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Abstract—We revisit the complex interplay between the
Raman-induced frequency shift (RIFS) and the effect of self-
steepening (SS) in the propagation of solitons, and in the frame-
work of an equation that ensures strict conservation of the num-
ber of photons. The generalized nonlinear Schrödinger equation
(GNLSE) is shown to severely fail in preserving the number of
photons for sub-100-fs solitons, leading to a large overestimation
of the frequency shift. Furthermore, when considering the case
of a frequency-dependent nonlinear coefficient, the GNLSE also
fails to provide a good estimation of the time shift experienced
by the soliton. We tackle these shortcomings of the GNLSE by
resorting to the recently introduced photon-conserving GNLSE
(pcGNLSE) and study the interplay between the RIFS and self-
steepening. As a result, we make apparent the impact of higher-
order nonlinearities on short-soliton propagation and propose an
original and direct method for the estimation of the second-order
nonlinear coefficient.

Index Terms—Nonlinear optics, Raman scattering, self-
steepening.

I. INTRODUCTION

INTRAPULSE Raman scattering is a nonlinear effect re-
sponsible for the redshift experienced by short optical

pulses upon propagation in nonlinear waveguides. Usually
referred to as the Raman-induced frequency shift (RIFS),
it acts by transferring energy from high- to low-frequency
components in the pulse spectrum, and its molecular origin
is usually modeled by the inclusion of a retarded nonlin-
ear response in the propagation equation [1]. As it is well
known, RIFS becomes more apparent when dealing with sub-
picosecond pulses, as the broad spectrum of the pulse is
subjected to a Raman-gain gradient. This effect has been
widely observed in experiments [2], [3], [4], [5]. In particular,
RIFS is responsible for the soliton decay and redshift [6], with
an ensuing time shift of the soliton enabled by the group-
velocity dispersion (GVD) of the medium. This phenomenon
of soliton self-frequency shift finds application in many ar-
eas of optics and photonics, such as in frequency-tunable
femtosecond sources [7], signal processing, and tunable time
delays, among others [8].

Another relevant effect in the realm of short pulses is
that of self-steepening (SS), which is responsible for the
shock of optical pulses and is modeled by considering a
linear frequency dependence of the nonlinear coefficient of
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the supporting waveguide [1]. In the context of solitons, and
most remarkably, self-steepening induces a time shift without
the occurrence of an optical shock [9], [10]. Specifically, the
SS parameter, s1, is related to the first-order term of the Taylor
expansion of the nonlinear coefficient γ(Ω) = γ0 (1 + s1

Ω
ω0

),
where ω0 is the pulse central frequency, Ω = ω − ω0 is
the frequency detuning from ω0, and s1

.
= ω0

γ0
γ1, i.e., s1

is a dimensionless normalization of γ1. The SS parameter
acquires particular relevance when modeling highly nonlinear
broadband processes such as in the case of supercontinuum
generation (SCG) [11], [12]. The complex interplay between
these effects, RIFS and SS, has already been studied in the
literature (see, e.g., [13]) and is the focus of this paper.

Light-pulse propagation in waveguides is usually modeled
by the nonlinear Schrödinger equation (NLSE) [1]. However,
it must be emphasized that if the SS parameter differs from
s1 = 1, the NLSE fails in general to preserve the energy
and the photon number in lossless media [14], [15], [16],
a fact oftentimes overlooked in the literature on the sub-
ject. Frequency-dependent nonlinear profiles can be found in
many kinds of waveguides, such as photonic crystal fibers
(PCF), chalcogenide fibers, silicon waveguides, decorated sil-
icon waveguides, and doped waveguides, among many other
relevant guiding media [11], [17], [18], [19]. Indeed, let us
recall that γ(Ω) = (Ω + ω0)n2/cAeff , where n2 is the
nonlinear refractive index, c is the speed of light, and Aeff

is the effective mode area. The particular case s1 = 1 (or
equivalently γ1 = γ0/ω0) implies that the quotient n2/Aeff

must not depend on frequency. However, since Aeff = Aeff(Ω)
and n2 = n2(Ω), this assumption does not normally hold. For
instance, in the work of Zhao et al. [17], values of s1 as large
as ±42 are found.

