
Q31

Q1 Q2

Q9

[ Critical Care Original Research ]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60

61
62
63
Prevalence of Reverse Triggering in Early
ARDS
64
65
66
67
68
69
70
Results from a Multicenter Observational Study

Pablo O. Rodriguez, MD; Norberto Tiribelli; Sebastian Fredes; Emiliano Gogniat; Gustavo Plotnikow;

Ignacio Fernandez Ceballos; Romina Pratto; Alejandro Raimondi; María Guaymas; Santiago Ilutovich;

Eduardo San Roman; Matías Madorno; Patricio Maskin; Laurent Brochard; and Mariano Setten; on behalf of the Grupo

Argentino de Estudio de Asincronías en la Ventilación Mecánica Study Group*
ABBREVIATIONS: IQR = in
ventilation; NMBA = neurom
pressure; RT = reverse triggeri
AFFILIATIONS: From the Inte
and Setten), Pulmonary Medic
and Maskin), and Instituto Un
Centro de Educación Médica
Care Unit, Complejo Médico

chestjournal.org

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

FLA 5.6
BACKGROUND: The prevalence of reverse triggering (RT) in the early phase of ARDS is
unknown.

RESEARCH QUESTION: During early ARDS, what is the proportion of patients affected by RT,
what are its potential predictors, and what is its association with clinical outcomes?

STUDY DESIGN AND METHODS: This was prospective, multicenter, and observational study.
Patients who met the Berlin definition of ARDS with less than 72 h of mechanical ventilation
and had not been paralyzed with neuromuscular blockers were screened. A 30-min recording
of respiratory signals was obtained from the patients as soon as they were enrolled, and the
number of breaths with RT were counted.

RESULTS: One hundred patients were included. ARDS was mild to moderate in 92% of them.
The recordings were obtained after a median of 1 day (interquartile range, 1-2 days) of
ventilation. Fifty patients had RT, and most of these events (97%) were not associated with
breath stacking. Detecting RT was associated with lower tidal volume (VT) and less opiate
infusion. The presence of RT was not associated with time to discontinuation of mechanical
ventilation (subdistribution hazard ratio, 1.03; 95% CI, 0.6-1.77), but it possibly was asso-
ciated with a reduced hospital mortality (hazard ratio, 0.65; 95% CI, 0.57-0.73).

INTERPRETATION: Fifty percent of patients receiving assist-control ventilation for mild or
moderate ARDS, sedated and nonparalyzed, demonstrate RT without breath stacking on the
first day of mechanical ventilation. RT may be associated with low VTs.

TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT02732041; URL: www.clinicaltrials.gov.
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ARDS is a type of diffuse, inflammatory lung injury
leading to increased pulmonary vascular permeability,
increased lung weight, and loss of aerated lung tissue
clinically characterized by marked gas exchange
abnormalities and reduced respiratory system
compliance.1 Hospital mortality is roughly 40% and has
been related to the severity of the injury.2,3 ARDS
management requires the prompt identification and
treatment of the primary causes of lung injury and
physiologic support until recovery. The latter usually is
achieved with invasive mechanical ventilation (MV).
However, strong experimental and clinical evidence has
confirmed that MV can induce further lung injuries in
this setting.4,5

Patient-ventilator asynchrony has been found frequently
during MV.6 After the widespread use of low tidal
volume (VT) in ARDS MV, Pohlman et al7 reported the
finding of double triggering in patients who were heavily
sedated, where asynchrony is unexpected. This finding
has been called breath stacking. The authors postulated
that a neural inspiratory time larger than ventilator
inflation time is responsible for this finding. Reverse
triggering (RT) is an asynchrony in which the
inspiratory effort paradoxically is triggered by the
mechanical insufflation. The underlying mechanism is
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the entrainment of the respiratory rhythm by the cyclic
mechanical inflation of the lungs.8 If the ventilator-
triggering threshold is overcome by the RT, then a new
ventilator cycle can be triggered (RT with breath
stacking). Recent evidence suggests that one-third of the
breath stacking in patients with mixed acute respiratory
failure is related to RT.9 This mechanism also has been
described in animal models and anesthetized humans
associated with respiratory entrainment of the
respiratory rhythm by the ventilator.8,10-17 The Hering-
Breuer reflexes mediated by slowly adapting receptors
and other potential pathways may be implicated.11,15,17

