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Abstract—Very recently, it has been shown that the stan-
dard notion of stability for impulsive systems, whereby the
state is ensured to approach the equilibrium only as contin-
uous time elapses, is too weak to allow for any meaningful
type of robustness in a time-varying impulsive system
setting. By strengthening the notion of stability so that con-
vergence to the equilibrium occurs not only as time elapses
but also as the number of jumps increases, some facts
that are well-established for time-invariant nonimpulsive
systems can be recovered for impulsive systems. In this
context, our contribution is to provide novel results con-
sisting in rather mild conditions under which stability under
zero input implies stability under inputs that converge to
zero in some appropriate sense.

Index Terms—Stability of nonlinear systems, time-
varying systems, hybrid systems.

[. INTRODUCTION

MPULSIVE systems are dynamic systems whose state

evolves continuously most of the time but may have dis-
continuities (called jumps or state resets) at isolated time
instants [1]. The continuous evolution of an impulsive system
is governed by ordinary differential equations (defined by the
flow map), whereas jumps obey a static but possibly time-
varying law (given by the jump map). The time instants when
jumps occur are part of the system definition [2] and there-
fore an impulsive system is inherently time-varying even if
both the flow and jump maps are time-invariant.

As opposed to the case of a nonimpulsive system, asymp-
totic stability in an impulsive system may be of two forms:
weak or strong [3]-[8]. An equilibrium point of an impul-
sive system is weakly asymptotically stable when the state
can be ensured to approach the equilibrium as continuous
time elapses. Strong asymptotic stability requires convergence
to be ensured not only as continuous time elapses but also
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as the number of jumps increases. The weak form of stabil-
ity is the notion usually considered for impulsive systems,
whereas the strong form is standard in hybrid systems [9].
When the number of jumps that occur in any time interval
can be bounded in relation to the interval’s length (the UIB
condition, see [3]), then the weak and strong forms of stability
become equivalent [8, Proposition 2.3].

External inputs such as control inputs or external distur-
bances may affect both the continuous and the jump behavior.
For this reason, suitable notions of stability in the presence
of inputs, such as input-to-state stability (ISS, [10], [11]) and
integral-ISS (iISS, [12], [13]), must account for not only the
continuous evolution of the input but also the instantaneous
input values at jump instants [2]. In addition, the convergence
ensured by these properties under zero input can be weak or
strong, giving rise to the weak/strong versions of ISS [8] or
iISS [3], [4], [6].

Under suitable conditions, the bounded solutions of time-
invariant (nonimpulsive) continuous-time systems under inputs
with (i) magnitude converging to zero or (ii) finite energy,
converge to zero when the system is globally uniformly
asymptotically stable under zero input. The former property is
called converging-input convergent state (CICS) [14], [15] and
is implied by ISS, whereas the latter is called bounded-energy
input/convergent state (BEICS) [16], [17] and implied by iISS
provided input energy is measured in correspondence with the
iISS gain. The stability under zero input can hence be said to
be robust with respect to the inclusion of inputs. These robust-
ness results were extended to time-varying (nonimpulsive)
systems in [18].

For impulsive systems, by contrast, we have recently shown
that the usual weak form of the stability concepts is too weak
to allow for any meaningful type of robustness under the
inclusion of inputs [5]. Strengthening stability by account-
ing for the number of jumps in addition to elapsed time in
the decay bound, as explained above, allows to recover for
impulsive systems some facts that are well-established for
time-invariant nonimpulsive systems, e.g., the facts that global
uniform asymptotic stability under zero input (0-GUAS) and
uniform bounded-energy input/bounded state (UBEBS) are
jointly equivalent to iISS [6], [19], [20] and that ISS implies
iISS [4], [12], [21].

The stability of impulsive systems under perturbations was
previously addressed in [22]-[24]. These works impose condi-
tions on the impulse times that imply the UIB condition, hence
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making the weak and strong versions of stability equivalent,
and assume the jumps maps satisfy a Lipschitz condition.

