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ABSTRACT

The use of information measures for model selection in geophysical models with subgrid parameterizations

is examined. Although the resolved dynamical equations of atmospheric or oceanic global numerical models

are well established, the development and evaluation of parameterizations that represent subgrid-scale effects

pose a big challenge. For climate studies, the parameters or parameterizations are usually selected according

to a root-mean-square error criterion that measures the differences between the model-state evolution

and observations along the trajectory. However, inaccurate initial conditions and systematic model errors

contaminate root-mean-square error measures. In this work, information theory quantifiers, in particular

Shannon entropy, statistical complexity, and Jensen–Shannon divergence, are evaluated as measures of the

model dynamics. An ordinal analysis is conducted using the Bandt–Pompe symbolic data reduction in the

signals. The proposed ordinal information measures are examined in the two-scale Lorenz-96 system. By

comparing the two-scale Lorenz-96 system signals with a one-scale Lorenz-96 system with deterministic and

stochastic parameterizations, the study shows that information measures are able to select the correct model

and to distinguish the parameterizations, including the degree of stochasticity that results in the closest model

dynamics to the two-scale Lorenz-96 system.

1. Introduction

The numerical models for climate predictions and

weather forecasts involve a set of dynamical equa-

tions that represents the atmospheric or oceanic mo-

tions on a grid. Coupled to the resolved dynamical

equations of the models, there is a set of parameteri-

zations that represents the subgrid-scale physical

processes. The model parameterizations are responsible

for a large fraction of model error and thus for the re-

sultant uncertainty associated with climate predictions

(e.g., Stainforth et al. 2005). One major challenge in

model development is to decrease model error by

recovering aspects of the natural system evolution

represented by the parameterizations in the model.

However, the actual dynamics of the system is unknown;

limited and sparse observations with associated mea-

surement errors are the only source of information of

the natural system evolution. The usual procedure for

parameterization development and also for inferring

unknown parameters is to tune the parameterization or

the parameters in order to decrease root-mean-square

errors between the model integrations and the obser-

vations starting from initial conditions that are close to

the natural system state at a given time. For short times,

themodel state is close to the natural system state so that

model sensitivity should follow natural system sensitiv-

ity (Pulido 2014). However, systematic model errors

drift the model state from the natural system trajectory

for long times (from 5 days); therefore, the model and

the natural system differ substantially. In this context,

observed natural system sensitivity is not useful to

constrain model sensitivity, and root-mean-square

errors give limited information for model improvement.Corresponding author: Manuel Pulido, pulido@exa.unne.edu.ar
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Data assimilation techniques have been proposed as a

method for estimating model parameters (Ruiz et al.

2013a; Aksoy 2015) and for model development (Pulido

et al. 2016; Lang et al. 2016). In a data assimilation sys-

tem, the model state is recursively pushed toward the

observations at the analysis times so that one expects

that model sensitivity can be constrained from the ob-

served natural system sensitivity. Under the presence of

multiple sources of model errors in a realistic scenario,

the estimation of model parameters with data assimila-

tion techniques compensates not only model errors due

to the physical process represented in that parameteri-

zation but also other sources of model errors. For in-

stance, Ruiz and Pulido (2015) show that estimating the

parameters associated with moist processes in an at-

mospheric general circulation model compensates not

only errors from convection but also errors produced by

an incorrect representation of boundary layer dynamics.

Therefore, the estimated parameters are optimal for

that particular combination of model errors and for that

particular point of the model state. In other situations,

that estimated set of parameters will not represent the

natural system sensitivity.

Klinker and Sardeshmukh (1992) examined the initial

tendency errors, the differences between model sensi-

tivity and observed sensitivity during the first time step

from the initial conditions. Rodwell and Palmer (2007)

show that systematic initial tendency errors can be

useful to assess climate models. Errors from different

sources should be decoupled at initial times, and they

should be localized close to the source locations. In a

multiscale system, the errors that dominate at initial

times are produced by fast processes. The model sensi-

tivity feedback interactions associated with slow pro-

cesses are expected to be weak compared with fast

processes so that they will not be easily captured by

initial tendency errors (Rodwell and Palmer 2007).

The predictability of a dynamical system is quantified

by the growth rate of errors as the system evolves. For

chaotic systems, a small error in the initial conditions

grows as the prediction range increases. The average

long-term exponential separation between two trajec-

tories that initially differ by an infinitesimal distance is

given by the leading Lyapunov exponent. If the leading

Lyapunov exponent is positive, the system is chaotic:

errors grow with time. The leading Lyapunov exponent

is a possible measure to quantify the predictability of the

dynamical system. There is a strong relation between the

Shannon entropy and the Lyapunov exponents. For a

dynamical system that has a sufficiently smooth proba-

bility distribution, the Pesin identity holds: the sum of

the positive Lyapunov exponents is equal to the

Kolmogorov–Sinai entropy (Pesin 1977; Eckmann and

Ruelle 1985). In this way, the permutation Shannon

entropy can be considered as an upper bound of the

Lyapunov exponents (e.g., Bandt and Pompe 2002).

Therefore, entropy is also a useful quantity to charac-

terize the predictability in the climate system.

Leung and North (1990) introduce Shannon entropy

as a measure of the uncertainty in a climate signal. They

examine the similarities between a climate and a com-

munication system. A state in the climate system with

large entropy would be unpredictable. There are many

possible states that are equally probable. Majda and

Gershgorin (2011) propose the use of information the-

ory for measuring model fidelity and sensitivity. They

use the relative entropy to measure the distance

between the probability distribution functions (PDFs)

of the natural system and of the numerical model,

assuming that both PDFs are Gaussian. Tirabassi and

Massoller (2016) use symbolic time series analysis and

mutual lag between time series at different grid points to

identify communities in climate data (i.e., sets of nodes

densely interconnected in the network).

In the present work, we examine information theory

measures as a tool to evaluate numerical models. We

extend the concepts introduced by Majda and

Gershgoring (2011) to the use of Jensen–Shannon di-

vergence (Grosse et al. 2002) computed with the ordinal

symbolic PDFs. This ordinal analysis is conducted using

the Bandt and Pompe (2002) symbolic data reduction in

the signals, in particular, to determine the corresponding

ordinal-based quantifiers, such as normalized Shannon

entropy and statistical complexity. They can be used to

distinguish different dynamical regimes and to discrim-

inate clearly chaotic from stochastic signals (Rosso et al.

2007, 2012b,a). By comparing information measures

from time series of variables of a set of imperfect

models with information measures from observed

time series, our aim is to find the imperfect numerical

model that is closest to the information measures of the

natural system.