Different types of entrainment patterns have been
reported.10,15,16

Our main objective was to establish the frequency of
RT during the early phase of treatment in
nonparalyzed mechanically ventilated ARDS patients.
Additionally, this study sought to determine potential
predictors of the asynchrony and the association
between early presence of RT and clinical outcomes.
The preliminary results of this study were presented
previously at the Sociedad Argentina de Terapia
Intensiva Annual Meeting.18,19 The study was
registered with the ClinicalTrials.gov (Identifier:
NCT02732041).
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Methods
We conducted a prospective, multicenter, observational study in five
medical-surgical ICUs from five hospital sites in Buenos Aires,
Argentina. The study took place from May 2016 through November
2018. The study protocol was approved by the Centro de Educación
Médica e Investigaciones Clínicas research ethics committee
(approval no.: 1008; February 2016), and the informed consent
forms were signed by the patients’ next of kin before starting the
procedures.
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Patient Selection

Patients older than 18 years with ARDS, according to the Berlin
definition, were included within 72 h of starting MV.1 The exclusion
criteria were as follows: neuromuscular blocking agent (NMBA)
continuous infusion or having clinical signs of persistent
neuromuscular blockade, any known severe neuromuscular disease,
or poor prognosis according to the decision of the investigators.

Study Procedures, Detection of Asynchrony, and Variable
Processing

Details about definitions (RT and breath stacking) (Fig 1), variable
collection, and processing are available in the e-Appendix 1. After
gathering the baseline data, a 30-min recording of airway pressure
(Paw) time and flow time (V_) signals was obtained from the circuit
Y-piece. The duration of the recordings was selected to avoid
interference with patient health care and has been carried out
previously in other studies of patient-ventilator asynchrony.6,20-22

The time point for the signal acquisition was established as soon as
the selection criteria were verified, and the patient was accessible for
the recordings. Then, the ventilator rate was increased sequentially
and decreased by 5 breaths per 1 min for 3-min periods in a
random order to evaluate a possible change in the entrainment
response. Five minutes of ventilation with the baseline rate were
performed between both periods.

The respiratory waveform files were processed using a custom program
that detects RT using Paw time and flow time signals.23 RT can start
during the insufflation time (any time after the start of insufflation),
during the short pause at end inspiration, or even during the early
part of expiration (especially when the inspiratory time is short). It
[ -#- CHE ST - 2 0 2 0 ]
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Figure 1 – Q26Examples of respiratory waveforms from a patient showing reverse-triggering asynchrony. Flow, airway pressure (Paw), and esophageal
pressure (Pes) recordings from a patient with ARDS. The points denote the exact time when the reverse triggering is detected by the script based on flow
and Paw. The ratio between the ventilator and the efforts of the patients is 1:1. Light gray points indicate reverse triggering-related breath Q33stacking.
Inspiratory efforts of patients that fail to trigger the ventilator back are indicated by dark gray points.
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can be associated with breath stacking, and this mostly depends on the
magnitude of the effort at the end of the insufflation. Basically, the
script classifies a respiratory cycle as RT when either a breath
stacking or a patient effort (detected in the inspiratory time or
during expiration) is preceded by a controlled insufflation. In the
absence of breath stacking, the patient inspiratory effort may
produce a sudden decrease in Paw during the insufflation, a
distortion of the flow during the expiratory time, or both. The
algorithm tracks these waveform distortions, but it does not establish
the beginning of the patient effort. Thus, the delay between the
initiation of the insufflation and the RT (phase angle) could not be
computed. Furthermore, according to Akoumianaki et al,8 RT was
confirmed when a repetitive pattern was found, defined by a ratio
between the efforts and the mandatory cycles of 1:1 in more than
five consecutive breaths, or other ratios (1:2 or 1:3) in more than 10
cycles. Asynchrony was expressed as a rate (count per minute). The
entrainment patterns, defined as the ratio between the patient effort
and the mandatory cycles, from the baseline recordings were
calculated every 30 s.

