiency is far from optimal [22]. With elec-
tric vehicles came the implementation of dynamic braking technology18, which is nowadays
widely spread in railway technology19. However, the energy recovered by the generators
during the braking phase (which can reach levels up to 40% of the energy supplied to the
electrical rail guided vehicles [22]) is, in most cases, dissipated as heat through rheostatic
braking. The main reason for this energy waste relies on the low network receptivity when
the energy is being harvested. Thus, the improvement in energy efficiency can be reached
by increasing the network receptivity; one way of achieving the latter is by the implementa-
tion of wayside ESS’s20 which help prevent the loss of the recovered energy.

18 Dynamic braking refers to the process that converts kinetic energy into electricity as the vehicle decelerates,
and it is based on the capacity the electric motors have to act as generators.

19 Mainly because it helps to limit the use of friction braking, a process that carries further investments asso-
ciated with maintenance and replacement of parts subject to wear.

20 Stationary storage devices installed in electrical substations or along the track.
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1.1 Motivations

A great deal of literature has been dedicated to the optimal design and implementation
of this (and other) methodologies to store and reuse the energy recovered by the braking-
phase of electric vehicles in mass transport systems21. However, the vast majority of the
research focuses on reusing the energy within the train electric network (i.e., peak power
shaving and line voltage stabilization of the overhead line).

RNV5

DC BUS 
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DC BUS
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Neuostheim
Electrical

Substation

Renewable 
Energy Source

Pmax = 250 kW

Energy 
Storage

DC BUS

Electrical loads 
at the electrical 
substation and 
train stations

AC BUS 400V

Static Transfer 
Switch (STS) EMS

Microgrid

Main Distribution Grid: AC BUS 20kV

Other electrical 
loads in the 
Main Grid

Figure 1.8: Microgrid definition for the present work.

A novel approach is to consider the recovered energy from the braking phase as the re-
newable energy source (RES) of a grid-connected microgrid. Figure 1.8 depicts the archi-
tecture of the proposed microgrid, where a wayside ESS is installed inside the Neuostheim
electrical substation belonging to the Rhine-Neckar Transportation System in Germany22;
the energy generated by the trains arriving to the passenger stations in the vicinity of the
electrical substation is recollected and stored in this ESS. The load of the microgrid is
defined as the electrical load (e.g. heating and cooling, lighting, signaling, passengers in-
formation equipment, etc.) present at the electrical substation and the passenger stations
in the vicinity of the substation and the ESS.

21 Refer to section 6.2 for a literature review on this topic.
22 Finding which is the optimal substation in the system to install the ESS (e.g. to maximize the amount of
energy recovered) is a problem that remains outside the scope of the present work.
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For every time-step, the EMS depicted in figure 1.7 controls the amount of energy
charged or discharged from the ESS and the amount of energy exchanged with the main
grid so that a series of objectives are met (e.g., minimization of operation costs, shaping
of the main grid power signal, shaping of the ESS power signal, energy balance to meet
the demand, amount of load-shedding in islanded mode, etc.). To find the optimal values
of these decision variables, the optimization problem takes into account a range of pa-
rameters (e.g. physical limitations of the system concerning energy and power rates and
capacities) and forecasts within a predefined prediction horizon (e.g. energy generation,
load and electricity prices).

The amount of power/energy produced by this RES and when it is produced can not
be controlled by the system; thus, this type of RES is said to be non-dispatchable23. In
addition to not being controllable, the energy generated at each particular time-step is not
fully observable either; like any other RES, regenerative braking presents several sources
of uncertainty24.

Optimal solutions of optimization problems usually present a high sensitivity to data per-
turbation; solving the optimization problem under the assumption that all parameters are
deterministic (thus ignoring possible uncertainties in the data) could cause the solution of
the problem to be suboptimal or unfeasible in the worst case [157]. As a result, decision
making inherently involves the consideration of such uncertainties; with this purpose, high-
confidence-forecasting models for the amount of energy generated at any given point in
time by the RES can be created25.

Sensors installed in the Neuostheim electrical substation are used to measure the volt-
age and current levels delivered to the trains that travel along the four track segments
connected to said substation. These data allow to calculate a percentage of the energy
generated by the regenerative braking26, and this history of measurements allows to gen-
erate the prediction models used by the real-time EMS controller to estimate the amount of
energy generated by the RES at each time-step.

23 On the other hand, fuel generators and Combined Heat and Power (CHP) plants are classified as dispatch-
able units, because the amount of power/energy and when it is produced can be controlled by the system.

24 Main sources of uncertainty in the energy estimation include, but are not limited to, variations in train sched-
ules, type of train used (electric motors and power electronics topology implemented), amount of passengers
inside the train, variation of the driving style between different drivers, weather variables that influence the
electric consumption inside the train (AC and heating systems).

25 Refer to chapter 7 for more details.
26 Refer to chapter 6 for more details.
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1.2 Objective

The research of the present Master thesis aims at the methodological development of mod-
eling and optimization solutions for the energy management problem for grid-connected
microgrids with on-site energy storage systems under the presence of uncertainty in elec-
tricity prices27, predicted load and predicted renewable power generation.

This paradigm is deployed to design a high-level control strategy, or energy management
system, for an ESS in a light rail system; for this purpose, the Neuostheim electrical sub-
station that belongs to the Rhine-Neckar Transportation system in Germany is used as a
case study. The installation of an ESS together with the upgrade of the substation to a re-
versible substation is assumed and simulated, and a microgrid composed of the substation,
the ESS, and the passenger stations powered by the substations is defined as depicted in
figure 1.8.

For each time-step, the EMS as depicted in figure 1.7 optimizes the charging and dis-
charging profile of the ESS for a predefined number of future time-steps so that the eco-
nomic cost of operation of the system is minimized. This economic cost is the aggregated
sum of the operational cost of several processes inside the microgrid, together with penal-
ization terms that allow the decision-maker to shape the solution of the problem.

It is noted that this thesis is only concerned with the high-level power scheduling control
to ensure a certain degree of robustness to uncertainties in the energy generation, demand
and electricity prices; the low-level controllers that enforce these power commands and
handle voltage and frequency regulations and protection system remain out of the scope
of this dissertation.

1.3 Outline

The remainder of this work is organized as follows. Chapter 2 presents an overview of
the theoretical background in mathematics and control systems needed to construct the
optimization problem and the rolling horizon controller in which the optimization is embed-
ded. The mixed-integer linear programming (MILP) framework is introduced as a means
to model optimization problems; robust optimization (RO) is then presented to make these
MILP formulations robust against sources of uncertainty in the optimization parameters,
making the MILP formulation viable for practical applications; finally, the rolling-horizon
framework is presented to embedded the robust MILP formulation in a time horizon.

27 Electricity price forecasts are mainly based on statistical analysis of historical market prices. However,
actual electricity market prices are influenced by many factors including demand and supply variations. Con-
sequently, the actual prices may differ from the predicted values.
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The theory is applied in chapter 3 to formulate two mathematical models (that is, a de-
terministic MILP-based rolling horizon controller and its robust counterpart) that solve the
problem stated in section 1.2 regarding the robust optimal control of the energy flows in a
grid-connected microgrid.

The implementation of the models for the EMS controller is discussed in chapter 4; the
rolling horizon controller is developed using MATLAB, which links to the MILP formulation
created in AMPL and solved with the IBM ILOG CPLEX solver.

The most significant results derived from the implementation are presented in chapter 5;
several graphs of interest showing the features and effectiveness of the controllers are
analyzed, making a comparison of the two models realized.

Chapter 6 gives an introductory explanation of the railroad system, focusing on the
tramway system being used to perform the measurements used throughout this work. Pro-
cesses and equipments involved in delivering energy to the vehicles on the tracks are
discussed, together with different approaches for introducing energy savings through re-
generative braking. The voltage and current measurements taken at the electrical substa-
tion are analyzed and some signal processing is applied to estimate the amount of energy
recovered with regenerative braking throughout the day.

Chapter 7 makes an introduction to the data forecast problem, and one of the most widely
used forecasting methods is briefly explained, i.e., the use of artificial neural networks
(ANNs). The implementation of the lower upper bound estimation (LUBE) method using
ANNs for the generation of interval forecasts is analyzed and, as a proof of concept, an
example is implemented for the generation of interval forecasts for the amount of electrical
load present in a system.

Finally, some conclusions and closing remarks are presented in chapter 8, together with
possible directions for future work.

12



2 Control of systems integrating logic, dynamics, and

constraints

This chapter presents an overview of the theoretical background in mathematics and con-
trol systems needed to construct the models developed in chapter 3.

The following sections are organized as follows: section 2.1 introduces, with the work
done by Boyd and Vandenberghe in [39] as a main reference, the general definition of
mathematical optimization together with some examples of real applications; section 2.2 fo-
cuses on linear programs, which are a special class of mathematical optimization problems.
Problem realizations with continuous, discrete and hybrid continuous/discrete variables are
discussed. Some simple linearization techniques for bilinear problems are discussed as
well; section 2.3 talks about the Lagrange dual problem, which will allow to obtain a lower
bound on the solution of an optimization problem and, if strong duality holds, prove that the
bound is tight, i.e., the bound equals the solution of the original optimization problem; in
section 2.4 data uncertainty is taken into account when designing the optimization model,
obtaining in consequence a non-deterministic optimization problem. To address this issue,
the robust optimization methodology is introduced and implemented together with the re-
sults from section 2.4 to create a robust counterpart of the original optimization problem,
which will allow to obtain solutions that remain optimal under all the possible realizations
of data uncertainty predefined in an uncertainty set included in the uncertain space; finally,
section 2.5 explains how the MILP problem formulation can be embedded into an inte-
grated receding horizon framework involving problem-specific forecasting techniques (for
the uncertain parameters) to deal with the control problem when the cost function has to
be minimized in a given time horizon and the system is subject to constraints.

2.1 Mathematical optimization

A mathematical optimization problem, or just optimization problem, has, by convention, the
following standard form1 [39]:

1 There are different standard forms in use in the scientific community. The one presented in this work is
used by Boyd and Vandenberghe in [39]. By using different mathematical transformations it is possible to
convert the problem from one standard form to another; for example, the implementation of the so-called

13
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minimize
x

f0(x)

subject to fi(x)≤ bi, i = 1, . . . ,m.
(2.1)

where:

• the vector x = (x1, . . . ,xn) ∈ Rn contains the optimization variables of the problem.
This is a set of variables that represent actions that can be taken in the system being
modeled;

• the function f0 : Rn 7→ R is the objective or cost function, which maps each possible
set of decisions into a single score (often representing a total economic cost incurred
or revenue gained) that assesses the quality of the solution. Thus, this function is
optimized by either finding its minimum or maximum value;

• the functions fi : Rn 7→ R, i = 1, . . . ,m, are the (inequality) constraint functions. These
restricting functions represent the limitations present in the system being modeled.
They can be set to be equal to, not more than, or not less than, a certain numeric
value;

• the constants b1, . . . ,bm are the limits, or bounds, for the constraints.

As Boyd and Vandenberghe expose in [39], the optimization problem 2.1 is:

"[. . . ] an abstraction of the problem of making the best possible choice of a vector
in Rn from a set of candidate choices. The variable x represents the choice
made; the constraints fi (x) ≤ bi represent firm requirements or specifications
that limit the possible choices, and the objective value f0 (x) represents the cost2

of choosing x. A solution of the optimization problem corresponds to a choice
that has minimum cost (or maximum utility), among all choices that meet the
firm requirements."

A solution that satisfies all constraints is called a feasible solution; of all the feasible
solutions, the one that maps to the best3 objective function value is referred to as optimal

slack variables allows for the transformation of an inequality constraint into an equality constraint and a
nonnegativity constraint [39]. Sometimes this is important, since certain resolution algorithms require as
initial condition that the optimization problem is expressed in a certain standard form; one example is the
Simplex method for solving linear optimization problems [174].
2 − f0 (x) can also be seen as representing the value, or utility, of choosing x.
3 The definition of best depends on whether the problem is a minimization or a maximization of the objective
function.
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2.1 Mathematical optimization

solution [61], i.e., a vector x∗ is called optimal in a minimization problem if for any z ∈ Rn

with f1(z)≤ b1, . . . , fm(z)≤ bm, it holds that f0(z)≥ f0(x∗) [39].
Sometimes no solution exists to the optimization problem, and the problem itself is de-

fined as infeasible4. On the other hand, some feasible problems have no optimal solution,
because there is an infinite number of feasible solutions that map to the best objective
function value. These problems are defined as unbounded5.

In general, classes of optimization problems are considered; each problem class is char-
acterized by a particular form of the objective and constraint functions [39]. As an important
example, the optimization problem 2.1 is called a linear program if the objective and con-
straint functions ( f0., . . . , fm) are linear, i.e., satisfy

fi (αx+βy) = α fi (x)+β fi (y) , (2.2)

for all x,y ∈ Rn and all α,β ∈ R. If the optimization problem is not linear, then it can be
classified as a nonlinear program.

2.1.1 Applications

Over the years, mathematical optimization has become an important tool within a large
number of different disciplines that have been able to adapt their practical problems to be
cast in the form of a mathematical optimization problem6. Usually these problems include
decision making, system design, analysis or operation processes.

It is widely used in engineering, in electronic design automation [237, 152, 123, 173,
144], automatic control systems [20, 65, 231, 41], energy savings [66, 75, 176, 218, 186],
and optimal design problems arising in civil [77, 198, 43, 42, 12], chemical [84, 45, 104,
86], mechanical [192, 193, 191, 37, 87], and aerospace engineering [184, 46, 222, 141].
Optimization is also used for problems arising in network design and operation [10, 235, 38,
185, 90, 17, 94], finance [169, 229, 93, 230], supply chain management [161, 122, 35, 91,
200], scheduling [56, 179, 211, 232, 172], and many other areas. The list of applications is
still steadily expanding.

Mathematical optimization is a tool that can either be used as an aid to a human in
charge of the decision making (or system operation), or embedded in a control system that
automatically makes real-time choices and carries out the associated actions [39]. In the
former case, the process is supervised by a human, who checks the optimization results

4 In this case, x∗ = ∞. This means that there is no x ∈ Rn that satisfies the constraints of the problem [39].
5 If the problem is unbounded below, it holds that f0 (x∗) =−∞. This means that there is a sequence of x ∈Rn

values, all feasible, with the cost function being f0 (x) =−∞ [39].
6 Or some variation, such as multicriterion optimization problems.
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and modifies the problem definition (or the solution approach) when necessary; he is also
in charge of carrying out any action suggested by the optimization problem. On the other
hand, embedded optimization presents no (or little) human intervention or oversight.

2.2 Linear programming (LP)

Linear programming is one of the simplest classes of optimization problems there is, in the
sense that all of the functions involved (objective and constraints) are affine7. One of the
many standard forms for the general definition of this class is presented as:

minimize
x

cT x

subject to aT
i x≤ bi, i = 1, . . . ,m.

(2.3)

where the vector x = (x1, . . . ,xn) ∈Rn contains the n optimization variables of the problem
to be determined. The values in vector c ∈ Rn are referred to as objective coefficients, and
are often linked with the costs (for minimization problems) or revenues (for maximization
problems) derived from the corresponding decisions [61]. The scalars b1, . . . ,bm ∈ R are
the right-hand-side values of the constraints, and often represent amounts of available
resources (especially for ≤ constraints) or requirements (especially for ≥ constraints) [61].
The vectors a1, . . . ,am ∈Rn contain the coefficients for the m constraints of the problem; the n

components of each vector ai ∈Rn thus typically denote how much of resource/requirement
i is consumed/satisfied by each optimization variable [61].

The feasible region of a linear program is a convex polytope8, which is a set defined as
the intersection of finitely many half spaces9, each of which is defined by a linear inequal-
ity [1]. The objective function cT x is a real-valued affine (linear) function defined on this
polytope. Thus, a linear programming algorithm tries to find a point in the polytope where
this function has the smallest (or largest) value, if such a point exists [61].

The problem class definition in 2.3 prohibits any nonlinear term [61]. However, nonlinear
terms such as the multiplication of two decision variables, the maximum of several vari-

7 "An affine function is the composition of a linear function followed by a translation. A linear function fixes
the origin, whereas an affine function need not do so. Thus, the function f (x) = ax is linear and affine,
while f (x) = ax+b is affine but not linear." [111]. However, in colloquial language (and in most optimization
literature) these terms are interchangeable.
8 "A polytope is a geometric object with "flat" sides. It is a generalization in any number of dimensions, of the
three-dimensional polyhedron." [3]
9 "In geometry, a half-space is either of the two parts into which a plane divides the three-dimensional Eu-
clidean space. More generally, a half-space is either of the two parts into which a hyperplane divides an
affine space. That is, the points that are not incident to the hyperplane are partitioned into two convex sets
(i.e., half-spaces), such that any subspace connecting a point in one set to a point in the other must intersect
the hyperplane." [8]

16



2.2 Linear programming (LP)

ables, or the absolute value of a variable often arise when modeling a practical problem;
these nonlinearities must be addressed with different techniques if the linear problem class
is to be used (see section 2.2.2).

2.2.1 Mixed-integer linear programming (MILP)

Usually when a model of a system is derived, differential or difference equations in continu-
ous domains are used10, which are derived from the physical laws that govern the dynam-
ics of the system under consideration. However, in many practical applications the system
is not isolated, and must be controlled by subsystems described by logic, or discrete do-
mains, i.e., on/off switches or valves, gears or speed selectors or evolutions dependent on
if-then-else rules [25].

Therefore, many practical cases require a framework to model systems described by
physical laws, logical rules and operating constraints. Within this framework, any proposi-
tional logic statement is transformed into a linear inequality that involves integer and contin-
uous variables. In consequence, the system is finally modeled by linear dynamic equations
that are subject to linear mixed-integer inequalities, that is, inequalities that contain both
continuous and binary variables [25].

This framework dedicated to the modeling and optimization of hybrid systems is referred
to as mixed-integer optimization. When the problem is circumscribed within the class of lin-
ear problems, we refer to mixed-integer linear programming (MILP); otherwise, the problem
is classified as mixed-integer nonlinear programming (MINLP).

The following section introduces a general treatment of some often used reformulation
tricks to reformulate nonlinear problems into linear ones.

2.2.2 MINLP to MILP conversion

A more comprehensive treatment of MILP and the transformations presented in this section
can be found in the work of Smith and Taskin in [61]. For a rigorous exposition, see the
works by Bemporad and Morari in [25] and Gorissen and co-workers in [96].

As explained in the previous section, in order to work with systems that have both logic
and dynamics, it is necessary to establish a link between both domains. In most cases, this
results in mixed-integer linear inequalities, i.e., linear inequalities involving both continuous
variables x∈Rn and logical (indicator ) variables δ ∈ {0,1}. However, as it will become clear
during the problem modeling in chapter 3, in some cases the problem requires a product

10 In consequence, the evolution of the system is described by smooth linear or nonlinear state transition
functions.
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2 Control of systems integrating logic, dynamics, and constraints

of variables11, transforming the inequality (and the problem class) to a biliniear one, i.e., a
nonlinear problem.

In these cases, a re-linearization of the model needs to be carried out; this is done
through the transformation of the problem by the introduction of auxiliary variables (logical
or continuous), together with their respective constraints.

With this in mind, consider the statement f (x)≤ 0, where f : Rn 7−→ R is linear. Assume
that x ∈ X, where X is a given bounded set, and define [25]:

M , max
x∈X

f (x) , (2.4)

m , min
x∈X

f (x) . (2.5)

Theoretically, an over(under)-estimate of M (m) suffices for the purpose of the transfor-
mation. However, computational benefits are obtained through practical estimates [25, 61].

In the remainder, some commonly used reformulation tricks to transform bilinear con-
straint problems into linear ones are introduced.

Product of logical variables: The product term δ1δ2 where {δi ∈ {0,1} , i = 1,2} can be
replaced by an auxiliary logical variable δ3 , δ1δ2; then by Boolean algebra it holds that:

δ3 = 1↔ (δ1 = 1)∧ (δ2 = 1) , (2.6)

and therefore the following transformation can be defined [25]:

δ3 = δ1δ2 is equivalent to


−δ1 +δ3 ≤ 0,

−δ2 +δ3 ≤ 0,

δ1 +δ2−δ3 ≤ 1.

(2.7)

In this way, a bilinear constraint formed by the product of two logical variables can be
linearized by its replacement with the introduction of a logical auxiliary variable and three
logical linear inequalities.

11 Products of logical variables, and of continuous and logical variables.
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2.3 Duality in mathematical optimization

Product of continuous and logical variables: The product term δ f (x), where f :Rn 7−→
R and δ ∈ {0,1}, can be replaced by an auxiliary real variable y , δ f (x), which satisfies:{

δ = 0↔ y = 0,

δ = 1↔ y = f (x) .
(2.8)

Therefore, by defining M and m as in equations 2.4 and 2.5 respectively, the following
transformation is defined [25]:

y = δ f (x) is equivalent to



y≤Mδ ,

y≥ mδ ,

y≤ f (x)−m(1−δ ) ,

y≥ f (x)−M (1−δ ) .

(2.9)

Thus, a bilinear constraint formed by the product of continuous and logical variables can
be linearized by its replacement with the introduction of a real auxiliary variable, two logical
linear inequalities and two mixed-integer linear inequalities.

2.3 Duality in mathematical optimization

Starting from any general optimization problem as defined in equation 2.1 (i.e., no assump-
tions on convexity or the problem class are made), which is usually referred to as the primal
problem, the Lagrange duality produces, through the implementation of the Lagrange dual
function, a convex problem which is called the Lagrange dual problem.

The dual problem stipulates which is the best lower bound (d∗) on the optimal value
(p∗)12 of the primal problem that is achievable by using the Lagrange dual function.

If the primal problem is convex, the bound will be sharp (given that some conditions are
met); this property will grant alternative methods for solving the primal problem. On the
other hand, if the original problem is non-convex and, possibly, a hard problem (i.e., it can
not be solved efficiently), then the dual problem will provide, with little computational effort,
a lower bound for the optimal value of the primal problem. Thus, duality proves to be a very
crucial method for obtaining suboptimal solutions of the primal problem.

The remainder of this section is presents a brief introduction to the concepts involved in
duality and is strongly influenced by the work of Boyd and Vandenberghe in [39]. For a

12 For the optimal value p∗ of the optimization problem, it holds that p∗ = f0(x∗), where f0 (x) is the objective
function of the optimization problem and x∗ is the optimal solution to the problem.
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detailed theoretical analysis on duality please refer to [39]; a more practical approach on
duality of Linear Programs can be found in [148].

2.3.1 The Lagrange dual function

The Lagrangian

A general optimization problem in the standard form of equation 2.1 is considered:

minimize f0(x)

subject to gi(x)≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

(2.10)

with variable x∈Rn and domain D =(
⋂m

i=0 dom fi)∩
(⋂p

i=1 domhi
)

nonempty. The optimal
value of the problem 2.10 is denoted by p∗.

Lagrangian duality takes into account the constraints in problem 2.10 by augmenting
the objective function with a weighted sum of the constraint functions [39]. Thus, the La-
grangian L : Rn×Rm×Rp→ R associated with the problem 2.10 is defined as [39]:

L(x,λ ,ν) = f0 (x)+
m

∑
i=1

λi fi (x)+
p

∑
i=1

νihi (x) , (2.11)

with domL = D ×Rm×Rp. The Lagrangian is a function of x, λ and ν . The value λi

is known as the Lagrange multiplier associated with the i-th inequality constraint fi (x) ≤
0; similarly the value νi is known as Lagrange multiplier associated with the i-th equality
constraint hi (x)= 0. The vectors λ and ν are called the dual variables or Lagrange multiplier
vectors associated with the problem 2.10.

In some practical applications, the dual variables can have a known meaning, as prices
or penalty rates applied to the constraints. For example, for a solution x̃ to be feasible for
the problem definition 2.10, the i-th inequality constraint ( fi (x̃)≤ 0) needs to be met. If this
constraint (or any other constraint) is not met, x̃ is unfeasible.

By replacing the constraint with its corresponding term inside the Lagrangian (multiplied
by the Lagrange multiplier) in 2.11, this binary behavior observed in the constraints of
problem 2.10 can be shifted to a more liberal approach, where the possibility to not meet
the constraints requirements exists but, in exchange, a penalty is applied. Furthermore,
the flip-side gives a subsidy for coming in under-budget and both the penalties and the
subsidies are added to the objective value in the Lagrangian.

The proportionality factor for the penalty (subsidy) is given by the Lagrange multiplier.
Thus, a penalty (subsidy) of λi fi (x̃) is imposed if the i-th constraint is greater (lower) than
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zero. For every unit of measurement that fi (x̃) is positive (negative), a penalty (subsidy) of
λi units of measurement is imposed.

The Lagrange dual function

The Lagrange dual function (or just dual function) g : Rm×Rp→ R is defined as the mini-
mum value of the Lagrangian over x [39]: for λ ∈ Rm, ν ∈ Rp,

g(λ ,ν) = inf
x∈D

L(x,λ ,ν) = inf
x∈D

(
f0 (x)+

m

∑
i=1

λi fi (x)+
p

∑
i=1

νihi (x)

)
. (2.12)

The Lagrange dual function defined in equation 2.12 minimizes the Lagrangian over all
possible values for x. The Lagrangian, as a function of λ and ν , is an affine function for
each possible value of x; since the infimum of a family of affine functions is concave, even
if f0 (x) and fi (x) are non-convex and hi (x) are non-affine in the primal problem, it is a
certainty that the dual function g is concave as a function of λ and ν .

Lower bounds on optimal value

It can be easily proved that the evaluation of the dual function g yields lower bounds on
the optimal value p∗ of the primal problem 2.10, i.e., for any λ ≥ 0 and any ν , the following
holds [39]:

g(λ ,ν)≤ p∗. (2.13)

The verification argument is pretty straight-forward. Let x̃ be a feasible solution for the
primal problem 2.10, then:

L(x̃,λ ,ν) = f0 (x̃)+
m

∑
i=1

λi︸︷︷︸
>0

fi (x̃)︸︷︷︸
≤0︸ ︷︷ ︸

≤0

+
p

∑
i=1

νihi (x̃)︸ ︷︷ ︸
=0︸ ︷︷ ︸

=0

≤ f0 (x̃) , (2.14)

and therefore:

g(λ ,ν) = inf
x∈D

L(x,λ ,ν)≤ L(x̃,λ ,ν)≤ f0 (x̃) . (2.15)

Since g(λ ,ν)≤ f0 (x̃) holds for every feasible point, the inequality 2.13 follows.
Thus, after finding the x value that minimizes the Lagrangian, it can be plugged in back

into the Lagrangian, obtaining in this way the dual function g, which is concave as a function
of λ and ν , and gives the lower bound for the objective of the primal problem.
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2 Control of systems integrating logic, dynamics, and constraints

This property is immediately useful in contexts where the problem is non-convex, or
where a convex problem has a huge number of variables and constraints that impose great
computational efforts. With this property, iterative procedures can be created to obtain an
x that approximately satisfies the problem, i.e. a suboptimal solution.

2.3.2 The Lagrange dual problem

The Lagrange dual function is a lower bound on the optimal value p∗ of the optimization
problem 2.10, which is parametrized by the dual variables λ and ν . For the majority of
possible values for these parameters, the Lagrange dual will output g = −∞ as a lower
bound; this is a valid lower bound, but it is totally uninformative. For a small set of cases of λ

and ν , lower bounds with more information are obtained, approaching suboptimal solutions
to the original problem. Thus, in order to find the best lower bound that can be obtained
from the Lagrange dual function, the following optimization problem is defined [39]:

maximize g(λ ,ν)

subject to λ ≥ 0.
(2.16)

This problem is called the Lagrange dual problem associated with the problem 2.10.

The Lagrange dual problem defined in 2.16 is a convex optimization problem, since the
objective to be maximized is concave and the constraint is convex. This is the case whether
or not the primal problem 2.10 is convex.

The pair (λ ∗,ν∗) is the set of parameters that are optimal for the problem 2.16, i.e. they
maximize the dual function. Thus, the optimum value of the dual problem is defined as
d∗ = g(λ ∗,ν∗), and this value corresponds to the best lower bound for the primal problem
that can be obtained from the Lagrange dual function.