Information measures of the two-scale Lorenz-96

system (Lorenz 1996) are evaluated using ordinal sym-

bolic analysis as a function of the ‘‘physical’’ parameters

of the system: the constant forcing and the interaction

coefficient between the slow and fast dynamics. This

two-scale system is then considered as the natural sys-

tem evolution, while the numerical imperfect model is

the one-scale Lorenz-96 (Lorenz 1996). We assume the

small-scale processes cannot be represented explicitly in

this imperfect model, so the effects of small-scale pro-

cesses are parameterized as a polynomial function that

depends on large-scale variables. The information

measures from ordinal symbolic analysis are used to find

the most suitable parameterization of the small-scale
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processes. The information measures of the imperfect

model should be as close as possible to the information

measure of the ‘‘natural system,’’ the two-scale Lorenz-

96 system. We evaluate whether the measures are suit-

able for parameter selection: that is, whether parameter

changes have enough sensitivity in the information

measures so that the optimal parameters could be

properly inferred from information measures.

Physical parameterizations in atmospheric or oceanic

numerical models represent the subgrid-scale physical

processes, through functional dependences with the re-

solved variables. These resolved variables, on which the

parameterizations depend, are slow large-scale vari-

ables; hence, in general, the models lack from small-

scale variability. Palmer (2001) suggested the use of

stochastic parameterizations to account for this lack of

variability in the models. There are several works in the

last decade that show that both weather forecasts and

climate predictions appear to benefit from stochastic

parameterizations. For instance, the ensemble pre-

diction system of the European Centre for Medium-

Range Weather Forecasts (ECMWF) uses a stochastic

kinetic backscatter algorithm to improve the skill of

ensemble forecasting (Shutts 2005). Convection pro-

cesses have also been proposed to be represented

through stochastic parameterizations (Christensen et al.

2015). Some climate features, such as the quasi-biennial

oscillation, are better represented in models with sto-

chastic parameterizations (Piani et al. 2004; Lott et al.

2012). Wilks (2005) showed that including a stochastic

parameterization in the Lorenz-96 system produces

improvements compared to deterministic parameteri-

zations of both the model climatology and ensemble

forecast verification measures. Here, we evaluate

whether the use of information measures is sensitive to

stochastic parameterizations and whether some of the

noise variance parameters of stochastic parameteriza-

tions may be constrained by trying to reproduce with the

model the information measures from the observed

time series.

2. Information measures for characterizing model
dynamics

Chaotic dynamical systems are sensitive to initial

conditions. These manifest instability everywhere in the

phase space and lead to nonperiodicmotion (i.e., chaotic

time series) (Abarbanel 1996). They are unpredictable

in the long term despite the deterministic character of

the temporal trajectory. In a system undergoing chaotic

motion, two neighboring points in the phase space move

away exponentially. Let x1(t) and x2(t) be two such

points, located within a ball of radius R at time t.

Futhermore, assume that these two points cannot be

resolved within the ball because of observational error.

At some later time t0, the distance between the points

will typically grow to

jx
1
(t0)2 x

2
(t0)j’ jx

1
(t)2 x

2
(t)j exp(Ljt0 2 tj) , (1)

with the leading Lyapunov exponent L. 0 for chaotic

dynamics. When this distance at time t0 exceeds R,

the points become observationally distinguishable.

This implies that instability reveals some information

about the phase-space population that was not avail-

able at earlier times (Abarbanel 1996). Thus, under the

above considerations, chaos can be thought of as an

information source.

The information content of a system is typically

evaluated via a PDF, P, describing the characteristic

behavior of some measurable or observable quantity,

generally a time seriesX(t). Quantifying the information

content of a given observable quantity is therefore

largely equivalent to characterizing its probability dis-

tribution. This is often done with the wide family of

measures called information theory quantifiers (Gray

1990). We can define information theory quantifiers as

measures able to characterize relevant properties of the

PDF associated with the time series, which can be gen-

erated from observations of a dynamical system or from

model integrations.

a. Ordinal symbolic analysis

The evaluation of quantifiers derived from in-

formation theory, like Shannon entropy and statistical

complexity, supposes some prior knowledge about the

system: specifically, a probability distribution associated

to the time series under analysis should be provided

beforehand. Although for a physical quantum system

the concept of probability is uniquely defined, there are

several ways to define a probability distribution for a

dynamical system. The traditional method is the histo-

gram: the state space is partitioned into bins and by

counting the number of times Ni that the trajectories of

an ensemble pass through the i bin at a given time, the

probability is, in this way, defined as pi 5Ni/N, whereN

is the total number of trajectories. This symbolic se-

quence can be regarded to as a noncausal coarse-grained

description of the time series under consideration.

An alternative definition is given with time sequences.

Suppose we use a sequence of L time steps and we label

the bins; then in L time steps the trajectory passes

through L bins, and we can form a symbolic sequence of

length L. In the symbolic sequence, each symbol from a

finite alphabet represents a bin, and the pattern is formed

by the sequences of bins, which the trajectory visits in
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the L time steps. Counting the occurrence of each pat-

tern, over the total number of sequences we determine

the probability distribution. If we diminish the size of the

bins, in the limit we can derive from this probability the

Kolmogorov–Sinai entropy (Schuster and Just 2006).

For some dynamical systems, the informationmeasures

determined from bin-symbolic analysis are sensitive to

the way the bins are generated (Bollt et al. 2000). Bandt

and Pompe (2002) introduced a simple and robust sym-

bolic methodology that takes into account time causality

of the time series—a causal coarse-grained methodol-

ogy—by comparing neighboring values in a time series. In

this work, we refer as ordinal symbolic analysis to the

Bandt and Pompe methodology. The symbolic data are

(i) created by ranking the values of the series and (ii)

defined by reordering the embedded data in ascending

order, which is equivalent to a phase-space reconstruction

with embedding dimension (pattern length) D. In this

way, the diversity of the ordering symbols (patterns) de-

rived from a scalar time series is quantified.

The appropriated symbolic sequence arises naturally

from the time series, and no system-based assumptions

are needed in Bandt and Pompe methodology. In fact,

the necessary ‘‘partitions’’ are devised by comparing the

order of neighboring relative values rather than by ap-

portioning amplitudes according to different levels (e.g.,

histograms). This technique, as opposed tomost of those

in current practice, takes into account the temporal

structure of the time series generated by the physical

process under consideration. As such, it allows us to

uncover important details concerning the ordinal struc-

ture of the time series (Rosso et al. 2007) and can also

yield information about temporal correlation (Rosso and

Masoller 2009a,b).

The ‘‘ordinal patterns’’ of order (length) D in the

Bandt and Pompe methodology are generated by

(s)1 (x
s2(D21)

, x
s2(D22)

, . . . , x
s21

, x
s
), (2)

which assigns to each time s the D-dimensional vector

of values at times s2 (D2 1), . . . , s2 1, s. By ordinal

pattern related to the time s, we mean the permutation

p5 (r0, r1, . . . , rD21) of [0, 1, . . . , D2 1] defined by

x
s2rD21

# x
s2rD22

# � � �# x
s2r1

# x
s2r0

. (3)

In this way, the vector defined by (2) is converted into a

unique symbol p. We set ri , ri21 if xs2ri 5 xs2ri21
for

uniqueness, although ties in samples from continuous

distributions have null probability.