The patients were followed up until hospital discharge.
Benzodiazepine and opiate doses were converted to midazolam and
fentanyl equivalent doses.24,25 The discontinuation from the MV
was defined as the time point at which no further invasive MV was
required by the patient.
chestjournal.org
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Statistical Analysis

The sample size calculation and the detailed description of the
statistical analysis can be found on the supplemental material. The
quantitative data were expressed as mean � SD or median
(interquartile range [IQR]) according to the observed distribution.
The comparisons of continuous variables were performed with a
Student t test or a Wilcoxon signed rank test. A multiple binomial
generalized linear model was used to assess the independent effect of
potential predictors on RT findings. Some continuous variables were
rescaled to obtain more meaningful estimates. A stepwise model
selection was performed in both directions. A competing risk model
was used to evaluate the effect of RT on the probability of successful
discontinuation from MV, as has been done previously.26 Death
occurring during MV was used as the competing event. The patients
who were transferred to another facility while receiving MV were
censored. The cumulative incidence function and the Fine and Gray
competing risks regression model subdistribution hazard ratios were
computed with cmprsk in R software Q(R Foundation for Statistical
Computing).27 The effect of RT on 90-day hospital mortality was
assessed with a Kaplan-Meier curve, and the probability of survival
was modeled with Cox proportional hazards regression. Patients
discharged alive from the hospital were censored. The analysis was
performed with R version 3.6.1 software, and a P value of .05 or less
was considered statistically significant.
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Results
One hundred forty-five patients met the inclusion
criteria, whereas 42 met at least one exclusion
criterion. The respiratory signals from three patients
could not be used, leaving a sample of 100 patients
for the analysis (Fig 2). The median duration of
recording was 30.3 min (IQR, 30.0-32.2 min) per
patient. Table 1 summarizes the baseline
characteristics of the patients. ARDS was graded by
the investigators as mild in 35 patients, moderate in
57 patients, and severe in the remaining 8 patients.
The most frequent cause of ARDS was pneumonia
(67%). The length of stay in the ICU and the
duration of MV before signal recording were 2 days
(IQR, 1-4 days) and 1 day (IQR, 1-2 days),
respectively.
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Figure 2 – Flow chart showing selection of patients. NMBA ¼ neuro-
muscular blocking agent.
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All the patients were ventilated in constant flow volume-
controlled mandatory ventilation at the time of
respiratory signal acquisition. Ventilator settings and
respiratory monitoring measurements at the time of
signal acquisition are summarized in Table 1. The
patients were sedated deeply during signal acquisition
(Table 1). The median Richmond Agitation Sedation
Scale28 score was -4 (IQR, -5 to -4). Propofol and
midazolam were used as continuous infusion in 38 and
57 patients, respectively, and their median infusion rates
were 110 mg/h (IQR, 100-200 mg/h) and 6.6 mg/h (IQR,
4.5-12 mg/h), respectively. Three patients were sedated
with dexmedetomidine infusion. Seventy-six patients
received fentanyl, whereas 22 and two patients received
a remifentanil or a morphine infusion, and the median
fentanyl equivalent dose infusion was 96 mg/h (IQR,
62.5-176 mg/h).

Reverse Triggering-Related Asynchrony

Fifty patients had at least one single RT event detected
over the recording. In these patients, the median
asynchrony rate was 4.8 per minute (IQR, 0.3-14.3 per
minute) or 17.7% (IQR, 0.95%-49.5%) of the controlled
respiratory rate. The rates of RT without breath stacking
and RT with breath stacking were 4 per minute (IQR, 0-
12 per minute) and 0 per minute (IQR, 0-1.5 per
minute), respectively. RT without breath stacking
represented 97.3% (IQR, 80.5%-100%) of these
asynchronies. The most frequent entrainment ratios
were 1:2 and 1:1 (Fig 3).