2.3.3 Weak and strong duality

By definition, the optimal value of the Lagrange dual problem (d∗) is the best lower bound
on p∗ that can be obtained from the Lagrange dual function; even if the original problem is
not convex, it always holds that:

d∗ ≤ p∗, (2.17)

because any dual feasible point is a lower bound on p∗, so the best one is also a lower
bound [39]. This property is referred to as weak duality. The duality gap or optimal duality
gap is a nonnegative value defined as the difference p∗− d∗, and allows to quantify how
suboptimal is the lower bound obtained through the resolution of the dual problem.
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On the other hand, strong duality means that the lower bound is proven to be tight, i.e.
the optimal duality gap is zero:

d∗ = p∗. (2.18)

Thus, strong duality means that the optimal value of the Lagrange dual problem is equiva-
lent to the optimal value of the primal problem.

If the original problem is convex, strong duality usually holds; the conditions that a convex
problem must meet so that strong duality holds are called constraint qualifications. One of
the simplest constraint qualifications is Slater’s constraint qualification, which says that if
there exists a strictly feasible13 point for a convex problem, then strong duality holds. For
most problems that appear in engineering, Slater’s condition is usually sufficient to prove
strong duality [39].

For the LP problem class, the geometric interpretation of Slater’s condition says that
strong duality holds if the polytope created by the feasible set has a nonempty interior.
Thus, for the LP problem class strong duality always holds, except for the case when the
primal and the dual are both infeasible.

2.4 Optimization under data uncertainty

Until this section, it was considered that the standard modeling process in mathemati-
cal programming involves the creation of a discrete model whose input data are exactly
known and equivalent to certain nominal values when the problem is solved. Although this
paradigm is perfectly valid for a variety of cases, it does not take into account the influence
that possible data uncertainties14 may have on the model and on the quality and feasibility
of the solution obtained.

Therefore, it is possible that as the data deviate from their nominal values, some con-
straints of the problem are violated. Consequently, solutions assumed to be optimal could
instead be heavily suboptimal and even unfeasible. In this last case, the decisions cannot
be implemented in practice [69]. Ben-Tal and Nemirovski refer to this problem in [29]:

"In real-world applications of Linear Programming one cannot ignore the pos-
sibility that a small uncertainty in the data (intrinsic for most real-world LP pro-

13 A strictly feasible solution means not only that the inequality constraints of the problem are met, but also
that each one is met with a positive margin; that is, the inequality constraints hold with strict equalities.

14 "Data can be inherently stochastic/random or it can be uncertain due to errors. The reason for data errors
could be measurement/estimation errors that come from the lack of knowledge of the parameters of the
mathematical model (e.g., the uncertain price or demand) or could be implementation errors that come from
the physical impossibility to exactly implement a computed solution in a real-life setting." [96]
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grams) can make the usual optimal solution of the problem completely mean-
ingless from a practical viewpoint."

This scenario creates the need (mainly in practical applications) of mathematical models
whose solution is immune, as far as possible, to the possible uncertainties present in the
data; these models are usually referred to as robust.

Figure 2.1: Uncertainty representation: (a) Deterministic optimization; (b) Stochastic optimization;
(c) Robust optimization. Source: [112].

Approaches for scheduling problems under uncertainty can be broadly classified into
reactive and proactive [205]:

• reactive approaches, where a nominal schedule is generated by a deterministic for-
mulation and then it is modified when it needs to be adjusted to updated system data;

• proactive approaches take into account all possible cases and try to find a good solu-
tion for all of them; in consequence, the solution found is feasible for all the considered
cases. However, some of these cases happen only on rare occasions, so the solution
obtained could prove to be too conservative.

The most broadly used proactive approaches to address data uncertainty in optimization
are robust and stochastic optimization [96, 112]:
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2.4 Optimization under data uncertainty

• Stochastic optimization (SO) has an important assumption in its core: the true proba-
bility distribution of uncertain data has to be known or estimated (i.e., accurate infor-
mation of uncertainties is required to construct reliable probability density functions,
or PDFs) [223]. If this condition is met, SO only manages to provide a probabilis-
tic guarantee for the feasibility of the solution [32]; to do so, the reformulation of the
uncertain optimization problem as a SO problem requires the generation of a large
number of scenarios to ensure quality of the solution (see figure 2.1), which in turn
results in growth of the problem size and computational requirements. Moreover, the
accuracy of the solution obtained is sensitive to the technique used for the scenario
generation [124];

• Robust optimization (RO) does not assume that probability distributions are known,
but instead addresses the parameter uncertainty based on an deterministic uncer-
tainty set, which covers part or the whole region of the uncertain space [96]; in
consequence, it only needs information about the upper and lower bounds of the
uncertainty [32] (see figure 2.1). The target of RO is to select the best solution that
remains feasible for any realizations of the uncertain parameters in the uncertainty
set. RO has been proved to be computational tractable15 for a variety of classes of
uncertainty sets and problem types [163]; the robust counterpart generally does not
increase much in model size compared to the deterministic model, and the convexity
of the constraints can also be preserved [234].

Due to the various limitations of stochastic optimization and the numerous advantages
of robust optimization presented above, since the beginning of the century, RO has man-
aged to find popularity as an effective method to cope with data uncertainty in optimiza-
tion problems, especially due to its computational tractability, modeling power and broad
applicability in a wide spectrum of domains, including, but not limited to, statistics, op-
erations research [31], electrical engineering [202, 201], control theory [126], oil indus-
try [206, 238, 14], finance [81], portfolio management [229, 230], logistics [233], manu-
facturing engineering [210], chemical engineering [30], medicine [58, 61, 239], and com-
puter science. In the area of energy management, in addition to scheduling of micro-
grids [223, 124, 13, 147, 112, 166], RO has also been used for optimization of various
other related objectives of power systems, which include but are not limited to, commu-
nication in microgrids [199] transmission network expansion [119], distributed generation

15 A tractable problem is one that can be solved in a reasonable amount of time; usually the distinction between
tractable and intractable is drawn at the boundary between problems that can be solved in an amount of time
that is polynomial; those that require exponential time are regarded as intractable.
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investment [195] and placement [225], transition of electric vehicles [101], and scalability
of demand response [139].

In the remainder of the current section, the principles, concepts and implementation
methods involved in the robust optimization methodology are introduced; an exhaustive
introduction to the theory and applications of robust optimization can be found in [26, 31].

2.4.1 Basic principles of robust optimization

The following are the basic principles on which the robust optimization methodology is
based [69] (see figure 2.2):

• the actual value of an uncertain coefficient of the problem is unknown. Nevertheless,
the modeler must have a reasonable reference for the unknown actual value, called
nominal value. In this way, the actual value equals the sum of the nominal value and
an unknown deviation;

• the modeler defines an uncertainty set [155] for the coefficients against which he
wants to be protected. This set describes the deviations of the coefficients with re-
spect to their nominal values;

• the modeler derives and solves a robust counterpart of the original optimization prob-
lem. D’Andreagiovanni and co-workers define it as:

"[. . .] a modified version of the original optimization problem that only con-
siders robust feasible solutions, i.e. feasible solutions that are protected
against all the deviations of the uncertainty set." [69]

Then, the optimal robust solution is the feasible solution that achieves the best score
for the objective function under the worst data deviation;

• increasing the level of robustness of the solution is not free, i.e. the optimal solution
to the problem will deteriorate as the robustness level is increased. Therefore, uncer-
tainty sets that comprise higher levels of protection will usually lead to solutions with
more deteriorated optimal values. This trade-off is usually referred to as the price of
robustness [33].

2.4.2 Approaches for the implementation of robust optimization

To this date, several techniques have been presented to take into account the uncertainties
of the data in the modeling of the problem, thus making the problem more robust:
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Figure 2.2: Problem formulation process for robust optimization. Source: [112].

• Soyster [207] was the one who presented the first approach with his work in the early
1970s. Bertsimas and Sim describe it as:

"[. . .] a linear optimization model to construct a solution that is feasible for
all data that belong in a convex set. The resulting model produces solutions
that are too conservative in the sense that we give up too much of optimality
for the nominal problem in order to ensure robustness." [33]

Further comments can be found in the works of Ben-Tal and Nemirovski [29];

• The next big improvement was performed independently by Ben-Tal and Nemiroski [27,
28, 29] and El-Ghaoui et al. [78, 79]. These proposals were focused on reducing the
levels of over-conservatism present in the work carried out by Sosyter. The solution
found relies on the use of ellipsoidal type uncertainties to model the linear problem;
if properly chosen, elliptic type uncertainty intervals allow modeling of more complex
uncertainties. However, this approach leads to nonlinear, although convex, models,
which require a greater computing power compared to the linear models developed
by Soyster [207];

• Bertsimas and Sim [33] made the next leap forward by proposing a robust optimiza-
tion model that preserves the linear properties of Soyster [207] with low computing
power demands, while at the same time gives absolute control over the level of con-
servatism of each of the constraints present in the model. The approach protects
against variations of a previously specified number Γi of parameters in the i-th con-
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straint of the model, ensuring that the solution is feasible. Moreover, in the case
that the number of parameters that vary is greater than Γi, the approach provides a
method of calculating a probabilistic feasibility guarantee, ensuring that the solution
will be feasible with high probability.

• Li and co-workers in [155] extended the formulation made by Bertsimas and Sim [33]
by incorporating a series of novel uncertainty sets and deriving, for each one of these
new sets, the robust counterpart for both LP and MILP problem formulations. As it is
pointed out by Li et al. [155], the robust formulation made by Bertsimas and Sim [33]
is based on the combined interval and polyhedral uncertainty set.

• Jalilvand-Nejad et al. in [121] and Yuan et al. in [234] used the uncertainty sets
defined by Li et al. in [155] and expanded the concept to present novel results on
robust optimization under correlated uncertainties that appear in a single constraint;
experimental results reveal that when significant correlations between the coefficients
exist, the performance of this method is superior to that of the traditional uncertainty
sets for independent random variables.

The advantage of working with linear optimization problems with respect to other classes
of optimization problems is that they are easily generalizable to discrete optimization prob-
lems, this being of vital importance in the development of the specific optimization problem
that corresponds to this work.

Therefore, the Bertsimas and Sim [33] approach gives more flexibility and is less com-
putationally demanding than the Ben-Tal and Nemiroski [27, 28, 29] and El-Ghaoui et
al. [78, 79] approach. Also, the Bertsimas approach presents a greater flexibility than
the one of Soyster [207], since it allows the election of the desired levels of conservatism.
Thus, when needed, the Bertsimas model can avoid dealing with extreme conservatism
and address intermediate and more rational cases.

Due to the above advantages, the approach proposed by Bertsimas and Sim [33] (and
its extensions by Li et al. [155]) to obtain a robust counterpart of a linear optimization
problem is a well established model for real-world applications [69], and is the one that will
be developed and applied in the remaining sections of this work; moreover, the findings
reported by Jalilvand-Nejad et al. in [121] are implemented when correlation between
coefficients exist.

An introduction to the concepts involved in these methodologies is made in the next
section.
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2.4.3 Uncertainty set-induced robust optimization

The present section aims to explain the main steps involved in the derivation of the robust
counterpart of an optimization problem that is subject to data uncertainty; it is based entirely
on the work carried out by Bertsimas et al. in [33, 31], Li et al. in [155, 156, 157], Gorissen
et al. in [96], Jalilvand-Nejad et all. in [121] and Yuan et al. in [234].

In set-induced robust optimization, the uncertain data of the original problem are as-
sumed to be varying in a given uncertainty set, and the aim is:

"[. . .] to find the best possible candidate solution that remains feasible for all
realizations of the data in the uncertainty set, that is, the feasibility of the solution
must be maintained no matter what value the random variables realize within a
certain set that belongs to the uncertain space." [155]

The corresponding optimization problem is also called robust counterpart optimization
problem.

Consider the following general (mixed integer) linear optimization problem with uncer-
tainty in the left hand side constraint coefficients, right hand side and objective function
coefficients:

maximize ∑
j

c̃ jx j

subject to ∑
j

ãi jx j ≤ b̃i ∀i.
(2.19)

where x j can either be a continuous or an integer variable; and ãi j, b̃i, c̃ j represent the
true value of the parameters which are possibly subject to uncertainty.

Through the introduction of some auxiliary variables and some simple transformations,
problem 2.19 can be rewritten as:

maximize z

subject to z−∑
j

c̃ jx j ≤ 0

b̃ix0 +∑
j

ãi jx j ≤ 0 ∀i

x0 =−1.

(2.20)

where all the uncertain parameter are now only on the left and side constraint coefficients.
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Based on the above and without loss of generality, an analysis can be carried out on the
i-th constraint of a (mixed integer) linear optimization problem with uncertain parameters
only in the left hand side:

maximize ∑
j

c jx j

subject to ∑
j

ãi jx j ≤ bi ∀i.
(2.21)

The i-th constraint is defined as follows:

∑
j

ãi jx j ≤ bi, (2.22)

where x j can either be a continuous or an integer variable; and ãi j represent the true value
of the parameters which are possibly subject to uncertainty. The uncertain coefficients ãi j

can take values in the range
[
ai j− âi j, ai j + âi j

]
; hence ãi j can be defined as:

ãi j = ai j +ξi jâi j ,∀ j ∈ Ji, (2.23)

where ai j represents the nominal value of the parameter; âi j represents the maximum pos-
itive perturbation amplitude;

{
ξi j
}

j∈Ji
are independent random variables which are subject

to uncertainty and perturbs in the range [−1,1]; and Ji represents the index subset that
contains the continuous and discrete variable indices whose corresponding coefficients
are subject to uncertainty.

With equation 2.23, the constraint 2.22 can be rewritten by grouping the deterministic
part and the uncertain part for the left hand side as follows:

∑
j

ai jx j + ∑
j∈Ji

ξi jâi jx j ≤ bi, (2.24)

where the first term of the left hand side corresponds to all the nominal values of the
parameters in the constraint, while the second term has the perturbations of the parameters
subject to uncertainty (i.e., all parameters for which j ∈ Ji is met).

With a predefined uncertainty set U for the random variables ξi j, the objective of the
problem is to find solutions that remain feasible for any ξi j ∈ U thus avoiding possible
infeasibilities [155]; in consequence, the uncertain term in the i-th constraint needs to be
maximized as follows:

∑
j

ai jx j +max
ξ∈U

{
∑
j∈Ji

ξi jâi jx j

}
≤ bi. (2.25)
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This equation conforms the worst-case reformulation of the i-th constraint, because it
assures that the optimal solution found for the problem will be optimal and feasible for
every possible realization of the uncertainties within the predefined uncertainty set U .

To obtain the robust counterpart optimization problem, the i-th constraint of the original
optimization problem 2.21 is replaced by the robust counterpart constraint 2.25:

maximize ∑
j

c jx j

subject to ∑
j

ai jx j +max
ξ∈U

{
∑
j∈Ji

ξi jâi jx j

}
≤ bi. ∀i.

(2.26)

The problem formulation written above is based on a general and undefined uncertainty
set U . In consequence, the constraints and, therefore, also the problem formulation, are
nonlinear. Thus, it is clear that the explicit expression of this set-induced robust counterpart
formulation heavily depends on the uncertainty set U defined by the decision-maker; an
appropriate set definition could allow, through a series of transformations, the linearization
of the constraints. It is important to mention that each constraint that presents uncertain
data in the optimization problem will define its own uncertainty set U where the parameters
can vary.

In the remaining parts of this section, the uncertainty sets needed for the present work
will be introduced together with the derivation of the robust counterpart for those particular
uncertainty sets.

Uncertainty sets

In this section, the most prominent uncertainty sets proposed in literature are reviewed; as
stated in section 2.4.1, one of the first steps necessary to implement a robust optimization
is to define a deterministic data set within the uncertain space.

The design of the uncertainty set is related to the distribution of the uncertainty: if the
uncertainty is subject to unbounded distribution, the box and polyhedral type of uncertainty
set are appropriate to be used in the robust optimization framework, where the size of the
uncertainty set is not restricted; instead, if the uncertainty is subject to bounded distribution,
the bounds information can be involved in the uncertainty set (which will lead to more
conservative solution). Hence, the interval+ellipsoidal uncertainty set is appropriate for
bounded uncertainty solution [234].

Once the type of set is chosen, to define its size is a trade-off between the robustness
of the solution (i.e. against how many physical realizations of the uncertain parameter the

31
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(a)

(b)

(c)

Figure 2.3: Uncertainty sets for parameter ã j, defined by [ã j = a j +ξ jâ j, j = 1,2], where ã j denotes
the true value of the parameter, a j denotes the nominal value of the parameter, ξ j de-
notes the uncertainty and â j represents a constant perturbation. (a): box uncertainty
set; (b): polyhedral uncertainty set; (c): box+polyhedral uncertainty set. Source: [155].

model will be robust) and the the price of robustness (i.e., the impact this set has on the
optimal value of the problem), as explained in section 2.4.1.

Box uncertainty set In an uncertain optimization problem, it is assumed that the random
variables ξi j are independent and their absolute values vary between zero and a parameter
Ψi ≤ 1. The interaction of this type of perturbations creates a box which is called box
uncertainty, which can be described as follows [155]:

Ub ,
{

ãi j = ai j +ξi jâi j
∣∣ ∣∣ξi j

∣∣≤Ψi, ∀ j ∈ Ji,∀i
}
, (2.27)

where Ψi is an adjustable parameter used to control the size of the uncertainty set, i.e.,
represents the perturbation bound for all of the uncertain coefficients related to the i-th
constraint (see figure 2.3a).

As the value of Ψi increases, the model becomes more conservative. If Ψi = 1, then
ξi j ∈ [−1,1] and the uncertainty set covers the whole uncertain space; in this case, the
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2.4 Optimization under data uncertainty

obtained robust model is identical to the one introduced by Soyster in [207]; this special
case is referred to as interval uncertainty set and is defined as follows [155]:

Ui ,
{

ãi j = ai j +ξi jâi j
∣∣ ∣∣ξi j

∣∣≤ 1, ∀ j ∈ Ji,∀i
}
. (2.28)

Polyhedral uncertainty set The polyhedral uncertainty set can be formulated as fol-
lows [155]:

Up ,

{
ãi j = ai j +ξi jâi j

∣∣∣∣∣∑j∈Ji

∣∣ξi j
∣∣≤ Γi, ∀ j ∈ Ji,∀i

}
, (2.29)

where Γi is the adjustable parameter controlling the size of the uncertainty set of the
i-th constraint (see figure 2.3b). For the cases when the uncertainty is bounded (i.e.,
ξi j ∈ [−1,1]), if Γi ≥ |Ji| (i.e., Γi is chosen to be greater or equal than the number of un-
certain parameters in the i-th constraint), then the overall uncertain space is covered by
the polyhedral uncertainty set.

"Box+polyhedral" uncertainty set This set is generated by intersecting the polyhedral
and the interval set as follows [155]:

Ub∩p ,

{
ãi j = ai j +ξi jâi j

∣∣∣∣∣∑j∈Ji

∣∣ξi j
∣∣≤ Γi,

∣∣ξi j
∣∣≤Ψi, ∀ j ∈ Ji,∀i

}
. (2.30)

The intersection between an adjustable box (as defined in equation 2.27) and an adjustable
polyhedron (as defined in equation 2.29) does not reduce to any one of them as long as
the parameters satisfy the following relationship (see figure 2.3c):

Ψi ≤ Γi ≤Ψi |Ji| . (2.31)

The bounded uncertain space is completely covered by the uncertainty set when the ad-
justable parameter (Γi) is set to the upper bound; increasing the parameter beyond this
point might create a more conservative solution without improving the robustness of the
solution.

The interval+poyhedral set is created when the interval set (Ψ = 1) is intersected with
the polyhedral set [155]:

Ui∩p ,

{
ãi j = ai j +ξi jâi j

∣∣∣∣∣∑j∈Ji

∣∣ξi j
∣∣≤ Γi,

∣∣ξi j
∣∣≤ 1, ∀ j ∈ Ji,∀i

}
. (2.32)
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2 Control of systems integrating logic, dynamics, and constraints

On this case, if Γi = 1 the polyhedron is exactly inscribed by the box, and the intersection
between both is the polyhedron; when Γi = |Ji|, the intersection between both sets is the
box. This set assumes that the uncertainty interval is symmetric with respect to the nominal
value of the parameter, and is particularly useful for the case of bounded uncertainty, since
the uncertainty set can be restricted inside the known bounds of the uncertainty.

Correlated "interval+polyhedral" uncertainty set Independence is generally assumed
among uncertainties in the parameters; however, in practice, correlations may arise in the
uncertainties and if they are not addressed the optimal solution could prove to be over-
conservative. Thus, this set deals with random variables that are correlated to each other
(i.e., not independent). Due to the existence of correlation between coefficients, random
points are gathered around the diagonal in a plot like the one in figure 2.4. The idea is
to reshape the uncertainty set so that it covers the occupied spaces better than the void
spaces; therefore, the borders of the polyhedral uncertainty set are bended in a way that
the areas around the diagonals are covered better than the areas far from it. Moreover, the
degree of bending is proportional to the level of correlation between the coefficients. This
set is presented as follows [121]:

Uc(i∩p) ,

ãi j = ai j +ξi jâi j

∣∣∣∣∣∣ ∣∣ξi j
∣∣+∑

n6= j

[(
1−
(
|Ji|−Γi
|Ji|−1

)∣∣ρi jn
∣∣) |ξin|

]
≤ Γi,

∣∣ξi j
∣∣≤ 1, ∀ j ∈ Ji,∀i

 , (2.33)

where ρi jn denotes the correlation between coefficients ãi j and ãin, and takes value in
the range of [−1,1]. If ρi jn = 0 (for all i, j, and n 6= j), the correlated polyhedral+interval
uncertainty set is equivalent to the polyhedral+uncertainty set of equation 2.32; on the
other hand, the correlated uncertainty set covers the diagonals of the coordinate system
entirely when

∣∣ρi jn
∣∣ = 1. For this uncertainty set, it is assumed that the estimate of the

correlation matrix between uncertain coefficients is exploited from the historical data and,
in consequence, is available.

Solving the robust counterpart formulation

As it was mentioned earlier during this section, the right definition for the uncertainty set
could allow the linearization of the nonlinear constraints. If the uncertainty set U in the
formulation 2.26 is defined as interval+polyhedral (see equation 2.30), then the inner max-
imization sub-problem of the i-th constraint of problem 2.26 becomes linear [31]; nonethe-
less, the i-th constraint remains nonlinear.
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2.4 Optimization under data uncertainty

Figure 2.4: Correlated polyhedral uncertainty set vs polyhedral uncertainty set. Source: [121].

Therefore, the linearization of the i-th constraint involves the elimination of the inner max-
imization sub-problem. To do so, the inner maximization sub-problem is transformed into
its Lagrange dual problem; due to its linear properties, the inner maximization sub-problem
and its dual yield the same optimal objective value by strong duality (see section 2.3).
Therefore, the incorporation of the Lagrange dual problem into the original constraint is
valid, and the resulting i-th constraint is linear. For more details and a step-by-step deriva-
tion please refer to [155, 96].

Following, explicit robust counterpart constraints of equation 2.25 are investigated for the
interval+polyhedral and the correlated interval+polyhedral uncertainty sets.

"Interval+polyhedral" uncertainty set If the uncertainty set U in the formulation 2.26
is defined as interval+polyhedral (see equation 2.30), then the corresponding linear robust
counterpart to the i-th constraint (see equation 2.25) is equivalent to the following set of
linear constraints [155, 33]:

∑
j

ai jx j +

[
Γizi + ∑

j∈Ji

wi j

]
≤ bi (2.34a)

zi +wi j ≥ âi j
∣∣x j
∣∣ ,∀ j ∈ Ji (2.34b)

zi ≥ 0 (2.34c)

wi j ≥ 0. (2.34d)
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2 Control of systems integrating logic, dynamics, and constraints

If the variables x j are nonnegative, the nonlinearity introduced by the absolute value
operator can be directly removed from the constraints, otherwise the constraints have to be
redefined (see Remark 6.4 in [155] for more details).

To derive the robust counterpart of the i-th constraint the following dual variables for the
Lagrange dual problem are introduced: zi for the uncertainty set; and wi j for the x j, j ∈ Ji

variables with uncertain parameters. Finally, the robust counterpart optimization problem
is defined as follows:

maximize ∑
j

c jx j

subject to ∑
j

ai jx j +

[
Γizi + ∑

j∈Ji

wi j

]
≤ bi

zi +wi j ≥ âi jx j ,∀ j ∈ Ji

x j ≥ 0, zi ≥ 0, wi j ≥ 0.

(2.35)

Correlated "interval+polyhedral" uncertainty set On the other hand, if the defined un-
certainty set is the correlated interval+polyhedral (see equation 2.33), then the correspond-
ing linear robust counterpart to the i-th constraint (see equation 2.25) is equivalent to the
following set of linear constraints [121, 234]:

∑
j

ai jx j +

[
∑
j∈Ji

zi jΓi + ∑
j∈Ji

wi j

]
≤ bi ,∀i (2.36a)

zi j + ∑
n 6= j

(
1−
(
|Ji|−Γi

|Ji|−1

)∣∣ρi jn
∣∣)zin +wi j ≥ âi j

∣∣x j
∣∣ ,∀i, j (2.36b)

zi j ≥ 0 (2.36c)

wi j ≥ 0. (2.36d)

If the variables x j are nonnegative, the nonlinearity introduced by the absolute value op-
erator can be directly removed from the constraints, otherwise the constraints have to be
redefined (see Theorem 1 in [121] for more details).

To derive the robust counterpart of the i-th constraint the following dual variables for the
Lagrange dual problem are introduced: zi j, j ∈ Ji for the uncertainty set; and wi j for the
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2.4 Optimization under data uncertainty

x j, j ∈ Ji variables with uncertain parameters. Finally, the robust counterpart optimization
problem is defined as follows:

maximize ∑
j

c jx j

subject to ∑
j

ai jx j +

[
∑
j∈Ji

zi jΓi + ∑
j∈Ji

wi j

]
≤ bi ,∀i

zi j + ∑
n6= j

(
1−
(
|Ji|−Γi

|Ji|−1

)∣∣ρi jn
∣∣)zin +wi j ≥ âi jx j ∀i, j

x j ≥ 0, zi j ≥ 0, wi j ≥ 0.

(2.37)

As a recapitulation, it is important to mention that for every i-th constraint that presents
uncertain parameters, a parameter Γi, not necessarily integer, is introduced; this parameter
has a suggested range of action in the interval [0, |Ji|]. The main role of this parameter is
to provide a way of adjusting the level of robustness of the proposed method against the
level of conservatism of the solution [33]; if Γi = 0, the uncertain parameters only take the
nominal value, and the obtained solution for the problem is the same as the deterministic
optimization problem; if 0<Γi < |Ji|, the size of the uncertainty set taken into account grows,
and the solution becomes more robust; if Γi = |Ji|, the uncertainty set covers the entire
uncertain space, which contains all the possible realizations of uncertain parameters16;
setting the parameter to Γ≥ |Ji| does not create a more robust solution.

Both the uncertainty set and the value for the parameter Γi are defined by the decision
maker; if Γi = |Ji|, then it is certain that the robust solution (if it exists) is feasible for any
realizations of uncertainty (i.e., the probabilistic guarantee on constraint satisfaction is 1).
However, in reality, the uncertainty set is not necessarily defined to cover the whole uncer-
tain space (i.e., 0 < Γi < |Ji|) because the decision maker might allow for a certain degree
of constraint violation in exchange for a better objective value. In this case, the solution is
guaranteed to be feasible only if less than Γi of the coefficients of the i-th constraint change;
as it is explained at the end of the current section, a probabilistic guarantee on constraint
satisfaction as a function of the Γi value can be computed.

Furthermore, making the solution more robust by taking into consideration a larger un-
certainty set negatively affects the optimal solution of the problem. Thus, the parameter
Γi controls the tradeoff between the probability of constraint violation (robustness of the
solution) and the effect on the value of the objective function of the original problem; this
tradeoff is often referred to as the price of robustness [33].