In this context, the current main contribution is to provide
rather mild conditions under which stability under zero input
ensures robustness of stability under inputs whose magnitude
or energy converge to zero, thus generalizing many existing
results. Interesting features of our results are: i) no constraints
on the impulse-time sequences are imposed, ii) no Lipschitz
condition on the jump maps is assumed, and iii) Lyapunov
functions are avoided, because their existence cannot be
ensured under our mild assumptions.

[I. PRELIMINARIES
A. Notation and Preliminary Definitions

The reals, nonnegative reals, naturals and nonnegative inte-
gers are denoted R, R>¢, N and Ny, respectively. For £ € R",
|€| denotes its Euclidean norm. Lll()c denotes the set of all
the Lebesgue measurable functions v : R>9 — R such that
[v| is integrable on each finite interval / C Rso. We write
p € Kif p : Rsg = Ryg is continuous, strictly increasing,
and p(0) = 0. We write p € K if p € K and p is unbounded.
We write 8 € KL if B: R2, — R satisfies B(-, 1) € K for
each ¢ > 0 and B(r, -) is strictly decreasing to zero for each
r > 0. We abbreviate “with respect to” as “w.r.t.”. For a € R,
[a] and |a] denote the least integer not less and the greatest
integer not greater, respectively, than a. For every n € N and
e > 0, we define the closed ball B} := {x e R" : |x] < ¢}.

B. Problem Statement
Consider a time-varying impulsive system with inputs:

x(t) =f(, x(t), u(r)), for t¢o,
x() = x(17) + g, x(17), u(1)),

(1a)

for t € o, (1b)

where ¢t > 0, the state variable x(f) € R", the input variable
u(t) € R™, f (the flow map) and g (the jump map) are functions
from R>o x R" x R™ to R", and 0 = {%}2,, with 0 <
7] < 73 < --- and limg_, oo Tx = 00, is the impulse-time
sequence. We define for convenience o = 0. By “input”, we
mean a Lebesgue measurable function u : [0, co) — R™ and
U denotes the set of all the inputs.

A solution of (1) corresponding to initial time ¢y > 0, initial
state xo € R” and input u is a function x : [fg, Ty) — R” such
that:

a) x(fo) = xo;

b) x is locally absolutely continuous on each nonempty

interval of the form Jy = [, Tk+1) N [f0, Tx) and
x(t) = f(t, x(t), u(t)) for almost all ¢ € Jy; and

c) for all tp € (f, Ty), the left limit x(z, ) exists and is

finite, and it happens that

x(tk) = x(t ) + g(the, (7 ), u(tk)).

Note that b) implies that for all ¢ € [to, T},), x(f) = x(t1), i.e.,
x is right-continuous at z. We use 7T (g, xo, 1) to denote the set
of maximally defined solutions of (1) corresponding to initial
time fo, initial state xo and input u. A solution x € T (¢, xo, u)
is forward complete if it is defined for all # > #y. Note that even

if 1o € o, any solution x € T (¢, xo, u) begins its evolution by
“flowing” and not by “jumping”. This is because in item II-B)
above, the time instants where jumps occur are those in o N
(to, T).

We associate system (1) with the zero-input system

x(t) = fo(t, x(®)), for t¢o,
x(t) =x(@) + got, x(t7)),

where fo(t,§) = f(2,§,0) and go(7, §) = g(1, §,0).

Assumption 1: The following are satisfied:

Al)  f(-, &, n) is Lebesgue measurable for all (&, u) €
R" x R™ and f(t, -, -) is continuous for every ¢ > 0.
(Zero-input  Lipschitzianity) fo(¢,§) 1is locally
Lipschitz in & uniformly in 7 in the following sense:
for every R > O there exists Lg > 0 such that

fot, &) = fo(t, &) < Lgls —&'| V1 > 0, V&, & € B.

(Zero-input uniform continuity) go(t, £) is continu-
ous in & uniformly in ¢ in the following sense: for
every R > 0 there exists wg € Koo such that

lg0(t, &) — go(t, 6| < wr(l& — &) V1 > 0, V&, &' € By.