Median inspiratory VT from breaths without breath
stacking was 5.8 mL/kg (IQR, 5.4-6.4 mL/kg) of
predicted body weight. Thirty-nine patients had RT with
4 Original Research
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breath stacking, and the cumulative median VT of breath
stacking was 10.3 mL/kg (IQR, 9.5-11.6 mL/kg; P <

.001). Furthermore, the median driving Paw values
calculated using the baseline respiratory system
elastance during normal and breath-stacking breaths
were 9.8 cmH2O (IQR, 8.5-11.8) and 16.9 cmH2O (IQR,
13.5-20.2 cmH2O; P < .001).

Table 2 presents the independent associations of
ventilator settings and clinical variables, including
severity scores, driving Paw, gas exchange, and sedation,
on the probability of finding RT. RT was associated
independently with lower VT (P ¼ .019) and lower
fentanyl infusion rate (P ¼ .018). Additionally, greater
ARDS severity (P ¼ .08), higher pH (P ¼ .053), and
lower Acute Physiology and Chronic Health Evaluation
II score (P ¼ .052) tended to decrease the probability of
finding RT.

Effect of Changing the Ventilator Rate on Reverse
Triggering

The rate of RT without breath stacking per minute
decreased when the ventilator rate was reduced by five
breaths per minute (difference from baseline, -1.9 � 4.71
breaths/min; P ¼ .006, paired t test), whereas the rate of
breath stacking significantly increased by 0.63 � 2.05
breaths/min (P ¼ .035, paired t test). When the
ventilator rate was increased by 5 breaths/min, no
significant change in RT count was noted (Fig 4).

Outcomes

Thirty-five patients died in the ICU, and 9 (13.8% of
survivors) were transferred from the ICUs to chronic
rehabilitation facilities. Among them, 3 were discharged
from the hospital before completing the weaning from
MV. The median time from intubation to the last day of
MV in the hospital was 10.5 days (IQR, 6-20.5 days).
Figure 5 and Table 3 summarize the results of competing
risk analysis for the time to the definitive
discontinuation from MV or death as the competing
event. The former was not affected by the detection of
RT in the cumulative incidence analysis (P ¼ .378,
Gray’s test). The adjusted subdistribution hazard ratio of
the detection of RT for this event in the Fine and Gray
model was 1.11 (95% CI, 0.65-1.91; P ¼ .710).

The median time from admission to hospital discharge
was 30 days (IQR, 17-57 days). Hospital mortality was
40%. e-Figure 1 illustrates the probability of 90-day
hospital survival according to the detection of RT in the
baseline recording. The between-groups comparison was
not statistically significant (P ¼ .180, log-rank test).
[ -#- CHE ST - 2 0 2 0 ]
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TABLE 1 ] Baseline Characteristics of the PatientsQ28

Variable Value (n ¼ 100)

Age, y 66 (53.5-73)

Male sex 62 (62)

ARDS severity . . .

Mild 35 (35)

Moderate 57 (57)

Severe 8 (8)

APACHE II score 18 (12-24)

SOFA 7 (5-9)

ARDS cause . . .

Pneumonia 67 (67)

Aspiration 11 (11)

Trauma 5 (5)

Postoperative 5 (5)

Extrapulmonary 12 (12)

Other 3 (3)

Comorbidities . . .

COPD 20 (20)

Cardiac failure 13 (13)

CNS disorders 9 (9)

Active cancer 15 (15)

Mechanical ventilation settings . . .

VT, mL/kg 6.1 (5.94-6.82)

Respiratory rate, bpm 25 (22-29)

Inspiratory time, s 0.71 (0.68-0.78)

Inspiratory flow, L/min 49 (36-56)

PEEP, cmH2O 12 (10-15)

Respiratory monitoring,
cmH2O

. . .

Intrinsic PEEP 1 (0-1.8)

Plateau Paw 24 (21-27)

Driving Paw 10 (9-12)

Gas exchange . . .

pH 7.36 (7.31-7.41)

PaCO2, mm Hg 40 (36-45)

PAO2/FIO2, mm Hg 197 (163-231)

Sedation . . .