16 This results equals the over-conservative solution obtained by Soyster in [207].
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2 Control of systems integrating logic, dynamics, and constraints

The set-induced robust counterpart succeeds in reducing the price of robustness, since
the optimal value of the objective function is marginally affected when the protection level
is increased. Furthermore, the proposed robust approach is computationally tractable [33].

Probability bounds on constraint violation

The work done by Bertsimas and Sim in [33] and Li and co-workers in [156] provides a
guarantee on the constraint satisfaction as a function of the value chosen for Γi.

Let x∗ be an optimal solution of the problem formulation 2.35; the probability of constraint
violation has an upper bound that is independent of the solution of the problem, and can is
defined as follows [33, 156]:

Pr

(
∑

j
ãi jx∗j > bi

)
≤ 1

2n

{
(1−µ)

(
n
bνc

)
+

n

∑
l=bνc+1

(
n
l

)}
(2.38)

where n = |Ji|, ν = Γi+n
2 and µ = ν−bνc.

Table 2.1: Choice of Γi as a function of n = |Ji| so that the probability of constraint violation is less
than 1%. Source: [33].

|Ji| Γi

5 5

10 8.2

100 24.3

200 33.9

2000 105

Table 2.1 illustrates, using equation 2.38, the choice of Γi as a function of n = |Ji| so that
the probability that the i-th constraint is violated is less than 1%. As the total number of
uncertain parameters (n = |Ji|) in the i-th constraint increases, less amount of uncertain
data (Γi) is needed to guarantee a violation probability less than 1%.

2.5 Rolling horizon framework

The rolling (or receding) horizon principle has been broadly used in control methods, such
as in Model Predictive Control (MPC) as a means to deal with the control problem when
a cost function has to be minimized in a given time horizon and the system is subject to
constraints [143].
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2.5 Rolling horizon framework

The rolling horizon framework has already been applied to several reactive scheduling
problems under uncertainty; Kopanos and Pistikopoulos present in [143] a brief review on
this subject. These approaches are based on the use of the so called receding horizon
philosophy :

"[. . .] a sequence of future control actions is chosen according to a prediction of
the future evolution of the system and applied to the plant until new measure-
ments are available. Then, a new sequence is determined which replaces the
previous one." [25].

An optimization procedure evaluates each possible control sequence by taking into ac-
count two objectives: minimization of the cost function, and protection of the system against
possible constraint violations.

Figure 2.5: Concepts associated to rolling horizon approach: scheduling, prediction and control
horizon. Source: [205].

As seen in figure 2.5, the rolling horizon implementation involves the definition of [205]:

• a prediction horizon (PH), where all the uncertain parameters are assumed to be
known with some certainty17; and

• a control horizon (CH), where the decisions obtained by the optimization procedure
are actually applied.

The prediction horizon length depends on the problem under consideration while the con-
trol horizon, typically equal to one time interval, is a subset of the prediction horizon [143].

17 Because the system receives feedback related to these parameters at each time-step update.
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2 Control of systems integrating logic, dynamics, and constraints

For instance, figure 2.6 shows a prediction horizon of three time intervals, while the length
of the control horizon is one time interval. Thus, only the first sample of the optimal se-
quence is actually applied to the system at time-step k. At time-step k+1, a new sequence
is evaluated to replace the previous one [25]. This on-line re-planning provides the desired
feedback control feature [25].

Figure 2.6: Reactive scheduling via a rolling horizon framework. Source: [143].

It is important to note that the initial state of the system in a given prediction horizon H is
equal to the final state of the system in the previous control horizon H −1 (see figure 2.6).
Therefore, the outputs of the previous time-step can be used in an iterative fashion via
a rolling horizon framework, such as the one shown in figure 2.5, for addressing reactive
scheduling problems [143]. Moreover, the system receives feedback of all input parameters
(e.g., actual demand, updated state of system) at every discrete time-step; in this manner,
each optimization is done according to the current available information [143].

Figure 2.7 shows a representative algorithm for the rolling horizon by using the output of
a MILP optimization problem.

2.5.1 Future horizon impact

Although the solution obtained for each of the prediction horizons is optimal for the corre-
sponding prediction horizon, there is no theoretical guarantee for the solution of the overall
scheduling problem to be either optimal or feasible [143]; the reason lies in the underlying
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2.5 Rolling horizon framework

Initialization

Define the initial state of the system, the total scheduling 
horizon (SH) and the control horizon length (CH); for the given 
prediction horizon (PH), calculate the total number of iterations 
(i.e, tot= (SH-PH+CH)/CH); set iter = 1. 

Update

Update the current state of the system and the uncertain 
parameters of the model with the latest information (e.g. 
electrical power demand, prices, energy generation, etc)

Find Solution

Find the optimal solution that minimizes the objective 
function of the MILP problem formulation.

Execute Solution

Actuate over the control variables of the system by 
executing the solution found for the control horizon (CH).

iter < tot

END

no

yes

iter = iter +1

Figure 2.7: Algorithm for the rolling horizon approach. Modified from [143].

fact that no information regarding the future horizon (i.e., outside the prediction horizon) is
considered when optimizing the prediction horizons [143].

While long-term optimality may not always be necessary or meaningful, feasibility is
of great importance [205]. Therefore, to ensure the feasibility of the solution throughout
the planning horizon, longer-term information (outside of the optimized prediction horizon)
should be taken into account; keeping this in mind, problem-specific terminal constraints
are added so as to ensure that the solution of the finite horizon problem is a feasible and
(near-) optimal solution to the infinite horizon problem.

Once proper terminal constraints are defined, the MILP problem formulation can be em-
bedded into an integrated MPC scheme involving problem-specific forecasting techniques
(for the uncertain parameters) for improving the performance of the method [143].
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2 Control of systems integrating logic, dynamics, and constraints

2.5.2 Prediction horizon of varied duration

There is the possibility of using horizons of prediction and control of variable lengths within
the receding horizon framework. In this way, the choice of these lengths is one more deci-
sion that the decision-maker must take; generally they will depend on the characteristics of
the system and the forecasts of the future horizon:

• Long prediction and control horizons are recommended for a system with a low dy-
namic response that can estimate its uncertain parameters within a high degree of
certainty for a long horizon;

• Short control horizons and larger prediction horizons are needed for highly dynamic
systems that also present great variability and uncertainty in the estimation of its
uncertain parameters.

Since the latter best describes the energy scheduling system considered in this study,
short control horizons (i.e., one time-step) and larger (if possible) prediction horizons are
implemented.
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3 Optimal energy storage control strategy

In this chapter, the theory presented throughout chapter 2 is applied to formulate two math-
ematical models (that is, a deterministic MILP-based rolling horizon controller and its robust
counterpart) that solve the problem stated in section 1.2 regarding the robust optimal con-
trol of the energy flows in a grid-connected microgrid.

This chapter is organized as follows: section 3.1 presents a multi-term and multi-period
cost minimization deterministic model for the microgrid system, where every nonlinear con-
straint is linearized so that a MILP problem is achieved; section 3.2 takes into account the
presence of data uncertainty in the MILP formulation, and each constraint that has at least
one non-deterministic parameter is transformed to a min-max robust counterpart, and fi-
nally a traceable linear robust counterpart of the constraint is formulated using linear duality
theory together with the uncertainty sets defined in chapter 2. The final result is a model
that provides optimal solutions while remaining feasible against all realizations of the uncer-
tainties within the predefined bounds of the uncertainty set; moreover, control parameters
inherent to the robust model allow to adjust the trade-off between the robustness of the
solution and the impact that said robustness has on the optimal solution.

3.1 Deterministic MILP optimization-based MPC

3.1.1 Objective function

The objective of the optimization problem is to minimize the economic costs of operation
of the microgrid over a predefined time horizon H . Therefore, an economic assessment
function needs to be defined; consider the multi-term cost function φ : Rm

+ 7→ R, then for
x ∈ Rm

+:

φ (x) =
m

∑
j=1

c jx j, (3.1)

where x1, . . . ,xm ∈R+ represent nonnegative decision variables of the optimization problem
that, for the purposes of this work, are electrical power flows in the system, measured in
kW; depending on the nature of each the power flow, the objective coefficients c1, . . . ,cm ∈R
can represent economic costs, revenues or penalties. Either way, they are all measured in
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3 Optimal energy storage control strategy

ct/kWh. Thus, the economic cost of microgrid operation φ for a certain set of power flows
x1, . . . ,xm ∈ R+ is measured in ct/h.

On the other hand, the rolling horizon controller scheme optimizes a certain cost function
φ ∈ R over a horizon H of Nh ∈ N time-steps; in consequence, the general multi-period
objective function χ : RNh 7→ R is defined, then for φ ∈ RNh:

χ (φ) =
1
H

Nh

∑
k=1

hkφk, (3.2)

where φ1, . . . ,φNh ∈ R are the values of the cost function at each different time-step of the
horizon; hk ∈ R+ represents the duration in hours of the k-th time-step in the horizon; and
H ∈ R+ is the total amount of hours in the horizon, defined as

H ,
Nh

∑
k=1

hk. (3.3)

The structure defined for the multi-period objective function in 3.2 allows the implementa-
tion of time-steps with different durations over the horizon; the analysis of the effect this
has on both the optimal solution and the execution time to solve the problem is carried out
in section 5.5.1.

Finally, the general structure of a multi-term multi-period objective function fo :RNh×m
+ 7→R

can be obtained by unifying both concepts presented above:

fo (x1, . . . ,xNh) =
1
H

Nh

∑
k=1

(
hk

m

∑
j=1

c jkx jk

)
, (3.4)

where x1, . . . ,xNh ∈Rm
+ are the vectors containing the m decision variables for each of the Nh

time-steps.

At each iteration, the controller solves the optimization problem over the entire rolling
horizon problem, i.e., finds the set of values for all the vectors x1, . . . ,xNh ∈Rm

+ such that the
objective function fo is minimized; however, as stated in section 2.5, only the actions cor-
responding to the first time-step of the rolling horizon window are implemented in practice,
i.e., x1 ∈ Rm

+; after these actions are executed, the horizon is updated and the controller
carries on with the next iteration.
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When applied to the system under analysis, the general structure of equation 3.4 yields
the following objective function:

fo =
1
H

Nh

∑
k=1

hk

css
(

pck + pdk

)
+ csm

ss ussk︸ ︷︷ ︸
energy storage system

+ csh pshk︸ ︷︷ ︸
load-shedding

+

+ cbk pbk− csk psk + csm
gridugridk

+ cpeak
grid pob

grid + cflat
grid (pmax

b + pmax
s )︸ ︷︷ ︸

main grid


(3.5)

All the decision variables in this cost function are nonnegative power flows in the micro-
grid measured in kW, while all the objective coefficients are measured in ct/kWh.

The energy storage system section of fo represents the usage cost of the storage sys-
tem and a smoothing term for its power profile; decision variables pck and pdk represent the
charging and discharging power of the storage system, respectively; the ESS usage cost
css is incorporated to the ojective to avoid unnecessary activity at the ESS that would oth-
erwise reduce its lifetime1; the term csm

ss ussk is used as a penalization to smooth the power
signal, that is, to minimize the differences on the power profile of the storage system over
successive horizon time-steps.

The load-shedding section is a penalization term to avoid unnecessary interruptions in
the electricity supply of certain loads present in the system; pshk is a decision variable
that represents the amount of load disconnected from the electricity supply, and csh is the
economic cost associated with such decision.

The first two terms that make up the main grid section are the net electricity usage cost
at the point of common coupling between the microgrid and the main grid; pbk is the power
bought from the grid and psk the power sold to the grid, with cbk and csk being the buying
and selling prices, respectively. The last three terms of this section comprise the grid signal
penalty terms; csm

gridugridk
smooths the grid signal by minimizing successive differences in the

power profile at the point of common coupling; peak shaving is incorporated through the
term cpeak

grid pob
grid, which represents an incremental peak usage cost above the baseline Pbase

grid ;
finally, the term cflat

grid
(

pmax
b + pmax

s
)

flattens the power profile at the point of common coupling.

1 Estimation ways for this parameter through the amortization of the ESS capital cost over a geometric series
can be found in [166].
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3.1.2 Energy storage system (ESS)

The dynamics and working limits of a general ESS are presented in this section; the ESS
is characterized by the following parameters:

• nominal energy capacity in kWh: Enom
ss ∈ R+;

• allowed maximum charge or discharge power in kW: Pmax
ss ∈ R+;

• allowed maximum instantaneous power-step in kW: ∆Pmax
ss ∈ R+;

• charge and discharge efficiencies: ηc, ηd ∈ C ;

• coefficients for State Of Charge (SOC) maximum and minimum safety levels:

SOCmin, SOCmax ∈ C : SOCmin < SOCmax;

• self-discharge loss expressed in kW2: Ploss
ss ∈ R+.

These parameters will depend on the type of technology, capacity, and low-hierarchy
electronic control system of the ESS installed in the microgrid (see section 6.2.3).

With these parameters, the safe operational lower and upper limits for the energy level
(in kWh) of the ESS can be defined:

Emin
ss , SOCminEnom

ss (3.6a)

Emax
ss , SOCmaxEnom

ss (3.6b)

State of Charge

A discrete-time model for the ESS of the form

Essk = Essk−1 +hk

(
ηc pck−η

−1
d pdk−Ploss

ss

)
;∀k ∈H (3.7)

is employed in this work, where Essk represents the amount of energy in kWh present in
the ESS at the time-step k of the horizon; hk is the length of the time-step k in hours; and
pck and pdk are two nonnegative optimization variables which indicate, in kW, the average
power charged and discharged from the ESS during every time-step k, respectively.

2 The self-discharge of the ESS is expressed in amount of energy lost per hour, which is kWh/h, which in
turn equals kW.
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3.1 Deterministic MILP optimization-based MPC

The amount of energy in the ESS present at time-step k is physically limited by its capac-
ity, i.e., by the bounds defined in equation 3.6; thus, the following constraint ensures that,
given the model of equation 3.7, and for every time-step in the horizon, the ESS remains
within the safe operational bounds defined in equation 3.6:

Emin
ss ≤ Eo

ss +
k

∑
i=1

hi

(
ηc pci−η

−1
d pdi−Ploss

ss

)
≤ Emax

ss ;∀k ∈H , (3.8)

where Eo
ss is the energy level of the ESS at the beginning of the horizon.

The desired energy level of the ESS at the end of the horizon
(
Efinal

ss ∈
[
Emin

ss ,Emax
ss
])

can
be specified through the following constraint:

Efinal
ss (1− ε)≤ Eo

ss +
Nh

∑
i=1

hi

(
ηc pci−η

−1
d pdi−Ploss

ss

)
≤ Efinal

ss (1+ ε) . (3.9)

where ε ∈ C is the tolerance allowed for the deviation from E f inal
ss ; this constraint can be

disabled by setting ε = 1. Without this constraint, there is a chance that, for a certain set
of problem parameters, the optimal solution involves a charging/discharging profile that
drains all the stored energy in the ESS by the end of the horizon. However, this chance is
negligible, since only the actions of the first time-step of the horizon are carried out before
changing the horizon and performing a new optimization.

Binary control variables, maximum power and energy availability

As exposed in section 2.2.1, binary variables can be used in the model to express logic
statements and if-then-else rules. The optimization problem within the rolling horizon con-
troller makes decisions as to whether charge or discharge the ESS at any given time-step;
to this end, the following control variables for the ESS are defined:

δck ,δdk ∈B ;∀k ∈H . (3.10)

A common microgrid architecture comprises only one bidirectional power converter con-
nected to the ESS; moreover, there is no logical sense in charging and discharging the
ESS during the same time-step. In consequence, the following restriction is enforced on
the model:

δck +δdk = 1 ;∀k ∈H , (3.11)
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3 Optimal energy storage control strategy

which states that during the entire time-step k, the ESS is either charged or discharged3.
These binary control variables are also useful for setting the maximum allowed power for

charging and discharging the ESS at each time-step, i.e.:

0≤ pck ≤ δckPmax
ss ;∀k ∈H , (3.12)

0≤ pdk ≤ δdkPmax
ss ;∀k ∈H . (3.13)

If either the charging or the discharging of the ESS is enabled, the maximum power that
can be exchanged is limited by the parameter Pmax

ss
4.

Furthermore, these binary control variables are used for setting the energy availability
during charging and discharging operations of the ESS at each time-step, i.e.:

0≤ pckhk ≤
[(

Emax
ss −Essk−1

)
η
−1
c
]

δck ;∀k ∈H , (3.14)

0≤ pdkhk ≤
[(

Essk−1−Emin
ss

)
ηd

]
δdk ;∀k ∈H . (3.15)

If δdk = 1 discharging the ESS in time-step k is enabled, and equation 3.15 states that the
maximum amount of energy than can be withdrawn from the ESS equals all the energy
available in the ESS until reaching the Emin

ss energy level; if δdk = 0 then the constraint
specifies 0≤ pdk ≤ 0, meaning that the discharge of the ESS is forbidden during time-step
k. The same analysis can be carried out for the charging constraint in equation 3.14.

For every time-step k, both energy availability constraints have in the upper bound a
product of two decision variables (i.e., Essk−1δck for the charge constraint and Essk−1δdk for
the discharge constraint). In consequence, 2Nh nonlinear constrains are being introduced
into the model. Below, the linearization transformations for these constraints are presented,
according to the methods described in section 2.2.2.

Linearization of the ESS charging constraint The biliniear term in equation 3.14 is re-
placed with the introduction an auxiliary real variable yck , Essk−1δck ,∀k ∈H ; furthermore,
upper and lower bounds are defined for the continuous decision variable involved in the
nonlinearity such that Essk−1 ∈

[
Emin

ss ,Emax
ss
]5. Then, the set of bilinear constraints in equa-

tion 3.14 is equivalent to the following set of linear constraints:

0≤ pckhk ≤ (Emax
ss δck− yck)η

−1
c ;∀k ∈H (3.16a)

3 It could happen that the optimal decision for time-step k is that the ESS is neither charged nor discharged.
In this case pck = pdk = 0 and it does not really matter which of the two control variables is enabled.
4 This value is usually imposed by the DC/DC converter of the ESS.
5 In this case, the bounds match the ones defined in equation 3.6.

48



3.1 Deterministic MILP optimization-based MPC

yck ≤ Emax
ss δck ;∀k ∈H (3.16b)

yck ≥ Emin
ss δck ;∀k ∈H (3.16c)

yck ≤ Essk−1−Emin
ss (1−δck) ;∀k ∈H (3.16d)

yck ≥ Essk−1−Emax
ss (1−δck) ;∀k ∈H (3.16e)

Linearization of the ESS discharging constraint The bilinear term in equation 3.15 is
replaced with the introduction an auxiliary real variable ydk , Essk−1δdk ,∀k ∈H ; the con-
tinuous decision variable involved in the nonlinearity is the same one as in the charging
constraint, so the upper and lower bounds already defined remain valid. Then, the set of
bilinear constraints in equation 3.15 is equivalent to the following set of linear constraints:

0≤ pdkhk ≤
(

ydk−Emin
ss δdk

)
ηd ;∀k ∈H (3.17a)

ydk ≤ Emax
ss δdk ;∀k ∈H (3.17b)

ydk ≥ Emin
ss δdk ;∀k ∈H (3.17c)

ydk ≤ Essk−1−Emin
ss
(
1−δdk

)
;∀k ∈H (3.17d)

ydk ≥ Essk−1−Emax
ss
(
1−δdk

)
;∀k ∈H (3.17e)

Maximum power-step and power signal smoothness

The last constraints introduced for the ESS address the maximum power-step allowed
between consecutive time-steps6, as well as a penalization variable to introduce control
over the smoothness of the power signal in the ESS:

∣∣(pck− pdk

)
−
(

pck−1− pdk−1

)∣∣≤ ussk ≤ ∆Pmax
ss ;∀k ∈H . (3.18)

The linearized form of this constraint is defined as follows:

−∆Pmax
ss ≤−ussk ≤

(
pck− pdk

)
−
(

pck−1− pdk−1

)
≤ ussk ≤ ∆Pmax

ss ;∀k ∈H , (3.19)

where ussk is a nonnegative optimization variable for the time-step k that allows to con-
trol (through the election of the penalization cost csm

ss in the objective function) the level of

6 This is usually limited by the DC/DC converter of the ESS.
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3 Optimal energy storage control strategy

smoothness of the power signal of the ESS; smoothing the power profile reduces transients
that could otherwise be harmful to the life of the ESS.

Once again, initial conditions are needed for the rolling horizon control:

k = 1→

{
pck−1 = Po

c

pdk−1 = Po
d

(3.20)

where Po
c and Po

d are the charging and discharging power (in kW) for the last action taken
by the control system (i.e., at the time-step before the beginning of the current horizon),
respectively.

3.1.3 Interaction between the microgrid and the main grid

Physically there exists only one point of common coupling between the microgrid and the
main grid; this bidirectional switch is actuated by the controller, and can be either connected
or disconnected; in the former, the microgrid is allowed to exchange power with the grid,
by either buying or selling energy; in the latter, the microgrid is isolated from the main grid,
and is said to be in island mode.

By controlling the power flow at the point of common coupling, the controller is able
to shape the power profile; this allows to generate a more predictable and stable load
response from the main grid perspective [166]. In this way, the introduction of a microgrid
topology does not disrupt the current scheme of energy distribution and control in the main
grid.

Binary control variables

The logical variables
δbk ,δsk ∈B ;∀k ∈H (3.21)

are defined to control the power exchange with the main grid; these variables interact with
each other through the following constraint:

δbk +δsk ≤ 1 ;∀k ∈H , (3.22)

which means that for any time-step k the microgrid can either be buying energy from the
main grid

[(
δbk = 1

)
∧ (δsk = 0)

]
; selling energy to the main grid

[(
δbk = 0

)
∧ (δsk = 1)

]
; or in

island mode
[(

δbk = 0
)
∧ (δsk = 0)

]
.
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3.1 Deterministic MILP optimization-based MPC

Maximum power exchanged with the grid and signal flattening

The power transfer between the main grid and the microgrid will present constraints related
to the physical limitations of the transmission line infrastructure; these boundaries can be
made variable in the optimization model, so that the power profile can be flattened or
squeezed by the controller. In consequence, it is defined:

0≤ pbk ≤ pmax
b δbk ;∀k ∈H , (3.23)

0≤ psk ≤ pmax
s δsk ;∀k ∈H , (3.24)

where pmax
b and pmax

s are nonnegative optimization variables corresponding to the maximum
grid power rate.

For every time-step k, both grid signal flattening constraints have in the upper bound
a product of two decision variables (i.e., pmax

b δbk for the buying constraint and pmax
s δsk for

the selling constraint). In consequence, 2Nh nonlinear constrains are being introduced into
the model. Below, the linearization transformations for these constraints are presented,
according to the methods described in section 2.2.2.

Linearization of the buying constraint The bilinear term in equation 3.23 is replaced
with the introduction an auxiliary real variable ybk , pmax

b δbk ,∀k ∈H ; furthermore, upper
and lower bounds are defined for the continuous decision variable involved in the nonlin-
earity such that pmax

b ∈
[
0,Pmax

grid

]
7. Then, the set of bilinear constraints in equation 3.23 is

equivalent to the following set of linear constraints:

0≤ pbk ≤ ybk ;∀k ∈H (3.25a)

ybk ≤ Pmax
grid δbk ;∀k ∈H (3.25b)

ybk ≥ 0 ;∀k ∈H (3.25c)

ybk ≤ pmax
b ;∀k ∈H (3.25d)

ybk ≥ pmax
b −Pmax

grid
(
1−δbk

)
;∀k ∈H (3.25e)

Linearization of the selling constraint The bilinear term in equation 3.24 is replaced
with the introduction an auxiliary real variable ysk , pmax

s δsk ,∀k ∈H ; furthermore, upper

7 The bounds for pmax
b are given by the physical limits for the amount of power that can be exchanged at the

point of common coupling and thorough the transmission lines belonging to the main grid. The minimum
value is set to zero since the decision variable for buying power from the grid is nonnegative.
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and lower bounds are defined for the continuous decision variable involved in the nonlin-
earity such that pmax

s ∈
[
0,Pmax

grid

]
8. Then, the set of bilinear constraints in equation 3.24 is

equivalent to the following set of linear constraints:

0≤ psk ≤ ysk ;∀k ∈H (3.26a)

ysk ≤ Pmax
grid δsk ;∀k ∈H (3.26b)

ysk ≥ 0 ;∀k ∈H (3.26c)

ysk ≤ pmax
s ;∀k ∈H (3.26d)

ysk ≥ pmax
s −Pmax

grid (1−δsk) ;∀k ∈H (3.26e)

Grid signal smoothing

A penalization constraint of the form

∣∣(pbk− psk

)
−
(

pbk−1− psk−1

)∣∣≤ ugridk
;∀k ∈H , (3.27)

with a linearized expression equal to

−ugridk
≤
(

pbk− psk

)
−
(

pbk−1− psk−1

)
≤ ugridk

;∀k ∈H (3.28)

is introduced as a way of controlling how smooth is the transition between time-steps of the
power signal at the point of common coupling; ugridk

is a nonnegative optimization variable
for the time-step k that allows to control (through the election of the penalization cost csm

grid

in the objective function) how smooth the power profile is. Once again, initial conditions are
needed for the rolling horizon control:

k = 1→

{
pbk−1 = Po

b

psk−1 = Po
s

(3.29)

where Po
b and Po

s are the bought and sold power (in kW) for the last action taken by the con-
trol system (i.e., at the time-step before the beginning of the current horizon), respectively.

8 The infrastructure involved in both types of power exchange between the microgrid and the main grid (buying
and selling) is the same. In consequence, the limits for the power exchange at the selling state are the same
as those defined for the linearization of the buying constraint.
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Peak shaving

By defining a constant power baseline Pbase
grid in kW, a constraint can be enforced to penalize

any power exchange that produces a peak over this baseline:

pbk + psk ≤ Pbase
grid + pob

grid ;∀k ∈H , (3.30)

where pob
grid is a global nonnegative decision variable (i.e., the variable is unique for the

whole horizon) that specifies the amount of power exchanged over the baseline; a power
spike over the baseline at any given point of the horizon produces a penalty cost of cpeak

grid pob
grid

in the objective function.

3.1.4 Load balance

At every time-step k of the horizon, the energy flow between all the actors in the system
has to be balanced according to the following equation:

(
pbk− psk

)
+
(

pdk− pck

)
+Pgk + pshk = Plk ;∀k ∈H , (3.31)

where pshk is a nonnegative optimization variable for controlling the amount of load-
shedding9 during time-step k; Plk is a nonnegative parameter that indicates the average
demand of power in kW of all the consumers inside the microgrid during time-step k; and
Pgk is a nonnegative parameter that indicates the average power output in kW during the
time-step k of the RES present in the microgrid 10.

Load shedding

The act of load-shedding produces a disturbance in the normal functioning of the affected
equipment and the activities of the people who depend on them. Therefore, it is considered
an undesired action in the normal operation of the microgrid and, according to the following
constraint, it will only be allowed when the network is in island mode

(
δbk +δsk = 0

)
:

0≤ pshk ≤ Plk

[
1−
(
δbk +δsk

)]
;∀k ∈H . (3.32)

9 Load-shedding refers to the reduction of the amount of load present in the microgrid by interrupting the
electricity supply to certain consumers in the system.

10 As explained in section 1.1, the RES used in this thesis is the non-dispatchable regenerative braking of trains
approaching the passenger stations in the vicinity of the Neuostheim electrical substation. Nonetheless, this
parameter of the problem can be generalized to any type of RES; renewable or not; dispatchable or not (if
the energy source is dispatchable, the parameter becomes an optimization variable).
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3 Optimal energy storage control strategy

If the microgrid is connected to the main grid
(
δbk +δsk = 1

)
, the constraint becomes pshk =

0. Furthermore, the amount of load-shedding during time-step k can never be larger than
the amount of load present at the same time-step.

If the load-shedding option is implemented at time-step k, an economic penalty of csh pshk

is added to the objective function of the controller. The value of the economic cost csh is
intimately related to the type of equipment connected to the microgrid and how critical is
that it always has a stable electrical supply; due to the high penalty cost of load shedding,
during islanded mode service reliability becomes more essential than operation cost [112].

