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Abstract

We discuss a modification of the evolution ary min ority game (EMG) in which agen ts are
placed in the nodes of a regular or a ran dom graph. A n eighborhood for each agentcan thus
be defin ed and a modification of the usual relaxation dyn amics can be made in which each
agen t updates her decision depen din gupon her n eighborhood. We report n umerical results for
the topologies of a ring,a torus anda ran dom graph chan gin gthe size of the neighborhood.
We find the surprisin g result that in the EMG a better coordination (a lower frustration ) can be
achieved if agen ts base their action s on local in formation disregardin g the global tren din the
self-segregation process.

PACS: 05.65.+b; 02.50.Le; 64.75.g; 87.23.Ge

Keywords.: Evolution ary min ority game; Local coordination

1. Introduction

There are a great number of situations in which a many agent system self-organizes
by coordinating individual actions. Such coordination is usually achieved by agents with
partial information about the system, and in some cases optimizing utility functions
that conflict with each other. A similar situation is found in many particles, physical
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systems. The word “coordination” used in a social or economic context is then replaced
by “ordering”. Examples are the growth of a crystalline structure or a transition leading
to some specific magnetic phase.

Interesting situations arise when the optimal configurations for different individuals
do collide with each other. This can be due to the nature of the interactions between
the particles as in a spin glass, or by boundary conditions, which prevent a global
ordering or by the constitutive rules of a system of multiple players that prevent that
all agents can win. In these cases it is said that the system displays some degree of
frustration. An example of a frustrated multi agent system is given by the evolutionary
minority game (EMG) [1] in which many players have to make a binary choice and
the winning option is the one made by the minority. The similarities between some
variants of the minority game and spin glasses have been discussed in great detail in
Ref. [2].

A macroscopic signature of frustration is that the system can not accommodate into
a single, optimal state in which the energy is a minimum, but it relaxes instead to
one of many, suboptimal, equivalent configurations that are local minima in the energy
landscape. In the random relaxation dynamic that is used for the EMG each player
continually modifies her choice searching for a winning option. The final result is that
the population is segregated into two parties that take opposite actions. This partition is
not unique and also tends to reduce the frustration as much as possible by minimizing
the number of losers.

The relaxation process is usually assimilated to the search of a solution of a combi-
natorial optimization problem in which it is possible a strategy of “divide and conquer”
[3], i.e., circumstances in which one can attempt to divide the system into parts and
search for separate optima in each part. Frustration arises when such local solutions
can not be reassembled into a global optimum also fulfilling the boundary conditions.

A relevant example of the study of the global outcome of a local coordination
strategy (i.e., involving only a fraction of the system) is Schelling’s segregation model
[4]. Agents of two kinds are placed in a square grid. The system relaxes to equilibrium
allowing any two agents of different kinds to exchange places if they are surrounded
by, say, a majority of agents of the opposite kind. In the present paper we discuss a
relaxation dynamics for the EMG in which we impose a local coordination strategy.
We borrow the picture of Schelling’s models and place the players in a lattice. It is
then possible to associate a neighborhood to each player, and thus implement a local
coordination strategy letting each player to adjust her decision to the situation in her
neighborhood. We call this model the local evolutionary minority game (LEMG). !

A previous work in this direction is Ref. [6] in which players are also located on
the nodes of a grid, but are endowed with (two) strategies that are selected on the
basis of their successful use. This work further imposes that both strategies have to
be anticorrelated, i.e., they tend to produce opposite actions with the same input. We
stress the evolutionary nature of the present model: players bear no memory of past

! Simultaneously with the submission of the present article, H.-J. Huan, B.-H. Wang, P.M. Hui and X.-S.
Luo, have published a work along lines somewhat similar to the present article [5].
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actions and do not have any strategy in the sense of Ref. [6],? to guide their actions.
In spite of this difference, the effects of local coordination produce a similar ordered
pattern. We pay special attention to the effects of such a local coordination in the
optimization process.

2. The rules of LEMG

We first consider the traditional EMG. This involves N players that make one binary
decision (0 or 1). Each player has a probability p;;i=1,2,...,N of choosing, say, 0.
Each player receives one point if her decision places her in the minority, and loses
a point otherwise. When her account of points falls below 0, she changes p; — p!
with p€[p; — Ap, p; + Ap], at random, and A p < 1. Reflective boundary conditions
are imposed at p; = 0,1. All agents are assumed to update the corresponding p;’s
synchronically. It is customary to display the self-organization of the system through
the probability density function P(p) obtained in a statistical ensemble of systems
that are allowed to relax to equilibrium. The value of P(p)dp is the fraction of the
population having a probability between p and p + dp of choosing, say, 0. When the
probabilistic relaxation is used, the asymptotic function P(p) has a U-shape with two
symmetric peaks at p ~ 0 and 1 thus indicating that the N agents have segregated
into two parties making opposite decisions. The relaxation process corresponds to the
minimization of an “energy” function [7] given by the standard deviation o defined by

o> =) P(4)4 - Nj2), (1)
A

where 2(A4) is the probability distribution of parties of 4 agents that have chosen 0.
The value of ¢? depends upon the properties of P(p). In Ref. [7] it is proven that

