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We propose a novel and simple method for estimating
the fractional Raman contribution, fR, based on an anal-
ysis of a full model of modulation instability (MI) in
waveguides. An analytical expression relating fR to the
MI peak gain beyond the cutoff power is explicitly de-
rived, allowing for an accurate estimation of fR from a
single measurement of the Raman gain spectrum.

Stimulated Raman scattering (SRS) is one of the most promi-
nent phenomena in nonlinear optics and may occur in any molec-
ular medium. SRS can be regarded as a four-photon process
leading to the transfer of energy from a pump wave to lower
frequency (Stokes) and higher frequency (anti-Stokes) waves
through the mediation of an optical phonon provided by the
transmission medium [1]. In particular, optical fibers have en-
abled the fabrication of broadband amplifiers [2] and tunable
lasers [3] based on SRS. In media exhibiting third-order suscep-
tibility χ(3), the Raman response function is usually modeled
with two dominant time scales (see, e.g., [1]). The shorter time
scale is due to nonresonant virtual electronic transitions and, for
most applications, can be modeled as an instantaneous Dirac’s
delta. The longer time scale, on the other hand, is due to the
nuclear contribution of the interaction. All in all, the total Raman
response R(t) can be written as

R(t) = (1− fR) δ(T) + fRhR(T), (1)

where fR weights the relative contributions of the instantaneous
and delayed Raman responses. R(t) and hR(t) are both normal-
ized so that

∫
R

R(t)dt =
∫

R
hR(t)dt = 1. The function hR(t) can

be estimated from experiments by relating it to the Raman gain
spectrum gR of the waveguide [4–6]:

gR(Ω) = fR
2ω0

c
n2(ω0)Im

{
h̃R(Ω)

}
, (2)

where ω0 is the pump frequency, Ω denotes frequency devia-
tions from ω0, c is the speed of light, n2 is the nonlinear refractive
index, and h̃R(Ω) is the Fourier transform of hR(t).

Given an estimation of h̃R(Ω), the fraction of the delayed
Raman response fR can be computed provided an independent
measurement of the nonlinear refractive index n2. This is the
chosen procedure, for instance, by Hu and colleagues [5, 6] in the
case of As2Se3 chalcogenide fibers. It is interesting to note that
Refs. [5, 6] use measurements in Slusher et al. [7]. The authors
of Ref. [7] remark the difficulties of obtaining precise values, as
their “experimental values for both n2 and gR have at least 30% errors
due primarily to the uncertainties in evaluating the effective power
and intensity in the fiber.” As such, experimental uncertainties
hinder a precise estimation of fR.

Other ways of estimating the fractional contribution fR have
been presented in the literature. Hellwarth et al. [8] resort to
measurements of intensity-induced polarization changes and
the Raman differential scattering cross section to determine hR(t)
and fR for several glasses, including fused quartz. In the seminal
work by Stolen and colleagues [4, 9] for fused silica, a relation
between the Raman gain and the differential scattering cross
section is used. Since independent measurements of both quan-
tities are possible, fR can be calculated. The estimated value of
fR = 0.18 is the one commonly adopted for silica-based fibers
[4].

In numerical simulations, hR(t) is usually replaced by a sim-
ple mathematical expression and not derived from experimental
measurements. The most common approach is to fit gR(Ω) (and
hence h̃R(Ω)) with a Lorentzian profile (damped-oscillator ap-
proximation in the time domain) [1, 10]. Furthermore, fR is
sometimes estimated from such a fit and Eq. (2) (see, e.g., [11]).
However, a single Lorentzian linewidth does not suffice to prop-
erly describe the spectral characteristics of the Raman gain, and
more complex models are used to compute the gain at various
frequencies. One such model for silica fibers was put forth by
Lin and Agrawal [12]. In particular, they describe the so called
boson peak of the Raman response in silica fibers. However,
the resulting model overestimates the Raman gain in the spec-
tral region beyond 15 THz, causing an underestimation of the
electronic contribution to the nonlinear refractive index. For



this reason, Lin and Agrawal set fR = 0.245, higher than the
experimentally measured value fR = 0.18, to compensate.

There are more complex approximate mathematical expres-
sions for hR(t). A usual approach is that proposed by Hollen-
beck and Cantrell [13] which is based on the superposition of
Gaussian-broadened Lorentzian linewidths. The authors sug-
gest that this type of approximation allows for a better fit of both
the gain spectrum and the response hR(t) than the usual single-
Lorentzian-profile approach. They show how their approach
works for silica fibers, although they do not estimate fR. Other
authors have used the work in Ref. [13] to fit the Raman gain and
response for different fiber types, including the estimation of
the fractional electronic contribution. For instance, Yan et al. [14]
estimated values for ZBLAN fibers and Kohoutek et al. [15] used
them for As2S3 and Ge17Ga4Sb10S69 glasses. There also are other
approximate analytical expressions for hR(t). Agger et al. [16],
e.g., fit two Gaussian profiles to the gain gR(Ω) and estimate fR
from Eq. (2) for ZBLAN fibers.