RASS -4 (-5 to -4)

Midazolam (mg/h) 6.6 (4.5-12)

Propofol (mg/h) 110 (100-200)

Fentanyl (mcg/h) 96 (62-176)

Prior use of NMBA 28 (28)

Data are presented as No. of patients (%) or median (inter-
quartile range). APACHE II ¼ Acute Physiology and Chronic
Health Evaluation II; Paw ¼ airway pressure; PEEP ¼ positive
end-expiratory pressure; RASS ¼ Richmond Agitation Sedation
Scale; SOFA ¼ sequential organ failure assessment; VT ¼ tidal
volume.
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After adjusting for other potential predictors, the hazard
ratio of RT in the Cox regression model was 0.65
(95% CI, 0.57-0.73; P < .001) (Table 3).

Discussion
This multicenter study provides new epidemiologic data
about RT in mechanical ventilation during the early
phase of the ARDS treatment and its possible
determinants. Our key findings can be summarized as
follows: (1) one-half of patients showed detectable RT
asynchrony soon after starting MV for ARDS based on a
single 30-min recording; (2) most of the observed RT
asynchrony was not associated with breath stacking; (3)
breath stacking secondary to RT was associated with
large VT and driving Paw; (4) lower VT and opiate dose
increased the probability of RT prevalence; and (5) the
early presence of RT was not related to the time to
discontinuation of MV and, after adjustment for known
predictors, possibly was associated with a reduced 90-
day hospital mortality rate.

RT Asynchrony Frequency and Predictors

One-half of patients demonstrated RT asynchrony,
which was not related to breath stacking in most of
them. The most frequent entrainment patterns
expressed as patient-to-ventilator ratio were 1:1 or 1:2
(Fig 3), which is consistent with the study of
Akoumianaki et al.8 Studies in humans showed the same
pattern of phase locking when the mechanical stimulus
is approximately the same as Qthe intrinsic respiratory
rate of patients.10,15 Unfortunately, the phase angle of
the entrainment, which represents the delay between the
stimulus to the beginning of the effort of the patient,
could not be measured directly in our study. RT usually
occurs soon after machine inflation, which means that
the phase angle is positive. The latter can be observed
when the stimulation rate is more than the baseline
respiratory rate in anesthetized and sleeping healthy
people.10,16 Breath stacking, which is the more striking
consequence of RT, can be identified easily on ventilator
tracings.29 Pohlman et al7 found a median breath-
stacking rate of 0 per minute (IQR, 0-4 per minute) in
patients with early ARDS, consistent with our findings.
Moreover, de Haro et al9 described a low frequency of
these asynchronies, which were clustered temporally in
patients with mixed acute respiratory failure ventilated
with different methods of MV. Similar to our research,
these studies demonstrated that breath stacking induces
high VT and Paw.29 These findings may alert clinicians
or even trigger high airway pressure alarms, prompting
5
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Figure 3 – Histogram showing the ratio of ventilator to reverse-
triggering asynchrony breath in patients with at least one asynchrony.
The ratios were calculated every 30 s and rounded.
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the former to increase the sedation level, paralyze the
patient, or adjust the ventilator.30 In the early phase of
the ARDS treatment, most clinicians may not feel
comfortable with changing the setting of the ventilator;
thus, increased sedation, NMBA use, or both may be the
preferred options. Breath stacking requires a high
inspiratory effort to overwhelm the respiratory system
load during early expiration before triggering the
ventilator. The effort should be sustained during the
triggering phase of the ventilator and should reach the
selected threshold. Thus, the use of ventilators with
different triggering properties and different refractory
periods can affect the likelihood of breath stacking. Our
data suggest that the effort of patients during RT often
TABLE 2 ] Predictors of Reverse Triggering-Related
Asynchrony

Predictor OR (95% CI) P Value

APACHE II score 0.95 (0.9-1) .052

ARDS severitya . . . . . .

Mild Reference . . .