3.1.5 Deterministic MILP problem formulation

The MILP optimization-based MPC problem developed throughout this section can be sum-
marized as follows:

minimize 3.5

subject to 3.8, 3.9, 3.11, 3.12, 3.13, 3.16, 3.17, 3.19,

3.22, 3.25, 3.26, 3.28, 3.30, 3.31, 3.32.

(3.33)

In order to minimize the objective, the MILP optimization problem 3.33 seeks to find the
optimal values for the following nonnegative decision variables:

pck , pdk , pbk , psk , pshk , ussk , ugridk , yck , ydk , ybk , ysk ∈ R+, ∀k ∈H ;

δck , δdk , δbk , δsk ∈B, ∀k ∈H ;

pmax
b , pmax

s , pob
grid ∈ R+.

(3.34)

Thus, the MILP optimization problem 3.33 has (15Nh +3) decision variables and (40Nh +1)
constraints.

3.2 Robust optimization approach

This section deals with the derivation of the robust counterpart of the deterministic MILP
optimization problem defined in equation 3.33; to do so, once the sources of data uncer-
tainty are identified, the theory presented in section 2.4 is used to transform each constraint
with uncertain data to its robust counterpart.
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3.2.1 Uncertain parameters in the model

Below are the model parameters that are assumed to have some component of uncertainty
in their values; this uncertainty is represented with the structure shown in equation 2.23:

• price for buying energy from the main grid: c̃bk , ∀k ∈H ;

• price for selling energy to the main grid: c̃sk , ∀k ∈H ;

• energy generation from the regenerative braking of the trains: P̃gk , ∀k ∈H ;

• demand of energy inside the microgrid (loads at the train stations): P̃lk , ∀k ∈H ;

3.2.2 Previous steps

Following the guidelines of section 2.4.3, as a previous step to finding the robust coun-
terpart, the problem formulation is transformed so that all the uncertain parameters are in
the left hand side of the constraints; because some of the uncertain parameters defined in
section 3.2.1 are in the objective function fo, the optimization variable q ∈ R is defined so
that problem 3.33 is cast as:

minimize q

subject to fo−q≤ 0,

3.8, 3.9, 3.11, 3.16, 3.17, 3.19, 3.22

3.25, 3.26, 3.28, 3.30, 3.31, 3.32.

(3.35)

3.2.3 Robust counterpart of the cost constraint

The new cost constraint introduced in section 3.2.2 (i.e., fo−q≤ 0) presents 2Nh uncertain
parameters, i.e., c̃bk , c̃sk ∀k ∈H ; as explained in section 2.4.3, a constraint that contains
uncertain parameters as defined in equation 2.23 can be split into a deterministic part and
an uncertain part (see equation 2.24); thus, for non-deterministic electricity buying and
selling prices the cost function defined in equation 3.5 can be rewritten as:

f̃o = fo +
1
H

Nh

∑
k=1

hk
(
ξbk ĉbk pbk−ξsk ĉsk psk

)
(3.36)
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where the deterministic term fo remains as defined in equation 3.5. Then, the robust
counterpart of the cost constraint is defined as:

fo−q+max
ξ∈U

{
1
H

Nh

∑
k=1

hk
(
ξbk ĉbk pbk−ξsk ĉsk psk

)}
≤ 0. (3.37)

For a interval+polyhedral uncertainty set, the transformation 2.34 holds; thus, the robust
counterpart 3.37 of the cost constraint is equivalent to:

fo +
Nh

∑
k=1

(
wbk +wsk

)
+Γbszbs−q≤ 0; (3.38a)

zbs +wbk ≥
1
H

hkĉbk pbk ,∀k ∈H ; (3.38b)

zbs +wsk ≥
1
H

hkĉsk psk ,∀k ∈H ; (3.38c)

wbk ≥ 0 ,∀k ∈H ; (3.38d)

wsk ≥ 0 ,∀k ∈H ; (3.38e)

zbs ≥ 0; (3.38f)

where Γbs ∈R∩ [1,2Nh] is a parameter controlled by the decision-maker to adjust the level of
conservationism of the optimal solution, that is, how robust the solution is against uncertain-
ties in the price signals. This robust counterpart adds to the problem 2Nh +1 nonnegative
optimization variables and 2Nh linear constraints.

As pointed out by Leiras et al. in [151], another possible approach is to consider two
different uncertainty sets for the cost constraint, one for each of the price signals:

fo +
Nh

∑
k=1

(
wbk +wsk

)
+Γbzb +Γszs−q≤ 0; (3.39a)

zb +wbk ≥
1
H

hkĉbk pbk ,∀k ∈H ; (3.39b)

zs +wsk ≥
1
H

hkĉsk psk ,∀k ∈H ; (3.39c)

wbk ≥ 0 ,∀k ∈H ; (3.39d)

wsk ≥ 0 ,∀k ∈H ; (3.39e)

zb ≥ 0; (3.39f)

zs ≥ 0. (3.39g)

In this case, the decision-maker is provided with two parameters Γs, Γb ∈ R∩ [1,Nh], that
allow independent control of the conservationism level for both price signals.
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This approach to the robust counterpart adds to the problem 2Nh + 2 nonnegative opti-
mization variables and 2Nh linear constraints.

3.2.4 Robust counterpart of the load balance constraint

Constraint 3.31 defines the load balance of the microgrid at each time-step of the horizon
H ; thus, Nh load balance constraints exist in the problem, each one with two parameters
prone to uncertainty

(
P̃gk , P̃lk ∈ R+

)
.

Following the transformation introduced in equation 2.20, the auxiliary variables xl =−1
and xg = 1 are defined so that the constraint 3.31 can be rewritten as:

(
pbk− psk

)
+
(

pdk− pck

)
+ pshk + P̃gkxg + P̃lkxl = 0 ;∀k ∈H , (3.40)

and the robust counterpart is derived is as follows:

(
pbk− psk

)
+
(

pdk− pck

)
+ pshk +Pgkxg+Plkxl+max

ξ∈U

{
ξgk P̂gkxg +ξlk P̂lkxl

}
= 0 ;∀k∈H . (3.41)

For a interval+polyhedral uncertainty set, the transformation 2.34 holds; thus, the robust
counterpart 3.41 of the load balance constraint is equivalent to:

(
pbk− psk

)
+
(

pdk− pck

)
+ pshk +wlk +wgk +Γlbkzlbk = Plk−Pgk ,∀k ∈H ; (3.42a)

zlbk +wlk ≥ P̂lk ,∀k ∈H ; (3.42b)

zlbk +wgk ≥ P̂gk ,∀k ∈H ; (3.42c)

zlbk ≥ 0 ,∀k ∈H ; (3.42d)

wgk ≥ 0 ,∀k ∈H ; (3.42e)

wlk ≥ 0 ,∀k ∈H ; (3.42f)

where Γlbk ∈ R∩ [1,2] is a parameter controlled by the decision-maker to adjust the level
of conservationism of the optimal solution, that is, how robust the solution is against uncer-
tainties in the price signals.

This robust counterpart adds to the problem 3Nh nonnegative optimization variables and
2Nh linear constraints. Note for this set of constraints exist Nh optimization parameters (i.e.,
Γlbk); the decision-maker can either set the same value for all of the parameters or treat
them separately; the latter could prove to be useful for increasing the level of robustness
for time-steps far on the horizon, as it is more likely that the uncertainty of the predictions
is greater there.
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3.2.5 Robust counterpart of the load-shedding constraint

Constraint 3.32 defines the load-shedding limitations at each time-step of the horizon H ;
thus, Nh load-shedding constraints exist in the problem, each one with one uncertain pa-
rameter (i.e. P̃lk ∈ R+) that multiplies two logical variables and a constant.

Following the transformation introduced in equation 2.20, the auxiliary variable xl =−1 is
defined so that the right term of constraint 3.32 can be rewritten as:

pshk + P̃lkxl + P̃lkδbk + P̃lkδsk ≤ 0 ;∀k ∈H , (3.43)

and the robust counterpart is derived is as follows:

pshk +Plkxl +Plkδbk +Plkδsk +max
ξ∈U

{
ξlk P̂lkxl +ξlk P̂lkδbk +ξlk P̂lkδsk

}
≤ 0 ;∀k ∈H . (3.44)

These uncertainties can be treated like three uncertain coefficients (one for each de-
cision variable) with a known correlation equivalent to one; thus, the correlated inter-
val+polyhedral uncertainty set is used. For this set the transformation defined in equa-
tion 2.36 holds; the robust counterpart 3.44 of the load-shedding constraint is equivalent to
the following set of linear constraints:

pshk +Γshk

(
zshck + zshbk + zshsk

)
+
(
wlck +wlbk +wlsk

)
≤ Plk

[
1−
(
δbk +δsk

)]
,∀k ∈H ; (3.45a)

zshck +

(
Γshk−1

2

)(
zshbk + zshsk

)
+wlck ≥ P̂lk ,∀k ∈H ; (3.45b)

zshbk +

(
Γshk−1

2

)(
zshck + zshsk

)
+wlbk ≥ P̂lkδbk ,∀k ∈H ; (3.45c)

zshsk +

(
Γshk−1

2

)(
zshbk + zshck

)
+wlsk ≥ P̂lkδsk ,∀k ∈H ; (3.45d)

zshck ≥ 0 ,∀k ∈H ; (3.45e)

zshbk ≥ 0 ,∀k ∈H ; (3.45f)

zshsk ≥ 0 ,∀k ∈H ; (3.45g)

wlck ≥ 0 ,∀k ∈H ; (3.45h)

wlbk ≥ 0 ,∀k ∈H ; (3.45i)

wlsk ≥ 0 ,∀k ∈H ; (3.45j)

where Γshk ∈ R∩ [1,3] is a parameter controlled by the decision-maker to adjust the level
of conservationism of the optimal solution, that is, how robust the solution is against uncer-
tainties the load demand signal.
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This robust counterpart adds to the problem 6Nh nonnegative optimization variables and
3Nh linear constraints. Note for this set of constraints exist Nh optimization parameters (i.e.,
Γshk); the decision-maker can either set the same value for all of the parameters or treat
them separately; the latter could prove to be useful for increasing the level of robustness
for time-steps far on the horizon, as it is more likely that the uncertainty of the predictions
is greater there.

3.2.6 Robust MILP problem formulation

The robust counterpart of the MILP optimization-based MPC problem of equation 3.35 is
obtained by replacing each constraint that has non-deterministic parameters with its robust
counterpart; thus, the robust counterpart is defined as:

minimize q

subject to 3.8, 3.9, 3.11, 3.12, 3.13, 3.16, 3.17, 3.19,

3.22, 3.25, 3.26, 3.28, 3.30, 3.39, 3.42, 3.45.

(3.46)

In order to minimize the objective, the robust MILP optimization problem 3.46 seeks to
find the optimal values for the following decision variables:

pck , pdk , pbk , psk , pshk , ussk , ugridk , yck , ydk , ybk , ysk ∈ R+, ∀k ∈H ;

δck , δdk , δbk , δsk ∈B, ∀k ∈H ;

pmax
b , pmax

s , pob
grid ∈ R+;

q ∈ R;

wbk , wsk , wlk , wgk , wlck , wlbk , wlsk ∈ R+, ∀k ∈H ;

zlbk , zshck , zshbk , zshsk ∈ R+, ∀k ∈H ;

zb, zs ∈ R+.

(3.47)

Thus, the MILP optimization problem 3.33 has (15Nh +3) decision variables and (40Nh +1)
constraints.

Furthermore, the decision-maker is provided with the following (2Nh +2) parameters to
control the level of robustness of the optimal solution:

Γb, Γs ∈ R∩ [1,Nh] ;

Γlbk ∈ R∩ [1,2] , ∀k ∈H ;

Γshk ∈ R∩ [1,3] , ∀k ∈H .

(3.48)
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4 Implementation

This chapter briefly describes in section 4.1 the techniques and software used to implement
the EMS models developed in the previous chapter, and in section 4.2 how these models
are embed and solved within a rolling horizon scheme.

4.1 Optimization model

Practical mathematical programming can be fairly iterative as described as in figure 4.1 [85].
A Mathematical Programming Language, or AMPL, is a modeling language designed scpe-
cially designed to help people through this process [85].

AMPL is classified as an algebraic modeling language, because it allows the use of tradi-
tional mathematical notation to describe objective and constraint functions [85]. Therefore,
the language syntax proves to be intuitive and easy to read and understand for humans.
Furthermore, there is no need for additional conversions steps (made by the modeler) to
input the model into the software; this saves time, money and reduces the probability of
errors in the model. Figures 4.2a and 4.2b show two fragments of code that illustrate the
high level syntax of AMPL.

AMPL interfaces with several well-known commercially available solvers, each one of
them specializing in different classes of mathematical problems. The solver used for LP and
MILP formulations (among other classes of problems) is the IBM ILOG CPLEX Optimizer.

Even though there exist other modeling languages for solving mathematical optimization
problems (General Algebraic Modeling System, or GAMS, is another popular option), it was
found that AMPL provides to the user the most complete documentation, as well as a very
functional interface with external programs.

4.2 Rolling horizon scheme

AMPL has an Application Programming Interface (API) that provides an object-oriented
callable library that allows access to AMPL models and run AMPL commands from exter-
nal programs [18]. Through this API data and results can be easily exchanged between
AMPL and external languages, allowing the embedding of the AMPL models in external
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4 Implementation

Formulate a model

Formulate a model, the abstract system of variables, 
objectives, and constraints that represent the general 
form of the problem to be solved.

Collect data

Collect data that define a specific problem instance.

Generate specific problem

Generate a specific objective function and constraint 
equations from the model and data.

Solve the problem

Solve the problem instance by running a program, or 
solver, to apply an algorithm that finds optimal values of 
the variables.

Are results 
satisfactory?

END

Yes

No

R
edefine the m

odel and data as necessary.

Figure 4.1: Algorithm for practical mathematical programming. Modified from [85].

(a)

(b)

Figure 4.2: Fragments of AMPL code for the models created in chapter 3. (a) Definition of horizon
related parameters (see equation 3.3); (a) Definition of the grid binary control variables
(see equation 3.21) and its related constraint (see equation 3.22).
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4.2 Rolling horizon scheme

applications and the programming of complex algorithm schemes. Therefore, the AMPL
API is used to embed the AMPL model into a rolling horizon scheme programmed in a
MATLAB script; during each iteration of the rolling horizon algorithm, the MATLAB script,
using the AMPL API, updates the parameters of the model and calls the AMPL solver that
solves the problem using the IBM ILOG CPLEX solver.
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MATLAB Script
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Rolling Horizon Loop
Parameter Forecasting with ANNs

Definition of the MILP optimization problem
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Figure 4.3: Information flow between the different layers of the EMS controller.

Moreover, an abstraction layer is programmed in MATLAB to make the code of the EMS
controller independent from the API provided by AMPL. The information flow between the
different layers of the EMS architecture can de depicted in figure4.3; the general flow of the
EMS code can be seen in the flowchart of figure 4.4.
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Begin

End

Time frame; 
Parameters;

Initial Conditions.

Init AMPL Engine.Init AMPL Object;
format solver & options.

Set Parameters and
Initial Conditions.

End AMPL Engine.

Plots.

Solution 
and Plots.

Receding horizon 
algorithm.

No

Yes

k = 1

On-line forecasts 
for Pgen, Pload, Cbuy 

and Csell.

Update model data.

Solve model.

Retrieve solution 
from AMPL.

Update Initial 
Conditions.

k ← (k+1)

k ≤ Nh

Update prediction horizon.

Begin

End

MATLAB only;

MATLAB call to AMPL API;

MATLAB call to forecasting models.

AMPL 
model Load AMPL model.

Figure 4.4: Flowchart for the EMS controller.
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5 Results and discussion

In order to demonstrate the different features of the mathematical models derived for the
EMS throughout chapter 3, simulations are performed under a variety of conditions.

This chapter is organized as follows: section 5.1 shows the output signals from the EMS
and how they relate with the different stages of the rolling horizon control; section 5.2
investigates the robustness of the EMS by checking the feasibility of its decisions when
they are exposed to the actual realizations of the forecasted values; section 5.3 presents
the different penalization terms the decision-maker has available, and shows how their
usage changes the power profiles given by the EMS; section 5.4 explains how the EMS
can be used as a design tool to find the optimal capacity and power rating for the ESS;
finally, section 5.5 studies the computational load of the EMS to determine if it is suitable
for use in real-time applications.

5.1 Output profiles

Start 
Time

Simulation 
Time1 2 3 4 5 6 7 8 9 10

2

3

4

5

6

Forecast

History
Present

Update

Figure 5.1: Rolling horizon framework.

Figure 5.1 re-visits the theory of the rolling horizon framework exposed in section 2.5.
The control horizon is represented by the present time-step, and for the simulations per-
formed throughout this chapter it will vary between 30 and 60 minutes. On the other hand,
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5 Results and discussion

the prediction horizon, or forecasting horizon, will range from 12 up to 96 hours. Finally, the
scheduling horizon will be as long as it is necessary.

An implementation example is shown below with the control horizon set to 30 minutes, a
prediction horizon of 24 hours and a scheduling horizon of 1 week; all the data use in the
simulation is recollected from a week belonging to the winter of 2016.
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Figure 5.2: Some of the EMS input parameters that need to be forecasted by the prediction algo-
rithms. This example shows a control horizon of 30 minutes, a forecasting horizon of
24 hours and a scheduling horizon of 1 week; this frame of the EMS shows the control
horizon on the first 30 minutes of the Friday.

Figure 5.2 depicts some of the EMS input parameters that need to be forecasted by
prediction algorithms, the color-coding matches the one in figure 5.1, showing the current
time-step, as well as the prediction horizon and all the past time-steps.

These data is used as input to the EMS, which outputs, for the entire prediction horizon,
the optimal power profiles so that the operational cost of the microgrid is minimized (see
figure 5.3). The first plot of figure 5.3 shows the profile for the power exchanged with the
ESS at each time step. This profile is the result of subtracting at each time-step the decision
variable psk from the decision variable pck ; since both decision variables are nonnegative, a
positive power in the power profile means that the ESS is charging, while a negative power
means that it is discharging.

On the other hand, the second plot of figure 5.3 shows the profile for the power ex-
changed with the main distribution grid at each time-step. This profile is the result of sub-
tracting at each time-step the decision variable pbk from the decision variable psk ; since
both decision variables are nonnegative, a positive power in the power profile means that
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Figure 5.3: Optimal set of decisions found by the EMS controller for the entire forecasting horizon.
Only the decisions corresponding to the control horizon will be implemented, while the
decisions for the rest of the horizon will be discarded before updating the time-step.

the microgrid is buying power from the main grid, while a negative power means that it is
selling power to the main grid.

As described in section 2.5 only the actions for the control horizon are saved and imple-
mented, while the rest of the the optimal solution found by the EMS is discarded before
updating the time-step and starting a new iteration. Figure 5.4 shows the history of deci-
sions implemented by the EMS controller at each one of the different control horizons up
to the present time-step, together with the evolution over time of the state of charge of the
ESS.

5.2 Robustness of the solution

In this section the optimal solution given by the robust optimization approach is compared
to the deterministic case; the feasibility and quality of the solution are studied for different
scenarios of uncertainty.

5.2.1 Feasibility against data uncertainty

To check how robust the decisions made by the EMS truly are, a set of decisions is de-
rived from the EMS for a predefined uncertainty set; this set of decisions is then exposed
to the actual realizations of the forecasted parameters, and the feasibility of the solution is
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Figure 5.4: History of decision implemented by the EMS controller at each one of the different con-
trol horizons up to the present time-step. The evolution over time of the state of charge
of the ESS (affected by these decisions) is also shown in the figure; for the ESS oper-
ation the safe operational bounds SOCmin and SOCmax are set to 0,2 and 0,8, respec-
tively.

checked. Monte-Carlo simulations are carried out with the objective of verifying the feasi-
bility of the solution for different realizations of the parameters, both inside and outside the
predefined uncertainty set; this is achieved by adding to the realization a Gaussian noise
of zero mean and a three-sigma value that ranges from zero to four times the length of the
uncertainty set. For clarity, the uncertainty sets are normalized in the following figures.

Figure 5.5a shows the results for three different predefined uncertainty sets; the first
uncertainty set is normalized to one, while the others have one half of the length and one-
tenth of the length of the first uncertainty set. The EMS solution for each of these three
uncertainty sets is exposed to the actual realizations of the forecasted parameters and the
probability that the solution remains feasible is calculated. The probability at each point
of the graph is the result of Monte-Carlo simulations with a different range of variation for
the actual realization of the parameter. Figures 5.5b to 5.5d show three examples of these
ranges of variation; as the realization of the parameters starts to fall outside the predefined
uncertainty set, the probability that the solution of the EMS remains feasible starts to drop.
Most importantly, it is a certainty that the solution given by the EMS will remain feasible
as long as the realizations stay within the predefined uncertainty set. This results clearly
shows the importance that appropriate uncertainty sets have on the performance of the
solution, as it is explained in chapter 7.
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0.1 0.5 1 2 3 4
Normalized uncertainty set width [-]

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
 o

f 
fe

as
ib

le
 s

ol
ut

io
n 

[-
]

Length uncertainty set: 1.0
Length uncertainty set: 0.5
Length uncertainty set: 0.1

(b)

(c)

(d)

(a)

-4 -3 -2 -1 0 1 2 3 4

Normalized actual uncertainty [-]

Data inside predefined set
Data outside predefined set

(b)

-4 -3 -2 -1 0 1 2 3 4

Normalized actual uncertainty [-]

Data inside predefined set
Data outside predefined set

(c)

-4 -3 -2 -1 0 1 2 3 4

Normalized actual uncertainty [-]

Data inside predefined set
Data outside predefined set

(d)

Figure 5.5: (a) Probability that the solution given by the EMS remains feasible for different real-
izations of the forecasted parameter, shown for three different uncertainty sets. When
the uncertainty set is not defined properly, the realization of the parameter starts to fall
outside of this set and the probability that the solution remains feasible starts to fall.
Different Monte-Carlo simulations are shown for the actual realization of the forecasted
parameter: (b) good uncertainty set definition, where the realization of the parameter
always falls within the predefined interval; (c) the realization of the parameter starts to
fall outside the predefined uncertainty set, causing infeasible solutions; (d) the choice
of the uncertainty interval is quite poor in this example, since the realization of the pa-
rameter falls quite often outside of the interval and the probability the the solution is
feasible is close to zero.
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5.2.2 Operation cost against data uncertainty

As it was explained in section 2.4, it is not advisable to make an excessive increase in
the size of the uncertainty interval, since this increment is accompanied by a deterioration
of the optimal solution found by the EMS. Figure 5.6 shows the relationship between the
length of the uncertainty set and the deterioration of the optimal solution; if there is no
uncertainty in the forecasts made for the parameters (an ideal state), the profit given by the
deterministic approach is greater than the profit given by the robust approach. However, as
the system evolves to a more realistic implementation, the forecasts become uncertain and
the robust approach gives more profit than the deterministic approach. In consequence, in
a system where forecasts are not deterministic and are likely to contain uncertainties, the
robust approach to the optimization gives more profit than the deterministic case.
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Figure 5.6: Deterioration of the optimal solution as the uncertainty in the forecasts increases.
When the forecasts present no uncertainty (ideal case) the deterministic approach
presents a better solution than the robust cases; as the uncertainty of the forecasts
increases (real case), the robust optimization presents a solution of better quality.

5.3 Power profile shaping goals

The penalization terms added in the objective function of equation 3.5 together with their
corresponding constraints allow the decision-maker to shape the power profiles given as
output by the EMS; he does this by choosing the values of the penalization costs. This
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5.3 Power profile shaping goals

grants the decision-maker the ability to meet sub-objectives of the system related to peak
demand and profile smoothing, as the following sections describe.

5.3.1 Grid power profile flattening

The penalization cost for flattening the profile of the power exchanged with the main grid(
cflat

grid

)
allows to control the maximum peak-to-peak power exchanged; this is achieved by

multiplying in equation 3.5 this penalization cost with the maximum peak-to-peak value for
the power exchanged throughout the whole prediction horizon.
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Figure 5.7: Trade-off for different values of cflat
grid between controlling the peak-to-peak power ex-

change with the main distribution grid and the savings from the operation of the micro-
grid.

Figure 5.7 shows the trade-off between controlling the value of the peak-to-peak power
exchange and the savings from the operation of the microgrid; increasing the penalization
cost will give the decision-maker more control over the peak-to-peak power exchanged with
the main grid, but this will decrease the savings obtained by the EMS.
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Figure 5.8: Evolution of the power profile for the exchange with the main distribution grid for dif-
ferent values of the penalization cost cflat

grid; as the penalization cost is increased, the
peak-to-peak power exchanged with the main grid is decreased.

Figure 5.8 shows how the power profile for the main grid changes for different values of
cflat

grid while all other parameters and input data are left unchanged between simulations.

5.3.2 ESS power profile smoothing

Through the incorporation of the smoothing penalization cost (csm
ss ), the decision-maker has

some influence over the final shape of the power profile for the exchange with the ESS; this
is achieved by adding to the cost function of equation 3.5 a term where the penalization
cost multiplies the decision variable ussk , which is linked to the constraint of equation 3.18.

This penalization allows to control the maximum number of charging and discharging
cycles for the ESS over a period of time, allowing in consequence to extend the lifetime of
the ESS.

Figure 5.9 shows the trade-off between controlling the number of ESS charging and
discharging cycles and the savings from the operation of the microgrid; increasing the
penalization cost will give the decision-maker more control over the number of cycles over
a period of time so that the lifetime of the ESS is extended, but this will decrease the
savings obtained by the EMS.

Figure 5.10 shows how the power profile and the state of charge (SOC) of the ESS
change for different values of csm

ss while all other parameters and input data are left un-
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Figure 5.9: Trade-off between controlling the number of ESS charging and discharging cycles and
the savings from the operation of the microgrid; increasing the penalization cost will
give the decision-maker more control over the number of cycles over a period of time
so that the lifetime of the ESS is extended, but this will decrease the savings obtained
by the EMS.

changed between simulations. As the penalization increases, several small charging and
discharging cycles done to optimize the energy transfer and operational cost are no longer
implemented by the EMS.

5.4 Optimal sizing of the ESS

The proposed EMS can also be used as a designing tool to derive the capacity and power
rating needed for the ESS that is going to be installed in the microgrid. With this purpose,
the impact that the capacity and power rating of the ESS have on the operational cost of the
microgrid is investigated in this section by performing a sensitivity analysis; to accomplish
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Figure 5.10: Evolution of the power profile and state of charge of the ESS for different values of
the penalization cost csm

ss ; as the penalization increases, several small charging and
discharging cycles done to optimize the energy transfer and operational cost are no
longer implemented by the EMS. Top: csm

ss = 0,10ct./kWh; middle: csm
ss = 0,25ct./kWh;

bottom: csm
ss = 1,00ct./kWh.

this task, the same optimization problem is solved for a variety of ESS capacities and power
ratings.

Figure 5.11: Optimal ESS Sizing. Source: [21].
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Figure 5.11 depicts the total microgrid cost as a function of the ESS capacity; this total
cost is obtained by performing the summation of the microgrid operating cost and ESS
capital investment. The investment cost is directly proportional (in a linear fashion) to
the ESS capacity, while the microgrid operating cost is inversely proportional to the ESS
capacity. Hence, the minimum value of the total microgrid cost gives the optimal ESS size
for the microgrid, as shown in figure 5.11.

Apart from being proportional to the capacity and power rating, the capital investment
cost for the ESS is also a function of the technology used to storage the energy; since this
work considers a generic storage system of no particular technology, the capital investment
cost is unknown and the optimal ESS capacity and power rating is not determined. How-
ever, the analysis can be performed when a specific storage system technology is applied
to the problem.
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Figure 5.12: Optimal ESS sizing: sensitivity of the operational cost to the ESS capacity and power
rating.