The nonlinear refraction index n2 can be measured through
the Z-scan technique [17, 18]. In particular, time-resolved Z-
scans allow the separation of the electronic and nuclear contri-
butions to R(t) in the time domain. Indeed, R(t) can be directly
estimated from measurements performed with this technique.
Smolorz et al. [19] use time-resolved Z scans to estimate hR(t)
and fR in several chalcogenide and heavy-metal glasses. It must
be noted that the authors report errors > 25 % for fR.

It is usual in the literature to resort to measurements and
estimations in previous works, even though the particular fiber
might not be made of exactly the same material. The reason
for this is that an accurate estimation of, say, fR requires a con-
siderable experimental effort in the lines of the aforementioned
studies. In some cases, researchers adopt published values with
slight changes to better fit experimental observations. For ex-
ample, Duhant et al. [20] work with a As38Se62 suspended-core
microstructured fiber. Since there are no previous studies with
this material, to describe the Raman response they modify val-
ues in Ref. [21] for As2Se3 in order to fit their observations. As
Duhant and colleagues observe, “the exact Raman response of AsSe
glass is not yet fixed accurately in the available literature”.

In short, the experimental estimation of the fractional elec-
tronic contribution to the Raman response is usually difficult and
is accompanied with errors of the order of 20− 30%. Moreover,
accurate assessments of fR for new materials are lacking.

In this work, we propose a novel and simple technique based
on a relatively unexplored facet of modulation instability (MI).
In the absence of delayed Raman scattering ( fR = 0) it can
be shown that, if the effect of self-steepening is considered,
the MI gain vanishes when the pump power exceeds a certain
limit [22, 23]. However, if fR > 0, there is still gain beyond the
cutoff power. Furthermore, we have shown [24, 25] that the MI
gain takes a Raman-like shape with a power-tunable central fre-
quency. As we shall demonstrate, the way in which this central
frequency varies with the pump power depends on the value
of fR. It is this dependence that can be exploited to obtain an
accurate estimation of the fractional Raman contribution to the
response. Using the fact that h̃R(Ω) is analytic in the upper half-
plane, the Kramers-Kronig relations enable the calculation of
the real part of h̃R(Ω) and, through the Fourier anti-transform,
the computation of hR(t). An example of this calculation is
shown in Fig. 1 where the Raman response is obtained from
our back-scattering measurements of a sample of As2S3 [26, 27]
chalcogenide.

In order to explain our approach to the estimation of fR,
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Fig. 1. Measured Raman spectrum of a chalcogenide As2S3
optical fiber. (a) Real and imaginary parts of h̃R(Ω). (b) Time
response hR(t).

we start by the generalized nonlinear Schrödinger equation
(GNLSE) [10], used to describe propagation of short pulses in a
lossless monomode nonlinear waveguide

∂A(z, T)
∂z

− iβ̂A(z, T) = iγ̂A(z, T)
∞∫
−∞

R(T′)
∣∣A(z, T − T′)

∣∣2 dT′,

(3)
where A(z, T) is the slowly-varying envelope, z is the spatial
coordinate, and T is the time coordinate in a co-moving frame at
the group velocity. The operator β̂ models the linear dispersion
and γ̂ is an operator related to the third-order susceptibility,
and the integral on the right hand side includes the influence of
Raman scattering. Operators β̂ and γ̂ are defined as

β̂ = ∑
m≥2

im

m!
βm

∂m

∂Tm , γ̂ = ∑
n≥0

in

n!
γn

∂n

∂Tn . (4)

Coefficients βm correspond to the Taylor expansion of the prop-
agation constant β(ω) around a central frequency ω0. Similarly,
γn are the coefficients of the Taylor expansion of the nonlinear
parameter. Usually is sufficient to consider the expansion up to
the first term. Under this setting, it can be shown that the total
number of photons is conserved if γ1 = γ0/ω0 [1], which is the
usual approximation.