Then, the occurrence of each symbolic pattern is

counted in the whole time series. The probability of each

symbol pi is the number of occurrences of the pattern

over the total number of analyzed sequences in the

time series. The Bandt and Pompe PDF (BP-PDF) is

therefore given by P5 fp(pi), i5 1, . . . , D!g, with

p(p
i
)5

#fsjs#M2 (D2 1); where s is of typep
i
g

M2 (D2 1)
, (4)

where # denotes cardinality and M is the time

series length.

To illustrate ordinal symbolic analysis, let us

consider a simple example: a time series with seven

(M 5 7) values X 5 f4, 7, 9, 10, 6, 11, 3g and compute

the BP-PDF for D5 3. In this case, the state space is

divided into 3! partitions so that six mutually exclusive

permutation symbols are considered. The triplets

(4, 7, 9) and (7, 9, 10) represent the permutation pat-

tern f012g, since they are in increasing order. On the

other hand, (9, 10, 6) and (6, 11, 3) correspond to the

permutation pattern f201g since xt12 , xt , xt11, while

(10, 6, 11) has the permutation pattern f102g with

xt11, xt , xt12. Then the associated probabilities to the six

patterns are p(f012g)5 p(f201g)5 2/5, p(f102g)5 1/5,

and p(f021g)5 p(f120g)5 p(f210g)5 0.

The existence of an attractor in the D-dimensional

phase space is not required in the ordinal symbolic

analysis. The only condition for the applicability of the

method is a very weak stationary assumption. For k#D,

the probability for xt # xt1k should not depend on t.

b. Entropy, statistical complexity, and
Jensen–Shannon divergence

Entropy is a basic quantity with multiple field-specific

interpretations. For instance, it has been associated with

disorder, state-space volume, and lack of information

(Brissaud 2005). When dealing with information content,

the Shannon entropy is often considered as the founda-

tional andmost natural one (Shannon 1948; Shannon and

Weaver 1949). It is a positive quantity that increases with

increasing uncertainty and is additive for independent

components of a system. From a mathematical point of

view, Shannon entropy is the only information measure

that satisfies the Kinchin axioms (Khinchin 1957).

Let P5 fpi; i5 1, . . . , Ng with �N

i51pi 5 1 be a dis-

crete probability distribution, with N the number of

possible states of the system under study. The Shannon

logarithmic information measure is defined by

S[P]52�
N

i51

p
i
ln(p

i
) . (5)

This can be regarded as a measure of the uncertainty

(lack of information) associated to the physical process

described by P. For instance, if S[P]5 Smin 5 0, we are
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in a position to predict with complete certainty which of

the possible outcomes i, whose probabilities are given by

pi, will actually take place. Our knowledge of the un-

derlying process described by the probability distri-

bution is maximal in this instance. In contrast, our

knowledge is minimal for a uniform distribution

Pe [ fpi 5 1/N, i5 1, . . . , Ng since every outcome ex-

hibits the same probability of occurrence. Thus, the

uncertainty is maximal (i.e., S[Pe]5 Smax 5 lnN). In the

discrete case, we define a normalized Shannon entropy,

0#H # 1, as

H [P]5 S[P]/S
max

. (6)

Statistical complexity is often characterized by a com-

plicated dynamics generated from relatively simple

systems. Obviously, if the system itself is already in-

volved enough and is constituted by many different

parts, it may clearly support a rather intricate dynamics,

but perhaps without the emergence of typical charac-

teristic patterns (Kantz et al. 1998). Therefore, a com-

plex system does not necessarily generate a complex

output. Statistical complexity is therefore related to

structures hidden in the dynamics, emerging from a

system that itself can bemuch simpler than the dynamics

it generates (Kantz et al. 1998).

We follow the original idea for statistical complexity

introduced by López-Ruiz et al. (1995). A suitable com-

plexity measure should vanish both for completely or-

dered and for completely random systems, and it cannot

only rely on the concept of information (which are max-

imal and minimal for the above-mentioned systems). It

can be defined as the product of ameasure of information

and a measure of disequilibrium: that is, some kind of

distance from the equiprobable distribution of the ac-

cessible states of a system (López-Ruiz et al. 1995;

Lamberti et al. 2004).

The statistical complexity measure to be used here

(Lamberti et al. 2004; Rosso et al. 2007) is defined

through the functional product form

C [P]5Q
JS
[P,P

e
] �H [P] (7)

of the normalized Shannon entropyH [see (6)] and the

disequilibrium QJS. The last one is defined in terms of

the Jensen–Shannon divergence DJS[P, Pe]:

Q
JS
[P,P

e
]5Q

0
�D

JS
[P,P

e
]

5Q
0
�fS[(P1P

e
)/2]2S[P]/22 S[P

e
]/2g, (8)

where Q0 is equal to the inverse of the maximum of

DJS[P, Pe], which is obtained when one of the compo-

nents of P is one and the remaining are zero. Therefore,

the disequilibrium QJS measures the normalized

distance of the probability distribution of the system

under study P and the uniform distribution Pe, which is

the equilibrium PDF.

For a given value ofH , the range of possible C values

varies between a minimum Cmin and a maximum Cmax,

restricting the possible values of the statistical com-

plexity measure (Martín et al. 2006). The planar repre-

sentation entropy–complexity plane, H 3C , is an

efficient tool to distinguish between the deterministic

chaotic and stochastic nature of a time series since the

permutation quantifiers have distinctive behaviors for

different types of dynamics (Rosso et al. 2007). This tool

has also been used for visualization and for a charac-

terization of different dynamical regimes when the sys-

tem parameters vary (Zanin et al. 2012).

Finally,we also consider in thiswork ameasure formodel

evaluation against the observed time series: a measure of

the distance between the probabilities from the model and

observed time series. This concept has been used earlier by

Majda and Gershgorin (2011), who called it model fidelity.

They use the Kullback–Leibler relative entropy tomeasure

the distance between the two probabilities. Arnold et al.

(2013) evaluated the use of Hellinger distance and

Kullback–Leibler distance in the Lorenz-96 system. The

two measures gave similar performance. We use the

Jensen–Shannon divergence to measure the distance be-

tween the probabilities to be coherent with the information

theory quantifiers used in this work and because it is a

symmetric positive-definite quantity. The square root of the

Jensen–Shannon divergence satisfies metric properties and

triangle inequality (Lin 1991).

Assuming PM andPO are the corresponding BP-PDFs

from the model time series and from the observed time

series, respectively, the Jensen–Shannon divergence is

defined as a symmetric measure of the Kullback–Leibler

divergence:

D
JS
[P

M
,P

O
]5�[pM

i ln(pM
i /p

O
i )1 pO

i ln(pO
i /p

M
i )]

5�(pM
i 2 pO

i ) ln(p
M
i /p

O
i ) ,

(9)

and it vanishes when pM
i 5 pO

i for all i. It can also be

expressed in terms of the Shannon entropy (5):

D
JS
[P

M
,P

O
]5 S[(P

M
1P

O
)/2]2S[P

M
]/22S[P

O
]/2 .