(2a)

for t € o, (2b)

A2)

A3)

Assumption 1 ensures that for each 7 > 0 and xg € R”
the zero-input system (2) has a unique maximally defined
(forward) solution x:[fg, t,,e) — R" such that x(f9) = xo.
In what follows we assume that the zero-input system (2) is
strongly globally uniformly asymptotically stable (0-GUAS).
This statement is made precise in the following assumption.
For I C R we use n; to denote the number of impulse times
7% lying in 1, i.e.,

ny=#[INol. (3)

Assumption 2 (Strong 0-GUAS): There exists 8 € ICL such
that every zero-input system solution x € T (fy, x9, 0) with
to > 0 and xg € R” satisfies, for all ¢ € [1g, Ty),

lx()| < B(Ixol, 1 — 10 + ngy.n).- 4)

The stability under zero input, as characterized in
Assumption 2, is called strong because the bound given in (4)
decreases not only when continuous time advances but also
whenever a jump occurs. This fact is evidenced by the quantity
t — to + 1,1, Which can be interpreted as the hybrid elapsed
time that involves both the continuous (f — fp) and discrete
(n(t,11) components. This type of strong stability is standard
in the literature of hybrid systems (see [9]). Sufficient con-
ditions for strong GUAS are given in our recent papers [7]
and [8]. When the impulse-time sequence o is uniformly
incrementally bounded (UIB), i.e., ngy,q < ¢ — t9) for all
t > tp > 0 for some nondecreasing function ¢:R>o — Rx,
strong 0-GUAS is equivalent to the most usual (weak) O-
GUAS property obtained by replacing B(|xol, t — to + n,s)
by B(lxol, £ — 10) in (4) (see [7]).

The problem we address in this paper is the following:
Can we ensure that the stability of the zero-input
system (0-GUAS) implies the stability of (1) under
inputs that converge to zero?



Very recently, we have shown [5] that under weak 0-GUAS
the answer to the above question is negative. This is due to
the inherent nonrobustness of such a weak stability property
in a time-varying impulsive systems context (see [5]).

C. The Convergence to Zero of an Input

In order to provide a positive answer to the above question
under nonrestrictive assumptions, we need to make precise
the notion of convergence to zero. To this aim, we require the
following additional assumption.

Assumption 3: The functions f and g in (1) satisfy:

C1) (uniform boundedness) There exists ¥y € Ko so that

for R > 0 there exists M = M(R) > 0 such that
max{[f (¢, & 101, 1g(t, &, W} < (1+y () - M for all
t>0,all £ € By and all u € R™.
(uniform continuity w.r.t. input at 0) For every R, ¢ >
0 there exists § = §(R, &) > 0 such that for all ¢ > 0,
max{[f(t, §, W —f(t,§,0)], 18, §, 1)—gt,§,0)[} <&
if £ € By and |u| < 6.

Remark 1: Condition C3) is equivalent to the following
mild boundedness condition:

D) f, g are bounded on R x By x By for every R > 0.
The implication D) = C3) follows from [18, Lemma 2.1]
since R” is a separable and locally compact metric space. The
converse implication is straightforward.

Let y be the function given by C3) and let U, = {u €
U y(u))) € Llloc}' Conditions Al) and C3), the fact that
a solution begins by flowing and not by jumping, and well-
known results of the theory of ordinary differential equations
(e.g., [25, Th. 1.5.1]) ensure that for every 7y > 0, xo € R" and
u € U, the set T (t9, x0, ) is nonempty, i.e., there exists at
least one maximally defined solution x : [fg, £,) — R”" of (1)
verifying x(fy) = xg, and that if x is bounded on [fg, t,) then
it is forward complete. Thus, I/, can be regarded as the set
of admissible inputs. Given an interval / C R>¢ and an input
u € U, uy will denote the input which equals # on I and is
zero elsewhere. If 1 = (¢p, 00) we just write u,,. We define the
energy-like functional | - ||, : U, — Rxq U {00}