Moderate 0.59 (0.21-1.66) .315

Severe 0.12 (0.01-0.90) .040

VT (per 0.1 mL/kg) 0.91 (0.84-0.98) .019

pH (per 0.1 units) 0.57 (0.32-1.007) .053

Fentanyl (per 10 mm) 0.93 (0.88-0.99) .018

Data are binominal generalized linear model coefficients (adjusted ORs).
The dependent variable is the detection of reverse triggering. Tidal volume
and fentanyl infusion dose were rescaled by 0.1 mL/kg of predicted body
weight and 10 mm/min, respectively, to obtain meaningful estimates.
APACHE II ¼ Acute Physiology and Chronic Health Evaluation II; VT ¼ tidal
volume.
aLikelihood ratio test for ARDS severity, P ¼ .080.
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may not be strong enough to produce breath stacking in
most cases. Although patients with ARDS are expected
to have a high respiratory drive during the acute phase
of the disease, several chemical, pharmacologic, and
mechanical signals may interact to modulate it. Most of
the patients were still receiving heavy sedation during
signals recording. PaCO2 tightly correlates with the drive
output, even if ARDS seems to shift this relationship.31

The patients showed normal PaCO2 values and received
sedatives and opiates, which possibly reduced the
respiratory drive activity, thereby decreasing the
possibility of triggering breath stacking. Additionally,
because RT usually is detected soon after starting passive
lung inflation, the Hering-Breuer inhibitory inspiration
reflex plausibly may decrease the neural inspiratory
time, the magnitude of the effort, and the probability of
breath stacking.8,16

Several potential predictors of RT asynchrony were
evaluated. Ventilator respiratory rate is a determinant of
the entrainment of the respiratory rhythm by MV.
However, we did not find a significant effect of baseline
ventilator rate setting on RT. When this parameter was
decreased in 5 breaths/min, both a sudden reduction of
RT without breath stacking and an increase in breath
stacking rates were observed. The former was the
expected response because of the entrainment. The
increase in breath-stacking number may indicate a more
favorable condition for triggering the ventilator
associated with a reduction in intrinsic positive end-
expiratory pressure or with a stronger effort. Conversely,
the increase in the ventilator rate failed to entrain more
RT. In this setting, high frequencies of stimulation may
be beyond the capability of response of the respiratory
drive. Interestingly, VT clearly disclosed a significant
effect on RT occurrence. Low VTs are associated with a
higher prevalence of RT. PaCO2 was unrelated to RT, but
this variable was not altered markedly in patients, which
agrees with the study of Simon et al,16 in which small
increases in end tidal PCO2 failed to modify the
respiratory drive entrainment behavior in healthy people
during non-rapid eye movement sleep. Sedation depth
measured with the Richmond Agitation Sedation Scale
and the doses of midazolam and propofol did not affect
the probability of detection of RT (these variables were
excluded from the final regression model). By contrast,
for every increase of 10 mm/min in the fentanyl
equivalent infusion rate at the time of airway signal
recording, an adjusted 7% decrease existed in the odds of
finding RT. Pohlman et al7 reported that the breath
stacking rate increased when sedation was interrupted,
[ -#- CHE ST - 2 0 2 0 ]
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Figure 4 – Box-and-whisker plot showing
variation in reverse-triggering count per
minute after increasing or decreasing the
ventilator rate. Points represent the mean
change from baseline. Error bars represent
the 95% CI of the means. The P values
correspond to paired t test comparisons.
Panels refer to the change in ventilator rate.
bpm ¼ breaths per minute; BS ¼ breath
stacking; RT ¼ reverse-triggering asynchrony; Q27

RR ¼ respiratory rate.
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and Chanques et al30 also reported a decrease in breath
stacking frequency from 41% to 27% when sedation was
increased in patients with a high asynchrony rate.
However, these two studies did not provide information
about specific drugs and doses involved in the sedation
of the patients. Acute Physiology and Chronic Health
Evaluation II scores tended to be associated to a lower
probability of RT. The latter suggests that the
entrainment response may be decreased indirectly in the
most severe patients, possibly because of higher
cumulative doses of respiratory drive depressants.
Acidosis also may increase the probability of
entrainment of the respiratory rhythm, although the
association was not significant.