When the effect of Raman scattering is included into the
NLSE the resulting equation, called generalized nonlinear
Schrödinger equation (GNLSE), no longer conserves energy
as there is a transfer from the electromagnetic field to the
material medium. Thus, in this case it is customary to look at
the evolution of the number of photons instead of energy as a
measure of the validity of the numerical results. Unfortunately,
as with the NLSE, the GNLSE fails to conserve the number of
photons for s1 6= 1. Furthermore, this equation only predicts
physically sound results when positive zeroth-order nonlinear
coefficients (γ0) are taken into account. For negative coeffi-
cients, however, the GNLSE predicts an unphysical blueshift
of short pulses [20], [21], a problem worsened when the
SS parameter departs from the photon-conserving condition
s1 = 1 of the GNLSE.

In view of these considerations, the GNLSE is not suitable



to study the complex interplay between RIFS and SS in short 
pulses, where the influence of the self-steepening parameter is 
of the utmost relevance. Indeed, such study requires a model-
ing equation that can accommodate an arbitrary frequency-
dependent nonlinear coefficient ( e.g., w ith s 1 6 = 1 ), while 
preserving the mean photon number. To tackle this issue, 
we have derived a modified G NLSE, t he photon-conserving 
generalized nonlinear Schrödinger equation (pcGNLSE) [21], 
an equation that ensures that the photon number is conserved 
in lossless media. Analyses in this work are, thus, based on 
the pcGNLSE.

Finally, it is important to emphasize that, to the very best 
of our knowledge, only a linear frequency-dependent γ(Ω) is 
assumed for modeling purposes in the literature. Indeed, it 
has been shown that such approximation form is sufficient for 
most purposes, even in the case of few-cycle pulses (see, e.g.,
[22]). Nonetheless, some waveguides exhibit a more complex 
frequency dependence of the nonlinearity [23], [24], [25], [18]. 
This fact motivates the question of whether such complex 
dependence can be observed in experiments and how it can 
be measured. In this work, we provide some insight into this 
matter by exploring the influence of the second-order term of 
the Taylor expansion of γ(Ω) on the time delay experienced 
by short solitons.

The rest of the paper is organized as follows: In Section II, 
we review how RIFS and SS perturb a soliton in the long-
pulse regime (≥ 100 fs), as modeled by the GNLSE and 
pcGNLSE. Then, in Section. III, we analyze short pulses with 
both equations and show the former to predict the gain or 
loss of photons depending upon the magnitude of the self-
steepening parameter. In Section IV we analyze the influence 
of the second-order term of the Taylor expansion of the 
nonlinear coefficient, γ 2, a nd p ropose a n o riginal m ethod to 
estimate it from measurements. Final remarks are presented in 
Section V.

II. EVOLUTION OF LONG PULSES

Let us first review the behavior of long soliton pulses under 
the generalized nonlinear Schrödinger equation [1]

∂Ãω
∂z

= iβ(ω)Ãω + iγ(ω)F
{
A|A|2

}
+

ifRγ(ω)F
{
A

∫ ∞
0

h(τ)|A(t− τ)|2dτ −A|A|2
}
, (1)

where A = A(z, t) is the complex envelope of the electric
field in the time domain, normalized such that |A|2 is the
optical power, and Ã = Ã(z, ω) = F [A(z, t)], F standing
for the Fourier transform. Coefficients β(ω) and γ(ω) are the
linear and nonlinear dispersion profiles, respectively, and it
is customary to express these profiles as Taylor expansions.
Function h(t) accounts for the delayed Raman response and
fR is the fractional Raman contribution.

Solitons in optical waveguides have been studied for several
decades (see, e.g., [26], [27] and references therein.) Let us
briefly recall that, in the absence of higher-order linear and
nonlinear dispersion and Raman scattering, these solutions are
characterized by the integer N , called the ‘soliton order’, given

by N2 = γ0P0T
2
0 /|β2|, where γ0 is the zeroth-order nonlinear

coefficient, β2 is the group velocity dispersion parameter of
the waveguide, and P0 and T0 are the soliton peak power
and 1/e half width, respectively [28]. The influence of higher-
order linear and nonlinear dispersion and Raman scattering on
the propagation of solitons can be analyzed by the method of
moments [29], [30], [13], [1] (for an alternative approach to the
analysis of soliton perturbations see, e.g., [31]). This method
posits the ansatz

A(z, T ) = apsech

(
T − qp
Tp

)
exp

{
−iΩp(T − qp)− iCp

(T − qp)2

2T 2
p

+ iφp

}
, (2)

where ap, Tp, Cp, qp, Ωp, and φp stand for the amplitude,
width, chirp, time shift, frequency shift, and the soliton phase,
respectively; note that the latter can be neglected without any
loss of generality and that, for short propagation distances, the
width remains nearly constant and the chirp is null.