(10)

To evaluate (10), we determine the probability of the

observed time series PO and of the different model time

series PM using ordinal symbolic analysis. The Jensen–

Shannon divergence is a measure of distance between

two PDFs, PM, and PO, so that a small Jensen–Shannon

divergence indicates a model PDF close to the observed

PDF. The best model or the optimal parameters are the
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ones whose time series gives the smallest Jensen–

Shannon divergence.

3. Description of the numerical experiments

In the numerical experiments, we evaluate the poten-

tial of ordinal symbolic analysis to select subgrid-scale

parameterizations using the integration of the two-scale

Lorenz-96 system (Lorenz 1996) as the natural system

evolution. The equations of this system are given by a set

of N equations of large-scale variables Xn,

dX
n

dt
1X

n21
(X

n22
2X

n11
)1X

n
5F2

hc

b
�

nM/N

j5(M/N)(n21)11

Y
j
,

(11)

where n5 1, . . . , N; and a set of M equations of small-

scale variables Ym, given by

dY
m

dt
1 cbY

m11
(Y

m12
2Y

m21
)1 cY

m

5
hc

b
X

int[(m21)/(M/N)]11
, (12)

where m5 1, . . . , M. Note that both sets of equa-

tions [(11) and (12)] are in a periodic domain: that is,

X0 5XN and X21 5XN21 and Y0 5YM, Y1 5YM11, and

Y2 5YM12, respectively.

Equations (11) and (12) are essentially the same but

with different scales. They have coupling terms between

them; the equations of small-scale variables, (12), are

forced by the local (closest) large-scale variable. The

equations of large-scale variables, (11), are forced by the

external forcing F and by the averaged small-scale var-

iables, which are located around the large-scale variable

in consideration.

Lorenz (1996) suggested this simple model as a one-

dimensional atmospheric model with two distinct time

scales in a latitudinal circle with interactions between the

two scales, and he used it to illustrate atmospheric pre-

dictability issues. In the experiments, we use the standard

set of constants:N5 8,M5 256, coupling constant h5 1,

time-scale ratio c5 10, and spatial-scale ratio b5 10

(unless stated otherwise). Note that setting h5 0 in (11),

we recover the one-scale Lorenz-96 system.

In reality, the atmospheric numerical models cannot

represent the small-scale variables associated with

convection processes, small-scale waves, etc., so the

effects of the small-scale variables on the large-scale

equations must be parameterized in the numerical

models through forcing terms with functional de-

pendencies of only the large-scale variables and a

set of free parameters. Thus, the equations of the

imperfect model are

dXM
n

dt
1XM

n21(X
M
n22 2XM

n11)1XM
n 5G

n
(XM

n , a
0
, . . . , a

J
);

(13)

where n5 1, . . . , N, and XM
n represents the variables of

the imperfect model. The function Gn(X
M
n , a0, . . . , aJ),

where aJ are free parameters, is a parameterization of

the small-scale processes and the forcing term. It seeks

to mimic the right-hand side term of (11).

Two representations of the forcing term are examined

in this work: (i) a deterministic parameterization given

by a polynomial function,

G
n
(XM

n , a
0
, . . . , a

J
)5 �

J

j50

a
j
� (XM

n )j (14)

and (ii) a stochastic parameterization defined in Wilks

(2005) by a polynomial function and a stochastic com-

ponent given by realizations of a first-order auto-

regressive process:

G
n
(XM

n , a
0
, . . . , a

J
,s,f)5 �

J

j50

a
j
� (XM

n )j 1h
n
(t) , (15)

where

h
n
(t)5fh

n
(t2Dt)1s(12f2)1/2n

k
(t) , (16)

f is the autoregressive parameter, nk is a realization of a

normal distribution with zero mean and unit variance,

and s is the standard deviation of the process. Both

f and s, apart from aj, are free parameters.

The Lorenz-96 system was integrated using a fourth-

order Runge–Kutta scheme, with an integration step of

d5 0:001. In what follows, the time resolution of the

time series or the observational time resolution is taken

to be d5 0:05 (this corresponds to observations every

50 time steps). Considering the growth rates of the sys-

tem, d represents 6 h in the atmosphere and so is able to

capture the instability growth (Lorenz 1996). To avoid

spinup behavior, the state is started from a random ini-

tial condition, and it is integrated by 105 observational

times (this corresponds to 5 3 106 time steps). The re-

sulting state is used as the initial condition, and it is in-

tegrated further by Nd 5 105 observational times (i.e.,

Nd is the time series length), which are used to compute

the information measures.

To evaluate the imperfect model, we use an ‘‘ob-

served’’ time series of a single large-scale variable from

the natural system evolution, the two-scale Lorenz-96

system. That is, we assume that the large scale is the only

information observed so that signals from a single large-

scale variable are used in the ordinal symbolic analysis.
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The small-scale dynamics is neither modeled nor ob-

served, except in the ‘‘true’’ state integration that is

conducted with the two-scale Lorenz-96 and considered

as the natural system trajectory.

In all the experiments, we use the ordinal symbolic

analysis to determine BP-PDFs associated with the time

series of the dynamical system, and then the information

quantifiers, normalized Shannon entropy (6), statistical

complexity (7), and Jensen–Shannon divergence (10),

are computed. The length of the pattern for the ordinal

analysis is taken to be D5 6. This gives a total of

D!5 6!5 720 possible ordinal symbolic patterns, which

clearly satisfy the conditionNd � D! for robust statistics

(Rosso et al. 2007). The choice of the length of the

pattern is a compromise decision: a longer D gives a

more causal and higher-resolution PDF, but it requires a

longer time series for accurate statistics. We took D5 6

as in Rosso et al. (2007) and Serinaldi et al. (2014).

However, note that because of the short climate time

series available, Tirabassi and Massoller (2016) used

D5 3 for monthly climate time series with meaningful

results.

In a first set of experiments, we explore the two-scale

Lorenz-96 system with the information quantifiers:

Shannon entropy (6) and statistical complexity (7).

Different dynamical regimes are uncovered as the

forcing and the coupling coefficient values are varied.

A second set of experiments focuses on model fi-

delity, in which we determine the BP-PDFs of the

observed time series PO and of the modeled time series

PM, so (10) is evaluated. Observed and modeled time

series are completely independent, including the initial

condition. They are both assumed to be on the attrac-

tor of the dynamical system (after the spinup in-

tegration). The synthetic observed time series is in the

second set of experiments generated with an in-

tegration of the one-scale Lorenz ‘96 system and a set

of prescribed parameter values. Then we can evaluate

the sensitivity of the information quantifiers to the

model parameters for integration of the one-scale

Lorenz ‘96 system with different parameter values. In

particular, we expect a minimum in the Jensen–

Shannon divergence when the model parameters are

set at the ‘‘true’’ values (the ones used to generate the

observations). The evaluated parameterizations in this

perfect-model framework are a deterministic parame-

terization, which consists of a quadratic polynomial

function [(14)], and a stochastic parameterization,

which consists of a quadratic polynomial function and a

first-order autoregressive process [(15)].