C2)

= [y ubds + 3y Qo

seo

Note that for all # € U, and every interval I of finite length,

lurlly = /)/(IM(S)I)dSJr Z y (Ju(s)|) < oo.
1 seoNl
Remark 2: Given a strictly increasing sequence o =
{rk},fil with limg—oo Tx = 00 and I C R>¢ a Borel set, the
quantity |I| + ny, with |I| the Lebesgue measure of / and ny
as in (3), defines a measure on the o-algebra of Borel sets
of Rx¢. Under this interpretation, the quantity ||u||,, becomes
the integral of y (Ju(-)|) with respect to this measure.
Given T > 1, we say that the interval I = (a,b] C Rxg
belongs to the class Zr(o) if b —a+nyp) < T, and define

sup [luzlly- 5)

Ielr (o)

lully,7 =

Considering T > 1 is justified in the fact that otherwise Zr (o)
would only contain intervals without impulse times.

Taking Remark 2 into account, then ||u|,, 7 is the supremum
of the integrals of y (Ju(-)|) over all intervals (a,b] whose
measure is not greater than T. If we regard |u;l|l, 7 as the
energy of u in the interval I, then ||u||, 7/T could be regarded
as maximum average power.

The following result establishes the relationship between
using different values of T in the definition of |Ju||, 7. This
relationship is important to justify the precise notion of
convergence to zero that we will employ.

Proposition 1: Given Ty,T, > 1, there exists k =
k(Ty, T2) > 0 such that |ull, 1, < kllull, 1, for all u € U,.

Proof: We will establish the result with k defined as

Ty
k= 1.
[Tz— 1—‘ *

Let I = (a, b] € I, (0).

Claim 1: There exists a partition of  into j < k subintervals
J; C I satisfying J; € Ir,(0) fori=1,...,j.

Proof of Claim 1: Let ¢y := b and define recursively for
i=1,...k ¢:=1inflc < ci1 : ci-1 — ¢+ ey < T2}
The function p;_1(t) = ci—1 —t+n(,¢; 4], t < ci—1, is strictly
decreasing, continuous from the right at each ¢t < c;_, left-
continuous for all 7 such that r ¢ o, p;—1(t7)—p;(¥) = 1 for all
teo and p;_1(ci—1) = 0. Since ¢; = inf{c < c¢j_1 : pi—1(c) <
T,} and T, > 1 it follows that

O<Dh—1=<ci1—ci+nge 1= (6)

fori=1,...,k Hence

k
€0 — Ck + Nepco] = Z(Ci—l — Ci + N(cieir])
i=1

>k(T, — 1) > T;.

Therefore, since I = (a, b] € Zr,(0) and hence b—a-+n(, p) <
Ty, then ¢y < a. Define d := min{c; : ¢; > a} and let j €
N satisfy ¢j—1 = d. Define the intervals J; = (¢;, ¢j—1] for
i=1,...,j—1if j > 1, and J; := (a,d]. From (6), then
Ji € Ir,(0) and from their definition, the subintervals J; C I,
fori=1,...,j, constitute a partition of /.

Using Claim 1, we have |lu]l, = Zjizl lug;1l, and there-
fore, recalling the definition (5),

lully.r; < Jjllully,r, < kllully,,.

Definition 1: We say that u € U, converges to 0, and write
ow .
u 25 0, if lim;— o lluc|l,,7 = 0. We define Z/{)(,) = {u e

Uy, i u LAY 0} as the set of all the admissible inputs that
converge to 0.

An input converges to zero if its maximum average power
over the interval (t, co) is arbitrarily small for t large enough.
Note that Proposition 1 implies that neither the set L{)(/) nor

oW .
the convergence u 0 depend on the number 7 in the
definition, since if lim;_  |lu¢|ly,7 = O for some 7 > 1 then
lim; o lltelly,r =0 for all T > 1.