Clinical Outcome

The severity of lung injury manifest as gas exchange
abnormalities and high lung elastance,2,32 comorbidities,
concomitant organ failure, and underlying lung disease
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Figure 5 – Cumulative incidence curves showing discontinuation of
mechanical ventilation (MV; P ¼ .378, Gray test) or death (P ¼ .179,
Gray test) as competing events over time according to the presence of
reverse triggering.
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severity all affect outcome. In this context, the potential
predictive strength of a single variable in a prevalence
study at day 1 of ventilation, such as RT rate for clinical
prognosis, must be interpreted with great caution. RT
asynchrony was unrelated to the time required to
discontinue the MV in the competing risk analysis, but it
was associated independently with a decrease in the 90-
day hospital mortality. This result simply may reflect,
despite multiple adjustments, a lower general severity
and different clinical management. In a recent
preliminary analysis, patients demonstrating RT were
more likely to trigger the ventilator fully or to be
extubated the next day than patients without RT.33 The
presence of RT thus may indicate that the patient is
more likely to resume spontaneous activity rapidly,
which in turn may be linked to a better outcome.

Considerable debate about the effect of spontaneous
ventilation on ARDS exists.34 The potential beneficial
effects of spontaneous breathing, such as regional
recruitment and preservation of inspiratory muscle
activity, have been contrasted with deleterious effects,
such as occult pendelluft, breath stacking, and strong
diaphragmatic contractions responsible for muscle
damage. The net effect may depend on the severity of
the lung injury and the intensity of the inspiratory effort.
RT, as we report herein, represents spontaneous
breathing in a setting where controlled ventilation is
expected. Most of the patients had mild to moderate
ARDS, and RT without breath stacking largely was
prevalent. Thus, some mild spontaneous breathing effort
also may improve patient outcomes.

Our study has several limitations. We chose to perform a
30-min respiratory signal acquisition as soon as the
7
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TABLE 3 ] Q29Clinical Outcomes

Discontinuation of MV 90-Day Hospital Mortality

SHR 95% CI P Value HR 95% CI P Value

Reverse triggering 1.11 0.65-1.91 .710 0.65 0.57-0.73 < .001

APACHE II 0.98 0.95-1.01 .150 1.02 1-1.05 .038

ARDS severity . . . . . . . . . . . . . . . . . .

Moderate 0.90 0.5-1.62 .740 0.83 0.49-1.42 .504

Severe 0.35 0.08-1.44 .140 0.50 0.24-1.03 .060

DP (cmH2O) 0.90 0.82-1 .056 1.13 1.04-1.23 .003

RASS 1.00 0.83-1.2 .990 0.96 0.75-1.24 .774

Summary of coefficients from Fine and Gray competing risk and Cox proportional hazard regression models for time to discontinuation of mechanical
ventilation and 90-day hospital mortality. Mild ARDS severity was used as reference in the model. DP ¼ airway driving pressure; HR ¼ hazard ratio; MV ¼
mechanical ventilation; SHR ¼ subdistribution hazard ratio. See Table 1 and 2 legends for expansion of other abbreviations.
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selection criteria were confirmed. Whether this is good
enough for acquiring sample data is uncertain, but it
allowed us to detect several parameters potentially
associated with RT. Previous studies regarding patient-
ventilator interaction have used similar durations and
also have provided interesting data about this
topic.6,20-22 Long periods of registry would provide more
robust data regarding the frequency of the problem and
the variability or potential clustering of the
asynchrony.9,35 The detection of the asynchrony was
based on the flow and Paw signal analysis. This
methodology potentially is insensitive to very small
inspiratory efforts when compared with
electromyography recordings. Therefore, even if we
previously validated our detection script, our estimates
of the real frequency of RT-related asynchrony would be
less than its real value. Finally, NMBA was the most
frequent exclusion criterion. Patients who met this
8 Original Research
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criterion were certainly sicker than those who were
finally included, and only 8% of patients had severe
disease. Hence, our data provide little insight into RT in
severe ARDS.
Conclusions
Our study showed that RT was found in one-half of
mechanically ventilated patients with ARDS not
receiving NMBA infusion soon after intubation. Acute
Physiology and Chronic Health Evaluation II score,
large VT, and high doses of opiates were associated with
a reduced risk of asynchrony. This observational study
suggested that the early detection of RT may be a marker
of favorable outcome in patients with mild to moderate
ARDS. Whether specific interventions should be taken
when RT is detected in this setting warrants further
investigation.
[ -#- CHE ST - 2 0 2 0 ]
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