To estimate the optimal parameter values, a genetic

algorithm was implemented (Charbonneau 2002; Pulido

et al. 2012). The genetic algorithm is an optimization

Monte Carlo method inspired by natural selection, in

which a population of individuals is evolved and the

fitness (cost function) of each individual is evaluated.

Processes of mutation, crossover, and selection

are considered in the population evolution [see

Charbonneau (2002) for further details on the algo-

rithm]. The genetic algorithm is able to find the global

minimum even in the presence of multiple local minima;

however, it presents slow convergence (Pulido et al.

2012). Therefore, we opted for a combined optimization

method, the genetic algorithm is applied first, and then

the new unconstrained optimization with quadratic ap-

proximation (newUOA; Powell 2006), using as initial

guess parameters the ones estimated with the genetic

algorithm. The newUOA is an unconstrained minimi-

zation algorithm that does not require derivatives. Both

the genetic algorithm and newUOA are suitable for

control spaces of up to a few hundred dimensions. The

Jensen–Shannon divergence is used as the minimization

function in the optimization method. After preliminary

experiments, we found out that five generations in the

genetic algorithm were enough to give a well suited

initial guess for the newUOA algorithm (i.e., the

changes in the parameters between generations were

smaller than 4%).

The third set of experiments explores the Jensen–

Shannon divergence for imperfect models. In this case,

the observed time series is obtained from a ‘‘nature’’ in-

tegration of the two-scale Lorenz-96 system, and we seek

to reproduce the dynamics of the systemwith integrations

of imperfect models generated from one-scale Lorenz-96

systems with deterministic and stochastic parameteriza-

tions. From these experiments, we determine a set of

optimal values using the mentioned optimization method

for a deterministic and stochastic parameterization that

seek to represent the small-scale dynamical effects of the

two-scale Lorenz-96 system. These optimal parameter

values are used in long-term climate prediction experi-

ments to examine whether the optimal parameters have a

positive impact on climate measures.

4. Results and discussion

a. Experiments with the two-scale Lorenz-96 system

First, the ordinal symbolic analysis is applied to the

integration of what we consider as the natural system

evolution, the two-scale Lorenz-96 system. Integrations

varying the forcing F were conducted with a resolution

of dF5 0:01, and the ordinal symbolic analysis is applied

to each integration (i.e., time series of the Lorenz-96

variableX1). Figure 1 shows the information quantifiers:

permutation entropy H (Fig. 1a) and permutation
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statistical complexity C (Fig. 1b). From Figs. 1a and 1b,

four regions with different dynamical regimes are found

(which are delimited by vertical dotted lines): (i) for

small external forcing, 0#F# 3:75, the system is dissi-

pative and so after the spinup time the entropy goes to

zero; (ii) a narrow region, between 3:75,F, 4:5, with

high permutation entropy and high permutation statis-

tical complexity; (iii) an intermediate region, between

5,F, 12, with small entropy H ’ 0:22 0:23 and sim-

ilar complexity; and (iv) finally, a region for larger F,

F. 13, which has large entropy H . 0:4 but relatively

small complexity ðC , 0:4Þ.
Figure 1c shows the causal entropy–complexity plane

ðH 3C Þ which combines the entropy and statistical

complexity measures. In this plane, the statistical com-

plexity has aminimum andmaximum value as a function

of entropy (Cmin and Cmax, respectively), which are the

upper and lower continuous curves in Fig. 1c, so all the

possible dynamical regimes are limited to the area be-

tween these curves. The four dynamical regimes can be

clearly distinguished in the entropy–complexity plane.

The dissipative regime is located at the extreme of null

entropy and complexity. Regime (ii) is represented with

gray triangles (with black contours) and corresponds to

the narrow region 3:75,F, 4:5 with large entropy and

maximal complexity (at the Cmax curve). The quasi-

periodic dynamical regime (iii) with low entropy and

maximal statistical complexity is denoted by the black

triangles that are close to the upper curve, which rep-

resents the maximal statistical complexity. The large F

chaotic regime (iv), which has large entropy and rela-

tively small complexity, is represented with gray circles.

Since the system is purely deterministic, there are no

dynamical regimes in the large entropy region, close to

H 5 1, which would represent a purely stochastic sys-

tem (Rosso et al. 2007).

Figure 2 shows the time series resulting from the dy-

namical regimes obtained from the two-scale Lorenz-96

dynamical system (except the dissipative regime) iden-

tified using the information quantifiers for F5 4

(Fig. 2a), F5 7 (Fig. 2b) and F5 18 (Fig. 2c). These

represent quasi-periodic motion with high entropy,

quasi-periodic motion with low entropy and chaotic

motion, respectively.

Figure 3 shows the information quantifiers from in-

tegrations of the two-scale Lorenz-96 system varying the

coupling constant h. The external forcing is fixed to F5
4, 6, or 18. For h/ 0, we recover the measures for the

one-scale Lorenz-96 system since the two sets of equa-

tions, (11) and (12), are uncoupled. In that case, the

permutation entropy and the permutation statistical

complexity scales with the forcing. For F5 4, there is a

peak of entropy and complexity when the coupling

constant h is close to 1, which was the regime already

found in Fig. 1 with complexity close to Cmax (note that

in those integrations h5 1). For coupling constants

larger than h. 1:2, the large-scale and small-scale states

are constants (the amplitude of oscillations for F5 4 and

h5 1 in Fig. 2a is very small). As we increase F to 6, the

large complexity regime is found for larger coupling

between the two scales, for h between 1.4 and 2. On the

other hand, small entropy and complexity is found for

F5 18 for coupling constants between 1 and 2. For

larger coupling constants, a regime with highly disor-

dered patterns is found (small complexity and large

entropy). For coupling constants close to 5, a regime

with high statistical complexity appears to emerge for

F5 18 but we did not explore integrations for larger

FIG. 1. (a) Permutation entropyH , (b) permutation statistical complexity C , and (c) the causal entropy–complexity plane ðH 3C Þ for
two-scale Lorenz-96 integrations as a function of the forcing Fwith a resolution of dF5 0:01. Vertical dotted lines in (a) and (b) divide the

four dynamical regimes found. The minimal and maximal complexity values, Cmin and Cmax, as a function of permutation entropy are

shownwith black solid curves in (c). Regime (i) represents a dissipative system, (ii) a quasi-periodic regimewith high entropy, (iii) a quasi-

periodic regime with low entropy, and (iv) a chaotic regime. The transition points between the regions are not represented in (c) to

improve visibility of the different regimes. The coupling factor in these experiments is h5 1.
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coupling constants. Some of the dynamical regimes that

appear to emerge from the Lorenz-96 system varying the

coupling constant and varying stochastic noise will be

investigated further in a follow-up work.

b. Perfect-model experiments

To evaluate the potential of information quantifiers to

distinguish between time series generated with different

parameterizations, we conducted a so-called twin ex-

periment. We consider the one-scale Lorenz-96 system,

(13), with a known parameterization as the natural sys-

tem evolution to generate the observed time series,

and then we evaluate the information measures for

integrations of the one-scale Lorenz-96 system with

varying parameters using the hybrid optimization algo-

rithm with genetic algorithm and newUOA methods.