[1l. MAIN RESULTS

Theorem 1 is the main result of the paper.

Theorem 1: Let Assumptions 1, 2 and 3 hold and consider
y from C3) in Assumption 3. Then,

a) For every ¢ > 0 and T > 1 there exists § =46(e, T) > 0

so that if x is a solution of (1) corresponding to u € U,
such that |lull, 7 < §, and |x(fp)| < & for some 7y > O,
then x is forward complete and |x(¢)| < ¢ for all 7 > 1.
b) If x is a solution of (1) corresponding to some u € Uuo,
then the following are equivalent:
1) lim o0 x(1) = 0,
ii) x is bounded.

Theorem 1la) shows that solutions of (1) that begin suf-
ficiently close to the origin and correspond to inputs with
sufficiently small power are forward complete and remain
close to the origin; in other words, this shows that system (1)
is totally stable as defined in [26]. Theorem 1b) answers the
question posed towards the end of Section II-B. For proving
Theorem 1 we require Lemma 1.

Given L > 0 and w € Ky, we recursively define the
functions 7; : RZ ) — Rxg as follows

ho(p, 1) = pe*, ™
Bp.1) = b1 (p. ) + sup [ (1 ()] (®)

0<s<t

and, forj > 1,

Lemma 1: Let Assumptions 1, 2 and 3 hold and consider
B from Assumption 2 and y from C3) in Assumption 3. For
every R > 0 and n > 0, there exist L = L(R) > 0, x =
k(R,n) > 0 and w € Ko which only depends on R, such that
if h; are the functions defined via (7)-(8) and x is a solution
of (1) corresponding to u € U, such that x(s) € By for all
s € [to, to +T), then for all 1 € 19, to + T, defining j = n(, 4
it follows that

x| < B(Ix(t0)l, t — to +j)
+ hi((t — to +)n + cllugg,nlly. t—to).

Proof: Let R > 0. Define R* = B(R,0) and consider Lg+
and wg+, with Lg+ and wg+ as in, respectively, Al) and Al)
with R* instead of R. Let n > 0. The proof of the following
result can be obtained mutatis mutandis from that of the claim
in the proof of [18, Lemma 3.3]. |

Claim 2: There exists k = «(R*, n) > 0 such that for all
§>0,& € Bj and u € R,

f(s, &, 1) —f(s,6,0) <n+rky(ul), and
lg(s, &, ) — g(s, &, 0)] < n+ry(u).

Let x be a solution of (1) corresponding to u € U, such
that x(s) € By for all s € [to, 70 + T). Let z be the
unique solution of (2) satisfying z(#9) = x(#p). Note that
|z(s)] < B(Jx(tp)],0) < R* for all s > 1y. So, both x(s) and
z(s) belong to Bj. for all s € [tg, 1o + T). Fix t € [tg, to + T]
and let T satisfy o < v <. We have

(€))
(10)

x(t) — z(1) =/ [f (s, x(s), u(s)) — f(s, 2(s), 0)]ds
fo
+ ) gl x(s7), u(s)) — gls, 2(s7), 0)]

se(ty,t]No

Adding and subtracting f(s, x(s), 0) and g(s, x(s~), 0) within
the respective square brackets, applying norms and the triangle
inequality, it follows that

|x(7) — z(7) Sf If (s, x(s5), u(s)) — f (s, x(s), 0)|ds
to

+ / If (s, x(5), 0) — f (s, z(s), 0)|ds
0]

>

s€(ty,t]No

>

s€(ty,t]No

|g(s. x(s7), u(s)) — g(s, x(s7), 0)]
|g(s. x(s7),0) — g(s,2(s7), 0)|  (11)

Since both x(s) € B, and z(s) € By. for all s € [fo, to+T),
employing A2), A3) and Claim 2, from (11) we arrive at