Neglecting higher-order dispersion terms and introducing an
effective Raman parameter TR [1], it can be shown that the
frequency and time shifts are given by [29], [30]

Ωp(z) = −8TRγ0P0

15T 2
0

z, qp(z) =
β2Ωp

2
z+

s1γ0P0

ω0
z. (3)

Since TR is positive, the spectrum experiences a redshift
when γ0 > 0. If, however, γ0 < 0 (as in some types of
waveguides [23], [32], [33]), Eq. (3) predicts an unphysical
increase of the soliton energy [20], [21], a drawback that
stems from applying the GNLSE to model propagation in the
presence of arbitrary nonlinearity profiles. In what follows we
will assume that γ0 > 0.

The first term of qp(z) in Eq. (3) accounts for the delay
induced by Raman where the GVD parameter, β2, turns the
RIFS into an effective group velocity; the second term is
due to self-steepening. Figure 1 (left) shows the propaga-
tion of a 100-fs soliton at 1550 nm along 100 LD in a
fiber with β2 = −20 ps2/km, γ0 = 1 W−1km−1, and
s1 = −1, where LD = T 2

0 /|β2| is the dispersion length.
The Raman response of the medium is modeled as h(t) =
(τ−2

1 + τ−2
2 )τ1 exp(−t/τ2) sin(t/τ1), with τ1 = 12.2 fs,

τ2 = 32 fs, and fR = 0.18 [1], [14]. Henceforth, the effect of
attenuation is neglected in the simulations, as the propagation
distances considered are much shorter than the corresponding
attenuation characteristic length. Top and middle panels show
the normalized time and frequency shifts, respectively. As it
can be observed, simulation results are in excellent agreement
with results from Eq. (3), shown in dashed lines. The bottom
panel in Fig. 1 shows, for the GNLSE, a slight increase in the
photon number with distance due to s1 6= 1. This deviation
is small because of the weak effect of self-steepening when
considering long pulses. Let us note that the photon number
is calculated as

∫ +∞
0
|Ã|2/(h̄ω)dω.

The failure of the GNLSE to conserve the number of pho-
tons motivated us to introduce the photon-conserving GNLSE



Fig. 1. (Top) Time and (center) frequency shifts experienced by 100-fs
solitons along 100 LD in a waveguide with s1 = −1, as predicted by the
GNLSE (left) and the pcGNLSE (right). (Bottom) Photon-number evolution.
Dashed lines show results from Eqs. (3) and (5) in excellent agreement with
simulations.

(pcGNLSE), which reads [21]

∂Ãω
∂z

= iβ(ω)Ãω+i
γ(ω)

2
F
(
C∗B2

)
+i
γ∗(ω)

2
F
(
B∗C2

)
+

ifRγ
∗(ω)F

(
B

∫ ∞
0

h(τ)|B(t− τ)|2dτ −B|B|2
)
, (4)

where γ(ω) = ωr̃, B̃ = r̃Ã, C̃ = r̃∗Ã, and r̃ = 4
√
γ(ω)/ω.

This equation was derived based on quantum mechanical
considerations. Without going into details, which the inter-
ested reader can find in full in Ref. [21] and references
therein, the key point of the derivation is the introduction
of an adequate quantum Kerr operator. In particular, in the
pcGNLSE the derivation of such operator is motivated by
the validity of a generalized Miller’s rule for the nonlinear
susceptibility [34], which has been shown to be accurate for
a broad range of media (see e.g. [35]). Miller’s rule implies
a relation between the third- and first-order susceptibilities:
χ

(3)
ω1,ω2,ω3,ω4 ∝ χ

(1)
ω1 χ

(1)
ω2 χ

(1)
ω3 χ

(1)
ω4 , and this is the reason behind

the fourth root in the definition of r̃(ω).
Although Eq. (4) appears to be more complex than the

GNLSE, it can be solved with the very same numerical
methods, e.g., the split-step Fourier method [36]. Furthermore,
it can be shown that the pcGNLSE reduces to the GNLSE

whenever s1 = 1, that is, in the only case where the latter
conserves the photon number. It is worth mentioning that
the pcNLSE, i.e., a similar equation to the pcGNLSE but
neglecting the delayed Raman response of the medium, has
already been successfully applied to the study of modulation
instability in waveguides with frequency-dependent nonlinear
coefficients [37], in the modeling of broadband two-photon
absorption [38], and in the study of nonlinear phenomena in
waveguides doped with metal nanoparticles [39]. In this paper,
we make use of the pcGNLSE to focus on the influence of
Raman scattering, self-steepening, and high-order nonlinearity
on soliton propagation within the framework of the strict
conservation of the number of photons.