This is an experiment where the model is assumed to be

perfect, and a set of prescribed parameters are used to

generate the observations. Then the optimization

method is used to estimate the parameters through the

differences in the observed and modeled time series. In

this way, we can evaluate whether the Jensen–Shannon

divergence measure determined with the ordinal sym-

bolic analysis is able to estimate the ‘‘true’’ parameters.

The first perfect-model experiment uses a deter-

ministic quadratic parameterization, (14), in the sys-

tem (13). The true parameter values are set to

at0 5 17:0, at1 521:20, and at2 5 0:035 (t superscript

denotes true values). These values are expected to be

a representative deterministic parameterization of the

two-scale model (Pulido et al. 2016). In this perfect-

model experiment with the system (13), there is no

constant forcing but a quadratic forcing. The resulting

dynamical regime from (13) with quadratic forcing

(at0 5 17:0, at1 521:20, at2 5 0:035) is expected to be like

an F 5 17–18 constant forcing. The integration with

the true parameters is considered as the observational

time series. The Jensen–Shannon divergence, (10), is

minimized through the hybrid optimization algorithm,

which seeks the optimal model parameter values. The

FIG. 3. (a) Permutation entropyH , (b) permutation statistical complexityC , and (c) the causal entropy–complexity plane ðH 3C Þ for
two-scale Lorenz-96 integrations with varying coupling constant h in steps of dh5 0:1 for F5 4 (continuous line, circle points), F5 6

(dotted curves, square points), and F5 18 (dashed curves, triangle points).

FIG. 2. Time series of a two-scale Lorenz-96 variable for F 5 (a) 4, (b) 7, and (c) 18.
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symbolic ordinal analysis is applied to each model and

observational time series to evaluate the Jensen–

Shannon divergence, (10). The optimal parameter

values obtained with the hybrid optimization algorithm

were a0 5 17:1, a1 521:18, and a2 5 0:032. This twin

experiment shows that the information measures can be

used to determine optimal parameters; the estimated

optimal values are very close to the true parameter

values. In preliminary experiments, we also evaluated

the Hellinger divergence (e.g., Arnold et al. 2013) as an

alternative to Jensen–Shannon divergence. Both dis-

tance measures performed similarly well, so we only

show the experiments with Jensen–Shannon divergence.

The sensitivity in the Jensen–Shannon divergence to

the parameters is shown in Fig. 4 by varying each of the

parameters and fixing the other two parameters at the

optimal values (which were obtained with the hybrid

optimizationmethod using Jensen–Shannon divergence).

The optimal parameter is very well defined in the three

parameters. The minimum of the Jensen–Shannon di-

vergence is clearly located at the true parameters. One

weak point of the measure is that it presents noise, in-

cluding several local extremes. This affects the conver-

gence speed of optimization methods.

A second perfect-model experiment takes a stochastic

parameterization, (15). For the polynomial coefficients,

we use the same true values as in the previous experi-

ment, at0 5 17, at1 521:2, and at2 5 0:035, but we now

include a noise forcing term with standard deviation

st 5 1. Two optimization experiments with autore-

gressive parameters ft 5 0 and ft 5 0:984 were con-

ducted. These two extreme values were taken by Wilks

(2005) to represent serially independent and serially

persistent stochastic forcing, respectively. The resulting

optimal parameter values of the hybrid optimization

algorithm are shown in Table 1. The combined

estimation of deterministic parameters and the sto-

chastic parameter s gives rather good estimates. The

stochastic parameter is slightly underestimated by

10%–20% in the two optimization experiments.

Once the optimal parameters for the stochastic pa-

rameterization are estimated, we then evaluate the

sensitivity of Jensen–Shannon divergence measure with

respect to this observational time series varying s values

in the model integrations. Figure 5 depicts the Jensen–

Shannon divergence as a function of s parameter for

autoregressive parameters of ft 5 0 and ft 5 0:984 (the

other parameters are fixed to the optimal values that

were estimated with the hybrid optimization algorithm).

A rather narrow negative peak is found in Fig. 5 close to

the true parameter values. The ft 5 0:984 case (Fig. 5b)

appears to be better conditioned.

c. Imperfect-model experiments

The usual procedure to infer unknown parameters

of a parameterization scheme in an imperfect coarse-

grained model is to tune the unknown parameters

and to evaluate the response of the changes in the

parameters on the root-mean-square error, which

measures the differences between the evolution of

FIG. 4. Jensen–Shannon divergence as a function of a0, a1, and a2 under the perfect-model assumption. The true parameter values are

shown with vertical dotted lines. The square root of Jensen–Shannon divergence is used to make visible small values close to the

minimum.

TABLE 1. Values of the parameters ai, where i is the degree of the

polynomial term and standard deviation s for the quadratic

stochastic parameterization in the perfect-model experiment. The

true values correspond to the values used to generate the obser-

vations. The optimal values are obtained with the hybrid optimi-

zation algorithm for ft 5 0 and ft 5 0:984 experiments.

a0 a1 a2 s

True values 17.0 21.20 0.035 1.0

ft 5 0 17.0 21.17 0.031 0.82

ft 5 0:984 17.0 21.19 0.034 0.88
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some representative variables and the corresponding

observed variables (or reanalysis data). The optimal

parameters are the ones that minimize the root-mean-

square error. We conducted a similar experiment with

synthetic observations but using information measures

(i.e., Jensen–Shannon divergence) instead of root-

mean-square error measures. The advantage of the

ordinal symbolic analysis is that, as it does not depend

on the amplitude but on the ‘‘shape’’ of the patterns,

it is not sensitive to possible systematic model errors.

The analysis is performed in a sufficiently long trajec-

tory (105 observational times). The probability of all

the possible patterns is composed by a large number of

cases, and it is expected to be independent of the initial

condition (the spinup time is not considered in the

statistics). The observed time series corresponds to a

single variable taken from a model integration of the

two-scale Lorenz-96 system that is started from ran-

dom initial conditions, and the spinup period is re-

moved. The model time series is also generated from

random initial conditions and integrating the one-scale

Lorenz-96 system. Therefore, the two time series are

completely independent: they do not have a common

initial condition. In this sense, the Jensen–Shannon

divergence is a global measure of the system dynamics.

Sincewe deal with an imperfectmodel, which does not

represent explicitly the small-scale dynamics, the pa-

rameter estimation is not a twin experiment in which we

know the ‘‘true’’ optimal parameters, so the existence

of a single set of optimal parameters is not a priori

ensured.