[x(7) — z(7)]
< f [+ ky (luls)Dlds + Lg / [x(s) — z(s)|ds
fo

)
+ Y [y ue) + o (1x7) = 2(7))]

se(ty,T]No
<n-(@—to+ngu,n + cllugally

T
+ L / () —z@lds+ D ope(Ix(sT) —2(sT))),
lo s€(ty,t]No

where we have employed the fact that T — o + n, ) <1 —
to + n,,. Note that the latter holds even for v = 1y + T,
since x(s~) and z(s~) belong to B%, for all s € [f9, 79 + T1.
The result follows by application of Lemma V, given in the
Appendix, to the function y : [tg, tp + 7] — R>o defined via
y(s) = |x(s) —z(9)], setting p = n- (1 —to+n(y,) + K llugg,nlly
L = Lp+ and w = wg*, and taking into account that |x(7)| <
[z + |x(1) — 2(D] < B(Ix(10), 1 — 10 + n(y.n) + 1xX(@) — 2(1)].

Proof of Theorem la): For the sake of simplicity, we will
write || - [I7 instead of || - ||,,7.

Lete > 0and T > 1. Let 8 € KL the function coming from
Assumption 2. Pick §* > 0 and 7* > 1 such that 8(§*,0) <
g/2 and B(6*,T*) < 8*/2. Let L > 0 and w € Ko be the
constant and the function corresponding to R = ¢ in Lemma 1.
Let j* = |T*] + 1.

Consider the functions A; defined in (7)—(8). These functions
are continuous, nondecreasing in each variable, h; < hy for all
J <k, and h;(0,7) = 0 for all » > 0 and all j. Pick A > 0 so
that hj (A, T* + 1) < §*/2. For such a A we also have that for
al0<p=<A,0<r<T*+4+1andO0<j<j*

*

8
hj(p,r) < hj=(p, T* + 1) < > (12)

From Proposition 1, there exists ¢ > 0 such that |ju|r+ <

cllullr for all u € U,. Let n = 79;—1)‘1 and x = «(g, n) from

Lemma 1 and define § = ——.

Let x € T (10, xo, u) with ?(’)Cz 0, |xo| < 6* and u € U,, such
that ||ul|z < 5. Let [t0, tx) be the interval of definition of x.
Define t; = sup{t > to : t — to + ny,q < T*}. We have that
T <11 —to+nyy < T+ 1, hence ngy) < T+ 1 and
since n,,;, € No, then n, 1 < j*. Thus, ng,,q < j* for all
o <t=<t.

Claim 3: ty > t| and x(t) € B} for all ¢ € [y, 11].



Proof of Claim 3: Since x(ty) = x¢ satisfies |xg| < 8%, x is
right continuous and §* < &/2, it follows that x(s) € B} for
all s in some interval [f, #,] with 7, > fo. Let

t* = sup{t € [fo, 1) : x(s) € B} Vs € [1g, T},

then t* > f9. Suppose that 7* < f1. Then, for every 7y <
t < 1%, x(t) belongs to B}. In addition t — 19 + ng,q < t1 —
o+ ngynp < T* + 1, which implies that r — 79 < T* + 1
and j = ny, < j*. By applying Lemma 1 and using the
definitions of 4, n and ||u| 7, and (12), it follows that

Ix(z*)] < B(Ix()|, T° — 10 +))
+ hi((z* —to + )0 + kllug, 1l T — 1)

5§+hj*(x,7*+1)5§+2<g. (13)
This shows that x(¢) exists for all ¢ in some interval [t*, /]
with ¥ > v* and that x(r) € B? on this interval, contradicting
the definition of t*. In consequence, T* > # and the claim is
proved.

Taking into account Claim 3, and reasoning as above, then
for every t € [to, t1] we have that |x(7)| < ¢ and

[x(t1)] < B(lx(to)], t1 — to +J)
+ hi((t1 — to + )0 + «llugy,mll, 71 — to)

* * *

< —+hAT +1) < — < —=4§"
= 5+ th=— =

since 1 — to + ng,,) = T*. Define the strictly increasing
sequence {¢};2, as follows

fepr =sup{t >t 1t =ty +ng. < T*.