As with the GNLSE, we start our analysis from Eq. (2)
and the method of moments. For long pulses, Eq. (4) can be
approximated up to a first order in Ω/ω0. Proceeding this way
and modeling the influence of Raman by introducing TR, it
can be shown that Raman plays exactly the same role in the
pcGNLSE as it does in the GNLSE. This might have been
expected, since we deal with long pulses and similar approxi-
mations. However, self-steepening plays a different role in the
pcGNLSE as this equation guarantees the conservation of the
photon number for any value of s1.

Using the method of moments with this equation, it can
be proved that, for γ0 > 0, the frequency and time shifts are
given by (see Appendix A for details)

Ωp(z) = −8TRγ0P0

15T 2
0

z, qp(z) =
β2Ωp

2
z +

(s1 + 2)γ0P0

3ω0
z.

(5)

Comparing Eq. (5) to Eq. (3), we see that they predict the
same RIFS. However, they differ in the way they account
for the influence of self-steepening on the delay experienced
by the soliton. Most remarkably, and as predicted by the
pcGNLSE, the effect of SS vanishes when s1 = −2. Note the
linear relation between qp and s1; this relation can be used
to obtain the SS parameter by measuring the delay, as it was
proposed in Ref. [40]. Figure 1 (right) shows the evolution of
a 100-fs soliton as simulated with the pcGNSLE. As it can
be readily seen, the photon number remains constant along
propagation. In the long-pulse regime, both the GNLSE and
the pcGNLSE predict similar results in excellent agreement
with analytical predictions in direct correlation with the small
photon gain observed in the GNLSE, and a signature of a
long-pulse regime.

In what follows we will focus on the short-pulse regime,
where the enhanced influence of self-steepening and higher-
order nonlinearities are shown to have profound consequences
on the soliton evolution, as obtained with the two modeling
equations.

III. EVOLUTION OF SHORT PULSES

Time and frequency shifts given by Eqs. (3) and (5) are valid
for unchirped solitons with constant width and peak power.
In the case of short pulses (T0 < 100 fs), however, these
conditions are not maintained upon propagation. Moreover,
the effective Raman parameter TR becomes dependent on the
pulse width [13]. In order to illustrate this scenario, Fig. 2



Fig. 2. (Top) Time and (center) frequency shifts experienced by 25-fs solitons
along 100 LD in a waveguide with s1 = −1, as predicted by the GNLSE
(left) and the pcGNLSE (right). (Bottom) Photon-number evolution. Black-
dashed lines show results from Eqs. (3) and (5).

shows the propagation of a 25-fs soliton along a fiber with the
same parameters of those in Fig. 1, with both the GNLSE and
the pcGNLSE. Note that the soliton peak power is normalized
to its initial value as P (z)/P0. As it can be observed, the
GNLSE and the pcGNLSE predict very different outcomes,
i.e., the former leads to a much larger RIFS and an ensuing
larger delay, while displaying an unphysical surge in the
number of photons. The pcGNLSE, however, predicts smaller
frequency and time shifts, while observing strict conservation
of the number of photons along propagation. Black-dashed
lines show analytical results from Eqs. (3) and (5) that do not
match the numerical results. Observe that the GNLSE leads to
a large overestimation of the RIFS in direct relation with the
non-conservation of the photon number, a characteristic made
more apparent in the case of short pulses with broader spectra
(compare results from Figs. 1 and 2.)

To further show the correlation between results obtained
with the GNLSE and the pcGNLSE, and the photon num-
ber evolution, we study the dependence of the time delay,
frequency shift, and photon number on the self-steepening
parameter. Results for a 25-fs soliton at a propagated 15LD
are shown in Fig. 3. A direct correlation between an increase
in photon number and a larger time- and frequency-shift is
readily observed. Note that, as expected, when s1 = 1 the
GNLSE conserves the photon number. However, for a larger
SS parameter the GNLSE predicts a slight loss of photons.
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Fig. 3. (Top) Time and (center) frequency shifts experienced by 25-fs solitons
along 15 LD, as predicted by the pcGNLSE (circles) and GNLSE (squares),
for different SS parameters. (Bottom) Photon-number evolution.