We conducted two extreme experiments: one with the

natural system evolution set for an external forcing of

F5 7, which results in quasi-periodic motion, and the

other for a forcing of F5 18, which results in chaotic

dynamical behavior. As mentioned, the ordinal sym-

bolic analysis may be applied to chaotic and quasi-

periodic time series as long as the weak stationary

assumption is satisfied.

The hybrid optimization algorithm was applied to the

two observed time series. The genetic algorithm restricts

the search for optimal values to the region delimited by

the maximum and minimum values stated in Table 2.

The parameter limits (maximum and minimum values)

of the search region were taken according to the values

obtained by Pulido et al. (2016). In the case that the

resulting optimal value of the genetic algorithm is at a

boundary of the region, it is an indicator that the region

is too narrow in that parameter and that the limit value

should be changed. The estimated optimal values with

the hybrid optimization algorithm for F5 7 and F5 18

are also shown in Table 2.

The Jensen–Shannon divergence sensitivity to each of

the parameter values for the case F5 7, varying one

parameter value and fixing the other two to the optimal

values that resulted from the hybrid optimization algo-

rithm, is shown in Fig. 6. Parameters exhibit strong

sensitivity in a small region close to the optimal values.

These sensitivity experiments are produced after the

optimization, with independent integrations that are not

related to the optimizationmethod. For some parameter

values, the Lorenz-96 model presents numerical

FIG. 5. Jensen–Shannon divergence as a function of the standard deviation s and autoregressive parameter

values (a) ft 5 0 and (b) ft 5 0:984 for the perfect-model experiments. The other parameters are kept fixed at the

optimal values.
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instabilities. A uniform time series is assigned for these

cases, so a delta PDF results, which in turn gives a large

Jensen–Shannon divergence.

The sensitivity of the Jensen–Shannon divergence to

each of the parameters for the case of F5 18 is shown in

Fig. 7, while the other two parameters are fixed at the

optimal values. The parameter a0 exhibits a reasonable

sensitivity around the optimal value. On the other hand,

a1 and a2 show several peaks so that they are more dif-

ficult to be precisely estimated; however, the genetic

algorithm is clearly able to find the global minimum

even in the presence of these local minima (Fig. 7c).

As the information quantifiers give useful information

on the optimal parameter values of the deterministic

parameterization, we now turn our attention to sto-

chastic parameterizations for the imperfect case. We

include the first-order autoregressive process (16) in

the parameterization (15) and search with the hybrid

optimization algorithm for the optimal parameter

values, including the optimal standard deviation s,

(a0, a1, a2, s), and again we only explore for two fixed

autoregressive parameters f5 0 and f5 0:984. The

resulting optimal parameter values of the hybrid opti-

mization algorithm are shown in Table 2.

The Jensen–Shannon divergence as a function of the

standard deviation is depicted in Fig. 8 for the optimal

deterministic parameter values (shown in Table 2). For

an external forcing of F5 7, a smooth function is found

with a clear minimum (see Fig. 8a). The minimum is

found at s5 0:32 forf5 0. Similar values of the Jensen–

Shannon divergence are found at s5 0:15 for f5 0:984.

Both sets of values are suitable for representing the

stochastic process that mimics the effects of Lorenz-96

small-scale variables. Note that the Jensen–Shannon

divergence for the optimal s value is smaller than the

one for s5 0 so that the stochastic parameterization

improves the representation of small-scale variables.

This is also valid when both deterministic and stochastic

parameterizations have their own optimal parameters.

For F5 18, Jensen–Shannon divergence has smaller

values than F5 7. This means that the parameterization

is able to represent better the effects of the small-scale

variables for this case as a result of the chaotic dynamics.

The divergence depicts a noisy dependence, but a con-

strained optimal range of the standard deviation is still

clearly identified from Fig. 8b. There is an optimal range

for 4,s, 6 with similar DJS values in which the pa-

rameterization is practically indistinguishable. Similar

TABLE 2. Values of the parameters ai and s. Themaximumandminimumvalues used to constrain the optimization and the optimal values

obtained with the hybrid optimization algorithm corresponding to the deterministic (Det), f5 0, and f5 0:984 experiments.

Coef

F5 7 F5 18

Min Max Det f5 0 f5 0:984 Min Max Det f5 0 f5 0:984

a0 2.0 8.0 5.79 5.78 6.97 14.0 19.0 17.7 18.5 17.1

a1 23.5 0.0 22.79 21.76 22.18 23.0 0.0 21.19 21.28 21.26

a2 0.0 0.8 0.50 0.22 0.25 0.0 0.5 0.038 0.039 0.049

s 0.0 2.0 — 0.32 0.15 0.0 5.0 — 4.67 2.13

FIG. 6. Jensen–Shannon divergence between the probability distribution from the model integration with a given set of parameters and

the one from the natural two-scale Lorenz-96 system evolution for an external forcing of F5 7. Two parameters are kept fixed at the

estimated values (Table 2), and the third one is varied: (a) a0, (b) a1, and (c) a2 dependencies. Vertical dotted lines show the optimal

parameter values.
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Jensen–Shannon divergence values are also found for

the f5 0:984 experiment with a more constrained

minimum (better conditioned Jensen–Shannon di-

vergence) at about s5 2:1.

To evaluate the information quantifiers as a method

for model selection, we conducted an experiment in

which we assume that the model has different parame-

terizations, changing the order of the polynomial func-

tion in the deterministic parameterization and for some

experiments adding the stochastic process (16). A total

of eight optimization experiments with different pa-

rameterizations were conducted for an observed time

series taken from the two-scale Lorenz-96 system with

F5 18. For each parameterization, the set of optimal

parameters estimated by the hybrid optimization algo-

rithm is stated in Table 3. The square root of Jensen–

Shannon divergence for the optimal parameters is also

shown in Table 3. The best parameterization is the one

that gives theminimal Jensen–Shannon divergence from

the observed PDF. The quadratic polynomial parame-

terization is the best deterministic one. Interestingly, the

stochastic parameterizations present a significantly

better performance with this information measure. The

higher-order polynomial terms are very sensitive to

small changes in the variables and parameters, and

for some parameter values they produce numerical

FIG. 7. Jensen–Shannon divergence between the probability distribution from the model integration with a given set of parameters and

the one from the natural two-scale Lorenz-96 system evolution for an external forcing of F5 18. One parameter value is varied, and the

other two are kept fixed at the optimal values (Table 2): the varied parameter is (a) a0, (b) a1, and (c) a2. Vertical dotted lines show the

optimal parameter values.

FIG. 8. Jensen–Shannon divergence as a function of the standard deviation s of the first-order autoregressivemodel

(AR1) process for the cases f5 0 and f5 0:984 with F 5 (a) 7 and (b) 18.
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instabilities in the Lorenz-96 model (Pulido et al. 2016).

Indeed, the optimization experiment with the fourth-

order polynomial stochastic parameterization did not

converge toward optimal parameter values because of

these ubiquitous numerical instabilities (to overcome

this, careful manual changes in the parameter limit

values would be required).