Repeating the reasoning performed above in a recursive man-
ner we obtain that for all k € Ny and all ¢ € [#, tx4+1], x(¥) is
defined, |x(r)| < & and |x(tx41)] < &*.

Next, we claim that # — oo. Suppose that the claim is not
true. Since f; is increasing, then f; — 7, with 7 > fg. Then
T—to+ngy 7 = =10+ G0 = Dy 1= -1 41571 =
kT*, for all k > 1, which is absurd. Since 7, — oo, then x(¢)
is defined for all ¢ > 7y and therefore x is forward complete,
and |x(#)| < e for all + > 5. Theorem 11) follows by taking
§ = min{8*, 5.

Proof of Theorem 1b): bi) = bii). Since x is a solution, then
x is right-continuous and the left-limit exists at each disconti-
nuity instant. This means that x is bounded in every bounded
set. Since, in addition, lim;_, » x(#) = 0, then x must remain
bounded also as t — oo. Therefore, item bii) must hold.

bii) = bi). For the sake of simplicity we drop the subscript
yin |- |ly.7. Pick any 7 > 1. Let & > 0 and let § = (e, T)
be as in the thesis of Theorem 11). Since x is bounded, it is
defined for all r > g and Q2(x) # @ (recall that the w-limit set
Q(x) of x is the set of points £ € R" such that there exists a
strictly increasing and unbounded sequence of positive times
{t} such that |x(zx) — &] — 0 as k — 00). Let { € Q(x) and
let R* = |¢| + 1. Define R = B(R*,0) + 1, where 8 € KL is
the function coming from Assumption 2. Let 7* > 1 be such
that B(R*, T*) < §/2. Define j* = |T*] + 1.

Consider the functions A; defined via (7)—(8) with L and w
as in Lemma 1. By using the same arguments as in the proof

of Theorem 1la), there exists A > 0 so that for all 0 < p < A,
0<r<T'+1and 0 <j < j hi(p.r) < min{3, I}. Let
n = % and ¥ = k (R, n) given by Lemma 1. Since ¢ in
Q(x), there exists a sequence {t;}, with ; — o0, such that
x(t)) — ¢. Taking into account that u € Z/{)(,), we can pick jo
large enough so that |x(#,)| < R*, i lugy lrs1 < A/2 and
i, 17 < 8.

Define © = sup{t > tj,:|x(s)| < R for all s € [z, t]}. Since
[x(#;,)] < R and x is right-continuous, T > t;,. Suppose that
T =ty + g0 = T* + 1. Then |x(¢)] <R for all 1 € [¢j,, 7).
Let j = n(;).7)- Then j < j*. By applying Lemma 1, it follows
that

(o) = B(x(@p)l, T — 1, +))
+ hi((r = 1, + )0 + kllugy.all. T —10)
<BR,0)+hxA,T"+1) <R.

The right-continuity of x implies that [x(f)| < R for ¢t € [t, T+
v), with v > 0 small enough, contradicting the definition of
. S0, T —tj, + g, 71 > TF + 1. Let * = sup{r = tj,:1 — tj, +
n(;,.1] < T*}. Then T* < r* —tj, +n([./'o”*] < T* 4+ 1. Note that
t* < 1. Taking j = (1, 1] and reasoning as above, it follows
that

()] < BUx(tpl, 1 = tjy +))
+ hi((* = iy + )0 + cllugy el £ = ty)
< BR* T +hp(A, T*+ 1) < 6.

From the latter, the facts that [uq|; < ||u,j0 ll < & and that
the restriction of x to [¢*, c0) belongs to T (¢*, x(¢*), us), and
the selected 8§, we have that |x(¢)| < ¢ for all ¢ > r*. We have
established that x — 0.

IV. CICS AND BEICS

For an input u € U we consider the supremum norm

l[ulloo = maX{eSS sup;olu(r)|, sup Iu(t)l}, (14)
teo

Note that every u € U such that [lullcc < oo belongs to U,
for every y € K.