Since the difference is considerably smaller as compared to
cases with s1 < 1, the predicted frequency and time shifts
approach those obtained with the pcGNLSE. In physical terms,
this asymmetric behavior of the GNLSE around s1 = 1 can be
explained by the appearance of a zero-nonlinearity wavelength
(ZNW) in the low-frequency side of the spectrum, for s1 > 0,
that limits the RIFS [20].

IV. HIGHER-ORDER NONLINEARITIES

As we have already mentioned, the literature usually focuses
on the expansion of γ(Ω) only up to the first order, even
when dealing with the modeling of intrinsic broadband highly
nonlinear processes such as supercontinuum generation [12].
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In this section we focus on the effect that higher-order non-
linearity has on the propagation of short solitons. Bear in
mind that such task can only be performed by resorting to
the pcGNLSE as, it was shown in the previous section, the
GNLSE in general fails to conserve the photon number and
hence it does not yield reliable results.

Let us define s2 such that γ(Ω) = γ0 (1 + s1
Ω
ω0

+ s2
Ω2

2ω2
0
).

Figure 4 shows that the effect of s2 can be revealed by
measurable variations in the time delay experienced by a 10-fs
soliton, as the delay depends not only on the self-steepening
parameter s1, but also on the second-order parameter s2. For
the sake of clarity, Fig. 4 shows a relative time shift δT ,
defined as δT = qp(s1, s2)− qp(s1, 0), i.e., the deviation with
respect to the delay for s2 = 0. It is worthwhile pointing
out that Raman scattering acts as an enabler of the higher-
order nonlinearity. Indeed, when switching off the Raman
contribution the delay no longer depends on s2, as shown in
the inset of Fig. 4.

Measurement of soliton dynamics can be used to estimate
fiber parameters [41], [40]. Indeed, the dependence of the
time shift on the higher-order nonlinear coefficient s2, as
observed in Fig. 4, suggests a way for its estimation. The
underlying idea of this proposal is presented in Fig. 5, where
the relative time delay vs. s2 is shown for three different
SS parameters s1 = −1.5, 0, 1.5. In all cases, it is verified
that the delay is unaffected in the case of long 100-fs pulses.
Shorter 10-fs pulses, however, experience a delay that depends
monotonically on s2. A practical implementation of a scheme
to measure s2 will first require the measurement of the time
delay experienced by a long soliton to obtain s1 [40]. Then, the
propagation of a short soliton will make apparent the influence
of the higher-order nonlinearity on the delay.

In order to demonstrate the proposed measurement scheme
for s1 and s2, let us consider its application to a complex
nonlinear profile such as that encountered in waveguides doped
with Au nanoparticles. Figure 6 shows an example of such
a profile (solid line), taken from Ref. [39], centered around
ω0 = 2πc/λ0, with λ0 = 850 nm. We simulate the proposed
measurement scheme, assuming that β2 (= −100 ps2/km) and

−9 −6 −3 0 3 6 9
−40

0

40

80

s2

δT
/
T

0

100 fs
s1 = −1.5
s1 = 0
s1 = 1.5

Fig. 5. Relative time shift vs. s2 experienced by short 10-fs solitons, and for
different s1. The horizontal dotted line corresponds to long 100-fs solitons.
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Fig. 6. Nonlinear profile of a waveguide doped with Au nanoparticles
(solid line) and quadratic approximation around ω = ω0 (dashed line).
The 10-fs soliton spectrum is shown with a dotted line for reference.
γ0 = 30 W−1km−1, s1 = 7.86, and s2 = 100.03.

γ0 (= 30 W−1km−1) are known, and that Raman parameters
are those of fused silica, i.e., the host material [20]. First,
we launch a 100-fs fundamental soliton in order to find s1.
Figure 7 (left) shows the input and output pulses after 30 LD,
where it is found that the time shift is 4.12 T0 whence the
estimated SS parameter is ŝ1 = 7.64. Second, a short 10-fs
soliton is propagated along 30 LD. Here, the observed time
shift is 17.10 T0 (see the bottom panel of Figure 7). In order
to estimate s2, we perform numerical simulations using the
estimated value of ŝ1 and for different values of s2: 30, 60,
90, and 120. Each of these simulations predicts a different
time delay, as illustrated in Fig. 8 (squares). Interpolating these
results, we estimate ŝ2 = 86 (marked with a red dot). We can
compare results of the simulated estimation procedure with
those of the quadratic approximation of the nonlinear profile
shown in Fig. 6 (dashed line): s1 = 7.86, and s2 = 100.03. As
such, the relative errors incurred in the estimation of s1 and s2

are ∼ 3% and ∼ 14%, respectively. All things considered, the
proposed scheme allows for a good estimation of the higher-
order nonlinearity.