2 —
£= % =N(B-1/2+(h- 7). @)

where p* = [ p*P(p)dp. At equilibrium the linear dependence of & on N disappears,
and ¢? turns out to be an extensive magnitude proportional to N. A minimization of
& is equivalent to find a distribution P(p) with the smallest possible number of losers.
In fact, 62 is related to the number of losers because
(w—1?) (N —2¢)?
o =(-npp = =00 ) 3)
4 4

where w (/) is the number of winners (losers) and (- - -) represents an ensemble aver-
age.

If one assumes naively P(p)=4d(p — %) corresponding to a symmetric random walk
(and thus eliminating the term O(N) in Eq. (2)) one gets § = %, while P( p)= constant
yields & = % A better result is obtained with the usual random relaxation dynamics
for the EMG. This yields [7] & ~ é Energy and frustration remain linked to each
other. For the EMG we can define frustration as % = //N; which fulfills 0 < # < 1.

2 Two works where related ideas about local neighborhoods are developed are given in Ref. [6].
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This definition may also be used for any system involving a game with multiple players.
The value # = 0 corresponds to a situation such as the “majority game” in which a
player is a winner if her decision is the same as the majority. This leads to situations
that can be assimilated to a ferromagnetic phase (all the players (spins) have chosen the
same option (orientation)). In the EMG there are less winners than losers, and therefore
% < Fpmc < 1. The lowest possible frustration for the EMG is reached when the N
(odd) agents are coordinated to produce the largest possible minority, i.e., (N — 1)/2.
Thus the lowest possible frustration for a finite minority game is * = (1 4 1/N)/2.

We now turn to the LEMG in which the ith player makes her decision depending
upon the situation in her neighborhood /. In order to define the neighborhoods we
assume three possible spatial orderings. Two of them correspond, respectively, to a
one-dimensional (1D) or a square two-dimensional (2D) regular array with periodic
boundary conditions (i.e., respectively, a ring and a torus). In the third arrangement,
the agents are placed in the nodes of a random undirected graph with a fixed number of
neighbors for each agent so that a reciprocity relationship is automatically fulfilled (if
node i is taken to be linked to node j, the reciprocal is also true). All neighborhoods
are assumed to have the same (odd) number n of agents (we consider that i € /7).

The rules of the LEMG are the same as for the EMG except for the important
difference that an agent wins or loses points depending whether she is, or she is not,
in the minority of her own neighborhood. No attention is paid to the agents that do not
belong to .4;. The LEMG coincides with the usual EMG when ./; coincides with the
complete N-agent system. In the regular orderings the neighborhoods are respectively
a segment or a square with an odd number of agents. The only agent that updates her
p;i is located at the center of the square or segment. Notice that an agent may be in
the minority (a winner) in her neighborhood and in the majority (a loser) when the
entire system is considered, and vice versa.

Let us consider the simple example of an infinite linear chain of agents and a
neighborhood with n=3. We define R; to be the probability that the ith agent belongs
to the minority of 4. We can thus write

Ri= — pi—1)pi(1 = piy1) + pi—i(1 = pi)pis1 » 4)

where —oo < i < co. The probability that all agents are winners is R =[], R;. Obvi-
ously, R =1 if and only if R; =1, Vi. This is possible only if p;, =1 and p;+; =0.
This corresponds to a pattern in which 0’s and 1’s alternate with a period of 2. Larger
neighborhoods give also rise to periodic solutions with larger (even) periods. Any finite
ring with an odd number of agents is frustrated because such periodicity can not fit
along the chain.