Figure 5.11 shows that the revenues from the microgrid increase proportionally to the
capacity and power rating of the ESS. This is verified through simulations in figure 5.12. As
the capacity of the ESS increase, the EMS can optimize the moment of buying and selling
of a greater number of energy quanta; as Bahramirad et al. explains it in [21]:

"A larger ESS requires higher power import (as well as local generation) in low
prices hours, thus increasing the cost of power import. On the other hand, a
larger ESS increases the power export to the grid at times of high electricity
prices and also reduces the units generation cost. Therefore, it would result in
reduced operating costs."
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Furthermore, the increase of the power rating gives the storage (and the control system)
a higher dynamic response, because it can respond in a shorter period of time to a transfer
of a certain number of energy quanta.
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Figure 5.13: Optimal ESS sizing: sensitivity of the operational cost to the minimum number of
hours needed to reach the maximum capacity of the ESS.

The same information of figure 5.12 can be shown in a different manner, as in figure 5.13.
Here, the horizontal axis represents the minimum number of hours needed for the ESS to
reach its maximum capacity; by choosing the desired power rate and minimum charging
time, the needed capacity for the ESS can be derived from the graph.

5.5 Computational load

5.5.1 Effect of uniform/variable time-steps and constraint relaxation

This section explores different techniques to improve the computational time of the EMS
controller; with this purpose, the correlation between the computational load and several
properties of the system is studied, mainly:

• length of the prediction horizon;

• uniformity of the prediction horizon;

• relaxation of binary constraints.

The length of the prediction horizon window is studied between 12 and 96 hours; unifor-
mity of the time-steps is studied by comparing a uniform window where all time-steps are
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equal to 1h with a variable time-step window, where the horizon vector is created from all
or a truncated portion of the following vector:

h = [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 6, 6, 6, 6, 12, 12, 12, 12] .

Finally, the effect constraint relaxation1 has on the computational load is explored. To
do so, the binary constraints on all but the first time-step in the rolling horizon window are
relaxed.
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Figure 5.14: .

Figure 5.14 shows the results of the simulations; each point in the plot represents the
computational time for the optimization of one time-step, averaged over 720 iterations (one
month).

It is clear than the best solution in terms of computational speed involves a variable
horizon with relaxed binary constraints. However, even though there is a difference of one
order of magnitude between the average computational times of the different strategies
presented in figure 5.14, all of them are at least four orders of magnitude smaller than the
length of the control horizon. In consequence, real-time application would not be an issue
for this controller.

1 The relaxation of a MILP program is the problem that arises by "[. . . ]replacing the constraint that each binary
variable must be either 0 or 1 by a weaker constraint, where each variable now belongs to the interval [0,1].
Thus, the relaxation technique transforms an NP-hard optimization problem (MILP) into a related problem
that is solvable in polynomial time (LP)." [2]
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6 Background on rapid transit systems

This chapter gives an introductory explanation of the railroad system, focusing on the
tramway system being used to perform the measurements used hitherto in this work.

This chapter is organized as follows: the processes and equipments involved in deliver-
ing energy to the vehicles on the tracks are discussed in section 6.1; different approaches
for introducing energy savings through regenerative braking are presented in section 6.2,
together with different strategies for estimating the amount of energy recovered; finally,
section 6.3 introduces the case-study of the RNV5 tramway line in the state of Baden-
Württemberg in Germany, where several measurement probes were installed; an analysis
of these measurements is carried out in section 6.4 to estimate the amount of energy har-
vested through regenerative braking action.

6.1 Transferring energy to guided mass transport systems

There are mainly two widely implemented approaches used to transfer energy to railroad
vehicles [76, 216]:

• Use of an overhead catenary manufactured in copper as a phase conductor together
with the track as a return conductor. This is the oldest and most frequently imple-
mented method [76], used in both tram and train electrification all over the world. The
reason for this is that the high voltage is on the catenary, at a safe distance from the
users, and the voltage present in the tracks is low enough to be considered safe.

• Use of a third rail running parallel to the track with a relatively high voltage level.
This method is only used when the tracks are completely separated from users and
other means of transport. The third rail is usually manufactured in steel, with a cross-
sectional area much greater than that of the catenary, allowing the conduction of
higher currents with lower resistive losses and voltage drops.

Regardless of which of the two methods is implemented, the driving power supply
needed for a direct-current (DC) commuter train has the basic structure according to fig-
ure 6.11.
1 If the vehicles are fed with alternating-current (AC), the rectifier at the output of the power supply is omitted.
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6 Background on rapid transit systems

As shown in the figure, the systems that make up the structure for an overhead catenary
scheme consist in particular of: i) supply lines, ii) return lines, iii) switching points and iv)
catenary system2 [220]. In addition to the electrical power needed to operate the trains, the
power supply also feeds power to a variety of electrical equipment and installations along
the train route, specially in the passenger stops, providing energy for luminaries, signaling
and user information systems.

Figure 6.1: One-line diagram of the power supply of DC trains with overhead catenary.
Source: [220].

6.1.1 Nominal voltage levels

The nominal voltage levels recommended for railroad systems are defined by the Interna-
tional Electrotechnical Comission (IEC) in its standard IEC60850 (see table 6.1) and these
are usually the ones implemented in railway, tramway and subway systems.
2 This also includes electrical systems which are fed directly from the catenary, like heating systems for the
railroad switches, so that they remain operational in cold weathers.
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6.1 Transferring energy to guided mass transport systems

Table 6.1: Standarized nominal voltage levels for railroad systems. Source: [116].

DC AC

600V 750V 1,5kV 3,0kV 15kV (16,7Hz) 25kV (50Hz)

The urban electrified public transport is usually supplied by a Low Voltage Direct Cur-
rent (LVDC) system, generally at 750V or 1,5kV [76]. LVDC systems are preferred over
others due to their simplicity in design, safety, and because there is no need to have large
and heavy transformers on-board the vehicles, as the pantograph connects the catenary
voltage directly to the power inverters of the train by means of filter capacitors [59]. Thus,
LVDC systems are usually the most economic option.

The main drawback of a LVDC line with respect to a line with higher voltage is the in-
crement in conduction losses; in order to transmit the same amount of power with lower
voltage, more current is needed, according to the relation P =V I. Furthermore, conduction
losses in copper (Ploss) increase with the square of the current:

Ploss = I2Rcatenary, (6.1)

and the voltage drop over the copper overhead catenary
(
Udrop

)
is directly proportional

to the increment in current:

Udrop = IRcatenary = I
ρcopper lcatenary

Acatenary
, (6.2)

where ρcopper is the electrical resistivity of copper, lcatenary is the length of the catenary
between the feeding point and the vehicle, and Acatenary is the cross-sectional area of the
catenary.

6.1.2 Rectifying stations

To reduce both copper losses and voltage drops, the electrical resistance of the catenary(
Rcatenary

)
needs to be addressed. Following the definition presented in equation 6.2, a

drop in the resistance value can be achieved with two different approaches:

1. Increment of the cross-sectional area of the catenary
(
Acatenary

)
.

2. Reduction of the conductor length
(
lcatenary

)
between the power supply and the vehi-

cle through the delpoyment of load sharing rectifying stations along the tracks, assur-
ing that all segments of the line are fed by one or two substations (see figure 6.2).
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6 Background on rapid transit systems

Figure 6.2: Schematic of a tramway line fed by several unidirectional substations. Source: [216].

If the substation deployment strategy is to be implemented, the contact line and the rails
are divided in segments (see figure 6.2), mainly for operating, maintenance and security
reasons. These segments are to be supplied and separable with circuit breakers and
disconnectors, that can be actuated with a manual or remote command [59].

Furthermore, it is easy to see that the distance between electrical substations depends
on the nominal voltage of the catenary, as well as the intensity of the traffic. For LVDC
systems, the average distance between substations can be very limited. As Ciccarelli
exemplifies in [59], a 750V tramway system with heavy traffic would need to deploy substa-
tions every 1300 to 1500 meters. In contrast, a 3kV system would need substations every
20 to 45km, depending on the amount of traffic.

As depicted in figure 6.1, each one of this rectifying substations is connected to the AC
distribution network used within cities. These networks usually work with voltage values
ranging from 10 to 30kV3 [59]. The three-phase AC voltage delivered by this network is con-
verted inside the substation to the nominal LVDC by means of a three-phase transformer
and a 6-pulse diode rectifier. To further reduce the DC voltage ripple, some substations
incorporate a capacitor connected in parallel to the output of the rectifier.

Because the AC/DC converter has a passive topology (i.e., only passive components
like diodes are implemented), the current can only flow in one direction. This means that
these substations work in only one power quadrant and are not capable of feeding back
to the distribution network the energy harvested by the regenerative braking of modern
vehicles. Furthermore, if the configuration of the railway does not include energy storage
systems (ESSs) for electrical energy, the energy harvested by a braking train needs to
be consumed by another load on the line at the same instant is being generated (i.e.,

3 This voltage values reach a good compromise between conduction losses and physical size of the equip-
ment needed to transform the voltage down to the costumer level.
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6.2 Regenerative braking

another tram accelerating in the vicinity). Otherwise, the line voltage will rise over safety
values4, and the braking vehicle will automatically redirect all the excess energy to its
internal braking resistors, where it will be wasted as heat. Thus, in order to be able to
feed back energy to the distribution network, an active converter that works in two power
quadrants needs to be installed in the substations. A more detailed description of these
processes is presented in section 6.2.1.

6.1.3 Typical waveforms

Figure 6.3 shows the typical waveforms measured at a rectifying substation that feeds one
section of the tracks. The shapes described by the voltage and current are characteristic for
a vehicle in the vicinity of the substation accelerating from rest to a constant travel speed.
The cycle can be analyzed through the following stages:

1. initially, the vehicle is at rest at a passenger station, so it only consumes electricity to
power the on-board equipment;

2. when the vehicle accelerates at the moment of departure, the current consumed by
the motors increases proportionally with the speed. This stage always has the highest
current consumption and the line voltage drops due to the load on the system;

3. when the desired speed is reached, the acceleration phase ends and the current
decreases to a much lower value with the vehicle traveling at constant speed;

4. when the train brakes, the on-bard motors act as generators and they deliver current
to the overhead line. Thus, during this stage the current measured is negative. If there
is no load in the system that can use this energy, the voltage of the line will increase
until values near 900V, point where the on-board resistors will burn the recovered
energy into heat.

Even though the stages remain the same, the general shape of these waveforms may
change for vehicles with different power electronics, electronic control systems and elec-
tric motors; the driving technique implemented by different drivers also has a significant
correlation with the shapes of these stages.

6.2 Regenerative braking

Dynamic braking refers to the process that converts kinetic energy into electricity, and it is
based on the capacity the electric motors have to act as generators. The implementation
4 Typically 900V.
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Figure 6.3: Voltage and current measurements as a train travels through one of the track seg-
ments of the Neuostheim electrical substation. CS: constant speed; B: braking; S: stop
at passenger station; A: accelerating.

of this braking strategy is widely spread in railway technology nowadays, as it helps to limit
the use of friction braking, a process that carries further investments associated with main-
tenance and replacement of parts subject to wear. The lack of consumable parts added
to the fact that it does not generate wear and tear, dust, smell, heat or noise [95], makes
dynamic braking a good system for urban and suburban lines, which are characterized by
the shortness of their individual path sections and high deceleration rates [59].

The energy recovered by the generators during the dynamic break may either be dissi-
pated in banks of variable resistors commonly installed on the rooftops of trains (rheostatic
braking) or it may be reused within the transport network itself (regenerative braking), the
latter becoming a viable option only after the power electronics development of the last
decades.

A diagram of the energy flow in a vehicle during the braking of an electric traction unit
is presented in figure 6.4. During the braking stage, the traction motor (TM) switches into
a generator mode and the kinetic energy is converted to electrical energy as the vehicle
reduces its speed. In order to be able to return this electrical energy to the overhead
line and the supply system, a voltage higher than the one present in the line needs to be
generated. For this purpose, during braking, the traction inverter (TC) increases the voltage
generated by the traction motor.
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6.2 Regenerative braking

The recovered energy is primarily used to supply the auxiliary and comfort functions
of the vehicle itself. If there is a energy surplus (which is usually the case), the train will
attempt to feed it back through its braking converter (BC) and pantograph back to the power
supply line.

However, with electrical substations working in only one power quadrant (see sec-
tion 6.1.2), the regenerated energy will only be accepted by the supply network when a
simultaneous consumption is taking place, for instance when another train is accelerating
in the same line segment.

In the absence of reception of the braking energy, voltage in the overhead lines (UCN) on
the vehicle’s current collector exceeds the maximum recuperation voltage Umax [24]. This
triggers the braking converter BC, which directs the energy generated in the drive unit to
the braking resistor. Hence, this energy is dissipated as heat through rheostatic braking.

The network receptivity is a figure of merit defined as:

"[. . . ] the ratio of the total energy returned back to the line over the potential
energy that could be regenerated in the braking process" [95].

As stated in section 6.1.1, the most commonly used urban rail systems are the DC elec-
trified rail networks, and these type of networks are said to be unreceptive, meaning that
most of the time they are reluctant to accept an injection of energy.

Figure 6.4: Braking energy flow in vehicle, UCN - voltage of contact supply network, EK - kinetic
energy of vehicle, TM - traction motor, TC - traction converter, BC - braking converter,
BR - braking resistors. Source: [24].
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6 Background on rapid transit systems

6.2.1 Maximizing the usage of recovered braking energy

Even though regenerative braking is a proven technology, its application in urban rail sys-
tems remains relatively unexploited. According to several studies found in the literature
(see [95, 59] and its references), the application of regenerative braking in urban railways
has the potential to reduce net energy consumption from 10% to 45%, depending on the
characteristics of the system. Furthermore, regenerative braking could mitigate some prob-
lems typically associated with electrified transport systems such as voltage drops at the
catenary distribution network or high power peak consumptions. In contrast, nowadays
recovered braking energy is mainly used in rheostatic braking and only a small portion of it
is used to supply the auxiliary systems of vehicles or returned to the distribution network.

Two main strategies have been developed over the years to maximize the use of the
recovered energy while minimizing at the same time the need for on-board breaking resis-
tors [170, 95, 59] (see figure 6.5):

• Reduction of the energy losses by temporarily accumulating the excess of regener-
ated energy inside ESSs installed on-bard the vehicles. This energy can then be re-
lease in the next acceleration phase, reducing the peak power consumption from the
supply network during the acceleration of the motors [22, 113, 208, 23, 105, 50, 197].

• Improvement of the network receptivity. This can be achieved is several ways:

– Introduction of additional loads in the system demanding energy at the same
time that is being harvested by the braking process. The easiest and cost-
efficient way of performing this task is to optimize the scheduled timetables
so as to synchronize acceleration and deceleration of trains as far as possi-
ble [15, 55, 153, 82, 160, 183, 165].

– Installation of storage devices in electrical substations (stationary ESS) or along
the track (wayside ESS). They could absorb the surplus of energy harvested and
deliver it when it is required for the acceleration of other vehicles [196, 60, 114,
209, 23, 149, 50].

– Equipment of electrical substations with DC/AC inverters, transforming their op-
eration from one to two power quadrants (reversible or active substations). With
this technique, the regenerated energy can be fed back to the medium voltage
distribution network, which by definition is naturally receptive [88, 89, 115, 181,
171, 226, 63].

The remainder of this section is devoted to briefly introducing each of these four strate-
gies.
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6.2 Regenerative braking

Figure 6.5: Strategies to maximize the use of the recovered energy. Source: [59].

Optimizing scheduled timetables

Increasing the number of trains accelerating and braking simultaneously is the the ap-
proach that involves the least amount of capital cost for improving line receptivity. This
is based on the principle of instantaneous power generation and consumption (see fig-
ure 6.6). In order to be successful in generating energy savings, this strategy demands
a careful design of the operation schedule of trains. Several studies dealing with this ap-
proach can be found in the literature, were both frequency of the service and stop durations
are considered as the main optimization parameters [15, 55, 153, 82, 160, 183, 165].

Figure 6.6: Energy exchange between vehicles in urban rail. Source: [59].
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6 Background on rapid transit systems

On-board ESSs

This approach does not rely on line receptivity, but instead contributes to energy savings by
storing the recovered braking energy in ESSs on-board the vehicle (see figure 6.7). This
energy can then be utilized to power the train itself during the next acceleration stages.
Furthermore, this methodology contributes with other benefits like shaving the power peaks
demanded to the supply network during acceleration (leading to a reduction in resistive
losses in the supply line), limiting the voltage drops in the network and giving some power
autonomy to the train in case it is needed (i.e., for free-catenary extensions of the track).

Figure 6.7: Energy exchange between vehicle and on-board ESS. Source: [59].

In order to achieve an optimal design for the technology and size of the on-board ESSs,
a detailed analysis of the entire railroad network is needed; the design requirements will
be different when optimizing each one of the benefits listed above [113, 208, 209, 105].
Nonetheless, the on-board ESSs are always installed together with a rheostatic braking
option in case the recovered energy exceeds the storage capacity [95]. To minimize the
times when rheostatic braking is needed, the control systems needs to ensure that the
ESS has enough energy to power the vehicle during accelerations and that it remains at a
sufficiently low SoC level when the vehicle is traveling at high speeds so as to accept the
highest amount of energy during braking.

The main advantage of this method with respect to the stationary ESSs relies on the
higher efficiency during operation; since the ESS in on-board the vehicle the resistive
losses of the supply line are avoided. The main disadvantage is the additional weight and
space required by the on-board ESS. According to the literature, the energy consumption
of rolling stock can be increased by 1−2% due to on-board ESSs [22].

It should be noted that generally the on-board ESS strategy is only considered feasible
when designing or buying new rolling stock units, and is rarely implemented to modify
existing vehicles that do not have storage systems [95].

Stationary ESSs

Stationary or wayside ESSs increase line receptivity by absorbing the regenerated braking
energy when there is no load on the line willing to accept it. Thus, avoiding its waste in
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6.2 Regenerative braking

rheostatic braking. Later on, it delivers the stored energy when it is required for the accel-
eration of any vehicle in its same electric section or on a neighboring one (see figure 6.8).

Figure 6.8: Energy exchange between vehicle and wayside ESS. Source: [95].

The advantages of a wayside system with respect to on-board ESSs rely on the fewer
restrictions in terms of weight and space. Furthermore, one single stationary system can
recover energy from several vehicles braking in its vicinity at the same time, and its im-
plementation and maintenance does not affect normal line operations and time-tables. In
contrast, stationary systems tend to be less efficient than on-board ESSs due to the trans-
mission losses added when transferring energy back and forth between vehicles and the
stationary ESS. Hence, in order to maximize the benefits from this approach, existing sub-
stations or places where the catenary voltage presents the strongest variation (e.g., in the
vicinity of passenger stations) are the places usually chosen to install stationary ESSs.
Thus, it is indispensable to perform a careful and detailed analysis of the whole network
in order to determine the optimal number and positions of the stationary ESSs along the
tracks [95, 60, 221, 228, 162, 98].

Reversible substations

As explained in section 6.1.2 conventional substations used in DC rail networks are based
on diode rectifiers, which only permit a unidirectional power flow (i.e., they work in the first
power quadrant). In contrast, reversible substations include a DC/AC inverter5, enabling
a two power quadrant operation of the substation (see figure 6.9). This topology allows
for any energy excess to be fed back to the railway operator’s network (feeding energy to
passenger stations, luminaries, escalators, offices, etc.) or to be sold back to the energy
provider if the local legislation enables it.

The main advantage of this approach is that the medium voltage AC distribution network
is naturally receptive and, in consequence, all the regenerated energy may be potentially

5 Inverters used in railway substations are typically made with thyristor-controlled rectifiers (RTCR), which
enable a bidirectional current flow. Additionally, RTCR provide better voltage regulation and fault current
limiting with respect to common diode rectifiers [88].
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6 Background on rapid transit systems

Figure 6.9: Energy exchange between vehicle and reversible substation. Source: [95].

recovered [95]. Conversely, the main drawback of this approach is related to the large cost
of new equipment and the strong impact on the layout of existing substations [59].

As with the wayside ESSs, several studies can be found in the literature analyzing the
feasibility of this methodology and determining the optimal number and positions of these
substations in a variety of existing railroads around the globe, considering that the objec-
tive is to reduce the resistive losses due to the transmission of energy through the cate-
nary [88, 89, 63, 171, 226]. It should be borne in mind that although reversible substations
are installed to maximize the use of the recovered energy (through its injection into the
upstream network), the priority should still be the exchange of recovered energy between
the rolling stock.

6.2.2 Techniques for estimating of the amount of energy recovered

Knowing the amount of electric energy that will be recovered through regenerative braking
in a certain future time interval will prove throughout the following chapters to be of vital
importance in order to implement a reliable control system that achieves a good perfor-
mance. This will help the integration of the ESS in a microgrid by improving its interaction
with the other agents present in the network. In consequence, estimation methods must
be implemented to be able to generate forecasts of future values of these quantities.

A first rough estimate of the recovered braking energy of each train can be made by
calculating the change of kinetic and potential energy of the vehicle during its transition to
the state of rest. Several assumptions are made in this calculation, but the result obtained
will be the maximum amount of energy that can be recovered in the best case. More details
are presented in section 6.3.2.
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6.2 Regenerative braking

A more sophisticated procedure was proposed by Lakovskis and Grigans in [150], where
the untapped regenerative braking energy in urban electric transportation networks is esti-
mated. This method is based on probabilistic principles, transport schedules and measured
power diagrams. Further improvement of the technique was introduced in [97] with the im-
plementation of a stochastic modeling approach. Measurements of the power consumption
of an electric vehicle are used together with the transportation schedule and speed profiles
to estimate the unused braking energy in a particular section of the network, such as the
area covered by an electrical substation. This unused braking energy can then be stored
in energy storage devices integrated in the electric vehicle or stationary in the electrical
substation.

Although the results obtained with this calculation method seem promising, various volt-
age and current sensors are required on-board the electric vehicle, as well as a detailed
speed profile as the vehicle travels along the track. Since the system under test in this
work does not present this configuration, other types of forecasting methods must be im-
plemented, with input signals corresponding to data available in the system.

Therefore, in chapter 7 the process of creating the so called prediction intervals is an-
alyzed. With this technique, artificial neural networks (ANNs) are trained through meta-
heuristic algorithms to estimate the upper and lower bound of a prediction interval where
the actual value will lie with a predefined confidence level. This method uses as input
variables the history of voltage and current values measured at the output of the electrical
substation together with meteorological information and train schedules to make a real-time
estimate of the value of the recovered energy. The estimation is done in a fast and simple
way, allowing the use of these forecasts in the decision making process performed by the
different electronic control systems of the microgrid.

6.2.3 Energy storage systems for urban rail applications

ESSs typically consist of three main functions as depicted in figure 6.10, regardless of
whether they are used for mobile or stationary applications:

• The energy storage device itself. Some of the technologies being considered as fea-
sible options by the literature include, but are not limited to, electromechanical double
layer capacitors6 (EDLC) [22, 196, 60, 114, 113, 208, 209, 154], flywheels [197, 89],
superconducting magnetic energy storage (SMES) [118, 213, 212, 16] and batteries7.

6 Also known as ulracapacitors or supercapacitors.
7 Combinations of these technologies have also shown good results, like EDLCs with batteries; EDLCs pro-
vide a fast dynamic response while batteries provide a larger storage capacity increasing the autonomy of
the system [105].
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Figure 6.10: Energy storage systems for urban rail applications. Source: [59].

The latter contains sub-classifications like Lead-acid batteries [89, 100], Nickel-based
batteries 8 [89, 180], Lithium-based batteries9 [51, 49, 50, 149], Sodium-based bat-
teries10 [44, 80] and Redox Flow Storage systems11 [57, 106, 68, 99]. The selection
of the technology depends on the specific characteristics of each application. Vari-
ables taken into account include, but are not limited to, technical maturity, energy
and power density, efficiency of charge-discharge cycles, self-discharge rates, dura-
bility and capital costs. Detailed reviews on each of these technologies and decision
variables can be found in [54, 164, 194, 95, 142] and its references.

• Power conversion systems. They are needed to guarantee a proper operation of the
energy storage, as they normally work with different input and output conditions than
those required by the railway distribution network12.

• Power flow controllers. A controller is needed regardless of the storage technology
implemented. Its main objective is to optimize the ESS performance by managing
the charge and discharge cycles, which depend mainly on the line voltage and the
state of charge (SoC) of the ESS [60, 114, 113, 105, 23, 154]; the line voltage rises
if a braking vehicle attempts to feed back energy to the line when there is no load
available, and a voltage drop on the network may be produced by a sudden power

8 Nickel-cadmium (NiCd) and nickel-metal hydride (NiMH).
9 Lithium-ion (Li-ion) and lithium-polymer (Li-poly).

10 Sodium-sulphur (NaS) and sodium-nickel-chloride (also known as ZEBRA).
11 Vanadium Redox batteries (VRB).
12 Some special arrangements of wayside ESSs made with batteries have been tested connected to directly
to the DC catenary voltage without a DC/DC converter [89, 180].
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peak demand from an accelerating vehicle. In consequence, the electronic controller
is programmed with the nominal voltage thresholds for the charging and discharging
phases.

6.3 The Rhine-Neckar transportation system

The Rhine-Neckar Transportation system13 is a company operating public transport in the
Rhine-Neckar region, which is located in the north-east part of the Baden-Württemberg
state, in south-west Germany. The company connects mainly the cities of Heidelberg,
Mannheim and Ludwigshafen on the Rhine through a variety of tramways and bus routes.
One of its tramway lines, the RNV5, operates connecting the cities of Mannheim, Weinheim
and Heidelberg. The trace of this route can be seen in figure 6.11.

Figure 6.11: Tram line number 5 of the RNV company, connecting the cities of Heidelberg, Wein-
heim and Mannheim (red line). Source: [6].

The two segmented tracks are powered by a series of electrical substations; the tramways
operate with an overhead catenary system that delivers a nominal voltage of 750V. All the
electrical substations in this line have passive energy converters, meaning that the electric-
ity flow can only be unidirectional and no energy can be fed back into the medium voltage
AC distribution network. Additionally, no electrical Energy Storage Systems (ESSs) are
currently installed on this railroad.

13 Rhein-Neckar-Verkehr GmbH in German, or RNV.
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6.3.1 Rolling stock operated by the RNV

Table 6.3.3 shows a list of tram models being operated by the RNV company14. It is clear
in the table that as the years advance and cities progress, demand for public transport in-
creases, so more transportation capacity is needed. In order to meet this demand, over
the last decades trams became heavier and got more powerful motors, which in turn has
led to an increase of the power needed to operate them. Moreover, this development has
allowed to incorporate new technologies on-board (e.g., HVAC units, lights, ticket machines
and electrical doors) which increase comfort as much as power consumption. Neverthe-
less, as seen in figure 6.3 the electric motor still are the main power consumers, mainly
during the acceleration stage.

6.3.2 Upper bound for the amount of energy recovered

Knowing the average speed profile of a vehicle in the railway, the maximum speed for the
trams and the approximate weights for each vehicle (table 6.3.3), it is possible to estimate
an upper bound to the amount of energy one vehicle is capable of harvest when it is using
a regenerative braking system to reduce its speed. This is achieved through a kinematic
analysis.

The absolute maximum value of harvested energy with one single brake is obtained by
calculating the change in kinetic energy (see equation 6.3). Here it is assumed a RNV8
train at full capacity (76,5t) braking from its maximum speed (80km/h) to rest condition.
Furthermore, a loss-less system is assumed, meaning that there is no energy loss as heat
or noise when converting the kinetic energy to electrical energy.

∆EkMAX =
1
2

m
(
v2

f − v2
i
)
= 5,2kWh (6.3)

In figure 6.12 the surface delimiting the upper bound for the recovered energy for different
speeds and masses is drawn. Additionally, a log-log plot parametric with the initial speed
of the vehicle is presented in figure 6.13.

This analysis assumes a fairly plane route, which seems to be the case for the majority
of urban and suburban tramways [51, 22]. However, if the track profile presents important
altitude gradients, the potential energy must be also considered in the calculations, since it
will affect (either positively or negatively) the amount of electrical energy generated. As ex-
plained is section 6.2, once recovered, this energy can be transferred to different locations
and used for different applications.