It is well-known that, from a first-order linear perturbation
analysis of the GNLSE, continuous-wave (CW) solutions become
unstable upon propagation in the nonlinear medium. This phe-
nomenon, known as modulation instability [28–35], is a paramet-
ric process where two photons from a CW pump are transferred
to both low- and high-frequency bands, one photon each. As
a result, the MI gain is observed at both frequency sides of the
pump. A complete analysis including the rich interplay between
MI and Raman scattering can be found in Refs. [25, 36, 37]. For
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Fig. 2. MI gain profile vs. p and frequency. The pump frequency
was chosen ω0/2π = 29.98 THz, β2 = −10 ps2/km, γ0 = 100
W−1km−1, and fR = 0.1.

the sake of simplicity, in what follows we only consider the case
where m = 2 and n = 1 in Eq. (4). In this scenario, it can be
shown that the the MI gain in the anomalous dispersion regime
is given by [24, 38]

gMI(Ω) = 2 max{−Im{K1(Ω)},−Im{K2(Ω)}, 0}, (5)

K1,2(Ω, p) =
p|β2|

τ
Ω(1 + R̃)± |β2Ω|

√
Ω2

4
− pR̃

τ2 +
p2R̃2

τ2 , (6)

where τ = γ1/γ0, R̃(Ω) is the Fourier transform of R(t) and
p = P0/Pc is the normalized pump power, with Pc defined as
the power cutoff

Pc =
|β2|γ0

γ2
1

. (7)

As aforementioned, in the absence of Raman scat<tering
( fR = 0) it is easy to verify that the MI gain vanishes for p > 1.
However, in the presence of Raman scattering ( fR 6= 0) there is
MI gain for p > 1, and its profile changes drastically. Figure 2
shows the MI gain profile from Eq. (5), using the Raman spec-
trum in Fig. 1 and assuming fR = 0.1, where the region for p > 1
is clearly dominated by Raman.

The position of the MI peak gain, ΩMI, tends to remain stable
as the pump power increases. Since Eq. (6) does not lend to a
simple algebraic manipulation, it is more convenient to work
with the asymptotic limit of gMI, expressed as

lim
p→∞

gMI(Ω, p) ≡ g∞
MI ∝ |Ω||Im{R̃−1}|. (8)

Beyond the cutoff power (p� 1), the shape of g∞
MI depends

only on the Raman characteristics of the transmission medium.
From a significant number of numerical simulations, we verified
that this is satisfied for p ≥ 5. Figure 3 shows the gain profile
gMI for p = 10 (a), and the dependence of ΩMI with p for several
values of fR (b).

The location of the MI peak can be found by setting ∂Ωg∞
MI =

0. After some algebraic manipulations, it can be shown that fR
is the solution in (0, 1) of the quadratic equation

a f 2
R + b fR + c = 0, (9)

with

a = ∂Ω|h̃|2 − 2∂Ω h̃R − h̃I + Ω∂Ω h̃I

Ωh̃I

(
1 + |h̃|2 − 2h̃R

)
(10)

b = 2∂Ω h̃R − h̃I + Ω∂Ω h̃I

Ωh̃I

(
2h̃R − 2

)
(11)

c = − h̃I + Ω∂Ω h̃I

Ωh̃I
, (12)
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Fig. 3. Normalized gMI profile with p = 10 (a) and ΩMI vs. p
on the Stokes side (b) for several values of fR.

where h̃R and h̃I stand for the real and imaginary parts of h̃ =
h̃R(Ω), respectively, and all quantities are evaluated at Ω =
ΩMI. Numerical results are obtained by solving the GNLSE with
a fourth-order Runge-Kutta Interaction Picture algorithm [39].
Figure 4(a) shows the evolution of a pump with an additive
white Gaussian noise. For these simulations we assumed an fR
around 0.1, consistent with that from Ref. [11]. The peak position
ΩMI can be obtained from these spectra, and then fR(ΩMI) can
be estimated using Eq. (9). Note that in an actual experiment,
one would perform a measurement of the spectrum by pumping
the waveguide (ensuring that the condition p ≥ 5 is met) and
obtain the MI peak. Figure 4(b) shows the dependence of fR
with ΩMI from Eq. (9). Table 1 shows a comparison between
simulations (for different fR) and the corresponding fR obtained
with the proposed method. As the table indicates, relative errors
are less than 10 %. Note that in experimental conditions an
additional error may be incurred from the finite resolution of
the measuring instrument.

Table 1. Estimation of fR.

ΩMI

[THz]
f Simulation
R f Estimated

R Relative error

10.95 0.010 0.011 9 %

11.45 0.050 0.048 4 %

12.11 0.100 0.102 2 %

12.90 0.150 0.159 6 %

In summary, this work puts in evidence the way the Raman
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Fig. 4. (a) Simulation results of a CW pump with additive
white Gaussian noise, for an average over 200 noise realizations,
and for several values of fR. The CW pump frequency and the
optical fiber parameters are the same as those in Fig. 3. The
propagation length is L = 2.5 m. A normalized pump power
p = 10 and an initial pump-to-noise ratio of 30 dB are assumed.
(b) fR vs. ΩMI from Eq. (9).

fractional contribution fR affects the asymptotic position of the
MI peak gain ΩMI in a full model of modulation instability in
waveguides. An analytical expression relating fR to ΩMI was
derived, for the first time to the best of our knowledge, allowing
for an accurate and novel way to estimate fR from a single
measurement of the Raman gain spectrum.
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