Eq. (4) can be used to construct a (deterministic) relaxation dynamics to adjust the
pi’s climbing along the gradient of R;. We thus assume p;(¢ + 1) = p;(t) + Ap; and
set

Api =n0R;/dp; =n(l — pi—1 — pis1) ®)

with 1>#n > 0. A stationary (A p; =0 Vi) solution for this dynamics is p;= %; Vi. This
solution is unstable because any random perturbation of any p; leads to a
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situation in which A p; # 0 Vi.> This dynamics stabilizes a pattern of 0’s and 1’s that
alternate with each other. In fact if p,;; and p;_; are both greater (smaller) than %,
then Ap; < 0(> 0) thus forcing p; < %(> %) This relaxation dynamics is therefore
expected to lead to distributions P(p) that vanish at p = %

3. Results

3.1. Self-segregation

In Fig. 1 we show the results of & = ¢?/N as a function of the size parameter S
defined as the ratio S =n/N obtained in several numerical experiments. The value for
S =1 corresponds to &gy obtained for the EMG. In this section we only discuss
results for N = 121. We have considered the topologies of a ring, a “square” torus
(with N =11 x 11), and of random graphs. In all the cases considered, the values of
&s with S <1 fulfill &5 < &gyg. This feature is stressed in Fig. 1 with an horizontal
line drawn at the value of &gy. The value of & for regular 1D and 2D lattices grows
with S and for S ~ 0.5 becomes even larger that &g.

The corresponding density distributions P(p) are shown in Fig. 2 for several values
of S. These are compared with the distribution Pgyc(p). We observe that Pg(p) with
S<1 are always symmetric and U-shaped as Pgyg(p) but they differ from this in
the fact that they vanish around p = % This agrees with the discussion given above
for the linear chain. As we shortly discuss, this turns out to be a highly relevant and
general feature of the LEMG. Such distributions are a better approximation to an ideal
distribution

-1 1
P(p) =" 10(p) + 8(p — D]+ - (p — 1/2) (6)

that yields the optimal value of &3,,; =1/4N (and #},,; =(1+1/N)/2). A noticeable
dip is produced for S = (N — 2)/N. This can be understood in the following way.
Assume that a symmetric distribution P(p) has already developed and two agents are
removed in order that the ith player can check her decision in her neighborhood of
N — 2 agents. If the two agents that have been removed have p > % (p< %) the ith
agent has the single winning option of choosing p; >~ 1 (p; >~ 0). In the other cases
(one player with p > % and the other with p < %) her choices of approaching 0 or 1
have equal probability. The net result once all players have updated her respective p’s
in the same fashion is to force the resultant P(p) to drop at p:% and grow at p=0,1
as discussed for the linear chain. This argument can be extended for neighborhoods of
other sizes.

3.2. The optimization problem

The shape of Pg(p) changes with S. For intermediate values (for instance S = %

this distribution has radically changed from the shape of a U to a two wing profile

3 There are other stationary solutions, such as a saw-tooth profile repeating the pattern p;4| = % F e and
pi= % These solutions are also unstable.
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Fig. 1. ¢/N as a function of the size parameter S for different topologies of the N = 121 players system.
Panel (a) corresponds to a ring, panel (b) to a square torus and panel (c¢) to a random graph. Lines are
drawn to guide the eye. Empty and filled symbols correspond respectively to results obtained with and
without annealing (see the text). Data was obtained from 200 independent histories, of 5 x 10° time steps
each, Ap=0.1 and by averaging over the last 2000 time steps of all the histories. The annealing protocol
consists in resetting all accounts to zero every 500 iterations. This is repeated 800 times. The fluctuations
observed in the lower curve of panel (a) subsist in simulations with a much richer statistics (see the text).
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Fig. 2. Examples of the density distribution P(p) for the linear chain and different size parameters (S = %,
% and 1 (EMG)). The second and third curves are offset by one and two units, respectively. Notice that

the first two curves (almost) drop to zero around p ~ 0.5.
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Fig. 3. Number of players with zero points as a function of the iteration number (time) for the same values
of the size parameter as in Fig. 2. In the inset we display in a linear scale the same data up to 10,000 time
steps, to put in evidence the presence of a fast and a slow dynamics.

with secondary maxima at both sides of p = % still keeping the fact that PS(%) =0.
This is associated to an increase in the number of “local winners”. In fact after some
time there are left almost no players that need to update their p;’s (see Fig. 3), while
for S ~ 0 or 1 the relaxation process reaches a dynamical equilibrium in which few

players continuously update their p;’s.
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For such intermediate values of S it is found that a minority is clearly defined in
most neighborhoods and the corresponding agents are unambiguously induced to take
one winning option. They therefore continue to accumulate points and cease to change
their p;’s preventing the system to reach a more efficient self-segregation.

A situation like this has been extensively discussed in Ref. [8]. In these circum-
stances the relaxation process ceases to be effective to lower the energy and the system
freezes in a configuration that is far from a better local optimum. Although the frozen
microstates do depend upon initial conditions, the asymptotic density P(p) is indepen-
dent both because this is a density function that is associated with a macrostate of
the system and because possible random variations are averaged out by repeating the
relaxation process for a large ensemble of systems. Moreover, successive runs to obtain
& changing the random initial configuration, yield essentially the same result. This is
indeed to be expected because the energy is defined as the average of a statistical
fluctuation, as given in Eq. (3).