Definition 2: Let y € Koo. The system (1) is said to be

a) converging-input convergent-state (CICS) if every
bounded solution x € T (g, xo, u), with g > 0, xo € R",
and u € U such that ||ullcc < 00 and |us]loc — O as
t — 00, satisfies x — 0;

b) y-bounded-energy-input convergent-state (BEICS) if
every bounded solution x € T (¢o, xo, u), with 7y > 0,
xo € R", and u € U, such that |lul, < oo satisfies
x — 0.

The following results are corollaries of our main result.

Corollary 1: Let Assumptions 1, 2 and 3 hold and let y be
given by C3) in Assumption 3. Then (1) is y-BEICS.

Proof: Let x € T (to, xo, u), with £y > 0, xp € R", and u €
U, such that |lul,, < oo, be bounded. The fact that |lul|, < oo
implies that ||u||,, — 0 as t — oo and then that u 2% o. By
applying Theorem 1b) it then follows that x — 0. u

Corollary 2: Let Assumptions 1, 2 and 3 hold. Then, (1) is
CICS.



Proof: Let x € T (tg, xo, u), with tg > 0, xo € R", and u € U
such that ||ullcoc < 00 and lim;— o |l #]lc = 0, be bounded.
Let y € K be as in C3) of Assumption 3. Then u € U,,.
Pick any T > 1. Let ¢ > 0. Since lim;_,  ||t¢||lcc = O, there
exists z, > 0 such that ||u;]|co < y’l(%) for all ¢t > .. Then,
for any t > ¢, and any interval I = (a, b] C [t, c0) such that
b—a+ngp < T we have that

b
ity = [ v@ubds+ 3 ylu)

seoN(a,b]
&
<b-a+ n(a’b])ﬁ < E&.

Therefore, |lu;|l,,r < ¢ for all t > t.. This shows that u € Z/{)(,).
Applying Theorem 1b) we obtain that x — 0. |

V. CONCLUSION

We have provided, for the first time in an impulsive time-
varying system setting, conditions that ensure that stability
under zero input is inherited under inputs that converge to zero
in some appropriate sense. These conditions constitute rather
mild boundedness and continuity requirements on the flow and
jump maps. The given novel results have the following salient
features: the jump map is not required to satisfy any kind
of Lipschitz continuity property and solutions under nonzero
inputs are not necessarily unique.

APPENDIX

The following comparison-type result can be seen as a
corollary to [4, Lemma 3.2] and is required in the proof of
Lemma 1.

Lemma 1: Let 0 <d < band lety : [d,b] = Rso be a
right-continuous function having a finite number N of points of
discontinuity s1, ..., sy satisfyingd < s1 < --- < sy < b. Let
y be such that the left-limit y(sj_) exists for all j=1,...,N.
Let pe R>p, w € Ky and 0 = {sk}i\;l. If y satisfies

t
Y <p+L fd Yods+ Y oO6T)  (15)

seoN(d,t]

for all ¢ € [d, b], then in the same time interval y satisfies

y() < hi(p, 1t — d), (16)

where k = n q = #[o N (d, ]], and the functions A;:R>¢ x
[0,00) — Rsg, j = 0,1,..., are recursively defined by
(7)-(8).

Proof: Define the constant function a : R>g — Rxg, a(s) =
L, and the constant sequence of nonnegative numbers {c,'}{y: 1
¢; = 1. Then, the assumptions of [4, Lemma 3.2] are satisfied
and application of this lemma yields y(¢) < hz(p, t) with the
functions h¢ : R2>o — R0 defined recursively as hg(p, 1 =
pelt=4 and for j > 1,

hf(p, 1 = hf_l(p, H+ L= sup

d<s<t

[a) - (p, s))e“’*s)] .

[“) o, s))e—us—d)]

=K | (p.0+ sup

d<s<t

With these definitions, it follows that h]‘f(p, 1 = h](-)(p, t—d) =
hi(p,t—d) for all j e No, p >0, and t > d > 0. [ ]
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