14 Up to and including the year 2017.
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Figure 6.13: Upper bound for the electrical energy harvested during regenerative braking. Curves
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red dashed line indicates the average energy recovered by a braking phase according
to the measurements at Neuostheim electrical substation (see section 6.4).
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Model M8C-NC MGT6D 6MGT ET8N RNV6 RNV8

Manufacturer DUEWAG DUEWAG DUEWAG DUEWAG Bombardier Bombardier

Year Fabrication 1985-86 1994-95 1994-95 1994-95 1996-16 2002-10

Quantity 8 12 14 5 57 32

Length 26,58m 28,6m 29,2m 40,5m 30,5m 40,0m

Weight (empty) 36 t 32 t 32 t 42 t 38 t 50 t

Sitting capacity 54 72 85 97 88 129

Standing capacity15 86 100 119 141 90 133

Weight (full) 49,3 t 49 t 54 t 74,1 t 55,6 t 76,5 t

Motors 2×150 kW 4×95 kW 4×95 kW 4×95 kW 4×95 kW 6×95 kW

Maximum speed 70 km/h 70 km/h 70 km/h 70 km/h 80 km/h 70 km/h

Traction converter Chopper 13SG31 13SG31 13SG31 13SG31/44/76 13SG44/76

Table 6.2: Current rolling stock operated by the Rhine-Neckar Transportation system. Sources: [5, 7, 11].
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(a) (b)

Figure 6.14: (a) Neuostheim electrical substation; (b) Neuostheim passenger station. Source:
Google Maps.

6.3.3 Neuostheim electrical substation

The map in figure 6.14a shows the geographical location of the Neuostheim electrical sub-
station and its position in the RNV5 tramway. All the voltage and current measurements for
this work where made at this electrical substation. A photo of the Neuostheim passenger
station with a RNV8 tram from the RNV5 line passing by can be seen in figure 6.14b.

A schematic of the railroad segment under study can be seen in figure 6.15, where
the Neuostheim electrical substation (see figure 6.16) feeds four different track seg-
ments numbered from 211 to 214. Track segments 211 and 212 connect Neuostheim and
Pforzheimer Str. electrical substations, with three passenger stations in between16. On the
other hand, track segments 213 and 214 connect Neuostheim and O41 electrical substa-
tions, with five passenger stations in between17.

6.4 Measurement analysis

6.4.1 Input data acquisition

All the data gathered and used in the present work can be sub-classified in the following
data-sets:

• Neuostheim substation: Four voltage and current probes are installed at the Neuos-
theim electrical substation (see section 6.3.3), each one sampling the catenary DC
voltage and current of every track segment with a 100ms sample rate;

16 Neuostheim, Duale Hochschule and Pforzheimer Str.
17 Neuostheim, Holbinstr., Fernmeldeturm, Lessingstr. and Collini-Center.
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6 Background on rapid transit systems

Figure 6.15: Railroad segment under study of the RNV5 line. The measurements are taken at the
Neuostheim electrical substation (GUW Neuostheim), which is directly connected to
the track segments 211, 212, 213 and 214. Source: RNV (Modified).

V2 V4

V3

Neuostheim
Electrical 
Substation

RNV5

RNV5

1
2

3
4

V1

214

213

212

211

Figure 6.16: Current and voltage sensors installed at the Neuostheim electrical substation, which
is directly connected to the track segments 211, 212, 213 and 214.
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• Scheduled time-tables: Real time information regarding the time-tables of the vehi-
cles and departure times is recorded from the RNV API. This information is vital to
analyze the voltage and current signals recorded at the substation and to be able
to decipher the power consumption and energy recovery of the trains as they travel
through the tracks. More details are presented throughout this section.

• Weather: Meteorological variables are stored and used as inputs to a predictive
model that correlates them with other information such as the amount of energy
recovered during the braking. This model allows to predict (with a predefined con-
fidence interval) the amount of energy that the system will generate in a certain inter-
val of time in the future. More detailed information on this procedure is presented in
chapter 7.

6.4.2 Implications of the current measurement scheme

Equation 6.4 describes the possible destinations of the total amount of energy harvested
through dynamic breaking

(
Egentot

)
with the current system configuration. They include

the energy burned through rheostatic braking18(Egenrheosatic

)
, the energy used for on-board

equipments
(
Egenon-board

)
, the energy transferred to another vehicle in the same track seg-

ment
(

Egensegment

)
, the energy transferred to vehicles traveling on the other three track

segments of the Neuostheim substation
(
EgensameSS

)
, the energy transferred to vehicles

traveling on neighboring track segments connected to other substations
(
EgenotherSS

)
and a

term accounting for the transmission losses between source and load
(
Egenloss

)
.

Egentot = Egenrheostatic +Egenon-board +Egensegment +EgensameSS +EgenotherSS−Egenloss (6.4)

However, the current system configuration does not allow to record all of these variables.
Different scenarios can be found in the data recorded at the substation:

• if the power is delivered from the Neuostheim substation to a train in one of its four
segments, the recorded current value is positive;

• an accelerating train can be fed energy from the electrical substations of the same
segment, as well as neighboring substations. Energy delivered from the O41 substa-
tion to a train in segments 211 or 212 (see figure 6.15) is recorded as negative currents
with equal value in segments 213 and 214 and a positive current in the line segment
where the train lies (an analog situation exists with the Pforzheimer Str. substation);

18 Rheostatic braking is used only when the line receptivity is not good enough to absorb all the recovered
energy.
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6 Background on rapid transit systems

• if the Neuostheim substation feeds energy to a train in a segment not directly con-
nected to it19, it is recorded as a positive current value in both line segments of the
same side (211 and 212 or 213 and 214);

• the energy recovered by a braking vehicle in one segment and exchanged with other
vehicle in one of the remaining three line segments

(
EgensameSS

)
is recorded as a

negative current at the sensor from the segment where the braking vehicle is, and as
a positive current in the line segment with the vehicle that consumes the energy (see
figure 6.17);

• the energy recovered by a braking vehicle and burned through rheostatic braking(
Egenrheosatic

)
is not recorded;

• the energy recovered by a braking vehicle and used on the on-board systems(
Egenon-board

)
of the same vehicle is not recorded;

• the energy recovered by a braking vehicle and transferred to other vehicle in the same
line segment

(
Egensegment

)
is not recorded;

• the energy recovered by a braking vehicle and transferred to other vehicle in a line
segment of other substation

(
EgenotherSS

)
is not recorded.

These observations mean that only a fraction of the energy harvested through dynamic
braking

(
Egentot

)
is recorded by the installed sensors, and this fraction corresponds to the

energy transferred between at least two trains which are traveling in two of the four line seg-
ments directly connected to the Neuostheim substation

(
EgensameSS

)
. Nonetheless, these

measurements are valid (they represent a lower bound for the total amount of recovered
energy) and are used as input parameters for the energy management system developed
throughout this work. Increasing the receptivity of the line through the implementation of
a ESS controlled by an EMS lowers the amount of energy wasted in rheostatic braking(
Egenrheostatic

)
and, in consequence, increases energy savings and system efficiency.

6.4.3 Regenerative braking action

Figures 6.18 and 6.18 show (for different time periods) the amount of energy that is con-
sumed and recovered in the system defined by the electrical substation, its four track seg-
ments and all the vehicles that travel through them. The average amount of energy recov-
ered for each vehicle is 0,46kWh, with an average recovery of 0,68MWh each day for the

19 For example, segment 209.
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Figure 6.17: The energy recovered by a braking vehicle in one segment and exchanged with other
vehicle in one of the remaining three line segments

(
EgensameSS

)
is recorded as a neg-

ative current at the sensor from the segment where the braking vehicle is (i1 < 0), and
as a positive current in the line segment with the vehicle that consumes the energy
(i4 > 0). The current measurements for braking and accelerating phases in one track
segment can be seen in figure 6.3.

defined system. This amount of energy represents approximately the 28,3% of the total
consumed by this section of the railroad20.

The reason for the existence of the great discrepancy between these measured values
and the value obtained by the kinematic analysis of equation 6.3 lies in the fact that, as ex-
plained in section 6.4.2, the amounts of recovered energy that are recorded by the sensors
represent only a fraction of the total value. In addition, unlike the model proposed in the
kinematic analysis, the real system presents non-ideal energy conversion efficiencies, with
energy losses in the different stages of recovery and transmission.

20 The total amount of energy consumed by the system is obtained by adding the energy contribution of the
three substations (Neuostheim, O41 and Pforzheimer Str.) together with all the energy that was recovered
and re-utilized by the vehicles.
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Figure 6.18: Detail of the energy consumption and generation during one week, corresponding to
the four track segments directly connected to the Neuostheim substation. Top: en-
ergy recovered by braking trains and transferred between line segments (Egen), en-
ergy delivered to trains in the four line segments by the Neuostheim and neighboring
substations (Ess), and total amount of energy consumed by the trains whilst traveling
through the Neuostheim segments (Econs). Egen represents 28,3% of the total energy
consumed at the four segments; the day average for Egen is 0,68MWh; the average
for each train is 0,46kWh. Bottom: time-table for the seven passenger stations inside
the Neuostheim line segments. Each point corresponds to a train arriving at the sta-
tion. The service interruption at nights and the extended service during weekends is
clearly appreciable.

Nevertheless, even a partial measurement of the total energy recovered yields very sig-
nificant results in energy savings21, and they could be considerably improved if the line
receptivity is improved (see section 6.2.1). The latter would allow to take advantage of the
energy that is currently being wasted by rheostatic braking

(
Egenrheosatic

)
.

6.4.4 Daily energy recovery profile

Figure 6.20 shows how the amount of energy recovered varies during the day. These plots
are made averaging the values recorded for 103 days between the months of December
2016 and February 2017. As the figure shows, a clear distinction is found in the generation
patterns for the working days and the weekend days, which related to the traffic intensity
and the amount of passengers. As it is shown in chapter 7, this distinction between working

21 As section 6.2.1 states, application of regenerative braking in urban railways has the potential to reduce net
energy consumption from 10% to 45%, depending on the characteristics of the system.
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Figure 6.19: Detail of the energy consumption and generation during one day, corresponding to
the four track segments directly connected to the Neuostheim substation. Top: re-
covered energy at the i− th line segment and transferred to one of the three re-
maining segments

(
Egeni

, i = 211,212,213,214
)
, total amount of recorded recov-

ered energy
(
Egen

)
, and total instantaneous recovered power

(
Pgen

)
. Middle: en-

ergy delivered by the different substations to the trains in the segments 211− 214
(Essi , i = O41, Neuostheim, Pforzheimer), and total amount of energy delivered by
all the substations (Ess). Bottom: time-table for the seven passenger stations inside
the Neuostheim line segments. Each line corresponds to the route followed by a train
through the stations in the segments. The service interruption at nights is clearly ap-
preciable.

days and weekend profiles is important to achieve good performances in the creation of
prediction models for recovered energy.

As it is exposed in section 1.2, the information presented in figure 6.20 of the recovered
energy can be used as an input to an electronic system that controls the energy flow
between a microgrid (defined by renewable energy generation systems, energy storage
devices and electric loads) and the main distribution grid in order to meet a predefined set
of objectives and constraints.

Moreover, these profiles will be vital for determining the optimal size for the ESS to be
implemented. The whole untapped energy can be saved (excluding losses in ESS and
wires) if both the rated power and the rated energy of the ESS are larger than the total
braking power and braking energy of the maximum number of vehicles running within the
feeding zone of the substation. However, the situation when all vehicles simultaneously or
sequentially brake and no one accelerates is very seldom, so there is no sense in such a
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Figure 6.20: Mean and standard deviation values for the amounts of energy recovered in fifteen
minute intervals throughout the day; 103 days of recorded data (from 10-12-2016 to
22-03-2016) are used in these plots. There is a clear distinction in the patterns of
energy generation for working days, Saturday and Sunday. This distinction is directly
correlated with the social patterns with which the means of transport are used, which
in turn impacts on service time-tables and the number of people aboard the vehicle
(influencing the total mass and kinetic energy).

sizing of the ESS to capture all the untapped energy. As explained in section 5.4, in order to
find the optimum power and energy requirements for an ESS it is necessary to investigate
the influence of its limited power rating and energy capacity on the energy savings [97].
Thus, the sizing procedure for the ESS is an optimization problem that searches for the
option that presents the highest economic profitability while meeting at the same time a set
of objectives and constraints like perspectives of energy savings, installation and operation
costs [105, 221, 228, 175, 83].

6.4.5 Over-current protection

Figure 6.21 shows how the over-current protection of the Neuostheim electrical substation
is activated due to a high load demand when a train is accelerating; after the protection is
enabled, the substation needs about 15s to normalize its output and then the train acceler-
ates with a less demanding profile.
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Figure 6.21: Over-current protection of the Neuostheim electrical substation; after the protection is
enabled, the substation needs about 15s to normalize its output voltage.

6.4.6 Thevenin equivalent of the electrical substation

As described in section 6.1.2, the DC voltage value at the output of the electrical substation
is given by a six-pulse rectifier, and since it is out of the scope of this work to evaluate effects
of harmonics, only the DC component of this source is of interest. Therefore, the electrical
substation can be reduced to the well known Thevenin equivalent circuit with a DC source
of value Vth and a series resistor Rth. An ideal diode is connected in series with the resistor
to match the non-reversible behavior of the passive converter (see figure 6.22).

Figure 6.22: Equivalent circuit of the electrical substation.

In order to approximate the Thevenin equivalent values, a random day of data is chosen
and the plot from figure 6.23 showing the current against the voltage is generated. This
model requires to know the no-load voltage and the resistance values. A linear regression
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6 Background on rapid transit systems

of the data is performed for currents bigger than 150A, obtaining a equivalent resistance
of Rth = 18mΩ and a no-load voltage of Vth = 817V. For current values lower than 150A,
there is a big voltage fluctuation. The reason relies in the regenerative braking effect. As
explained in section 6.2, when trains brake and recover energy the traction converter raises
the voltage of the line to feed back the energy. The actual voltage level will depend mainly
on the line receptivity at that particular moment.

Figure 6.23: Voltage vs. current at the output of the Neuostheim electrical substation for a random
day.
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7 Short term forecasting in electric power systems

using artificial neural networks

As described in section 1.2, the EMS controller depicted in figure 1.7 needs as input several
uncertain parameters that must be predicted within a certain error margin. In consequence,
this chapter presents an introduction to the general data forecast problem, and one of the
most widely used forecasting methods is briefly explained, i.e., the use of artificial neural
networks (ANNs).

The chapter is organized as follows: section 7.1 enumerates the different classifica-
tions for the forecasting problem concerning time frames and mathematical models imple-
mented; section 7.2 presents a theoretical synthesis of the concepts needed to apply one
of these mathematical models (i.e., ANNs); section 7.3 describes the need to perform an
interval forecast instead of a point forecast ; the general implementation of the lower upper
bound estimation (LUBE) method using ANNs for the generation of interval forecasts is
explained in detail in section 7.4; the LUBE method is applied for the forecast generation
in a case study throughout section 7.5; finally some conclusions and future prospects are
presented in section 7.6.

7.1 Introduction to forecasting

The level of uncertainty present in the electrical power system has been increasing since
the advent of competitive energy markets1, in which the system evolves from a central-
ized to a decentralized scheme with a greater penetration of renewable energies. As a
result, forecasting systems become both more complex and more necessary to perform a
good system administration. Thus, the forecasting of electricity demand, generation and
price has become one of the major research fields in electrical engineering for smart grid
applications [107, 188].

1 Many countries have recently privatized and deregulated their power systems, and electricity has been
turned into a commodity to be sold and bought at market prices.
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7 Short term forecasting in electric power systems using artificial neural networks

7.1.1 Classification

The hierarchy of control systems used throughout the entire generation and distribution
chain require forecasts with different lead times depending on their position on the chain.
Based on time-scale, forecasts can be broadly classified into three main categories [227]:

• Short-Term Forecast2 (STF): The STF time period lays between a few minutes or
hours, up to a day-ahead or a week. STF is a fundamental factor in day-to-day op-
erations (economic dispatch), optimal generator unit commitment (UC), estimation of
available transfer capability, and scheduling functions (i.e, spinning reserve and load
shedding decisions), real-time control and security assessment (i.e., stability mar-
gins) [107, 188, 219, 138].

• Mid-Term Forecast (MTF): The MTF time period lays between a month to a year
or two. MTF is used for maintenance scheduling, fuel scheduling, hydro reservoir
management and price settlement to balance demand and generation [188].

• Long-Term Forecast (LTF): The LTF time period lays between a few years to 10-20
years ahead. The purpose of these forecasts is to be used for system expansion
planning (i.e., generation, transmission and distribution) and maintenance schedul-
ing [138].

According to this definition, the resolution of the problem defined in section 1.2 implies
the implementation of STF systems. A review of the state of the art of medium- and long-
term forecast systems can be found in [138].

7.1.2 Dependencies of the signals

Regardless of the time-scale used, the forecast of load, generation, or price signals is not
a simple task; this is due to a number of factors:

• the statistical analysis shows that these signals are complex time series with different
levels of seasonality3;

2 Due to the advance of the deregulation of the electric markets, the time slots traded in the intra-day market
are becoming smaller. This has led certain authors to further differentiate the STF in very short-term forecast
(VSTF) for some minutes, and short-term forecast for a few hours, up to a week [219, 190].
3 For example, the value of the signal for a given time-step can depend on: the value in the previous time-step,
the value in the same time-step in the previous day, and in the value in the same time-step in the previous
week in the day with the same denomination. For medium- and long-term predictions, other seasonalities
such as changes in the signal due to calendar seasons also become important.
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• exogenous variables also influence the values taken by the signals4.

According to Hippert et al. [107], it is relatively easy to achieve forecasts with about 10%
mean absolute percent error (MAPE); however, the economic costs associated with each
percentage point are so high that any research focused on diminishing the extent of the
error is duly justified.

7.1.3 Models

The problem of forecasting load, energy generation and price signals has already been ad-
dressed with most of the forecasting models and methods in existence, obtaining different
degrees of success. The most popular models can be classified into three categories [188]:

• statistical models: such as the auto-regressive (AR), AR integrated moving average
(ARIMA), ARIMA with Exogenous Variables (ARIMAX), and exponential smoothing
(ES) models, to name a few [107, 215, 62, 71, 167];

• artificial intelligence models: such as Neural Networks (NNs) [136, 134, 187], fuzzy
logic systems (FLSs) [130, 137, 120], and expert systems [92];

• hybrid models: like neuro-fuzzy systems [70, 53, 19].

Since the first reports on their application to the load forecasting problem were published
in the late 1980’s and early 1990’s [67], artificial neural networks (ANNs) are the models
that have received the largest share of attention on the application of artificial intelligence
techniques to the forecasting problem [107].

As a preview of the next section, it can be said that some of the reasons for this prefer-
ence for ANNs over other forecasting methods are [135]:

• being an analytical technique inspired in biology, ANNs have the capability to learn
and model complex nonlinear relationships5 [135];

• ANNs do not require a priori model to be assumed or a priori assumptions to be
made on the properties of data [135, 34];

• ANNs have been successfully implemented to solve modeling, prediction, classifica-
tion, optimization, and control problems across a wide range of disciplines [135].

4 Examples of these variables are social and weather-related variables, like temperature and humidity [177]:
a particularly cold or rainy day during the summer could obtain the incorrect predictions if only a statistical
analysis of the historical data is made without taking into account the meteorological variables in the analysis.
5 According to Kolmogorov’s Universal approximation theorem [108, 103], feedforward NNs with one hidden
layer that comprises an adequate number of neurons are considered to be universal approximators, and as
such, have an excellent ability of approximating any nonlinear mapping to any degree of accuracy.
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7.2 Multilayer feed forward artificial neural networks (ANNs)

The amount of knowledge linked to the research, development and application of neural
networks is really vast and its ramifications cover various fields of study; a complete treat-
ment of the subject may be found in [34, 103]. This section briefly introduces only those
concepts that are required for the application of ANNs to the forecasting problem in smart
grid applications.

7.2.1 Artificial neurons

Figure 7.1: Schematic of an artificial neuron. Source: [103].

ANNs are mathematical tools originally inspired by the way the human brain processes
information, and their elementary building block is an information processing unit called
artificial neuron; this mathematical function is schematically represented in figure 7.1. It
receives (numerical) information through a number of input nodes; this information is then
processed internally and an output response (or activation) is generated. The processing
is usually done in three stages:

1. the signal xi at the input of the i-th synapse of the j-th neuron is multiplied by the
synaptic weight w ji

6;

6 The subscripts of the weight w ji mean that this particular weight corresponds to the i-th input of the j-th
neuron.
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2. the m weighted input signals of the j-th artificial neuron are linearly combined, to-
gether with a constant bias term7 b j, represented in figure 7.1 by the weight of a
connection with a fixed input equal to +1;

3. the result of the linear combination is used as the argument of a nonlinear function
known as an activation function or transfer function. The output value of this activation
function constitutes the output of the artificial neuron.

Thus, according to the diagram shown in figure 7.1, we may describe an artificial neuron
j in mathematical terms with the following equations:

ν j =
m
∑

i=1

(
w jixi

)
+b j

y j = ϕ
(
ν j
) (7.1)

where x1,x2, . . . ,xm are the input signals; w j1,w j2, . . . ,w jm are the synaptic weights of the
j-th neuron; b j is the bias; ϕ (·) is the activation function; ν j is the output of the linear
combiner, called activation potential or induced local field of the j-th neuron; and y j is the
output of the neuron. Hence, the output of the j-th neuron is:

y j = ϕ

(
m

∑
i=1

(
w jixi

)
+b j

)
. (7.2)

Types of activation function

The activation function must comply with certain requirements, such as being monotoni-
cally increasing, continuous, differentiable and bounded [103]; the most common choices
are either the identity function (y = x), or bounded sigmoid (s-shaped) functions. How-
ever, the activation function may also take the form of other nonlinear function as shown in
figure 7.2.

Nonlinear activation functions are preferred in nonlinear problems. However, the use of
sigmoid activation functions may cause saturation problems, since this function is highly
nonlinear outside the region [−1,1]. Therefore, in order to avoid saturation problems, the
input and output signals of the ANN are normalized using equation 7.3 so that they lay
inside the [−1,1] region [203, 219]:

x̂ = a+
b−a

xmax− xmin
(x− xmin) (7.3)

7 "The bias has the effect of increasing or lowering the net input of the activation function, depending on
whether it is positive or negative, respectively." [103]
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Figure 7.2: Commonly used activation functions. Source: [219].

where x̂ is the normalized value of variable x; xmin and xmax are the lower and the upper
bounds of x; and a and b are the respective values of the normalized variable. Once the
output of the network is obtained, it is denormalized by solving for x in the same equation.

7.2.2 Network architecture

The neurons are organized in a way that defines the network architecture, and the type of
architecture used depends on the problem to be solved. Several authors in the specialized
literature have come to the conclusion that the implementation of a feedforward multilayer
perceptron (MLP) architecture is the best option for the preparation of forecasts [107, 132].

The general diagram of this architecture can be depicted in figure 7.3, where the neu-
rons are organized in one input layer of input nodes, one or more hidden layers of artificial
neurons, and one outpt layer of artificial neurons. The MLP is characterized as a feedfor-
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Figure 7.3: Fully connected Multilayer Perceptron (MLP) network. Source: [64].

ward network, since the information flow is only defined on the direction from the input to
the output8. Furthermore, the neurons in each layer have as their inputs only the output
signals of the preceding layer.

The network is classified as fully connected when every neuron in each layer is con-
nected to every neuron in the adjacent forward layer; if one or more links are missing, the
network is defined as partially connected.

The presence of hidden layers allows the network to learn complex tasks by performing
high-order statistics and, therefore, extract more significant features from the input sig-
nals [103]. In this architecture it is possible to have more than one hidden layers, but
according to Kolmogorov’s Universal approximation theorem [108, 103], feedforward NNs
with one hidden layer (that comprises an adequate number of neurons) are considered
to be universal approximators, that is, they can approximate nonlinear mappings to any
desired degree of accuracy. Therefore, in most practical cases only one hidden layer is
sufficient. Nonetheless, the number of neurons belonging to that layer must be chosen
appropriately based on the requirements of the problem to be solved.

8 That is, this architecture is not recurrent (i.e., no feedback is present in the network).
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Figure 7.3 shows an example of a fully connected MLP network with four input nodes
and two layers (that is, a hidden layer with five neurons and an output layer with only one
neuron).

Consider a Ni−Nh−No MLP network. That is, a network with Ni input signals, one
hidden layer with Nh neurons, and No neurons in the output layer. Then, the parameters for
this network are the weight matrix WNh×Ni (containing the weights w j,i that connect the j-th
hidden neuron to the i-th input signal), the weight matrix UNo×Nh (containing the weights uk, j

that connect the output of the j-th hidden neuron to the k-th neuron of the output layer),
and the bias vectors BNh×1 and BNo×1 for the hidden and output layers.

The general mathematical model represented by this network is the following:

yk = ϕo

(
Nh
∑
j=1

uk j.ϕh

(
Ni
∑

i=1
w jixi +b j

)
+bk

)
; k = 1, . . . ,No (7.4)

where yk represents the output of the k-th neuron in the output layer, ϕh (x) and ϕo (x)

are the activation functions of the neurons in the hidden and output layers, respectively.
Equation 7.4 shows how complex and flexible even a small network can be.

A common implementation in the forecasting literature uses logistic functions for the
activation of the hidden layer, and linear functions for the output layer [107, 135, 136]. The
resulting model is as follows9:

yk =
Nh
∑
j=1

uk j.
1

1+exp

(
−

Ni
∑

i=1
w jixi+b j

)
+bk ; k = 1, . . . ,No. (7.5)

7.2.3 Network training

The estimation of the network parameters is called the training of the network, and is done
by the minimization of a predefined cost function. Therefore, through the implementation
of a learning algorithm, the network is able to change its internal parameters in function of
external stimuli, learning from its environment and improving its performance.

This learning procedure suggests that neural networks are data-driven methods. This
means that when creating and training the network, the designer makes no assumptions
about the model or properties of the data. By using only a sample of input and output
signals, the network is able to learn the relationship between these two sets of signals, and
map it into its synaptic weights [34]. Therefore, these networks are particularly useful when

9 The slope a and intercept b of the linear activation function, as well as the scale factor a in the sigmoid
activation function shown in figure 7.2 are set to one in this example.
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one has a lot of data, but little information about the system that generated this data, and
the laws that govern its behavior.

There is a diverse variety of learning algorithms, back-propagation being the first one to
be formulated and one of the most popular. The main characteristic that differentiates these
algorithms is the way in which the synaptic weights are adjusted in each iteration [103].

7.3 Prediction intervals (PIs) estimation

As mentioned in previous sections, the field of forecasting is a popular application of neural
networks. However, most applications reported in the literature are focused on point fore-
casts [107], i.e., at time t the task is to predict the signal value for time t +h, where h is the
forecasting horizon [190]. In practical applications, this approach presents two limitations
when the uncertainty in the signal increases10 [135, 187]:

• The reliability of the point forecast decreases significantly, obtaining a low prediction
performance. The reason is purely theoretical, and in the words of Khosravi et al.:

"Statistically, the NN output approximates the average of the underlying
target conditioned on the NN input vector. If the target is multivalued, the
NN conditional averaged output can be far from the actual target, and is
therefore unreliable." [136]

• Point predictions yield no information about the accuracy of the prediction per-
formed [136]. It would be very useful for decision-makers and control systems if
the predictor system could establish a measure of the uncertainty of the deterministic
approximation performed by the neural network, since the prediction would increase
its reliability and credibility.

To solve these drawbacks, various methods have been proposed for constructing the
so-called prediction intervals (PIs) [135, 136].

As can be seen in figure 7.4, most existing methods for creating prediction intervals use
past observations of the signal to create a point forecast value (the model output). This
point forecast is then used to create a prediction interval, composed of an upper bound and
a lower bound, which contains a future unknown value, or target, with a certain prescribed
probability denominated confidence level [(1−α)%] or coverage probability [52]. Thus, PIs

10 Events that cannot be properly predicted in advanced like machine breakdowns and unexpected repairs,
abrupt changes in demand or supply and sudden weather changes may be possible sources of uncertain
patterns in the signal. Case studies of various industries dealing with this problem can be found in [135, 136]
and its references.
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Figure 7.4: Prediction Interval (PI) concept. Source: [131].

tell not only the range of values that the target will fall in, but also have an indication of their
accuracy, indicating on which percentage targets will be covered.