It is important to note that the input pulse wavelength
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must be far apart from the plasmon resonance of the doping
inclusion in order to avoid excessive absorption. We refer the
interested reader to Ref. [39] for a discussion on this topic
in doped waveguides. Even though this is the case in this
example, the waveguide is longer than the effective attenuation
distance. The influence of the attenuation, which was neglected
in order to emphasize the effect of the higher-order nonlin-
earity, can nonetheless be incorporated into the pcGNLSE in
straightforward fashion. Furthermore, two-photon (nonlinear)
absorption can also be accounted for within the framework of
the pcGNLSE as shown in Ref. [38].

V. CONCLUSIONS

In summary, we revisited the complex interplay between the
Raman-induced frequency shift, self-steepening, and higher-
order nonlinearity in the propagation of short solitons. We
showed that, for sub-100-fs solitons, the GNLSE fails in
preserving the number of photons, leading to a large over-
estimation of the frequency and time shifts experienced by
the pulse. These shortcomings motivated the need to resort to
an adequate photon-conserving propagation equation such as
the pcGNLSE.

We also showed that the time shift suffered by short solitons
is a harbinger of higher-order nonlinearity. This realization
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Fig. 8. Normalized time shift qp/T0 vs. s2. Simulations for s2 = 30, 60,
90, and 120 (blue squares) and interpolated results (dashed line). The red dot
marks the value of s2 estimated for the doped waveguide.

motivated us to propose an original and direct method to esti-
mate the second-order nonlinear coefficient of the waveguide.
Finally, and in view of the results presented, we emphasize
the need to account for the higher-order nonlinearity when
dealing with the propagation of short pulses in waveguides
and all associated phenomena. The effects of higher-order
nonlinearity are most certainly present in various experiments
but the scientific community did not have the right tool, until
now, to correctly model the influence of arbitrary nonlinear
profiles. As such, the pcGNLSE may shed new light on
the problem of propagation in media with new and exciting
nonlinear properties.

APPENDIX A
TIME AND FREQUENCY SHIFTS FOR THE PCGNLSE

Let us assume that γ(Ω) > 0. In this case, C̃ = B̃ and the
pcGNLSE can be written as

∂Ã

∂z
= iβ(Ω)Ã(z,Ω)+

ifRγ(ω)F
{
B(z, t)

∫ ∞
0

R(t′)|B(z, t− t′)|2dt′
}
, (6)

where

R(t) = (1− fR)δ(t) + fRh(t). (7)

Eq. (6) can be expressed in terms of B(z, t) only:

∂B̃

∂z
= iβ(Ω)B̃(z,Ω) + i

√
(ω0 + Ω)γ(Ω)×

F
{
B(z, t)

∫ ∞
0

R(t′)|B(z, t− t′)|2dt′
}
. (8)

If γ(Ω) = γ0 (1 + s1
Ω
ω0

), then

√
(ω0 + Ω)γ(Ω) ≈ √γ0ω0

(
1 +

s1 + 1

2

Ω

ω0

)
, (9)



where we have kept terms up to a first order i n Ω/ω0. Using 
this result and neglecting higher-order dispersion terms,

∂B

∂z
= −iβ2

2

∂2B

∂t2
+ i
√
γ0ω0

(
1− is1 + 1

2ω0

∂

∂t

)
(
B(z, t)

∫ ∞
0

R(t′)|B(z, t− t′)|2dt′
)
. (10)

As it can be readily seen, this equation has the same functional
form as the GNLSE. Furthermore, it is straightforward to show
that, if A(z, 0) is a sech pulse with half-width T0, then B(z, 0)
has approximately the same amplitude for ω0T0 � 1. This fact
explains why the Raman-induced frequency shift predicted by
the pcGNLSE is the same as that obtained with the GNLSE
for long pulses. The first term of the time shift in Eq. 5, due
GVD and RIFS, is explained in the same manner. The second
term of qp in Eq. 5 has already been explained in Ref. [40],
where the time shift of solitons was studied in the absence of
Raman scattering.
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