The procedure to regain the true optimal self-segregation pattern, is to force the
relaxation procedure by periodically removing the points that have been accumulated
by every player, resetting their accounts to 0. This procedure changes only the situations
in which the system is frozen but leaves unchanged situations in which this does not
happen such as for instance for S ~ 0 or 1.

These “annealing” episodes melt the system thus making it possible to reach the
best local configurations. We have performed an annealed relaxation (with a fixed
annealing protocol) for all three topologies. The results are displayed with open symbols
in all three panels of Fig. 1. The fluctuations in the lower curve of panel a) for
S ~ 0.6 disappear for N > 500 thus indicating that it is a finite size artifact of the
model.

A remarkable result displayed in Fig. 1 is that the composition of local optima
always yields a better coordination than the one obtained within the framework of the
EMG in which all agents are involved in the same relaxation process.

There are actually two situations to consider. One in which S ~ 0 or 1, and the
other where S is within these two extreme values. In the first case the LEMG al-
ways yields remarkably lower values of &. This is indeed a general result, because
holds true no matter the topology and the size of the system in which the players
are located. In these cases no annealing is required because the system never gets
quenched.

Outside the neighbourhood of S ~ 0 or 1, the system gets quenched, and for regular
topologies a poorer value of & (i.e., greater than &gy ) is obtained. However, for such
values a better (lower) value of & can always be obtained if the annealing procedure
is used to force the relaxation process beyond the frozen states. This actually means
that a better coordination, i.e., a lower frustration, is achieved whenever the system is
found in a configuration that corresponds to a composition of good local optima, and
this is true in the whole range of values of S. If good local optima are guaranteed one
finds values of &5 that are significantly lower that &gyg. A typical value of &g ~ %
is obtained in this way that is half the value &gy ~ %

Except for finite size effects, all the results presented in this subsection do not differ
from those obtained for many other values of N that we have investigated.
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Fig. 4. An example of the LEMG for the topology of the torus. Domains in the map of probabilities for a
3 x 3 neighborhood. Each pixel represents a player; the corresponding p; are shown as shades of gray.

3.3. The 2D case

A much richer situation is found for the case in which players are located on a grid
with the topology of 2D torus. An example is shown in Fig. 4 in which N =31 x 31.
The values of p are associated to shades of gray. Frustration can be perceived in the
fact that there is not a single global ordering of black (p ~ 0) and white (p ~ 1)
stripes for the whole array. These are instead grouped in domains with different ori-
entations or with the same orientation but shifted with respect to each other. The
relaxation process is fast in an initial stage and slows down once the domains have
fully developed. The domain walls are a source of frustration. In fact, when such stage
has been reached all the agents that have 0 points and continue to update their p;’s
are located in the domain walls giving rise to a slow dynamics in which walls move
enlarging or shrinking domains. The whole picture resembles a crystallization process;
for a value of S greater than a critical threshold, all domains collapse into a single
pattern of stripes. Frustration shows up as an indented (fuzzy) border in some of the
stripes. These results will be discussed in detail elsewhere.

4. Conclusions

We have studied the organization pattern achieved by many agents playing an
EMG with local coordination. We find important differences between the coordina-
tion achieved when the whole ensemble of agents participates in the same relaxation
process or when local coordination is imposed.

According to the present results, the LEMG is an example in which a better co-
ordination or, what is the same, a lower frustration, can be achieved provided that
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the self-organization is ruled by a local process, i.e., if agents govern their actions
paying no attention to global trends of the system but rather to her immediate neigh-
borhood. In the LEMG, this statement holds true even in the case in which very few
agents are removed (S ~ (N —2)/N ) from the whole ensemble. The fact that a more
efficient coordination is achieved by ignoring what happens to the total ensemble of
players is expected to be a feature of a special kind of multi-agent systems. Other
coordination problems may not behave in this fashion, thus allowing a classification
of coordination games into classes linked to the type of optimization problem that is
being “solved” by the ensemble of agents. Further investigation should be devoted to
classify multi-agent games into those that fulfill this property and those that can not
be optimized by braking them into pieces.

It is found that the LEMG displays some of the features that are typical of antiferro-
magnetic systems including the emergence of domains, frustration, fast and slow
dynamics, etc., while also keeping the essence of multiagent models, as applied to
social or economic organization. It therefore sheds light on the connection between
those two bodies of knowledge.

E.B. has been partially supported by CONICET of Argentina, PICT-PMTO0051.
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