Therefore, it can be asserted that the PIs present two fundamental characteristics that
define them and differentiate them from the point forecasts: width and coverage probability.
As Chatfield points out in [52], this additional information allows decision-makers to con-
sider a wide range of solutions/scenarios for the best and worst conditions and plan appro-
priate strategies with more confidence, maximizing their benefits. For example, as Khosravi
et al. describe in [135], the width of the PI is an indicator of the uncertainty present in the
prediction, and its value may influence decision makers to avoid or face risky actions in the
future. These properties make them especially useful for, among other things, applications
that require supply and demand balancing, such as in electricity markets [190].

Since it can become a source of confusion, before proceeding it is necessary to explain
the difference between a prediction interval (PI) and a confidence interval (CI). Khosravi et
al. clearly explain these differences:

"Confidence intervals (CIs) and prediction intervals (PIs) are two well-known
tools for quantifying and representing the uncertainty of predictions. While a
CI describes the uncertainty in the prediction of an unknown but fixed value,
a PI deals with the uncertainty in the prediction of a future realization of a
random variable. By definition, a PI accounts for more sources of uncertainty
(model misspecification and noise variance) and is wider than the correspond-
ing CI." [136].

The most widespread and traditional methods found in the literature for the construction
of PIs include the delta, Bayesian, mean-variance estimation, and bootstrap techniques. A
thorough explanation of them can be found in [135].
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However, several difficulties are encountered when trying to apply these methods to the
resolution of practical problems. These include, but are not limited to, high complexity of
the resolution algorithms, need to hypothesize about the nature and distribution of data,
and the need for high computational power. As exemplified by Quan et al.:

"For example, Jacobian matrix and Hessian matrix need to be calculated in delta
and Bayesian methods separately. Delta method assumes that the noises are
normally distributed and t-distribution is applied. Bootstrap method assumes
that an ensemble of NN models will produce a less biased estimate of the true
regression of the targets." [187]

Thus, the complexity of traditional methods hinders widespread applications of PIs [188].
Furthermore, regardless of their implementation differences, all of these traditional meth-
ods construct NN-based PIs using as input data the point forecast calculated by a data
regression to a specified model or function [187]. Moreover, these NNs perform a min-
imization of an error-based cost function, such as the sum of squared errors or weight
decay cost function [136]. According to Khosravi et al. in [136], this methodology of PI
construction is questionable, since the objective of the described algorithms is to mini-
mize the error, instead of improving the quality of the PIs. Therefore, the obtained PIs will
not be optimal in terms of their two key features: width and coverage probability. This is
why a new method of constructing PIs has recently been proposed and is gaining con-
siderable traction in the community and already has examples of applications in several
fields [204, 189, 214, 224, 128, 110, 109, 236, 190]. This method, named lower upper
bound estimation, or LUBE, was initially developed by Khosravi et al. in [136] and aims to
maximize the quality of the PIs.

7.4 Lower upper bound estimation (LUBE) method

LUBE [136] is a nonparametric method for construction of PIs. Thus, unlike traditional
methods for PI construction, it does not make any assumptions regarding the probability
distributions of the variables being assessed, and there is no need to calculate computa-
tionally demanding matrices11, like Jacobian or Hessian matrices.

To accomplish this task, the method implements a fully connected feedforward NN model
with two outputs, which correspond to the values of the upper and lower bounds of the PI
(see figure 7.5). In this way, the PIs are directly constructed in one step12, gaining speed

11 Thus avoiding singularity problems.
12 As mentioned in section 7.3, traditional methods first make a point forecast, and the prediction interval is
estimated through the evaluation of the mean and variance values of the deterministic forecasts.
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Figure 7.5: NN architecture of the LUBE method. Source: [188].

and simplicity. Furthermore, since the input signals are the only information used to try to
approximate the lower and upper bounds of the PIs, LUBE does not suffer from practical
concerns about data distribution [128].

In order to generate high quality PIs at the output of the NN, this technique performs
the training process using a specially designed cost function that focuses on enhancing
the important features of PIs13. This is not an error-based cost function like the traditional
methods, and since it is highly nonlinear, complex, and discontinuous [136], the process of
training the MLP through Back-propagation has to be avoided. Instead, meta-heuristic opti-
mization methods such as Simulated Annealing (SA) [190], Genetic Algorithms (GA) [189],
Bat Algorithm (BA) [125] or Particle Swarm Optimization (PSO) [187] are applied for the
minimization of the cost function.

The creators of this PI construction technique reported through several synthetic and
real-world applications that the quality of the PIs achieved with this technique is superior
compared to the traditional methods [136].

7.4.1 Measures for the quantitative assessment of PIs

The paradigm shift of the cost function as compared to the classical methods is the key
piece of this technique. In order to derive it, it is necessary to define previously some
measures that help to evaluate quantitatively the quality of the constructed PIs.

13 Width and coverage probability.
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In this section, evaluation indices14 for both the coverage probability and width of PIs are
presented. Finally, a symmetry index15 that studies the geometric structure of the PIs by
assessing the symmetry between the target values and the PIs is introduced.

PI Coverage Probability (PICP): The coverage probability of a PI is a measure indicating
the probability that the target values (see figure 7.4) will be within the region established by
the lower and upper bounds. On the other hand, according to the definition of prediction in-
terval presented in section 7.3, the targets values have to fall within the PI with a probability
equal to the confidence level [(1−α)%]. Hence, it is expected that, during the training pro-
cess, the PICP value evolves in an asymptotic manner towards the pre-established nominal
level of confidence. Due to this evolutionary behavior, the PICP can be used to assess the
quality of the PIs constructed: a PICP with a larger value relates with with more targets
lying withing the constructed PI and vice versa [136].

The PICP is calculated empirically by counting, for a given dataset, the number of target
values that fall within the bounds. Mathematically, is defined as follows [134]:

PICP =
1
n

n

∑
i=1

ci (7.6)

where n is the number of target values inside the dataset, and ci is a boolean variable
that indicates if the i-th target value yi is within the lower bound Li and upper bound Ui of
the i-th PI:

ci =

 1, i f yi ∈ [Li,Ui] ;

0, otherwise.
(7.7)

In practical application, the confidence level is a pre-established value, and through the
training process, the model must be able to achieve values of PICP ≥ ((1−α)%). Other-
wise, the constructed PIs are not reliable and should be discarded [128]. The ideal case
for PICP is to obtain full coverage for the target values (PICP = 1).

Prediction Interval Normalized Averaged Width (PINAW): A simple method to achieve
the required minimum PICP consists in widening the interval. However, in practice, wider
intervals are not useful for decision makers, since they do not have any information regard-
ing target variation [136]. The width of PIs determines their informativeness [188], and a
quantitative measure of the width is necessary to correctly asses the quality of the con-

14 Initially introduced by Khosravi et al. in [134].
15 Developed by Zhang et al. in [236].
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structed PIs. Taking into account the above, the Prediction Interval Normalized Averaged
Width (PINAW) is defined as follows [134]:

PINAW =
1

nR

n

∑
i=1

(Ui−Li) (7.8)

where R is the normalization factor and equals the range of values of the underlying tar-
gets (max(target)−min(target)) [110]. By normalizing the range, the comparison between
different data-sets is possible.

It can be easily observed that PICP and PINAW have a direct relationship, since both
increase their value when the constructed PI grows in width. Under equal conditions, a
larger PINAW will usually result in a higher PICP [136].

Prediction Interval Normalized Root-Mean-Square Width (PINRW): Quan et al. [187,
188] draw an analogy with the Mean Square Errors (MSE) used for training traditional error-
based cost functions, and proposed a quantitative measure of the width of PIs that gives
more weight in the normalized sum to PIs that have wider intervals. Experimental results
show that this measure achieves better training performances and higher quality PIs than
PINAW. The Prediction Interval Normalized Root-Mean-Sqaure Width (PINRW) is defined
as follows [187]:

PINRW =
1
R

√
1
n

n

∑
i=1

(Ui−Li)
2 . (7.9)

In view of these results, they propose to use PINRW during the training process, and
PINAW to validate the quality of the PIs made after training.

Prediction Interval Symmetry (PIS): This measure assesses the symmetry between
the geometric structure of the band formed by the bounds of the PI and the target values.
This is an important property of the PI, since PIs symmetric around the target value are
known to be more useful for decision-makers [236]. The PIS index is defined as the ratio
of the difference between the target value and the mean value of upper and lower value of
PI to the actual bandwidth. The mathematical expression is as follows [236]:

PIS =
1
n

n

∑
i=1

∣∣yi− 1
2 (Ui +Li)

∣∣
Ui−Li

(7.10)

where Ui, Li, yi and n are the same as in PICP. Different scenarios can be distinguished
in function of the target values with respect to the limits of the interval:
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 PIS ∈ [0, 0.5] , yi ∈ [Li,Ui]

PIS ∈ (0.5, ∞) , yi 6∈ [Li,Ui] .
(7.11)

If the target value lies within the PI bounds, the index is nonnegative and less or equal
than 0.5, with the ideal case being that the PI is completely symmetrical around the target
yi (PIS = 0).

7.4.2 Cost function: the coverage width-based criterion (CWC)

As explained in the previous section, the coverage probability (PICP) and the width
(PINRW) of the intervals have a direct relation of growth. In consequence, the PI con-
struction process has a conflicting objective, since an ideal PI has a coverage probability
of not less than the confidence level ((1−α)%), and a width small enough to convey some
degree of information. But reducing the width of the interval often results in a decrease in
PICP, due to some observations becoming outliers by dropping out of the intervals [136].

The coverage width-based criterion (CWC) introduced in [136] is a PI-based cost function
used to comprehensively evaluate both characteristics in a balanced manner16, resulting
in an index that evaluates the overall quality of PIs. Its definition is as follows:

CWCK = PINAW
(

1+ γ (PICP)e−η(PICP−µ)
)

(7.12)

where γ (PICP) is a variable that, enables or disables the contribution of the exponential
term to the CWC index. γ (PICP) is given by the following Boolean step function:

γ (PICP) =

 0, PICP≥ µ

1, PICP < µ.
(7.13)

η and µ in equation 7.12 are two hyper-parameters that determine the penalty term in
case of unsatisfying the required conditions:

• µ stands for the preassigned PICP that must be satisfied, and in practice is usually
set to the confidence level, ((1−α)%) [188];

• η exponentially magnifies the difference between the PICP and µ, and is set to a
value between 50 to 100 to highly penalize invalid PIs when the preassigned PICP is
not satisfied [187].

The design of this cost function is based on two principles [128]:

16 Focusing on only one of these characteristics may lead to misleading results.
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1. if PICP is less than the nominal confidence level, (PICP≤ µ = (1−α)%), CWC
should be large regardless of the width17 of PIs, since the constructed intervals
are not reliable. This is achieved by setting (γ (PICP) = 1) (thus, enabling the ex-
ponential term in the function) and the high values reached by the exponential due
to the penalization parameter η . The influence of the PIs width in the optimization
(through PINAW) is negligible as the exponential term becomes higher than PINAW.

2. if PICP is greater than or equal to its corresponding confidence level, (PICP≥ µ =

(1−α)%), then the pre-required coverage probability has been achieved, and the
PIs width should now be the influential factor in the optimization process. This is
achieved by disabling the exponential term in the CWC index, (γ (PICP) = 0), resulting
in CWC = PINAW .

It is because of the above mentioned that the CWC index achieves a balance between
the usefulness or informativeness of the constructed PIs (narrow width) with their correct-
ness (acceptable coverage probability) [190]. A thorough analysis of the CWC evaluation
function can be found in [136].

To obtain better training results and PIs performance, during the NN training procedure
the step function γ is set to one in all cases. It is only implemented as described during
the test cases. This conservative approach avoids an excessive reduction of PI’s width
during training, which in turn would result in a PICP below the nominal value for the test
samples [136].

Equation 7.12 is the CWC index initially proposed by Khosravi et al. [136], and because
of this the sub-index K is implemented. Quan et al. proposed in [187] a new CWC index
(here referred to as CWCQ) that implements the PINRW (see equation 7.9) instead of the
PINAW during the NN training:

CWCQ = PINRW
(

1+ γ (PICP)e−η(PICP−µ)
)

(7.14)

where the same definitions and explanations as equation 7.12 hold.

Furthermore, Zhang et al. in [236] improved this cost function by including a symmetry
constraint in the optimization procedure, and they did this by adding the PIS index (see
equation 7.10). This new cost function, referred to as the coverage width symmetry-based
criterion (CWSCZ) is defined as follows:

CWSCZ = γ (PIS)e−η3(PIS−µ2)+η2PINRW + γ (PICP)e−η1(PICP−µ1). (7.15)

17 Measured by PINAW.
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The three hyper-parameters η1, η2, µ1 and the function γ (PICP) are the same as in pre-
vious CWCs. The last two terms of CWCZ are identical to the cost function CWCQ, except
that multiplication is replaced with addition. It is proven in [129] and its references that re-
placing the multiplication with the addition addresses the problem of zero-width intervals18

whilst the index remains to be a strictly proper score, meaning that it is a valid PI-based
cost function.

On the other hand, hyper-parameters η3, µ2 and the Boolean step function γ (PIS) are
added herein to control the PIS index. Because of the PIS index definition (see equa-
tion 7.10), is preferred to the optimization to have a PIS value lower than µ2. Thus, the
function is defined as follows [236]:

γ (PIS) =

 0, PIS < µ2

1, PIS≥ µ2.
(7.16)

Following the same reasoning as for the creation of the CWC cost function, when the con-
structed PI meets the requirements of coverage probability and symmetry, their respective
terms will be disabled through the gamma functions, and the only remaining parameter to
optimize will be the width of the interval. On the other hand, if these requirements are not
met, the exponential functions and the η hyper-parametres will ensure that the penalties
are large enough so that the weight of the width term is negligible. In addition, because
the coverage probability is the main characteristic that defines the quality of constructed
PIs [136], its η hyper-parameter should have a value higher than the penalty for not meet-
ing the requirements of symmetry [236].

At the beginning of the training procedure, the PICP index will have a smaller value than
the hyper-parameter µ1. Thus, a large penalization is set for the PICP term. As the training
process evolves, the PICP gradually increases to its nominal confidence level (lowering
the PICP penalization) while, at the same time, the PIS index decreases to its own nominal
confidence level. Later on, the three criteria would transfer into a conflicting status, resulting
in a comprehensive PI that eventually takes into account all indices. During this training
process, γ (PIS) = 1, just like γ (PICP) [236].

7.4.3 LUBE algorithm

The main idea is to use the PI-based cost function developed in the previous section to
train a NN for PI construction. The network learns to compute PIs on a training set and is
then used to predict PIs on a new set of examples. The proposed architecture for the NN

18 In this situation, a minimum CWC value of zero can occur by finding a zero PI width.
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is a feedforward MLP with two output neurons (one for each bound of the PIs) as depicted
in figure 7.5, and it can be modified to fit any number of hidden layers, neurons per hidden
layer and input signals, depending on the problem to be solved.

Traditional gradient descent-based NN training algorithms like Back-propagation cannot
be implemented for this cost function minimization for two main reasons:

• the cost functions defined in equations 7.12, 7.14 and 7.15 are nonlinear, complex,
and non-differentiable;

• gradient descent-based algorithms are notorious for being trapped in local minima,
resulting in a suboptimal set of NN parameters [136].

Therefore, stochastic gradient-free-based methods are the best candidates for global
optimization of the PI-based cost function [136]. Examples of this methods are Simulated
Annealing (SA), Particle warm Optimization (PSO), Bat Algorithm (BA) and Genetic Algo-
rithms (GA).

Before starting the training algorithm, the available data sets are split into three sub-sets:

• training set : used to adjust the connection weights of NNs;

• validation set : applied to determine the optimal NN structure and other undetermined
parameters;

• test set : this set will evaluate the final performance of the algorithm once the training
is completed.

After splitting the original set, the three sub-sets are normalized to [−1,1] using equa-
tion 7.3.

Figure 7.6 shows the procedure to train the NN parameters by optimization of the cost
function through the Simulated Annealing algorithm.

The first step is to initialize the parameters involved in the algorithm. This includes the
starting solution (NN weights) w0, the starting cost function value CWC0, and the starting
temperature T0 for the simulated annealing. After this, the training iterations begin. In any
of these iterations, PIs are constructed for all the samples in the training set, and then the
cost function CWCnew is calculated.

Depending on which of the above mentioned optimization algorithms is used, the NN pa-
rameters are adjusted and the training procedure continues. The SA algorithm combines
hill-climbing and random walk strategies, where the latter is used to escape local min-
ima [190]. If there is an improvement in the cost function calculated, i.e. CWCnew < CWC,
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Figure 7.6: LUBE training method using the Simulated Annealing algorithm. Source: [190].

then CWCnew and wnew are accepted (hill-climbing step). Otherwise, the Metropolis crite-
rion is used to test for acceptance (random walk step). The acceptance depends on the
temperature and the badness of the new solution, and since the temperature is reduced
as the algorithm progresses, the probability that a bad solution is accepted is higher at the
beginning of the training process [190]. The SA algorithm is explained in more detailed in
the following paragraphs of this section.

If the stopping criterion is not satisfied at the end of the iteration, a new set of weights is
obtained by creating a small perturbation in their values, and the training continues. Stop-
ping conditions include reaching a predefined maximum number of iterations or reaching a
plateau in the cost improvement (i.e., no improvement is obtained in the CWC value for a
predefined number of iterations). Once the stopping condition is reached, the optimization
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process (training) is complete, and the trained NN can be used for estimating the lower and
upper bounds and construction of PIs with the test set.

A detailed discussion about the LUBE method and its training procedure can be found
in [133, 136, 190]. More details about the parameter setting and the implementation of the
training algorithm with SA are presented in section 7.4.4.

Simulated Annealing (SA)

Simulated Annealing [140] is a gradient-free-based19 meta-heuristic optimization method
to approximate the global optimum of a given function. It has been shown to have an
excellent efficiency in finding the optimal solution for complex optimization problems [132].

It is inspired in the annealing process20; in the algorithm the slow cooling of metals
is represented by a slow decrease in the probability of accepting worse solutions as the
solution space is explored [4]. At each step, the exploring of the solution space is done by
a stochastic sampling method, where the current state is conservatively altered in order to
find a neighboring state. In the LUBE NN training, this involves the introduction of a random
perturbation in a randomly chosen NN weight.

By only using a simple heuristic like hill-climbing, the optimum solution that is found
might be a local minimum, since the hill-climbing procedure only accepts new solutions
from neighbors that are better than the current solution. Instead, SA combines hill-climbing
with random walk; this meta-heuristic allows the algorithm to accept, with some degree
of probability, a neighbor that represents a worse solution that the current one, creating a
better search of the solution space to find the global optimum. The temperature drops as
the algorithm progresses, meaning that the probability of accepting a solution that is worse
than the best stored solution decreases. This ultimately leads the system to move to states
of lower energy.

The SA algorithm is initialized at a temperature T0 with a configuration21 (xold) whose
energy22 is evaluated to be Eold. A new configuration (xnew with energy level Enew) is con-
structed by applying a random change. Decision about acceptance or rejection of the new
configuration is made based on the difference in the energy level (∆E = Enew−Eold ≤ 0):

• If the energy of the system is lowered (∆E ≤ 0), Enew is accepted unconditionally.

19 Meaning that its implementation does not require the calculation of derivatives.
20 Annelaing is a process in metallurgy involving heating and controlled cooling of a material to change its
crystallographic properties.

21 In the LUBE NN training, this configuration is equivalent to the NN weights w.
22 In the LUBE NN training, the energy of the configuration is represented by the CWC value.
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• If the energy of the system is increased (∆E > 0), the random probability
P = e(−(Enew−Eold))/(κT ) is calculated, where κ is the Boltzmann factor. Enew is accepted
if P ≥ r, where r is a random number chosen from a uniform distribution between 0
and 1.

The temperature remains unchanged for a predefined amount of iterations while sam-
pling the search space, and then it is decreased based on a cooling schedule. This pro-
cedure continues until one of the stopping criterion is met. Examples of cooling schedules
are geometric and exponential. Generally, the higher the temperature, the more likely the
acceptance of an uphill transition. This means that in early stages of optimization, SA
behaves like a random walk. Mathematically, it should be chosen so that ∀(xold,xnew),
e(−(Enew−Eold))/(κT ) ' 1. As T decreases, SA becomes a greedy optimization search look-
ing for global optimum. When T = 0, SA becomes totally greedy and only accepts good
changes.

Many authors in the literature fail to explain the method in which the temperature of
the algorithm is updated. They talk about the implementation of geometric or exponential
cooling schedules, but few mention that the temperature update process is not performed
with each iteration of the training algorithm. In contrast, several iterations are performed at
the same temperature in order to obtain better samples of the search space. If a geometric
update of temperature is assumed, the number of iterations between updates (subiter) can
be determined by the equation 7.17, where maxiter is the maximum number of iterations in
the algorithm, T0 is the initial temperature, Tmin is the final temperature that the algorithm is
set to reach at maxiter, and β is the geometric cooling factor.

subiter =

 maxiter

logβ

(
Tmin
T0

)
 (7.17)

The initial temperature should be chosen to be high enough so that the first part of the
algorithm takes a random walk strategy, while the final temperature should be low enough
so that at the last iterations the algorithm becomes completely greedy by switching to a
hill-climbing strategy. Further information about SA and its fundamental theories can be
found in [140].

7.4.4 Issues in implementing the NN LUBE method

This section exposes a series of issues (and the corresponding proposed solutions) en-
countered when implementing the LUBE algorithm with ANNs for the resolution of practical
problems.
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Data pre-processing and feature extraction

A potentially critical issue that has not yet been mentioned is what are the input signals of
the neural network, and how they are chosen. In order to make the forecasting problem
more manageable, the input data is pre-processed before entering the NN [107]. Usual
pre-processing stages include the following tasks [34]:

• clean the data, by removing outliers, missing values or any irregularities, since NNs
are sensitive to such defective data [107, 103];

• feature selection to reduce the dimension of the input vector, so as to avoid the curse
of dimensionality23. Reducing the dimensionality of the input space also allows for
faster training of the prediction models and faster online use of these models [190].

• divide the input data set into three groups of training set, validation set, and test set
and normalize each set so that they fall in the interval [-1,1]. Normalization ensures
a uniform distribution of values for each net input and output [102]. Note that if a nor-
malization procedure takes place in the pre-processing, the output signals of the ANN
will also be normalized, and a de-normalization has to be done as a post-processing
procedure to transform the solution space to its original state.

The data used to train NNs applied to forecasting in the electricity market can be classi-
fied into two groups:

• the time series created with the history of measurements made;

• the exogenous variables that modify, with a certain correlation, the time series.

The exogenous variables may include meteorological variables such as temperature and
humidity, and social variables such as holidays; the functions relating the exogenous vari-
ables with the time series are clearly not linear, and this is one of the main motivations to
use NNs in this context, since NNs can easily deal with nonlinear relationships [107].

The objective of the feature selection process is to perform an analysis on the available
data to find which components are the ones that affect the most (i.e., have the highest cor-
relation) the forecast of the next value. In this way, only the most important components are
used as the input of the NN, reducing the dimension of the input space and the complexity
of the problem to be optimized.

23 The curse of dimensionality in Machine Learning refers to the exponential growth in the complexity of the
problem that results from an increase in the number of dimensions. For example, by increasing the number
of inputs of the NN by one, the number of weights to be optimized increases by the number of neurons in the
first hidden layer, if the NN is fully connected.
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For example, several authors in the literature [203, 72, 73, 102] have performed these
analyzes and have determined, for the problem of load forecasting, that the components
of the time series and the exogenous variables that have the highest correlation with the
determination of the next forecast are the eight variables listed in the table 7.1 and depicted
in figure 7.7.

Figure 7.7: LUBE NN input features for total aggregated load forecasting. Source: [203].

Table 7.1: Input features for the LUBE NN.

Symbol Description

x1 temperature

x2 dew Point

x3 average load in the previous 24hs period

x4 load at the same hour in the previous day

x5 load at the same hour in the same day of week in the previous week

x6 time of day

x7 day of week (1-7)

x8 1 for working days, 0 for holidays and weekends

Overfitting and overparametization

The term overfitting in machine learning usually refers to models that fit the data-set so
well that they end up including in their parameters some of the random errors present in
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7 Short term forecasting in electric power systems using artificial neural networks

the data. As a consequence, the model will fit well to the data of the training set, but will
have a low performance forecasting other data-sets. This can happen in MLPs for two
reasons: because the model was over-trained, or because it was too complex [107].

One way to avoid over-training is by implementing a cross-validation scheme. As ex-
plained before, the input samples are usually split into three different sets: training set,
validation set and test set. When using cross-validation, the NN parameters are estimated
on the training set, and the performance of the model is tested, every few iterations, on
the validation set. When this performance starts to deteriorate (which means the NN is
overfitting the training data), the iterations are stopped, and the last set of parameters to
be computed is used to produce the forecasts of the test set [107].

On the other hand, overfitting can be a consequence of overparametrization, i.e., an
excessive complexity in the model. This usually happens when a large number of hidden
neurons and input features are implemented, leading to a number of parameters to be
optimized that is comparable in size to the number of available training samples. As a
solution, methods can be implemented to experimentally estimate the optimum number of
neurons in the hidden layer.

Selecting the optimal number of hidden neurons

The data-sets available can be used to find the optimal number of neurons in the hidden
layer. To perform this step is important, since with a low number of hidden neurons the NN
will not be flexible enough to model the data well, while with a large number of neurons
the NN will overfit the data [107]. To obtain the best possible ANN structure, Rana et
al. [190] implement an ensemble of NNs instead of a single NN. This method helps to
reduce the sensitivity the LUBE NN presents to the network architecture, the initialization
of the weights at the beginning, and the random perturbations of the weights during the
training process. Thus, the constructed PIs are more reliable and stable.

This technique implements feedforward MLPs with one hidden layer24 to define 30 dif-
ferent NN architectures (Ai, i = 1, . . . ,30), where the i-th architecture has i neurons in the
hidden layer. Then, the method builds 30 ensembles (Ei, i = 1, . . . ,30) of m LUBE NNs each
(in this case, m = 100). The whole process for one ensemble is depicted in figure 7.8.
Every NN that is a member of the ensemble Ei is built using the architecture Ai. All NNs
of all ensembles behave independently during training. That is, the processes of weight
initialization and update of one NN does not have effects on other NNs. Each LUBE NN is
trained in the training set. Once the training process is completed, the ensemble behaves

24 As described in section 7.2.2, Kolmogorov’s theorem assures that one-layer-MLPs (with a sufficient number
of neurons) are universal approximations for any nonlinear mapping.
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7.4 Lower upper bound estimation (LUBE) method

Figure 7.8: LUBE NN Ensemble. Source: [102].

collectively. That is, to construct a PI for the new input data, the ensemble Ei uses an
aggregation algorithm that combines the forecats of its members by taking the median of
their lower and upper bounds:

PI = [median(L1, . . . ,Lm) , median(U1, . . . ,Um)] . (7.18)

To choose the best architecture, the 30 ensembles are evaluated using the validation
set, and the one that achieves the smallest CWC is chosen to predict the test data. For a
thorough explanation of the method refer to [190]. Hassan et al. give in [102] a review on
different aggregation algorithms and their performances when applied to forecasting in the
electricity market.

Activation functions

Choosing the activation functions for the different layers is not a complicated task. This
functions must be differentiable and non-decreasing. Hippert et al. showed in [107] that
one of the most popular configurations due to its good results in the field of forecasting
is to use either the logistic (sigmoid in figure 7.2) or hyperbolic tangent functions for the
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7 Short term forecasting in electric power systems using artificial neural networks

neurons in the hidden layers, and linear functions in the neurons of the output layer. With
the logistic+linear configuration, the NN architecture represents the mathematical model of
equation 7.5.