The forcing given by the parameterizations with op-

timal parameters for the F5 18 experiments, including

the quadratic deterministic, and the quadratic stochastic

parameterizations with f5 0 and with f5 0:984 are

shown in Figs. 9a–c, respectively. The forcing given by

the small-scale variables in the two-scale Lorenz-96 is

also shown in Fig. 9 (gray dots). We emphasize that this

‘‘true’’ forcing is only shown for the purpose of evalua-

tion of the optimization experiments, but the time series

of a single large-scale state variable is the only source of

information used in the optimization experiments. The

simple polynomial parameterizations with fixed stan-

dard deviation represent rather well the complex forcing

dependencies given by the small-scale variable. How-

ever, they are obviously unable to represent the de-

pendence of the standard deviation with the value of the

state variable, particularly at the tail (large X values)

and with the dX/dt. 0 and dX/dt, 0 branches of the

forcing (Crommelin and Vanden-Eijnden 2008; Pulido

et al. 2016).

As an independent measure of the climatology of the

model with optimal parameters, we use the classical

histogram PDF. It was computed from the whole in-

tegration with the different optimal parameter values.

Figure 10 shows the histogram PDF for the nature in-

tegration for F5 18, as well as those with the optimal

parameters for the quadratic deterministic parameteri-

zation (dashed line) and for the stochastic parameteri-

zations using f5 0 (dotted line) and f5 0:984 (gray

line). A very good agreement between the true histo-

gram PDF and the model PDF is achieved. The sto-

chastic parameterizations give a slightly better

agreement to the true histogram PDF.

5. Conclusions

Ordinal symbolic analysis only depends on the repe-

tition of patterns within a time series. If it is combined

with information measures, they represent a useful

framework to evaluate models: in particular, unresolved

processes of multiscale models. Since ordinal symbolic

TABLE 3. Estimated values of the parameters ai and stochastic parameter s for the deterministic and stochastic parameterizations with

f5 0 in the imperfect-model experiment.

a0 a1 a2 a3 a4 s
ffiffiffiffiffiffiffiffi

DJS

p

Linear 18.36 20.981 — — — — 0.3950 3 1021

Quadratic 17.7 21.19 0.038 — — — 0.3224 3 1021

Cubic 18.6 21.50 0.062 0.0002 — — 0.3434 3 1021

Quartic 18.2 21.35 0.094 20.0046 0.000 07 — 0.3309 3 1021

Linear 19.1 21.00 — — — 3.83 0.3120 3 1021

Quadratic 18.5 21.28 0.039 — — 4.67 0.2910 3 1021

Cubic 17.1 21.15 0.073 20.0033 — 1.49 0.3050 3 1021

FIG. 9. Scatterplots of the forcing as a function of the state variable given by the two-scale Lorenz-96model (gray dots) and the one given

by (a) the deterministic and the stochastic parameterizations, (b) f5 0 and (c)f5 0:984, with optimal parameters (black dots) for the

F5 18 case.
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analysis does not depend directly on the state, the

quantities can be used for long time intervals (time se-

ries) even in the presence of model error. The ordinal

symbolic analysis is used in this work for long time se-

ries, and it accounts for the model fidelity with strong

sensitivity to the parameters of the subgrid parameter-

ization that represents the small-scale processes.

Although stochastic parameterizations appear to give

improvements in the atmospheric numerical models, the

tuning of stochastic parameters represents a challenge.

Online parameter estimation techniques such as Kalman

filtering present difficulties in estimating these stochastic

parameters even for small and intermediate systems.

DelSole and Yang (2010) show that it is not possible to

constrain stochastic parameters with ensemble-based

Kalman filters augmenting the model state with the sto-

chastic parameters. Ruiz et al. (2013b) show that a sep-

arate adaptive inflation treatment is required for the

parameter covariance to avoid its collapse. Pulido et al.

(2016) show that the time variability given by Kalman-

filtering parameter estimates is not useful to constrain

stochastic parameters in a subgrid parameterization. In

this work, we show that information measures from or-

dinal symbolic analysis are useful for tuning stochastic

parameters with promising results.

This work evaluates the sensitivity of the parameters

to the information measures, which is useful for model

selection. Furthermore, for parameter optimization, a

hybrid optimization technique using genetic and new-

UOA algorithms was implemented in this work for low-

dimensional models. For some cases, the information

measures based on the ordinal symbolic analysis do not

give smooth dependencies with the parameters. This

may be a problem for traditional gradient descent

optimization methods. For parameter estimation in

high-dimensional models, more sophisticated optimiza-

tion techniques suitable for noisy cost functions, like

simulated annealing, or stochastic gradient descent, are

required to minimize the Jensen–Shannon divergence

for the probability distributions of observations and an

imperfect model. The evaluation of optimization tech-

niques in high-dimensional models with information

measures will be examined in a follow-up work.

The proposed parameter estimation method offers an

alternative framework to methods that couple model

state to observations, such as data assimilation. On the

other hand, in the proposed method the model time

series is generated independently of the observed state

of the system. The model state is assumed to be in its

own model attractor (which is not necessarily the one

from nature). Only partial observation of the system is

needed; indeed, the observed time series may be a single

relevant variable or a small set of variables. The in-

formation measures could be applied to a set of free

integrations from different climate models or a set of

free integrations from a single climate model with dif-

ferent parameterizations or parameters to evaluate from

an observed time series which climate model or pa-

rameterization gives the most accurate results: the

closest PDF to the observed PDF.

This work evaluates the information measures with

the Lorenz-96 system, which is a small model with 8–256

variables. Two major points need to be evaluated with

more realistic models: the impact of a higher-

dimensional state space on the information measures

and the length of the time series needed to compute the

probability distributions. The length of the time series

used in this work would represent about 70 years in the

atmospheric time scale. It depends on two factors: the

required time resolution and the length of the pattern

used for the ordinal symbolic analysis. The time reso-

lution used in this work is related to the time scale of the

resolved large-scale processes, and indeed the used time

series corresponds to a large-scale variable. The length

of the sequence is taken to be six consecutive time series

values (D5 6) in this work, as used in other applications

(Sippel et al. 2016; Serinaldi et al. 2014). However,

Tirabassi and Massoller (2016) used three values for

monthly climate time series (which are of limited length)

with meaningful results. The way to combine the in-

formation measures of different variables for high-

dimensional problems needs to be explored.

The information measures can deal with weak obser-

vational noise (Rosso et al. 2007); however, as expected,

Shannon entropy gives a maximum if the time series is

stochastic without correlations (completely dominated by

white noise). For the cases with strong observational

FIG. 10. Histogram PDFs for the nature integration with F5 18

(continuous line), for the imperfect model with the deterministic

parameterization using optimal parameter values (dashed line),

and for the imperfect model with the stochastic parameterization

using f5 0 (dotted line) and f5 0:984 (gray line).
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noise, the signal may not be useful for analyzing fast

processes, but averaging the time series and applying

ordinal symbolic analysis in longer time steps may give

useful information for slower physical processes.
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