Weight Initialization

If the initial NN, weights are set in a way that the value of the cost function is in the vicinity
of the global minimum so that the time needed for training the NN is greatly reduced.
Thus, the initialization of the NN weights, that is, the method implemented to set random
initial weights for the NNs, becomes crucial for reducing the number of training cycles (or
epochs) needed [182]. A variety of initialization algorithms were investigated and compared
in [182]. From the results of these experiments, the authors concluded that the Nguyen-
Widrow (NW) layer initialization function obtains the best and stablest results, and already
has been tested in forecasting environments with good performances [188]. This algorithm
produces values for the individual weights so that the active region of each one of the
neurons is evenly distributed over the input space [178]. Thus, the NW method is chosen
for NN weight initialization in this algorithm. A more detailed description of the operation of
this algorithm can be found in [182, 178].

7.5 Case study: electric load forecasting

This section presents one case studies used to exemplify the implementation of the fore-
casting method developed throughout this chapter. A well known data-set of a Transmission
System Operator (TSO) is implemented to verify the correct functioning of the algorithm by
predicting the demand for electric consumption.

7.5.1 Experiment methodology

At this point in the chapter, it is clear that the performance of the constructed PIs will
depend mainly on the architecture chosen for the ANNs and the training process carried
out. Therefore, it is necessary to find the best architecture and simulation parameters for
the problem. ANNs with a single hidden layer (see section 7.2.2) are considered for the
following experiments. The optimization of the architecture is carried out by the process
described in section 7.4.4. The NN training is done through the minimization of the cost
function CWCQ defined in equation 7.14 (with γ = 1 during the training) using a simulated
annealing algorithm and following the steps described in section 7.4.3. After completing
the training stage and obtaining the ensemble Ei with the best performance, said ensemble
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7.5 Case study: electric load forecasting

is evaluated by means of a test data-set, calculating the measures that evaluate the quality
of constructed PIs (those being: PICP as defined in equation 7.6, PINAW as defined in
equation 7.8 and CWCK as defined in equation 7.12, with γ being now the step function).

7.5.2 Parameters

Table 7.2: Parameters used with the case studies.

Parameter Numerical value

α 0,1

η 50

µ 0,90

CWCmin
Q 1×10−3

κ 1

T0 5

Tmin 1×10−10

β 0,9

maxiter 5000

subiter 22

Table 7.2 summarizes the parameters and its numerical values used in the simulations.
The confidence level associated with all constructed PIs is [(1−α)%] = 0,9. The first hyper-
parameter of the cost function, µ, is set to 0,9 to match the prescribed level of confidence
of PIs. The second hyper-parameter of the cost function, η , is selected to be 50 in order
to highly penalize PIs with a coverage probability lower than 90% [136]. The SA training
process has a geometric cooling schedule where Tk+1 = βTk, with a initial temperature of
T0 = 5 and a cooling factor β of 0,9.

According to the parameters defined in table 7.2 and equation 7.17, the number of iter-
ations subiter between temperature updates is fixed to 22. The training is terminated when
at leas one of the following conditions is met: the maximum number of epochs (maxiter) is
reached, the cost function reaches a value lower than CWCmin

Q , or no further improvement
is observed in the cost function value after a certain number of epochs.

The NNs weights and biases are initialized using the Nguyen-Widrow algorithm de-
scribed in section 7.4.4 and the NN parameter perturbation function called in each iteration
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7 Short term forecasting in electric power systems using artificial neural networks

of the LUBE method generates random numbers whose elements are normally distributed
with mean zero and unit variance as proposed in [136].

In both case studies, the data set is partitioned in a percentage proportion 70-15-15, i.e.,
a randomly chosen 75% of the samples of the data-set is used as the training set and the
remaining samples are divided into two groups of equal size, forming the validation and
test sets.

7.5.3 Data

This case study involves a data-set taken from the Transmission System Operator (TSO)
ISO New England in the United States of America. The importance of this data-set is
twofold, since it provides all the needed input attributes to the LUBE NN, and has already
been tested in previous research [73, 72].
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Figure 7.9: Fragment of the ISO New England data-set of electric load. The fragment corresponds
to one week of samples at a sample rate of one sample per hour.

This set includes hourly measurements for a period of six years, from January 1, 2004
through December 31, 2009 inclusive. A one day extract can be seen in table 7.3, and the
general waveform of the load that this particular TSO has during an entire week is shown
in figure 7.9.

7.5.4 Training process

Figure 7.10 describes through a log-log graph the convergence behavior of the cost func-
tion and the profile of the cooling temperature. This is done by showing how the perfor-
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7.5 Case study: electric load forecasting

Table 7.3: Extract of the data-set for the input features and target for the LUBE NN. This particular
fragment corresponds to the 24 hours of a Friday (day 6). The attributes are defined in
table 7.1. Source: [73, 72].

Input Attributes

x1 [
◦C] x2 [

◦C] x6 [h] x7 [−] x8 [−] x5 [kW ] x4 [kW ] x3 [kW ] Target [kW ]

8 -3 1 6 1 11728 14186 17681.2 14592

6 -5 2 6 1 11275 13757 17699.6 14199

6 -6 3 6 1 11083 13593 17719.2 14064

5 -8 4 6 1 11071 13612 17739.0 14088

3 -8 5 6 1 11304 13963 17760.9 14488

2 -9 6 6 1 12053 15158 17781.9 15661

1 -10 7 6 1 13372 17498 17807.1 18103

0 -11 8 6 1 14656 18924 17835.9 19616

0 -13 9 6 1 15658 19042 17870.5 19871

0 -15 10 6 1 16472 19072 17907.2 19953

1 -16 11 6 1 16889 19063 17946.8 20015

2 -17 12 6 1 17015 18934 17988.0 19922

4 -16 13 6 1 16869 18694 18029 19678

5 -15 14 6 1 16595 18543 18067.5 19467

6 -15 15 6 1 16387 18381 18103.2 19239

7 -14 16 6 1 16414 18447 18138.7 19297

6 -14 17 6 1 17327 19587 18165.8 20238

4 -14 18 6 1 18164 20991 18185.8 21471

3 -14 19 6 1 17766 20978 18200.6 21334

2 -14 20 6 1 17144 20458 18216.8 20846

1 -14 21 6 1 16461 19800 18234.8 20232

1 -15 22 6 1 15562 18602 18264.5 19316

0 -15 23 6 1 14357 17094 18302.5 18006

-1 -15 24 6 1 13086 15565 18351.3 16735
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Figure 7.10: Evolution of the performance indexes of the best solution (i.e., the weights and biases
of the LUBE NNs) found on each epoch of the training process. (T0 = 5,µ = 0.9).

mance indexes of the constructed PIs change as the training proceeds and the temperature
of the SA algorithm decreases.

As explained in section 7.4.4, the initial condition of the training process is determined
by the NW initialization method. Although the performance of this initialization process is
better than a random one, we can see that the cost of the initial solution is still outside
the scale of the graph, and reaches values close to infinity. The cause of this high value
is attributed to the penalty imposed by the exponential term in the cost function, since the
PICP index has a value much lower than the hyper-parameter µ.

The presence of this penalty forces the algorithm to first worry about obtaining a cover-
age probability not lower than the value imposed by the µ hyper-parameter. This is why it
is observed that in the first 15 iterations the PICP approaches its nominal value, and little
importance is given to the value of the PINRW index, since its weight in the cost function
is negligible compared to the penalty. The penalty decreases exponentially as PICP ap-
proaches µ. When the value of the penalty is comparable to the PINRW term, the value
of the cost function enters the scale of the graph. Once the PICP outgrows µ in iteration
12 approximately, the exponential term becomes a nonpositive value close to zero, so the
cost function has a slightly lower value than PINRW. From this point in the training, the hard
constraint concerning construction of the prediction intervals is fulfilled. Therefore, as long
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7.5 Case study: electric load forecasting

as this restriction continues to be fulfilled, the following iterations will aim to find the set of
synaptic weights that minimize the width of the intervals (i.e., minimizes PINRW).

As calculated in section 7.5.2, this training process updates the temperature every 22

iterations. From the point where the width of the intervals becomes the main target to
be minimized, it is observed how the value of PINRW evolves while PICP stays above its
nominal value. Due to the high temperatures, the probability of accepting worse solutions
in the Metropolis acceptance criteria is high, and the early stages of optimization behave
like a random walk, allowing a better search within the solution space. This results in the
random jumps observed in the PINRW and CWC values. Some of these jumps accept-
ing worse solutions produce a decrease in the PICP below its nominal value, causing an
abrupt increase in the value of CWC with respect to PINRW. In this condition, the algorithm
refocuses its attention on improving the PICP value and reducing the penalty associated
with it.

As the temperature drops, the probability of accepting worse solutions decreases, and
the algorithm shifts from a random walk to a hill-climbing strategy, accepting only better
solutions. The beginning of this change is easily noticeable around the iteration 900, when
the temperature reaches values close to 0.1 and the CWC starts to decrease gradually, but
non-monotonically. Once the iteration 1500 is reached, the temperature is sufficiently low
to transform the algorithm into totally greedy, accepting only better solutions.

7.5.5 Finding the best ANN architecture

The process described in section 7.4.4 is implemented to search for the optimum ANN
architecture. Initially, the equation 7.14 is implemented as the cost function for the training
via simulated annealing, while equation 7.12 is used to compute the cost with the test data-
set. After completing the training process of each ensemble Ei (i = 1, . . . ,30), a selection
process is carried out. The performance of each ensemble is analyzed using the test data-
set, and out of the 100 NNs that make up each ensemble, only those 20 NNs that have the
lowest cost value survive.

Figures 7.11a to 7.11c show the performance results of the ensembles after the selection
process. The hyper-parameter µ in equations 7.12 and 7.14 is set to the confidence level
of 0,90, and all the trained NNs have a coverage probability greater than this value.

The box and whiskers plot (or Box plot) is used here to show the distribution of the
results by presenting a five-number summary of the results on a plot. The edges of the
box are the 25th and 75th percentiles25, the mark in the middle is the median (the 50th

25 The 25th percentile is the value at which 25% of the data values are below this value. Thus, the middle 50%
of the data values fall between the 25th percentile and the 75th percentile. This distance between percentiles
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Figure 7.11: Box and whiskers plots showing the statistical quality assessment of the constructed
PIs. These PIs were constructed with the test data-set using 30 different ensembles
Ei, each containing 20 NNs of architecture Ai. (a) PICP ; (b) PINAW ; (c) CWCK .
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percentile), and the ends of the whiskers are the minimum and maximum of the five values,
that are not considered outliers; outliers are shown with crosses. The figure shows that
all of the trained NNs constructed PIs with a coverage probability higher than the specified
confidence level. This means that the penalization imposed by the exponential term in the
cost function is negligible, and the numerical value of the function approaches the value of
the PINAW index.

In table 7.4 a numerical summary of the graphs presented in figures 7.11a to 7.11c is
detailed. The table shows that the coverage probability PICP is higher than the nominal
confidence level of 90% for all the NNs in the ensembles, meaning that the constructed
PIs can be accepted as valid. Furthermore, the PICP values of the constructed PIs con-
siderably outperformed the prescribed confidence level, with values ranging from 91,8% to
97,4%.

In terms of the width of the constructed intervals, we can observe that the lowest PINAW
value obtained with the test data-set is 29,2% for E8, while the maximum values obtained ex-
ceed 150%, probably due to the large over-parameterization of the ensembles that possess
a high number of hidden neurons. A comparisson between these two cases is analyzed in
figure 7.13.

A quick examination of the columns corresponding to the total value of the CWCK cost
function reveals that the cost values are the same as the PINAW values for all ensem-
bles. This is as expected and follows from the definition of the CWCK cost function in
equation 7.12. When the NN is used with test cases, the γ function is defined as the step
function from equation 7.13, so when the PICP is higher than the hyper-parameter µ, the
function γ (PICP) = 0, and CWCK = PINAW .

Therefore, it can be concluded for this example that the LUBE NN with better perfor-
mance belongs to the ensemble E8, and in turn the ensemble E7 has the lowest mean
of the cost value. For the construction of PIs, either of these two options will be a good
alternative, since their quality indicators are very similar.

7.5.6 Prediction interval construction

The ensemble E8 consisting of 20 NNs of architecture A8 (i.e., eight neurons in the hidden
layer) is used to construct PIs from a data-set corresponding to one week of samples. The
constructed PIs together with the actual targets are shown in figure 7.12a. A fragment of
the samples is showed in detail in figure 7.12b. A comparison between the constructed PIs
of this LUBE NN and the ones constructed by one NN from the ensemble E29 is shown in

marked by the height of the box is a popular measure of spread and it is referred to as the inter-quartile range
(IQR).
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Table 7.4: Statistics for the quality assessment measurements of PIs constructed from the test
data-set for the best 20 NNs in each trained ensemble. Minimum values of each column
are in bold.

PICP [%] PINAW [%] CWCK [%]

Ei min mean max min mean max min mean max

E1 94.9 95.5 96.7 42.7 60.8 65.6 42.7 60.8 65.6

E2 93.9 95.9 97.4 47.5 56.0 62.8 47.5 56.0 62.8

E3 92.7 95.5 96.9 33.8 47.8 58.3 33.8 47.8 58.3

E4 93.8 95.4 96.6 30.3 46.2 54.7 30.3 46.2 54.7

E5 94.0 95.2 96.8 34.5 45.7 52.1 34.5 45.7 52.1

E6 93.2 95.3 97.1 33.0 44.7 53.3 33.0 44.7 53.3

E7 93.0 94.6 96.3 32.6 39.8 46.6 32.6 39.8 46.6

E8 93.8 95.1 97.2 29.2 40.7 46.8 29.2 40.7 46.8

E9 92.8 95.2 96.5 33.2 46.9 52.3 33.2 46.9 52.3

E10 92.6 94.8 96.7 33.3 43.9 51.7 33.3 43.9 51.7

E11 92.7 94.4 96.4 30.5 42.8 53.8 30.5 42.8 53.8

E12 91.9 94.4 96.3 35.6 49.1 54.2 35.6 49.1 54.2

E13 92.4 94.3 96.3 43.7 58.6 69.4 43.7 58.6 69.4

E14 93.0 94.7 96.6 49.8 60.3 70.0 49.8 60.3 70.0

E15 92.4 94.0 95.7 36.3 61.6 80.9 36.3 61.6 80.9

E16 92.3 94.1 96.3 31.8 72.8 93.2 31.8 72.8 93.2

E17 91.8 93.9 96.1 49.7 86.5 100.0 49.7 86.5 100.0

E18 92.3 94.2 96.0 70.1 87.9 97.6 70.1 87.9 97.6

E19 92.7 94.1 95.2 61.9 85.7 111.2 61.9 85.7 111.2

E20 91.9 94.2 95.3 70.6 98.7 119.9 70.6 98.7 119.9

E21 92.1 94.1 95.5 73.1 103.1 119.6 73.1 103.1 119.6

E22 92.7 94.1 95.3 68.4 101.5 121.4 68.4 101.5 121.4

E23 92.5 93.9 95.4 77.8 109.5 129.0 77.8 109.5 129.0

E24 92.4 94.0 95.1 69.9 107.0 125.9 69.9 107.0 125.9

E25 91.9 93.7 95.6 90.1 119.0 132.4 90.1 119.0 132.4

E26 92.0 93.7 95.6 87.7 119.9 141.1 87.7 119.9 141.1

E27 92.5 94.1 95.9 106.0 124.7 138.3 106.0 124.7 138.3

E28 92.3 93.9 95.4 77.4 121.4 144.9 77.4 121.4 144.9

E29 92.3 94.0 95.9 91.5 129.8 151.2 91.5 129.8 151.2

E30 93.1 94.1 95.7 85.5 120.9 139.3 85.5 120.9 139.3
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figure 7.13. All the constructed PIs by both NNs are valid PIs with respect to their PICP
values. However, the over-paramtrization of the E29 NN led to a poorly optimized PINAW
value during the training process.

7.5.7 Computational load

One ensemble of random architecture Ai with 100 NNs is trained and the time duration
of each iteration of the algorithm is recorded. In order to estimate the probability density
function (pdf) of the duration of each iteration, the finite data sample recorded is passed
through a Kernel density estimator for one-dimensional data. To apply this estimator, a
Gaussian kernel is assumed, and the bandwidth is chosen automatically by the estimator.
Figure 7.14 illustrates the probability density function (pdf), as well as the cumulative den-
sity function (cdf) of the random variable. The most frequently occurring value (or mode)
for one training iteration is 23,4ms, the mean value is calculated in 24,3ms, and the standard
deviation is 1,7ms. All iterations take less than 35ms to be completed. This means that, with
maxiter = 5000, the training of each LUBE NN in the ensemble is completed in less than
150s in the worst case.

The same analysis is carried out with a LUBE NN that is already trained, with the objec-
tive of estimating the mean time of PI construction. The 100 NNs of the ensemble previously
trained in this section now estimate 1×103 PIs each, and the resulting 1×105 time values
are passed through the same Kernel density estimator as before. Results are shown in
figure 7.15. The mode for one PI estimation is 6,3ms, the median 6,6ms, and the standard
deviation 1,0ms. On the other hand, if the ensemble is implemented collectively using as
the PI estimation the mean value of all the constructed PIs in the ensemble, the total time
for one PI estimation is, in the worst case, 180ms for an ensemble with 20 NNs and 900ms

for an ensemble with 100 NNs (assuming no parallel computing is implemented).
Due to the simplicity of the calculations involved, the training and implementation times

of the LUBE method are three orders of magnitude lower than the times of the traditional PI
construction methods described in section 7.3 [136]. Therefore, the LUBE method is easily
implementable in real-time applications, specially in the energy industry, where the rate of
the decision-making keeps increasing over time.

7.6 Conclusions and further reading

The main thesis of this chapter is that "in the energy control system of an electric grid,
variables that present uncertainties (such as energy purchase and sale prices, electric de-
mand and power generation) can be estimated in a fast and simple way, without making any
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Figure 7.12: Target values of the electric load signal and PIs constructed with the ensemble E8
consisting of 20 NNs of architecture A8 (i.e., eight neurons in the hidden layer).(a) one
week fragment; (b) two days fragment.
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Figure 7.13: Comparison between PIs constructed by a LUBE NN with a successful optimization
of the cost function (E8) and one with a poorly optimized cost function due to over-
parametrization of the NN (E29). All constructed PIs have valid PICP values.
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Figure 7.14: PDF and CDF of the time taken for a training iteration to be completed.
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Figure 7.15: PDF and CDF of the time taken to construct one Prediction Interval.

assumptions on the input data, and allowing real-time forecasts to be used to improve deci-
sion making". To demonstrate this, the concept of prediction interval (PI) is introduced and
the advantages that present its implementation in the decision processes in comparison to
a point forecast are described. Then the lower upper bound estimation (LUBE) method is
introduced, which uses an ensemble of neural networks to construct the prediction inter-
vals. In order to generate high quality PIs at the output of the NN, this technique performs
the training process using a specially designed cost function that focuses on enhancing
the important features of PIs (width and coverage probability). The implementation of this
method together with a meta-heuristic process of neural network training such as simulated
annealing (SA) a real-world application showed results that prove the thesis right. The con-
structed PIs have a coverage probability of no less than the specified confidence level, and
the required calculation time is small enough to allow this method to be implemented in
most real-time applications.

However, similar to any other optimization problem, the quality of developed models
and constructed intervals directly depends on the performance of the applied optimization
method. Since this chapter has as an objective only to demonstrate that it is possible to
construct these types of intervals under the described conditions, one of the simplest opti-
mization methods is implemented for tuning the neural network parameters, i.e., simulated
annealing. Within this implementation, the set of hyper-parameters used was hand-picked
for the specific problems. However, hyper-parameters that create LUBE NNs with better
performance at constructing PIs can be obtained by implementing hyper-parameter op-
timization techniques, like brute force strategies (e.g. grid search, random search), or
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more intelligent strategies like Bayesian Optimization, which looks most promising [47, 74].
Bayesian Optimization picks a prior belief about how the hyper-parameters will behave
and then searches the hyper-parameters space by enforcing and updating that prior be-
lief based on ongoing measurements. In this way, Bayesian Optimization lets prior beliefs
influence its predictions.

Furthermore, the introduction of more advanced evolutionary algorithms such as sim-
ulated annealing mixed with the mutation operator present in genetic algorithms, particle
swarm optimization, genetic algorithms or firefly algorithm can significantly enhance the
quality of constructed prediction intervals. To the authors best knowledge, one of the most
promising options is a hybrid evolutionary algorithm called PSOGSA, a combination of par-
ticle swarm optimization (PSO) and gravitational search algorithm (GSA). This algorithm is
implemented by Lian et al. in [158] to construct PIs together with an artificial neural network
with random hidden weights. This particular area of research formulated a theorem which
states that for any random set of synaptic weights and biases of the hidden layer, there is
a combination of synaptic weights in the output layer that guarantees that the constructed
PIs will contain the target value with probability equal to one. Therefore, it is possible to
successfully train the NN by optimizing only the synaptic weights of the output layer.

Other options to implement the LUBE method have also gained some attention, like hy-
brid systems mixing ANN with Fuzzy Logic as demonstrated by Kavousi-Fard et al. in [125].
This option allows the online modification of some parameters, providing more versatility to
the decision-maker to analyze different scenarios.
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8.1 Conclusion

This work presents modeling and optimization solutions for the energy management prob-
lem for grid-connected microgrids with on-site energy storage systems (ESS) under the
presence of uncertainty in electricity prices, predicted load and predicted renewable power
generation; this paradigm is deployed to design a high-level control strategy, or energy
management system (EMS), for an energy storage system (ESS) in a light rail system.

The correlation between the current and voltage measurements performed at the Neuos-
theim electrical substation of the RNV5 light rail line (see figure 6.16) and the time sched-
ules for the trains is analyzed; the results show (figure 6.20) that the recovered energy
through the braking phases represents no less than 28% (figure 6.18) of the total energy
consumed at the four track segments of the substation.

According to [22], the recovered energy can reach levels up to 40% of the energy supplied
to the electrical rail guided vehicles. While the vast majority of the literature focuses on
reusing this energy within the train electric network (i.e., peak power shaving and line
voltage stabilization of the overhead line), a novel approach is to consider the recovered
energy from the braking phase as the renewable energy source (RES) of a grid-connected
microgrid. With this in mind, the microgrid architecture shown in figure 1.8 is proposed to
further increase the energy savings and system efficiency by increasing the receptivity of
the overhead catenary line of the light rail system; this is achieved through the installation of
a wayside ESS that helps to prevent the loss of the recovered energy (mainly the Egenrheostatic

term of equation 6.4) during the braking phase of the trains in the vicinity of the Neuostheim
electrical substation.

All the power flows inside the proposed microgrid architecture are controlled by the EMS,
whose structure is presented in figure 1.7; the controller performs as a high-level power
optimizer in a hierarchical control structure by providing power flow commands to the power
converters of the different sub-systems inside the microgrid at a time scale in the order of
minutes.

The optimization is carried out by the mixed-integer linear program (MILP) defined in
equation 3.33, whose main decision variables are all the power flows inside the microgrid
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for a predefined number of future time-steps; the optimal solution for this problem is the
one that presents the highest economic profitability while meeting at the same time a set
of constraints and sub-objectives (e.g., minimization of operation costs, shaping of the
main grid power signal, shaping of the ESS power signal, energy balance to meet the
demand, amount of load-shedding in islanded mode, etc.). To find the optimal values of
these decision variables, the optimization problem takes into account a range of parameters
(e.g. physical limitations of the system concerning energy and power rates and capacities)
and forecasts within a predefined prediction horizon (e.g. energy generation, load and
electricity prices).

Because the cost function has to be minimized in a given time horizon and the system is
subject to constraints, the MILP problem formulation is embedded into an integrated reced-
ing horizon framework involving problem-specific forecasting techniques for the uncertain
parameters. Thus, the system receives feedback of all input parameters (e.g., actual de-
mand, updated state of system) at every discrete time-step and each optimization is done
according to the current available information.

Optimal solutions of optimization problems usually present a high sensitivity to data per-
turbation; solving the optimization problem under the assumption that all parameters are
deterministic (thus ignoring possible uncertainties in forecasted parameters) could cause
the solution of the problem to be suboptimal or unfeasible in the worst case. To address this
issue, the robust optimization methodology is introduced and implemented to create a ro-
bust counterpart of the original deterministic MILP formulation, as shown in equation 3.46;
this new optimization problem allows to obtain solutions that remain feasible under all the
possible realizations of data uncertainty predefined in an uncertainty set included in the
uncertain space.

The optimization problem is modeled in the AMPL programming language and solved by
the IBM ILOG CPLEX solver; then this model is embedded in the rolling horizon framework
created with MATLAB; the different features of the controller are demonstrated by perform-
ing several simulations under a variety of conditions. Figures 5.5 and 5.6 compare the
robust optimization approach to the deterministic case in terms of feasibility and quality of
the solution under different scenarios of uncertainty; the first figure shows that it is a cer-
tainty that the solution granted by the robust approach of the EMS remains feasible as long
as the realizations of the parameters remain within the predefined bounds of the uncer-
tainty set; the second figure shows that in a system where forecasts are not deterministic
and are likely to contain uncertainties, the robust approach to the optimization gives more
profit than the deterministic case. The ability the decision-maker has to shape the output
of the EMS controller is studied in figures 5.7 and 5.9; by changing the economic costs
of the penalization terms inside the objective function, the decision-maker is able to meet
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sub-objectives of the system related to extending the lifetime of the ESS and generating a
more predictable and stable load response from the main grid perspective at the point of
common coupling. In this way, the introduction of a microgrid topology does not disrupt the
current scheme of energy distribution and control in the main grid, and it can be considered
as an effective framework for the penetration of distributed energy generation into the main
grid network.

Parametric plots for optimal ESS sizing in terms of capacity and power rating are also de-
rived in figures 5.12 and 5.13, allowing for a quick determination of the optimal parameters
for the ESS once its technology is decided.

Simulations are also conducted to study the computational time needed by the EMS
controller; the best solution in terms of computational speed involves the resolution of the
optimization problem with a variable prediction horizon with relaxed binary constraints (fig-
ure 5.14). Nonetheless, the average computational time of all strategies investigated is at
least four orders of magnitude smaller than the length of the control horizon. In conse-
quence, regardless of the strategy implemented real-time application does not present an
issue for this particular controller.

As decision making in the EMS inherently involves the consideration of forecasting
uncertainties, for completeness sake the problem of creating real time high-confidence-
forecasting models is also addressed in this work. An ensemble of artificial neural networks
is used to create prediction intervals for the different parameters that need to be forecasted;
the lower upper bound estimation method is used to train this ensemble with the simulated
annealing algorithm. Figure 7.12 shows for the electrical load of a transmission system
operator the results of this implementation for the creation of prediction intervals compared
with the actual realizations of the signal; the constructed PIs have a coverage probability
of no less than the specified confidence level. Furthermore, as shown in figure 7.15 the
required calculation time of 6,3ms is small enough to allow this method to be implemented
in most real-time applications.

8.2 Prospect

As suggestion for further research a list of topics that remain to be covered is presented
below.

• Perform a deeper and more detailed study of the behavior of the controller under
different scenarios and parameter configurations.

• Replicate the microgrid architecture in several electrical substations along the rail
track and integrate these architectures into a higher-level controller involving multi-
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microgrid optimization models that also allows the exchange of energy between the
different microgrids with the ultimate goal of creating a virtual power plant to exchange
power with the main distribution grid.

• Further cost reduction and energy savings could be achieved by the coupling of the
heat and mobility sectors to the microgrid (e.g., charging stations for electric vehicles
with vehicle-to-grid capabilities).

• Measurements of the power consumption of a single electric vehicle can be used
together with the transportation schedule and speed profiles to better estimate the
unused braking energy in a particular section of the network, such as the area cov-
ered by an electrical substation. More information about this procedure proposed by
Lakovskis and Grigans in [150] is found in section 6.2.2.

• The quality of the constructed prediction intervals directly depends on the perfor-
mance of the applied optimization method. The introduction of more advanced evo-
lutionary algorithms such as simulated annealing mixed with the mutation operator
present in genetic algorithms, particle swarm optimization, genetic algorithms or fire-
fly algorithm can significantly enhance the quality of constructed prediction intervals
(more information in section 7.6).

• Hyper-parameter optimization techniques can be implemented to increase the per-
formance of the LUBE NNs forecasting model; several options include brute force
strategies (e.g. grid search, random search), or more intelligent approaches like
Bayesian Optimization (more information in section 7.6).
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